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Finite-state induced-inflow theory is used to develop an analytic formulation for gen-

eral performance of the lifting rotor with arbitrary loading. The theory incorporates

conventional blade-element theory for blade lift and provides the integrated loads

and the induced-power of the rotor in terms of an arbitrary number of rotor controls

such as conventional collective and cyclic pitch as well as higher harmonic radial and

azimuthal pitch. The theory provides the basis for a classical quadratic optimiza-

tion with realistic constraints that is applied to determine minimum induced-power

for a variety of available control combinations, rotor trim constraints, and operating

conditions. The findings show significantly increased induced-power relative to ideal

Glauert power at moderate and high advance ratios that also depends on the rotor

moment trim constraints. Higher harmonic and radial blade twist significantly reduce

the non-ideal induced-power increment. It appears that increasing the available con-

trols enables the optimum solution to redistribute the rotor loading so as to minimize

the induced-power.
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Chapter 1

Introduction

1.1 Problem Statement

Lifting-rotor induced-power represents the most fundamental component of rotary-

wing vehicle performance. Intimately related to the rotor wake flow-field, research

in these areas dates back to the early development of the autogyro in the 1920s.

Difficulty of modeling the complex rotor wake has hampered progress in accurate

analytical performance prediction methods. Simple models (e.g., those based on

momentum theory) capture the basics of rotor induced-power, but fail to provide

important details. This limits rotor performance prediction accuracy and obscures

fundamental understanding needed for the intelligent design of efficient rotorcraft.

Over the years, these difficulties have led to the development of numerical methods

based on either elaborate, discrete-vortex-filament wakes or on computational fluid

dynamics (CFD). Either of these approaches can be very effective, but they are com-

putationally expensive and provide little fundamental insight about rotor inflow and

induced-power. Particularly elusive is understanding the nature of optimum induced-

power (i.e., minimum power), and how to achieve it.

These problems are important given current emphasis on increasing the speed and effi-

ciency of military and civil rotorcraft. As speed and rotor advance ratio increase, and

as compound rotorcraft with slowed and unloaded rotors pose additional questions,

the need to rationally design for minimum induced-power to maximize rotorcraft

performance becomes more urgent.
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Despite the difficulty and limited progress in developing analytical methods and in

understanding induced-power, a few researchers have made incremental progress, par-

ticularly in recent years. The intent of this research is to pursue and extend the ana-

lytical approach. Existing theory and recent research will first be briefly summarized.

1.2 Early Research, Rotor Wake Induced Inflow

and Power

As noted above, Glauert’s classical momentum theory, Ref.[1], provides the simplest

theory for the lifting-rotor in both hover (axial) and forward (edgewise and oblique)

flight. Classic momentum theory represents the wake induced flow by a simple uni-

form induced velocity field that also defines the ideal minimum, or optimum, induced-

power. However, this ignores the influence of non-uniform induced velocity that is

responsible for significant increases in induced-power above the ideal minimum at

higher advance ratios.

In axial flow conditions, considerable theory was developed in the 1930’s, primarily

for propeller applications. Axisymmetric flow facilitated development of several clas-

sical analytical treatments. The most significant were the lightly-loaded propeller

theories of Betz, Goldstein, and Prandtl, Refs.[2] - [4]. Betz defined the induced in-

flow condition for optimum power. Goldstein’s theory, based on the Betz condition,

is noteworthy in that it provides a rigorous potential flow solution for the optimum

loading of a propeller with an arbitrary number of blades, converging to the actuator

disk case for an infinite blade number at low climb rate. It implicitly treats swirl

angular momentum and local inclination of the blade lift. Nevertheless, Goldstein

theory does not address the general case of non-optimum loading.

Progress for the lifting-rotor in forward flight has been considerably more limited.

Analytical work on lifting-rotor wake induced velocity in forward flight was accom-

plished in the 1950’s and 1960’s by Mangler and Squire, Refs.[5]-[6], and Joglekar

and Loewy, Ref.[7], based on a potential flow solution for a circular wing by Kinner,

Ref.[8]; but only limited success was achieved, and the effects of blade number on

2



induced-power in forward flight were not included (i.e., they treated as infinite num-

ber of blades). In view of the difficulties with analytical methods in forward flight,

the emergence of the digital computer in the 1960’s enabled discrete-vortex numerical

models to be introduced as a practical alternative approach for rotor wake prediction

purposes, followed by CFD methods in the 1980’s.

Eventually, analytical methods progressed, first with unsteady extensions of momen-

tum theory, and subsequently with adaptations of Kinner’s circular-wing theory for

the lifting-rotor. This research, extending over more than 40 years, came to be known

as finite-state, or dynamic inflow theory, and appeared in ever-increasingly sophisti-

cated forms for various rotorcraft applications, Ref.[9].

The first simple dynamic inflow theories were based on either simple momentum the-

ory or basic vortex-wing analogies, Refs.[10]-[13]. Although sophisticated work on the

mathematical theory of lifting airscrews had appeared in the Russian literature by

1973, Ref.[14], this work did not find practical application for dynamic inflow theories

in the U.S. A significant advance by Pitt and Peters, Ref.[15], extended the work of

Mangler and Squire and included the unsteady inflow for the first-harmonic loading

functions. Modern dynamic inflow theory is based on solutions of the linear, incom-

pressible, potential flow equations for the unsteady flow-field induced by an arbitrarily

loaded circular disk in either axial or oblique flow. Extensions of the Pitt-Peters the-

ory to an arbitrary number of radial and azimuthal loading functions yielded the

Peters-He Generalized Dynamic Wake Theory, Ref.[16]. The correspondence between

dynamic inflow theory and the classical potential flow rotor theories of Goldstein and

Loewy (Refs.[3] and [17]) has been established in Refs.[16], [18], and [19]. A more

complete and rigorous theory has been developed recently by Peters, Morrillo, Hsieh,

and Garcia-Duffy, Refs.[20]-[23]. The early emphasis on dynamic inflow theory was

aimed first at rotor response characteristics and then at applications to aeroelastic

stability and flight control models. More recently, dynamic inflow has found accep-

tance for rotor loads analysis and for application to rotor performance, especially for

fundamental investigations and applications for lifting-rotor induced-power in both

axial and forward flight conditions.

It may be useful to clarify actuator disk terminology at this point. An actuator disk

is a disk that supports a pressure jump across the rotor disk that can also vary with

3



radius, azimuth, and time. Thus an actuator disk can have either an infinite or a finite

number of blades. Steady actuator disk theory implies an infinite number of blades

while a time varying actuator disk theory implies a finite number. Thus, Peters-He

finite-state inflow is an actuator disk model in its original form. In contrast, propeller

theory has the lift vector inclined with respect to the disk which implies induced

swirl velocity in the wake and so is not an actuator disk. However, propeller theory

can include either an infinite or finite number of blades. Goldstein applied the Betz

condition for both a finite number of blades and an infinite number of blades. The

Makinen adaptation of the Peters-He theory is propeller theory since lift inclination

and swirl velocity are included. Garcia-Duffy treated all four cases: finite and infinite

blade number for the actuator disk and a propeller. Finally, the lightly-loaded rotor

assumes that the influence of the wake induced flow-field on the wake geometry is

either small or is neglected.

1.3 Previous Work

1.3.1 Historical Landmarks

Recent research has afforded major new advancements in one of the most funda-

mental and traditional disciplines of rotorcraft—aerodynamics and performance of

the lifting rotor. This research is intended to continue this progress with significant

new developments. Dynamic inflow models have been demonstrated to be useful for

the optimization of rotor power in axial flow, Ref.[19]. The models result in a clas-

sic quadratic optimization problem that can be used to find optimum loading and

induced flow for minimum power. Results have been shown to agree with classic pro-

peller solutions of Betz, Prandtl, and Goldstein, Ref.[23]. Reference [23] also shows

that finite-state wake models might be used to optimize rotor performance is skewed

flow (i.e., forward flight). In this document, it will be shown how the finite-state

framework can be used in classical optimization for rotors in forward flight—even

with side constraints on the loading and with limitations on blade geometry.
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1.3.2 Recent Interest in Induced-Power

The subject of lifting rotor induced-power dates back to Glauert in the mid-1920s, and

his classical uniform inflow theory has been widely used ever since. However, it fails to

capture the important influence of non-uniform inflow at moderate and high advance

ratios and this has limited understanding of the significance of induced-power for

advanced rotorcraft. It has been noticed by Harris, Ref.[24], that the induced-power

consumed by conventional helicopters can be six to ten times as great as the minimum

power predicted by Glauert. Ref.[24] questions why the induced-power is so large.

Figure 1.1: Power coefficient data from Har-
ris investigation illustrating the divergence of
power.

Ormiston, Ref.[25], uses the Government

code called “Rotorcraft Comprehensive

Analysis System” (RCAS) with dynamic

inflow to determine part of the answer

to this important question. His results

show that nonuniform inflow and the

trim state have a profound effect on the

induced-power. The recent work of Hall

and Hall [26] verifies that there is a sig-

nificant induced-power penalty at mod-

erate and high advance ratios and pro-

vides additional new insight about lift-

ing rotor induced-power. Reference [27]

applies the finite-state method on induced-power calculations for a rotor with an in-

finite number of blades. Building on these advances, dynamic wake theory offers a

very promising new means of attacking the problem—through simple, closed-form

power formulas that can be derived from the finite-state inflow equations. In this

work these models will be used for exactly that purpose. Both the development of

the formulation for induced-power efficiency and the numerical results yield insight

into this phenomenon.
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1.4 Optimum Power

Several rotorcraft researchers have addressed the question of optimum induced-power

in hover and forward flight. In hover, or axial flight condition, the earliest is the

classical work of Betz and Goldstein noted above. More recently, Hall et al, Ref.[28],

use a novel numerical method and linear optimization to verify Goldstein’s axial

flow optimal loading result for a four-bladed rotor. This is discussed further below.

Figure 1.2: Graphic depiction of the induced
air loads on a rotor blade airfoil section.

Peters and Makinen (Refs.[18] and [29])

apply finite-state dynamic inflow theory

to the optimum loading condition for

lightly-loaded rotors of Betz and Gold-

stein. Since dynamic inflow is based on

linear potential theory for the pressure

discontinuity across an “actuator disk,”

the theory was extended in those refer-

ences to include both the inclination of

the blade lift normal to the local flow di-

rection—See Figure 1.2—and the implicit wake induced swirl velocity to reproduce

the classical results of Betz for the infinite-blade rotor and of Goldstein for the finite-

bladed rotor. Peters and Garcia-Duffy (Ref.[30]) use dynamic inflow to determine

the optimum induced-power for actuator disks and propellers for a finite number of

blades as a function of thrust coefficient and axial advance ratio.

A number of researchers have addressed optimum induced-power for a lifting-rotor in

forward flight. These include Moffitt and Bissell, Ref.[31]; Quackenbush et al, Ref.[32];

Hall et al, Ref.[28]; Rand et al, Ref.[33], Ormiston, Ref.[34], and Wachspress et al,

Ref.[35]. All of these treat rotors with a finite number of blades. The most rigorous

of these, by Hall et al, uses a discrete wake comprised of helical vortex lattice sheets

to model a lightly-loaded, four-bladed rotor in forward flight. A wake energy method

based on a Trefftz volume—analogous to the classical Trefftz plane method—is used

to evaluate the rotor induced-power in the far field. The rotor blade bound circula-

tion loading is discretized as a function of azimuth and radius and linear quadratic

optimization is applied, with appropriate lift and rotor moment constraints, to de-

termine the optimum loading and associated induced-power. Although useful steps
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forward, these investigations produced relatively limited results and few significant

insights about optimum rotor induced-power in forward flight.

Garcia-Duffy et al, Ref.[36], in a precursor to the present investigation, uses an an-

alytical approach and dynamic inflow to determine the optimum induced-power for

an untrimmed rotor in oblique flow. The rotor model is for an infinite number of

blades, and includes inclination of the lift vector and swirl effects. The oblique flow

condition defined by wake skew angle encompasses the full range of operating condi-

tions from axial to an edgewise rotor in forward flight. The rotor is not trimmed to a

constrained rotor hub moment condition (e.g., zero moment) and the induced-power

for the edgewise flow condition is equal to the Glauert ideal minimum for all advance

ratios. The induced-power is shown to increase for increased rotor disk angles of

attack and converges to the results of Ref.[30] for axial flow.

In 2010, Hall and Hall, Ref.[26], use the methodology introduced in Ref.[28] to signif-

icantly extend the initial lightly-loaded rotor results to a full range of advance ratios,

number of blades, and multiple rotor and wing configurations (the latter are signifi-

cant but beyond the scope of the present single rotor investigation). Significant new

insights are obtained, particularly regarding blade number, wake skew angle, and ro-

tor moment trim. These results were interpreted in terms of the configuration of the

trailed and shed vorticity in the far wake. Most importantly, for large blade numbers,

the optimum induced-power converges to the Glauert ideal for a rotor disk at zero

angle-of-attack. For the trimmed rotor with a finite number of blades, the optimum

normalized induced-power increases substantially and peaks near the critical advance

ratio similar to the corresponding Ormiston’s results.

1.5 Present Approach

There are several distinct areas of interest for the induced-power of the lifting-rotor.

The first is to better understand fundamental characteristics of induced-power, es-

pecially in high-speed forward flight. Also to evolve analytical models to predict

induced-power for arbitrary configurations and operating conditions. Finally, deter-

mine the optimum induced-power in forward flight subject to arbitrary constraints

while properly accounting for the complex wake induced flow-field. Finite-state wake

7



inflow theory offers a very promising new analytical method of attacking the problem

of lifting-rotor induced-power with the potential to derive simple, closed-form ex-

pressions from the finite-state inflow equations and provide new fundamental insight

about induced-power. The focus of the present research is to address lifting-rotor per-

formance in forward flight for the general loading conditions and apply the methods

to the optimization for minimum induced-power subject to arbitrary constraints.
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Chapter 2

Dynamic Inflow Theory

To adequately formulate a mathematical model from the physical system, a summary

of dynamic inflow theory is in order.

2.1 Fundamentals of Fluid Dynamics

From basic fluid dynamics, the conservation equations for an incommpressible, po-

tential flow are written as follows:

�∇ · �V = 0 (2.1)

∂�V

∂t
+ (�V · �∇)�V = −1

�
�∇p (2.2)

where �V is the total velocity, � is the air density, and p is the flow field pressure. If

one assumes small perturbations—i.e., the total velocity �V differs only slightly from

the free-stream V∞—then the total velocity may be expressed as the following:

�V = −V∞ · ξ̂ + δ�v (2.3)

Where ξ is a vector (non-dimensional on R—the rotor radius) along the streamline

pointing in the upstream direction (opposite the direction of flow, see Figure 2.1) and

δ�v is a small perturbation velocity.

ξ̂ = sin(χ)̂i− cos(χ)k̂ (2.4)
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δ�v = δ�vxî+ δ�vy ĵ + δ�vzk̂ (2.5)

Figure 2.1: Graphic depiction of rotor coordinates with accompanying free-stream.

Substitution of Eqs.((2.3)-(2.5)) into Eq.(2.2) and dropping higher order terms yields

the following equation.
∂δ�v

∂t
− V∞

∂δ�v

∂ξ
= −1

�
�∇p (2.6)

This is a linearized form of the original momentum equations. If one defines a set of

non-dimensional parameters, the linearized momentum equations may then become

non-dimensional as well.

�v ≡ δ�v

ΩR
(2.7)

P ≡ p

�Ω2R2
(2.8)

t̄ ≡ t · Ω (2.9)

where Ω is the rotor rotational speed.

This gives the following set of equations for the continuity of mass and momentum,

respectively.
�∇ · �v = 0 (2.10)

∂�v

∂t̄
− ∂�v

∂ξ
= −�∇P (2.11)
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Next, if one assumes that the non-dimensional velocity �v can be expressed as the

gradient of some potential function, say Ψ. Then the velocity may be expressed as

the following.

�v = �∇Ψ (2.12)

which then gives for the continuity of mass equations.

�∇2Ψ = 0 (2.13)

If the potential function Ψ is substituted into the momentum equations and then

one pre-multiplies a divergence to this, the momentum equation reduces to Laplace’s

equation.
∂(�∇2Ψ)

∂t̄
− ∂(�∇2Ψ)

∂ξ
= −�∇2P = 0 (2.14)

This implies that the non-dimensional pressure P may be expressed as a potential

function as well, say Φ.

P = Φ (2.15)

We may now solve for the non-dimensional pressure distribution from Eq.(2.14). It

is convenient to model the inflow of a helicopter rotor in Ellipsoidal coordinates1.

Therefore, Laplace’s equation, when written in Ellipsoidal coordinates, is as follows.

∂

∂ν

�
(1− ν2)∂Φ

∂ν

�
+
∂

∂η

�
(1 + η2)

∂Φ

∂η

�
+
∂

∂ψ

�
(ν2 + η2)

(1− ν2)(1 + η2)
∂Φ

∂ψ

�
= 0 (2.16)

The solution to this equation is a function of associated Legendre functions2.

Φ(ν, η, ψ) =
�

n,m

P̄mn (ν)Q̄
m
n (iη) (C1 cos(mψ) + C2 sin(mψ)) (2.17)

where P̄mn (ν) and Q̄
m
n (η) are normalized associated Legendre functions of the first and

second kind, respectively. ν is the coordinate that represents hyperboloids which, on

the rotor disk, is given by ν =
√
1− r̄2. η is a coordinate that represents ellipsoids.

And ψ is the azimuthal angle measured from rotor aft.

1Refer to Appendix A for detailed explanation.
2Refer to Appendix B for detailed explanation.
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It is important to note that the pressure potential defined in Eq.2.17 must satisfy

the boundary conditions present on the rotor disk. In the ellipsoidal coordinate

system, ν changes sign as it crosses the rotor disk from the upper hemisphere to the

lower—and vice versa. Therefore a solution to the pressure potential must account

for this. Associated Legendre function are defined such that the sum of m and n

even represent and even function in P̄mn and likewise the sum of m and n being odd

represent an odd function in P̄mn . Thus the only permissible terms are those with

m+ n equals odd, all other terms are zero.

2.2 Linear Operators

Returning to the linearized equations in 2.6, one may express the pressure distribution

as a combination of two parts—a part due to convection ΦV and a part due to

unsteadiness ΦA.

Φ = ΦV + ΦA (2.18)

This may then be differentiated as follows:

�∇Φ = �∇ΦV + �∇ΦA (2.19)

where, from Eq.2.6,

�∇ΦV = V∞
∂δ�v

∂ξ
(2.20)

�∇ΦA = −∂δ�v
∂t

(2.21)

Because the focus of concern is the normal component of the perturbation velocity on

the surface of the rotor disk (i.e., z-component at ξ = 0), one may integrate Eq.2.20

along a streamline taking into account only the component normal to the disk.

∂δ�v

∂ξ
= w =

1

V∞

∞�

0

∂ΦV

∂z
dξ (2.22)
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Here, w is known as the normal component of the induced-flow, considered positive

in the downward direction. Likewise, the non-dimensional time derivative of the

unsteadiness perturbation component may be expressed as follows:

∂δ�v

∂t̄
=
dw

dt̄
= −∂Φ

A

∂z
|η=0 (2.23)

The two above equations may be thought of as linear operators,

w = L[ΦV ] (2.24)

dw

dt̄
= M−1[ΦA] (2.25)

where both operators L and M are expressible in matrix form as well as invertible.

This is possible by an appropriate choice of expansion functions for the representation

of the induced-flow. In a similar fashion as the pressure distribution (Eq.2.17), one

may expand the induced-flow distribution in the following way.

w(r̄, ψ, t̄) =
�

j,r

Ψ̄rj(r̄)
�
arj(t̄) cos(rψ) + b

r
j(t̄) sin(rψ)

�
(2.26)

This is represented in terms of a harmonic variation in the azimuthal angle and an

arbitrary (i.e., yet to be determined) radial distribution. Here the expansion function

Ψ̄rj(r̄) must be linearly independent and complete for a given harmonic r. Also, the

coefficients arj(t̄) and b
r
j(t̄) may be considered as the time-dependent states of the

induced-flow model.

2.3 Finite-State Equations

When one choses appropriate expansion functions for the induced flow distribution,

numerical convergence is optimized[42]. In particular, these expansion functions are

the following.

Ψrj = φ
r
j(r̄) ≡

1

ν
P̄ rj (ν) (2.27)
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The expansion functions φrj(r̄) turn out to be simple polynomials in r̄.

φrj(r̄) =
�
((2j + 1)Hrj )

j−1�

q=r,r+2,···
r̄q

(−1)(q−r)/2(j + q)! !
(q − r)! ! (q + r)! ! (j − q − 1)! ! (2.28)

where

Hmn =
(n+m− 1)! ! (n−m− 1)! !

(n+m)! ! (n−m)! ! (2.29)

From the development of the Peters-He model, the following matrices will result from

the aforementioned expansion functions.

Brjn = B̄
r
jn ≡

1�

0

P̄ rn(ν)
1

ν
P̄ rn(ν)dν (2.30)

Due to the complex nature of the computation of B̄rjn, it is often found beneficial to

use the simpler inverse.

�
B̄rjn
�−1

=
(−1)n+j−2r

2�
HrnH

r
j

2
√
2n+ 1

√
2j + 1

(n+ j)(n+ j + 2)((n− j)2 − 1) (2.31)

Therefore, the final form of the dynamic wake model, using the expansions Ψrj = φ
r
j(r̄),

is as follows.

�
[M c] 0

0 [M s]

� ˙�
{α}
{β}

�
+ V

�
[L̃c]−1 0

0 [L̃s]−1

��
{α}
{β}

�
=
1

2

�
{τ c}
{τ s}

�
(2.32)

where, in the Peters-He generalized dynamic wake model

[M c] = [M s] =




. . .

Km
n

. . .


 (2.33)
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where Km
n ≡ π

2
Hmn , and

[L̃c] =




. . .

[B̄rjn]
−1

. . .







...

· · · [L̂rmjn ]c · · ·
...


 (2.34)

And likewise, a similar expression exists for [L̃s].

The elements of the induced flow influence coefficient matrices [L̂rmjn ] are expressed as

follows.

�
L̂0m
jn

�c
= Xm[Γ0mjn ]

�
L̂rmjn

�c
=

�
X |m−r| + (−1)lX |m+r|� [Γrmjn ] (2.35)

�
L̂rmjn

�s
=

�
X |m−r| − (−1)lX |m+r|� [Γrmjn ]

where l = min(r,m) and X = tan(|χ
2
|). Also, the functions Γrmjn are defined by the

following equations.

for r +m even,

Γrmjn =
(−1)n+j−2r

2�
Hmn H

r
j

2
�
(2n+ 1)(2j + 1)

(j + n)(j + n+ 2)((j − n)2 − 1)

for r +m odd, j = n± 1,

Γrmjn =
π

2
�
Hmn H

r
j

sgn(r −m)�
(2n+ 1)(2j + 1)

(2.36)

for r +m odd, j �= n± 1,
Γrmjn = 0
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Chapter 3

Aerodynamic Theory

3.1 Induced-Inflow Model

The starting point of this development is the computation of power based on finite-

state variables. The induced power (i.e., the work done on the flow) of a rotor can

be defined from fundamental physics. This is the time-average of the integration over

the disk of the product of induced velocity, force per unit area, and unit area.

Power =

�

T

��

A

(Force× velocity) dAdt̄ (3.1)

where T is the time domain of interest—here 1 period—and A is the surface area

(2-D) of the rotor disk.

In keeping with the scope of this research, it will be convenient to non-dimensionalize

the above with the following relationship.

CP ≡ Power

πR2�(ΩR)2(ΩR)
(3.2)

The power integral in Eq.(3.1) then becomes the following.

CP =
1

2π

2π�

0

��

A

(ΔP (r̄, ψ, t̄) · w(r̄, ψ, t̄)) r̄dr̄dψdt̄ (3.3)

where w(r̄, ψ, t̄) is the induced velocity and ΔP (r̄, ψ, t̄) is the net force per unit area.

To evaluate this integral, knowledge of w and P are needed. The Peters-He induced
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flow theory is a natural place from which to develop this idea, Refs.[43] and [44].

The non-dimensional induced flow distribution in that model is represented by an

expansion in velocity coefficients.

w(r̄, ψ, t̄) =
�

n

�
α0
n(t̄)

P̄ 0
n(ν)

2ν

�
+
�

n,m

(αmn (t̄)cos(mψ) + βmn (t̄)sin(mψ))
P̄mn (ν)

ν
(3.4)

The expansion coefficients αmn , β
m
n are partitioned in terms of a superscript m that

denotes the harmonic number and a subscript n that denotes the radial expansion

for each harmonic number. Also, the zero harmonic terms (α0
n(t̄)) are defined in the

following manner.

α0
n(t̄) = 2a

0
n(t)|He (3.5)

where a0n(t̄)|He are the inflow states from the Peters-He model, Ref.[43]. The reason
for this will be evident in the coming derivation of induced power.

The non-dimensional pressure across the rotor disk in the He model is also expanded

in a similar partition of normalized Legendre functions.

ΔP (r̄, ψ, t̄) = 2

��

n

�
τ0cn (t̄)P̄ 0

n(ν)
�
+
�

n,m

(τmcn (t̄)cos(mψ) + τmsn (t̄)sin(mψ)) P̄mn (ν)

�
(3.6)

where the τ ’s are pressure expansion coefficients.

Both the velocity coefficients and the pressure coefficients are expanded in harmonics

of blade number. For example,

αmn (t̄) = α
m
n0c +

�

k=Q,2Q,...

(αmnkc · cos(kt̄) + αmnks · sin(kt̄)) (3.7)

A similar expansion will exist for α0
n, β

m
n , τ

0c
n , τ

mc
n , and τ

ms
n . The subscripts c, s

represent cosine and sine expansions in non-dimensional time (t̄), and the superscripts

c, s represent spatial (ψ) cosine and sine expansions—as demonstrated in Eqs.(3.4)

and (3.6).
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It follows—due to the orthogonality of the basis functions—that the induced power

coefficient (Eq.(3.3)), can be written in a very compact form:

CP =
1

2π

2π�

0

{τ}T {α} dt̄ (3.8)

where, for the sake of brevity, {α} represents the total inflow solution and likewise
{τ} the total pressure expansion.

3.2 Finite-State Inflow Model

When the pressure and velocity expansions are substituted into the momentum equa-

tions, the following dynamic wake model is produced.

�
[M c] 0

0 [M s]

� ˙�
{α}
{β}

�
+ V

�
[L̄c]−1 0

0 [L̄s]−1

��
{α}
{β}

�
=
1

2

�
{τ c}
{τ s}

�
(3.9)

where the mass matrix [M ] and the influence coefficient matrix [L̄] are closed form

expressions from the development of the dynamic wake model. Also, note that the

influence coefficient matrix [L̄c] is a modified form of the matrix found in the Peters-

He model.

[L̄c] =




2[I]

[I]

[I]
. . .



[L̃c] (3.10)

which states that the zero harmonic terms are doubled, all other terms remain unaf-

fected. This follows from the factor of 2 in Eq.(3.5). However, [L̄s] = [L̃s] as in the

Peters-He model.

Since the inflow distribution is considered unsteady with blade passage, a solution

for the inflow includes a summation of harmonics. Also, due to the time derivative

of the inflow states—which are comprised of sines and cosines—the solutions to the

above differential equations are coupled and include terms of both [M ] and [L̄]. The

general solution is the sum of the steady and unsteady solutions. For the steady-state
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solution, the inflow states are as follows:

�
{αmn }c
{βmn }c

�

0

=
1

2V

�
[L̄c] 0

0 [L̄s]

�

0

�
{τmcn }c
{τmsn }c

�

0

(3.11)

and the unsteady inflow contributions are





�
{αmn }c
{αmn }s

�

�
{βmn }c
{βmn }s

�




k

=
1

2V

�
[L c] 0

0 [L s]

�

k





�
{τmcn }c
{τmcn }s

�

�
{τmsn }c
{τmsn }s

�




k

(3.12)

where k takes on integer multiples of the number of blades (i.e., k = Q, 2Q, 3Q, ...).

The matrices [L ]k are defined below from the coupled momentum equations,

[L c]k =

�
[L̄c]−1 k

V
[M c]

− k
V
[M c] [L̄c]−1

�−1

=

�
[N c]k − k

V
[N c]k[M

c][L̄c]
k
V
[L̄c][M c][N c]k [N c]k

�
(3.13)

where

[N c]k ≡
�
[L̄c]−1 + (

k

V
)2[M c][L̄c][M c]

�−1

(3.14)

Similar expressions exists for [L s]k and likewise [N
s]k.

Therefore, general solutions to the momentum equations (3.9) are the sum of all

solutions and are defined below.

{αmn (t̄)} =
1

2V
[L̄c]{τmcn }0c

+
�

k=Q,2Q,...

�
1

2V

�
cos(kt̄) 0

0 sin(kt̄)

�
[L c]k

�
{τmcn }kc
{τmcn }ks

��

(3.15)

{βmn (t̄)} =
1

2V
[L̄s]{τmsn }0c

+
�

k=Q,2Q,...

�
1

2V

�
cos(kt̄) 0

0 sin(kt̄)

�
[L s]k

�
{τmsn }kc
{τmsn }ks

��
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3.3 Formulation of Induced Power

From the inflow solutions in Eq.(3.15) and the pressure coefficients expanded in tem-

poral harmonics—as in Eq.(3.7)—the induced power coefficient is expressed as a sum-

mation as well.

CP =

�
{τ c}
{τ s}

�T

0c

�
{α}
{β}

�

0c

+
1

2

�

k








�
{τ c}c
{τ c}s

�

k�
{τ s}c
{τ s}s

�

k





T 


�
{α}c
{α}s

�

k�
{β}c
{β}s

�

k








(3.16)

where, here, the sines and cosines have been averaged over the time-domain and the

factor of 2 in Eq.(3.5) cancels the 1/2 from the sinusoidal average.

With the solution to the inflow states in terms of the pressure expansion coefficients,

one can now place the power coefficient in a quadratic form in terms of these pressure

expansion coefficients.

CP =
1

2V

�
{τmcn }
{τmsn }

�T �
[L̄c] 0

0 [L̄s]

��
{τmcn }
{τmsn }

�
(3.17)

+
1

2

�

k




1

2V





�
{τmcn }c
{τmcn }s

�

�
{τmsn }c
{τmsn }s

�





T

k

�
[L c] 0

0 [L s]

�

k





�
{τmcn }c
{τmcn }s

�

�
{τmsn }c
{τmsn }s

�




k




In Eq.(3.17), [L̄] depends only on one parameter, the wake skew angle χ, and [L ]k

depends on the wake skew angle χ, the mass flow parameter V , and the number of

blades Q.

For the special case of an infinite number of blades, the above summation may be

reduced by noting that the original dynamic wake (Eq.(3.9)) model becomes steady.

Therefore, the solution to the inflow states is reduced to Eq.(3.11). The coefficient of
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power is reduced to the following.

CP =
1

2V

�
{τmcn }
{τmsn }

�T �
[L̄c] 0

0 [L̄s]

��
{τmcn }
{τmsn }

�
(3.18)
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Chapter 4

General Rotor Performance

Formulation

4.1 Rotor Loads

General rotor performance theory encompasses rotor loads as well as induced-power.

Rotor loads in turn are also utilized as the constraints that define optimum induced-

power. The dynamic inflow formulation may be used to compute any desired rotor

loads. Here we consider rotor loads to be integrals over the disk of the pressure

including appropriate weighting functions. We will now express rotor loads in terms

of the pressure loading coefficients {τ}. Consider, for example, rotor thrust, roll
moment, and pitching moment, three common rotor loads. Rotor thrust is defined as

the integration of the force per unit area times a unit area of the rotor disk over the

surface of the rotor.

Thrust =

��

A

(Force)dA (4.1)

Whereas, the moment loads are defined as the force per unit area times a “moment

arm” times the unit area of the rotor disk over the surface of the rotor.

Moment =

��

A

(Force× X)dA (4.2)

Thrust is defined as the net force exerted on the rotor, normal to the plane of the disk.

In the rotorcraft industry, two standard moments are considered. These are referred

to as roll moment and pitch moment. Roll moment is considered a side-to-side force
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and pitch moment is considered a fore-to-aft force. A positive roll moment is defined

as advancing blade downward. Whereas a positive pitch moment is defined as “nose”

up3. Figure 4.1 illustrates this with moment arrows representing the roll moment

L and pitch moment M as viewed from above the rotor disk. In this diagram, the

z-axis is positioned at the origin (standard Cartesian coordinates) and pointing into

the page—i.e., away from the reader—giving a valid right-hand coordinate system.

Figure 4.1: Graphic depiction of the rotor moments as viewed from above (looking
in the downward direction) the rotor disk.

3The nose of a rotor is typically associated with the nose (or front) of a helicopter fuselage.
However, in the general case this simply refers to the leading edge of the rotor in foward flight
conditions.
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We will non-dimensionalize these loads to determine the loading coefficients.

CT ≡ Thrust
πR2�(ΩR)2

CL ≡ Roll Moment
πR2�(ΩR)2R

CM ≡ Pitch Moment
πR2�(ΩR)2R

(4.3)

Here CT is the non-dimensional thrust coefficient, CL is the non-dimensional roll

moment coefficient, and CM is the non-dimensional pitch moment coefficient.

These load coefficients are defined by the following integrals of the pressure loading.

CT =
1

π

2π�

0

1�

0

ΔP · cos(ϕ) · r̄ · dr̄dψ

CL = − 1
π

2π�

0

1�

0

ΔP · cos(ϕ) (r̄ · sin(ψ)) r̄ · dr̄dψ (4.4)

CM = − 1
π

2π�

0

1�

0

ΔP · cos(ϕ) (r̄ · cos(ψ)) r̄ · dr̄dψ

where cos(ϕ) is the cosine of the angle between the lift and thrust vectors. An ani-

mated diagram of a blade section is shown in Figure 1.2. It is shown how the induced

drag positions the lift vector away from the thrust vector which is perpendicular to

the rotor disk. This tilting of the lift vector induces a net rotational force that drives

the wake to rotate, or swirl, as is trails the rotor disk. More on the topic of swirl will

be discussed in Section 8.1.

A direct consequence of the lift inclination is that the lift is then positioned per-

pendicular to the trailing vortex sheets. These sheets are parallel to the total local

velocity U .
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Figure 4.2: Graphic depiction of the induced flow w and subsequent total inflow U .

4.2 Matrix Representation

If one expands ν cos(ϕ) in a series of Legendre functions,

ν cos(ϕ) =
�

m,n

(Dmcn cos(mψ) +Dmsn sin(mψ)) P̄mn (ν) (4.5)

or more aptly,

cos(ϕ) =
�

m,n

(Dmcn cos(mψ) +Dmsn sin(mψ))
1

ν
P̄mn (ν) (4.6)

One may also express the following in Legendre functions.

−r̄ cos(ϕ) cos(ψ) =
�

m,n

(Dmcnc cos(mψ) +D
ms
nc sin(mψ))

1

ν
P̄mn (ν) (4.7)

−r̄ cos(ϕ) sin(ψ) =
�

m,n

(Dmcns cos(mψ) +D
ms
ns sin(mψ))

1

ν
P̄mn (ν) (4.8)

The thrust, roll moment, and pitch moment coefficients may then be expressed as

an inner product of the pressure expansion coefficients and the Legendre-function
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expansions defined above.

CT = 2{τ 0cn }T{D0c
n }0 + {τmcn }T{Dmcn }0 + {τmsn }T{Dmsn }0 (4.9)

CL = 2{τ 0cn }T{D0c
n }c + {τmcn }T{Dmcn }c + {τmsn }T{Dmsn }c (4.10)

CM = 2{τ 0cn }T{D0c
n }s + {τmcn }T{Dmcn }s + {τmsn }T{Dmsn }s (4.11)

After substituting the pressure loading of the Peters-He theory from Eq.(3.6) and

integrating, the rotor loads are readily expressible in terms of the pressure loadings

where the othogonality of the basis functions become utilized. Written in matrix

form, they are of the form:





C0c
n

Cmcn

Cmsn




=




{· · ·D0c
n · · ·}0 {· · ·Dmcn · · ·}0 {· · ·Dmsn · · ·}0

{· · ·D0c
n · · ·}c {· · ·Dmcn · · ·}c {· · ·Dmsn · · ·}c

{· · ·D0c
n · · ·}s {· · ·Dmcn · · ·}s {· · ·Dmsn · · ·}s








τ 0cn

τmcn

τmsn





(4.12)

Here the vectors {D}0, {D}c, and {D}s are the matrix representations of the inte-
gration of the mode shape functions. They are detailed below and are a Legendre-

function representations of ν cos(ϕ) Ref.[23].

{D0c
n }0 =

1

2π

2π�

0

1�

0

cos(ϕ)P̄ 0
n(ν)νdνdψ

{Dmcn }0 =
1

π

2π�

0

1�

0

cos(ϕ)P̄mn (ν)νdν cos(mψ)dψ (4.13)

{Dmsn }0 =
1

π

2π�

0

1�

0

cos(ϕ)P̄mn (ν)νdν sin(mψ)dψ
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{D0c
n }c =

1

2π

2π�

0

1�

0

cos(ϕ)P̄ 0
n(ν)νdν cos(ψ)dψ

{Dmcn }c =
1

π

2π�

0

1�

0

cos(ϕ)P̄mn (ν)νdν cos(ψ) cos(mψ)dψ (4.14)

{Dmsn }c =
1

π

2π�

0

1�

0

cos(ϕ)P̄mn (ν)νdν cos(ψ) sin(mψ)dψ

{D0c
n }s =

1

2π

2π�

0

1�

0

cos(ϕ)P̄ 0
n(ν)νdν sin(ψ)dψ

{Dmcn }s =
1

π

2π�

0

1�

0

cos(ϕ)P̄mn (ν)νdν sin(ψ) cos(mψ)dψ (4.15)

{Dmsn }s =
1

π

2π�

0

1�

0

cos(ϕ)P̄mn (ν)νdν sin(ψ) sin(mψ)dψ

where, for a lightly-loaded rotor,

cos(ϕ) =
Ωr̄ + µ sin(ψ)�

(Ωr̄ + µ sin(ψ))2 + λ2
(4.16)

This can be verified by inspection of Figure 4.2.

If we neglect the tilting of the lift vector (i.e., cos(ϕ) ≈ 1) the loads defined in

Eqs.(4.4) reduce to the following closed-form equations.





CT

CM

CL




=




2√
3

0 0

0 − 2√
15

0

0 0 − 2√
15








τ 0c1

τ 1c2

τ 1s2




= [D]{τ} (4.17)
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This example may be extended to formulate any desired rotor loads. One may there-

fore write the general loading vector {C} in the form:

{C} = [D]{τ} (4.18)

where [D] is a closed-form matrix based on integrals of the inflow shape functions.

The J × 1 loading vector {C} defines the J rotor loads, and the matrix [D] has J
rows and N columns that define the combination of pressure coefficients that form

each rotor load. The only limitation is that 1 ≤ J ≤ N since only N loads are defined
in this theory. For the optimization problem, any of the rotor loads may be used as

constraints to define the optimum induced-power. Typically these include the rotor

thrust and moments developed in Eq.(4.17) or other loads (e.g., higher harmonic

loads).

The above analysis of loads implicitly assumes that the loading is perpendicular to

the rotor disk. As pointed out in Refs.[29] and [36], the true loading is inclined

with respect to the disk plane (i.e., the lift is perpendicular to the local air velocity

vector). If any of the loads (for example CT ) need to be computed based on the

normal component of lift, Ref.[36] shows that this effect can be formally included in

the above derivation. The analysis is fairly straightforward. The direction cosine of

the lift inclination over the disk is expanded in a series of Legendre functions and

harmonic functions—as is pressure in Eq.(3.6)—and the direction cosine expansion

coefficients are placed into the elements of [D].
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Chapter 5

Rotor Pitch Controls

There are at least two methods of developing a model for the pressure loadidngs of

the lifting rotor. One is by means of describing the blade lift in terms of pitch control.

Another method is to model the circulation of each blade. Both approaches allow for

an optimum solution and both approaches will be examined here. In this chapter the

focus will remain on blade pitch and the next chapter will describe blade circulation.

5.1 Pressure Loading in Terms of Rotor Controls

We will now extend the development in order to express first the rotor pressure

loading, and then, the rotor loads, in terms of rotor controls. This is needed for

general performance and for more convenient application of rotor loads as constraints

for optimization. Rotor controls are those variables that define the operation of the

rotor system in terms of performance and induced-power. Examples are collective

pitch, linear twist, cyclic pitch, higher-harmonic control, variable airfoil geometry, or

even circulation control via local blowing. These variables may be either fixed or time-

varying. Along with rotor blade geometry (e.g., radial chord distribution), the control

variables influence the blade loading and thus affect the unsteady pressure-loading

coefficients of dynamic inflow. Any conventional, non-conventional, or hypothetical

control can be defined within a vector of allowable blade controls {θ}.
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Figure 5.1: Graphic depiction of the pitch angle relative to the rotor disk plane and
the blade section chord.

For the purposes of this research, we will restrict the rotor control vector {θ} to be
comprised of harmonics of blade azimuthal pitch and blade radial twist

θ(r̄, ψq) =
K�

k=0

M�

m=0

�
r̄k [θmck · cos(mψq) + θmsk · sin(mψq)]

�
(5.1)

whereM is the maximum harmonic of azimuthal pitch and K is the maximum power

of r̄ of the blade twist. Therefore, the number of defined controls is a function of the

radial expansion and harmonic number.

H = (K + 1)(2M + 1) (5.2)

It follows that the allowable pressure loading coefficients across the rotor disk are no

longer the complete set of {τmn } of Eqs.(3.17) and (4.4) but rather only those blade
loadings that can be generated through the rotor controls {θ}. In the language of
formal optimization, this implies a constraint on the allowable τ ’s.

The relationship between the controls and the corresponding allowable pressure load-

ing coefficient vector may be found from conventional blade-element theory. The

underlying methodology is given in Refs.[43] and [44] and is explained below.
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The rotor disk pressure expansion coefficients are defined in terms of the blade lift

per unit length, Lq, and the radial shape functions φ
m
n defined in Eq.(2.27):

τ 0cn =
1
2π

Q�
q=1

�
1�
0

Lq

�Ω2R3φ
0
n(r̄)dr̄

�

τmcn = − 1
π

Q�
q=1

�
1�
0

Lq

�Ω2R3φ
m
n (r̄)dr̄

�
cos(mψq)

τmsn = − 1
π

Q�
q=1

�
1�
0

Lq

�Ω2R3φ
m
n (r̄)dr̄

�
sin(mψq)

(5.3)

Where Lq is the blade lift per unit length of the 2-D airfoil section of the q
th blade

based on conventional blade-element theory,

Lq =
1

2
�ac

�
U2
T · θq − UP · UT

�
(5.4)

where UT and UP are the tangential and perpendicular components of velocity at the

blade section.
UT = ΩR (r̄ + µ · sin(ψq))
UP = ΩR (λ+ w(r̄, ψq))

(5.5)

Note how the induced flow, itself, affects the {τ} loads giving an effect of induced-flow
feedback.

The above blade-element result gives the lift perpendicular to the disk under the

potential flow relation that lift coefficient is proportional to sin(angle of attack)

with no small-angle assumptions except that cos(θ) ≈ 1.0 and sin(θ) ≈ θ. There are
no small-angle assumptions on UT and UP . It follows that:

(5.6)





τ 0cn

τmcn

τmsn




=
σa

2

1�

0

�
[r̄ + µsin(ψ)]2θ(r̄, ψ)φmn

�
dr̄ ·





1
2

cos(mψ)

sin(mψ)





− σa

2

1�

0

([r̄ + µsin(ψ)][λ+ w]φmn ) dr̄ ·





1
2

cos(mψ)

sin(mψ)




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With w = w(r̄, ψ) written from Eq.(3.4), the integrations of Eq.(5.6) yield the fol-

lowing:

{τ} = σa
4


[A]{θ} − [B]





2α0
n

αmn

βmn






 (5.7)

where the matrix [A] represents the effect of the controls on {τ}, and [B] represents
the effect of the resultant induced flow on both angle-of-attack and {τ}. Discussion
and details of [A] and [B] are presented in AppendixE. The effect of λ on {τ} is a
fixed loading and is not included in Eq.(5.7).

The rotor solidity and lift curve slope enter the formulation of [A] and [B] due to a

summation over the number of blades that involves chord and lift coefficients from

blade-element theory. Thus, [A] and [B] then depend on advance ratio; and they can

be simplified by multi-blade identities. Here [A] is N ×H and [B] is N × N , where
H is the number of rotor controls, N is the number of included states, and J is the

number of loading constraints. The vector of controls {θ} is H × 1. There are no
limitations on the number of controls except that 1 ≤ J ≤ H ≤ N such that there are
at least enough controls to effect the loading constraints. The rows of both [A] and

[B] and the columns of [B] are partitioned in the normal way in terms of superscripts

and subscripts.

It is clear that the controls, the pressure loads, and the induced inflow are all cou-

pled together. However, these interdependencies are fully expressed in the previous

equations, e.g., inflow is given in terms of the pressure loadings {τ} in Eq.(3.15) and
{τ} in terms of the controls and inflow in Eq.(5.7). Therefore, a formal solution for
the pressure loading coefficients solely in terms of the rotor controls may be obtained

from these equations to yield:

{τ} = σa
4

�
[I] +

σa

8V
[B][L̄]

�−1

[A]{θ} = [P ]{θ} (5.8)

where

[P ] ≡ σa

4

�
[I] +

σa

8V
[B][L̄]

�−1

[A] (5.9)

The rows of [P ] follow the m,n partitioning system. One can see that the effect of

the inflow feedback is characterized by the factor σa
8V
. It can be shown that, in axial
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flow, [L̄] = [B]−1 so that the leading matrix becomes the well-known equivalent Lock

number factor [1 + σa
8V
]−1. In skewed flow, the effect is more involved but still driven

by σa
8V
.

If fact, the effect of inflow feedback can be much smaller than the term σa
8V
. As noted

above, in axial flow the entire effect is a factor of [1 + σa
8V
]−1. This factor simply

rescales the {θ} controls and has no effect on the optimum. The only effect of inflow
feedback on the optimum is σa

8V
multiplied by the deviation of [B][L̄] from [I]. Thus,

the effect on the optimum is null both in axial flow and in high-speed flight (V large);

and one may often neglect it in performing as optimization, as will be done in the

results here.

For the sake of brevity, [P ], in Eq.(5.8), represents the N × H matrix that defines

completely how the controls translate into the admissible values of disk loadings. For

H = J and where [A] is a matrix of full rank, one can obtain any combination of

desired {τ} with some combination of {θ} so that neither the [A] matrix, the [B]
matrix, nor σa affects the optimum.

5.2 Rotor Loads in Terms of Rotor Controls

The previous sections outlined the derivation of rotor induced-power based on finite-

state induced flow theory in terms of the rotor loading coefficients{τmn }. Expressions
for the basic integrated rotor loadings (thrust, roll moment, and pitching moment)

were also derived in terms of the rotor loading coefficients. That is, they were given

as special cases of arbitrary loading constraints that must be applied in an optimiza-

tion process. Finally, the rotor loading coefficients were expressed in terms of rotor

controls; and these were defined so as to encompass conventional collective and cyclic

pitch control. These results may now be combined to produce the final formulation

for the general performance of a lifting-rotor. These results will also be used to cast

rotor performance as a classical, quadratic optimization problem.

We proceed by substitution of Eq.(5.8) into Eq.(4.18) to yield:

{C} = [D][P ]{θ} (5.10)
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For the case where {C} is comprised of the rotor thrust and moments, this becomes:




CT

CL

CM




= [D][P ]{θ} (5.11)

Similarly, by substituting Eq.(5.8) into the steady solution for a rotor with an infinite

number of blade (Eq.(3.18)) one obtains, for the coefficient of power, the following

relation.

CP =
1

2V
{θ}T [P ]T [L̄][P ]{θ} (5.12)
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Chapter 6

Blade Circulation

In this chapter the focus will be describing the pressure loadings and then the rotor

loads in terms of the circulation.

6.1 Pressure Loading in Terms of Circulation

In order to represent the loadings {τ} and, hence, rotor power CP in terms of blade
circulation, we now apply blade-element theory. The lift per unit length per blade Lq

is written in terms of standard airfoil theory with the lift coefficient CL proportional

to the sine of the angle of attack.

CL = a sin(aoa) (6.1)

which is the exact result of 2-D potential flow theory.

One may now determine the loadings on the rotor as an expression of the lift, which

are given in terms of tip speed ΩR and nondimensional radial position r̄.





τ0cn

τmcn

τmsn





= 2

Q�

q=1

1�

0

L̄qφ
m
n (r̄)dr̄





1
2

cos(mψq)

sin(mψq)





(6.2)

where

L̄q =
Lq

2π�(ΩR)2R
(6.3)
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is the non-dimensional form of the lift per unit length per blade, Q is the total number

of blades, and φmn is defined as the following polynomial.

φmn (r̄) ≡
1

ν
P̄mn (ν) (6.4)

If one defines the lift as an expansion in harmonics of Legendre functions, similar to

what was done with the pitch angle:

L̄q ≡
r̄

Q

�

m,n

(γmcn cos(mψq) + γ
ms
n sin(mψq)) P̄

m
n (6.5)

where γmn are the circulation coefficients. This, then, permits the blade loadings to

be expressed in a very simplified form.





τ 0cn

τmcn

τmsn




= 2

Q�

q=1

1�

0

L̄qP̄
m
n

dr̄

ν





1
2

cos(mψq)

sin(mψq)





(6.6)

The above integral can be evaluated by substitution of the following matrix:

�
Tmrnj

�
≡

1�

0

P̄mn (r̄)P̄
r
j (r̄)dr̄ (6.7)

where �
Tmmnj

�
= [δnj] = [I] (6.8)

This gives a closed form expression for the blade loadings in terms of the circulation.

�
τmcn

τmsn

�

k

=

�
[T c]k 0

0 [T s]k

��
γrcj

γrsj

�

k

(6.9)

where the matrices [T c] and [T s] are defined from the orthogonality matrix Eq.(6.7)4.

[T c]k ≡
�
[T cc]k [0]

[0] [T cs]k

�
(6.10)

4Refer to Appendix E for detailed explanation of [T ].
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and

[T s]k ≡
�
[0] [T ss]k
[T sc]k [0]

�
(6.11)

Here, the superscripts (i.e., cs) indicate if a zero harmonic term is included and the

subscript k defines the allowed harmonics.

6.2 Rotor Loads in Terms of Circulation

We will follow the example of Sec.5.2 by substitution of Eq.(6.9) into Eq.(4.18) to

yield:

{C} = [D][T ]{γ} (6.12)

For the case where {C} is comprised of the rotor thrust and moments, this becomes:




CT

CL

CM




= [D][T ]{γ} (6.13)

To simplify the expression for the power coefficient, one may define a new matrix, say

[R], as the representation of the summation of influence coefficients over all values of

k.

(6.14)
[R] ≡

�
[L̄c] 0

0 [L̄s]

�
+
1

2V

�

k





�
[T cc]k [0]

[0] [T cs]k

�T
[L c]

�
[T cc]k [0]

[0] [T cs]k

�

+

�
[0] [T ss]k
[T sc]k [0]

�T
[L s]

�
[0] [T ss]k
[T sc]k [0]

�


where, again, the summation of the unsteady influence contributions is over the inte-

ger multiples of the number of blades, i.e., k = Q, 2Q, 3Q, · · ·.
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This allows the expression for the power coefficient to be compact and succinct.

Therefore, the summation expressed in Eq.(3.17) becomes an inner product.

CP =
1

2V
{τ}T [R]{τ} (6.15)

Here the τ ’s are implied to contain both the sine and cosine contributions of the

pressure expansions. This efficient expression is convenient due to the symmetry of

the matrix multiplication and will be utilized in the later optimization procedures.

It should be noted that the above power coefficient is given in terms of an arbitrary

number of blades. This is due to the matrix [R] which includes the effects of finite

blade number. If the coefficient of power were to be computed for the special case

of an infinite number of blades, Eq.(6.14) would reduce to the first term only. This

would reduce the power coefficient to the special case of

CP =
1

2V
{τ}T [L̄]{τ} (6.16)
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Chapter 7

Performance Optimization

7.1 General Rotor Loads

From the previous two chapters we have expressions for CT , CL, CM , and CP directly

in terms of the rotor control variables—either pitch controls or circulation. These

results provide rotor induced-power for any arbitrary loading condition, as defined

by any arbitrary rotor control inputs. Moreover, these results provide the basis for

a completely general rotor performance theory, that is, an analytical formulation for

all six components of the integrated rotor loads (i.e., the thrust, H-force, side force,

roll and pitch moments, and shaft torque). While only three of these are included in

Eqs.(5.11) and (6.13), the development is easily extended to include the other three.

[Note that the induced-power in Eq.(5.12) encompasses two of the remaining three

load components (i.e., the rotor shaft torque and the drag component of the thrust

and H-forces)].

Such a general rotor performance theory is notable in that it provides the thrust and

power that explicitly reflects the complexity of the non-uniform inflow of the lifting-

rotor. It provides a general analytical formulation for performance based entirely on

first principles. Heretofore, such models have been available only for simple uniform

induced inflow, (i.e., classical theory) developed by Wheatley, Bailey, and others,

Refs.[45]-[49] or in recent refinements for high advance ratio by Harris, Ref.[25].

The power model of Refs.[39], [25], and [41] is similar to the present formulation,

specifically Eqs.(5.11) and (5.12), and it embodies non-uniform inflow. However, it

is much less general, contains only three fixed controls, and the constants are derived
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from numerical calculations of finite-state inflow theory (although an arbitrary finite

number of blades may be included and reversed flow is included).

We now address the main focus of this research, the determination of the optimum, or

minimum, induced power of the lifting-rotor with constraints on the loads. Up until

now, the pressure loading coefficients {τ}, the rotor controls {θ}, and the circulation
{γ} were not constrained. However, the induced power may only be optimized when
appropriate loading constraints are applied. Otherwise, the optimum of Eq.(3.17)

would simply be CP = 0. The most basic constraint is to specify a non-zero value for

rotor lift since induced power is a consequence of the generation of lift. Typically, the

objective is to determine the minimum induced power for a specified value of lift. In

addition there may be other constraints characterized in terms of rotor loads (e.g., a

rotor typically operates in moment trim and generates a specified propulsive force).

In addition, specific higher-harmonic blade pitch and variable twist controls may be

included. Therefore, the optimization problem will include these as constraints; the

controls are allowable controls; the {τ}’s are allowable {τ}’s; and the rotor loads {C}
define the specified rotor lift and trim operating conditions.

7.2 Quadratic Optimization

With the above, one may formulate the computation of given power under loading

constraints in terms of a functional F . This is done by an augmentation of the

induced power coefficient CP with the inner product of the constraints and Lagrange

multipliers, Λ, yielding,

F = CP − {C}T{Λ} (7.1)

Substitution from Eqs.(6.15) and (4.18), yields a functional in terms of the pressure

expansion coefficients.

F (τ) =
1

2V
{τ}T [R]{τ} − {τ}T [D]T{Λ} (7.2)

where {Λ} is the J × 1 column of Lagrange multipliers that are used to match the
constraints. Note that the first term in this functional is the power coefficient proper,

and the second term is the augmentation with constraints on the pressure loading.
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It must be noted that the below optimization may be attempted with either a controls

constraint [P ]{θ} or by constraining the circulation [T ]{γ}. Therefore, to keep the
generalization concise, a new vector, say {Y }, will be defined to represent either
the controls or the circulation. Also, the transformation matrices to map either the

controls or the circulation to the loads will also be redefined to, say [G]T . Therefore,

{τ} = [G]T{Y } (7.3)

will be the vector of pressure loading coefficients.

In order to express the augmented power functional in terms of the constraints on

the allowable controls or circulation, Eq.(7.3) may be substituted into Eq.(7.2). The

constrained optimization problem has the final functional as below.

F (Y ) =
1

2V
{Y }T [R]{Y } − {Y }T [G]{Λ} (7.4)

Because the loading constraints are fixed at the desired values {C}, the variation of
F (Y ) set equal to zero will give the optimality condition for CP .

δF (Y ) =
1

V
{δY }T [Rs]{Y } − {δY }T [G]{Λ} = 0 (7.5)

where [Rs] is the symmetric portion of [R].

Immediately, one can solve for the optimum control settings in terms of the Lagrange

multipliers.

{Y } = V [Rs]−1[G]{Λ} (7.6)

The Lagrange multipliers are then set so as to enforce the loading constraints.

{C} = 2V [G]T [Rs]−1[G]{Λ} (7.7)

{Λ} = 1

2V
[[G]T [Rs]

−1[G]]−1{C} = 1

2V
[Q]−1{C} (7.8)

where

[Q] ≡
�
[G]T [Rs]

−1[G]
�

(7.9)
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is a symmetric matrix. When combined with Eqs.(7.3) and (7.6), the above gives the

optimum loading distribution.

{τ} = 1
2
[Rs]

−1[G][Q]−1{C} (7.10)

The optimum CP then can be found from Eqs.(3.17), (7.9), and (7.10). Matrix

manipulation (along with the definition of [Q]) results in a simplified expression for

the optimum CP .

(CP )opt =
1

2V
{C}T [Q]−1[[G]T (Rs)

−1[G]][Q]−1{C} = 1

2V
{C}T [Q]−1{C} (7.11)

Thus, all information about the optimum power is contained in [Q] from Eq.(7.9).

7.3 Induced Power Efficiency

It is known from Glauert that the minimum possible power is given by

(CP )ideal =
C2
T

2V
(7.12)

One can normalize the above relation by dividing both sides by C2
T .

�
CP
C2
T

�

ideal

=
1

2V
(7.13)

This is the classic Glauert minimum.

We define the Induced Power Ratio (IPR) as the ratio of optimum power (for a con-

strained case above) divided by the minimum Glauert induced power. Since Glauert

power depends on CT , one must assume that the vector of desired loadings {C} is
proportional to CT . We therefore define the normalized loading vector as,

{ζ} = 1

CT
{C} (7.14)
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which is scaled against CT . The optimum power (Eq.(7.11)) can then be divided by

C2
T to obtain a formula for computing this power with the scaled constraints.

�
CP
C2
T

�

opt

=
1

2V
{ζ}T [Q]−1{ζ} (7.15)

One can then take a ratio of the optimum power (with constraints on the available

controls/circulation and loads) divided by the Glauert minimum to get the IPR.

IPR ≡
(CP/C

2
T )opt

(CP/C2
T )ideal

= {ζ}T [Q]−1{ζ} (7.16)

We may also describe an efficiency εIP of the induced-power for the lifting rotor by

defining a ratio of the minimum Glauert induced power divided by the optimum

power (again, for a constrained case above). This is also the same as the inverse of

the induced-power ratio.

εIP ≡ (CP/C
2
T )ideal

(CP/C2
T )opt

=
1

IPR
=
�
{ζ}T [Q]−1{ζ}

�−1
(7.17)

The induced-power efficiency εIP is always a number between 0 and 1. The vector

{ζ} and each of the matrices in [Q] represents the effect of a given physical variable
on the induced power efficiency. It may be noted that the εIP is analogous to the

Figure of Merit used as a measure of efficiency of a rotor in the hover condition.

For a general rotor configuration a description of each matrix is as follows.

εIP =
�
{ζ}T [Q]−1{ζ}

�−1
(7.18)
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Chapter 8

Approximate Effects of Blade

Number

Betz describes the circulation for an infinite number of blades that is equal to uniform

inflow for a finite number of blades.

IPEBetz = 2

1�

0

r̄3

λ2 + r̄2
dr = 1− λ2 ln

�
1 +

1

λ2

�
(8.1)

Prandtl extends the work of Betz and approximates both the effect of tip losses (which

are due to the thrust loss near the blade tip for a finite number of blades) and lift

tilt (where the lift vector is positioned perpendicular to the vortex sheets instead of

perpendicular to the rotor disk) on induced power. References [18] and [23] illustrate

Prandtl’s approximation of the induced power efficiency for rotors with finite blade

number. The plots displayed in Figure 8.1 depict the effects of swirl generation due

to the inclination of the lift vector on induced power for a rotor with 4 blades. The

blue curve (cos(ϕ) = 1) implies there is no swirl generated from the tilting of the

lift vector. The green curve allows for swirl generation due to lift tilt. These were

computed by the following model:

IPEPrandtl =
4

π

1�

0

cos2(ϕ) · cos−1
�
e(

−Q(1−r)
2λ )

�
rdr (8.2)

which is done numerically.
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Figure 8.1: Prandtl comparison with/without tip loss and lift inclination.

The next goal for this research is to validate the finite blade solution with a comparison

to these curves. Swirl correction factors were explored by Ref.[18] and these correction

factors will be investigated further with the current optimized solution for induced

power performance.

Reference [3] attempted to extend the Prandtl and Betz inflow model to determine an

optimum circulation. Another goal of the current research is to compare with these

models. For the infinite blade approximation, the optimized solution will be adjusted

to include the effect of lift inclination to compare with Betz. This lift inclination will

then be included in the finite blade analysis and compared with Goldstein.

IPEGoldstein = IPEBetz +
�

k


 4Q2

π2k2µ20

µ0�

0

µ · h(µ)dµ


 (8.3)
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8.1 Axial Flow

The matrix [M ] in Eq.(3.9) was originally derived from potential flow theory for an

actuator disk. This implies that there is no angular momentum added to the flow

through the disk and, consequently, no energy loss due to swirl. Makinen[19] showed

that the effect of swirl could be accounted for in a rigorous manner in the context of

a finite-state actuator disk by two adjustments: 1.) the induced flow at the rotor disk

is taken to be parallel to the local rotor lift vector, 2.) the mass matrix is augmented

to include the extra kinetic energy in the swirl velocity. The amount of added mass

was found to be

[Mm]swirl = [Mm]

�
[I] +m

�
κλ

Q

�2 �
[I]− [Am]2

�−m
�

(8.4)

where m is the harmonic number for a given term, λ is the inflow ratio, Q is the

number of blades, and κ is an empirical factor to account for the swirl velocity.

Although κ is theoretically equal to 2.0, the best correlation with Goldstein was

found for κ = 2.2. It should be noted that the apparent mass matrix takes the

following form:

[M c] =




[M0]

[M1]
. . .

[Mm]




(8.5)

where, [M0] = 1
2
[M0]He is a modified form of the original mass matrix from the

Peters-He model. A similar matrix exists for the sine representation ([M s]) but with

no zeroeth harmonic terms.

In the derivation of this swirl correction by Makinen, it was assumed (in the context

of a helicopter) that λ is small such that λ2 � 1. However, in order to correlate with

Goldstein results, one must allow for λ to be of the order unity or larger. Therefore, it

is necessary to extend the formula in Eq.(8.4) to large λ. This implies replacing κ2λ2

in this equation with a more general f(λ). In order to do this, we ran our numerical

Goldstein solution for rotors with 2, 4, and 6 blades over climb ratios from 0 to 4.0.

We then optimized the swirl correction function based on the most rapid convergence

of the finite-state model to the induced power efficiency as found from the numerically

exact Goldstein results.
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Figure 8.2: 4 bladed rotor comparison with κ = 0, κ = 2.2, and results from Goldstein
solution.

Figure 8.2 shows plots with the swirl correction factor forced to zero—this implies

that there is no swirl generation due to the tilting of the lift vector—as well as the

Makinen factor of 2.2.

Results for the optimum f(λ) were found to be relatively insensitive to blade number

so that a single expression could be found, as shown in Figure 8.3. The resulting curve

was then fit with a rational polynomial in λ, also shown in the figure. At small λ, the

new swirl correction behaves as 4.4λ2 (κ ≈ 2.09)—whereas the result in Makinen gave
κ = 2.2 for the optimum fit. In revisiting the optimization results of Makinen, we

discovered that the higher value of κ found in that work was due to the attempt of the

optimizer to lower the error at larger values of λ. The new factor improves correlation

at all inflow ratios. It should be noted that the efficiencies become very low for λ > 1

such that the “optimum” value is fitting a very small number. The important part of

f(λ) for practical considerations is for λ < 0.5 where the new formula is a significant
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Figure 8.3: Swirl correction as a function of the inflow ratio λ to correlate with
Goldstein 2 blade solution.

improvement over that of Makinen. This new formula is used in all of the results to

follow.

8.2 Blade Number Factor

To address the original question pertaining to induced-power, Ref.[24], a detailed

investigation to the effects of blade number is in order. Reference [24] uses RCAS

to compute values of induced-power ratio—that is, the induced-power coefficient CP

divided by the Glauert minimum CPideal—for a rotor in forward flight conditions,

Fig.8.4. These values are the result of subtracting known sources of power demands

such as aerodynamic drag and profile drag to reduce the vaules to that of induced-

power only. Reference [24] argues that the vaules of the induced-power of the lifting

48



rotor are still significant. To better understand what the effects are as blade number

goes to infinity, a plot of the inverse of blade number is produced. Figure 8.4b is a plot

of the data computed by Ref.[24] versus 1/Q. With a value of unity for the induced-

power ratio at 1/Q = 0 (or as Q → ∞), a linear distrubution of the induced-power
ratio is quite evident.

8.2.1 Prandtl Tip Correction

To more accurately define a blade factor equation for the power loss of the lifting

rotor, a more indepth look at axial and forward flight studies is necessary. The tip

correction factor of Prandtl can be approximated as follows:

B = 1− 2 ln(2)
Q

· λ√
1 + λ2

(8.6)

where Q is the number of blades and λ is the inflow ratio V∞/ΩR. One may then

take a first order approximation to this for small λ.

B ≈ 1

1 + 2 ln(2)
Q

· λ√
1+λ2

(8.7)

where an inverse of this would provide a type of power ratio factor for a given blade

number.

h(λ) =
1

B
= 1 +

1

Q
· 2 ln(2) · λ√

1 + λ2
(8.8)

However, this is valid only for axial flow at small λ. To extend this to larger inflow,

one may assume that the above power factor is simply a low-order approximation to

the more general power factor. Prandtl agrees with Goldstein for small λ. Therefore,

the leading coefficient should remain as 2 ln(2). A least-squares fit at, say, λ = 0.5

yields a constant of 7.83. Thus a modified form of the power factor may be expressed

as the following.

h(λ) = 1 +
1

Q
· (2 · ln(2) + 23.8 · λ

2) · λ√
1 + λ2

(8.9)
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8.2.2 Hall-n-Hall Data

To allow the blade effect factor to account for forward flight conditions a dependence

on advance ratio, µ, is needed. Inspection of the data presented by Ref.[26] shows a

great dependence on advance ratio, Fig.8.5.

To calculate this dependence, a linear curve fit was computed for varying advance

ratios and then the change—i.e., the slope—of each fit was plotted against advance

ratio. Figure 8.6 details this method with a few sample plots of advance ratios of 0.5,

0.6, 0.7, and 0.76.

The slopes of these fits were then plotted against advance ratio to determine a function

that would account for the effects blade number has on induced power. Figure 8.7

displays the strong dependence on advance ratio as values increase beyond 0.5.

A curve-fit to this data yeilds the following empirical function:

g(µ) = 24.8 · tan−1(2.2 · µ3 + 2.9 · µ5) (8.10)

Equations 8.9 and 8.10 may then be combined to formulate a blade number effect

model that is valid for both axial and forward flight conditions.

f(Q) = 1 +
1

Q
· 2 · ln(2) · λ+ 23.8 · λ

3 + 24.8 · µ · tan−1(2.2 · µ3 + 2.9 · µ5)�
1 + λ2 + µ2

(8.11)

Figure 8.8 is a sample calculation of Eq.8.11 with advance ratio 0.73 and inflow ratio

0.2.
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(a) Induced-Power Data

(b) Inverse of Blade Number

Figure 8.4: Induced-power ratio computed from RCAS, Ref.[24].
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Figure 8.5: Hall and Hall data, Ref.[26], trimmed.
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(a) µ = 0.5 (b) µ = 0.6

(c) µ = 0.7 (d) µ = 0.76

Figure 8.6: Plots of the induced-power as a function of one over the blade number
for a given advance ratio.
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Figure 8.7: Blade number effect on performance as a function of advance ratio, µ.

Figure 8.8: Blade number effect as a function of 1/Q.
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Chapter 9

Results and Comparisons

9.1 Infinite Blade Analysis

Although the above theory, with [L̄] defined appropriately, can be applied to rotors

with a finite number of blades, in this section we present results only for an infinite

number of blades (Q = ∞). Also, the transformation matrices [A] and [B] can be
obtained in closed form either with or without reversed flow, herein we neglect reversed

flow. Third, since we neglect induced-flow feedback (σa/8V � 1), the matrix [B]

does not enter the present computations. Nevertheless, the theory presented herein

(including optimization) applies both to a finite number of blades and to induced-

flow feedback. Resuts for finite blade analysis is presented in the following section.

However, inclusion of the reversed flow region and induced-flow feedback is proposed

for future work.

Typical results for IPE are shown in Figs.9.1-9.3. Each figure is for a particular set

of blade pitch controls defined by a combination of parameters M and K introduced

earlier with Eq.(5.1). Here, M is the maximum harmonic allowed for the control

inputs; and, similarly, K is the maximum power of r̄ allowed for the control inputs.

Therefore, M = 0 corresponds to a steady state input; M = 1 to both steady and

first harmonic, as in collective and cyclic pitch; while M = 2, 3, and 4 correspond

to higher-harmonic pitch inputs at 2/rev, 3/rev, and 4/rev, respectively. Similarly,

K = 0 corresponds to radially constant (uniform) pitch, while K = 1 corresponds to

a linearly twisted blade. Results are shown for skew angles of χ = 0o, 45o, 60o, and

75o.
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All of the results were obtained using finite-state inflow with 10 harmonics corre-

sponding to 66-states. Reiterating again, the theory is for a lightly-loaded actuator

disk (e.g., an infinite number of blades), and the inclination of the local lift vector

is neglected. The effects of reverse flow from blade-element theory are neglected in

the [A] matrix and induced flow feedback via [B] is neglected; the latter is the same

as neglect of the effect of σa/8V . This is not unreasonable for high advance ratios,

however the neglect of the reverse flow region for [A] is significant at high advance ra-

tio. For this reason the present numerical results are somewhat preliminary, although

they may be compared with other results that reflect the same approximation.

Figure 9.1 is for M = 1, K = 0, which corresponds to three allowable control in-

puts—conventional static collective and cyclic pitch of an untwisted blade. Figure

9.2 is forM = 4, K = 0, which is nine allowable controls—higher harmonic control of

collective and cyclic pitch up to 4/rev. Figure 9.3 is forM = 4, K = 1, corresponding

to eighteen inputs including both uniform pitch and linear-twist as unsteady radial

pitch distributions. Two sets of results are included. One set (Figs. 9.1a, 9.2a, and

9.3a) is for a flight condition where two rotor loads, the roll and pitch moment, are

constrained to be zero—that is, the rotor is trimmed to zero hub moments. The other

flight condition (Figs. 9.1b, 9.2b, and 9.3b) is unconstrained, such that the rotor roll

and pitch moments are untrimmed.

Although the result is not shown in the figures, a special, nearly full-authority case

(M = 10, K = 5) was computed as a baseline for comparison. For this case, the

number of available rotor controls is 126 and this enabled sufficient flexibility for the

rotor air-load to be optimized to very closely approach the ideal minimum induced

power. It demonstrates virtually perfect efficiency with an IPE = 1.0 independent of

skew angle, advance ratio, or trim condition. This nearly full authority result is true

for an actuator disk without control constraints but will not be true with constraints

or for a finite number of blades.

For the results in Figure 9.1, conventional collective and cyclic (M = 1, K = 0),

advance ratio and skew angle both degrade efficiency, although the effect of skew

angle is relatively small. At µ = 1.0 and χ = 75o, the trimmed efficiency is down

to 0.22 and untrimmed efficiency is down to 0.54. The effect of trim is therefore

clearly evident. When the rotor is constrained to be trimmed, it cannot obtain an

56



efficiency as high as can be obtained without this additional constraint, and the loss is

substantial. Although trim does not affect the baseline control case (i.e., nearly, full-

authority with an infinite number of blades), it profoundly affects cases with limited

available control. This corroborates the findings of Ref.[26] that trim profoundly

affects efficiency.

The results in Figure 9.2 show that higher harmonic control (HHC) of the untwisted

blade case (M = 4, K = 0) increases the induced power efficiency by redistributing

the rotor loading through optimization with the additional controls. Current active

rotor control research is partly based on improving rotor aerodynamic efficiency in

this manner, and the present methodology provides some indication of the theoretical

potential available from this approach. For 4/rev HHC without radial twist control,

the improvement for the trimmed rotor and 75o wake skew angle is limited to about

10% for advance ratios below 0.4.

Figure 9.3 illustrates the extra efficiency that can be gained by the addition of linear

twist (M = 4, K = 1). Improvements are realized for all advance ratios for both

the trimmed and untrimmed cases, especially compared to the trimmed results for

the rigid blade case in Figure 9.1a. Also of particular interest is the case at zero

advance ratio and zero skew angle (hover, axial flow), for which no higher-harmonic

loadings appear in the optimum solution (and trim is not an issue). One can see

that the induced power efficiency with no twist is given by IPE = 0.873 whereas

the efficiency with linear twist is IPE = 0.966. If a quadratic term were added to

allowable twist (K = 2), the efficiency increases to IPE = 0.979. As advance ratio

increases, the advantages of nonlinear twist seem to diminish.

Figures 9.1-9.3 show that, in general, the higher the level of constraint on the controls

or rotor loads, the higher the resulting rotor induced power. With fewer constraints

(such as unconstrained rotor moments - untrimmed) and a higher number of available

controls, the more the rotor pressure distribution can redistribute itself to minimize

power.

Figure 9.4 gives results for the case of perfectly edgewise flow, χ = 90o, for which the

rotor trailed and shed wake vorticity collapses to a planar sheet (i.e., a flat-wake).

For other wake skew angles the wake vorticity fills the oblique cylinder downstream of

the rotor disk. For the edgewise flow, flat-wake condition, there is a singularity in the
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optimum solution because there are redundant pressure distributions that will result

in the identical vorticity within the flat wake. However, the limit as χ approaches 90o

does exist; and this is computed by use of a nearly flat wake, (i.e., χ = 89.9o).

Figure 9.4a gives IPE for the flat wake under various available controls (and for both

trimmed and untrimmed rotors) in a similar manner as was presented for other skew

angles results in Figs.9.1-9.3. The results for limited control authority ([M,K] =

[1, 0] and [4, 0]) show that IPE increases beyond µ = 0.8. Detailed runs reveal that,

for [M,K] = [1, 0], this reversal of the slope of IPE versus advance ratio begins at

χ = 85o for both trimmed and untrimmed cases—reaching the level seen in Figure 9.4a

for edgewise flow. For [M,K] = [4, 0], the reversal does not appear until χ = 87.5o.

Figure 9.4b presents the flat-wake results in inverse form as IPR = 1/IPE which

more clearly shows both the increase in required power (over Glauert power) as one

approaches µ = 0.8 and the decrease in power for 0.8 < µ < 1.0.

In order to make the present results more directly meaningful in terms of induced

power for a given value of rotor lift, the flat-wake results are presented as normalized

induced power, CP = C2
T in Figure 9.5. Relevant results from Ref.[41] are also

included for comparison. The Figure 9.4b results are expressed as normalized power

and shown in Figure 9.5a; for edgewise flow they are equal to IPR/(2µ). The Glauert

ideal power is included for comparison to highlight the well-known inverse relationship

with advance ratio. It is not difficult to appreciate that Glauert theory encourages

the belief that induced power is unimportant at high advance ratio. However, the

present flat-wake results for lower control authority, [M,K] = [4, 0] and [1, 0], show

a significant increase in induced power as advance ratio approaches 0.8, followed by

a decrease at higher advance ratio. Clearly, Glauert induced power is not accurate

for these advance ratios. For the high control authority case, [M,K] = [4, 1] in

Figure 9.5a the induced power is nearly equal to Glauert ideal power for both the

trimmed and untrimmed cases. A significant finding of the present investigation is

that increasing the number of available controls enables the optimum induced power

to approach Glauert ideal power.

The present flat-wake results in Figure 9.5a can be compared with the results from

Ormiston from Ref.[41]. These results are shown in Figure 9.5b for a three-blade

rotor with a solidity of 0.111 and no root cutout. The effects of reverse flow are not
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neglected. The induced power is obtained from the analytical power model having

constants identified from numerical data computed with finite-state inflow theory for

M = 9 and 55-states. The Ormiston rotor has two explicit rotor controls: collective

pitch and rotor disk angle-of-attack; and cyclic pitch is included implicitly to satisfy

the zero rotor moment trim constraint. Note that the present results do not include

rotor angle-of-attack as a control variable. Three results from Ref.[41] are included:

1) collective mode induced power, identical to the present [M,K] = [1, 0] case; 2)

rotor angle-of-attack mode induced power; and 3) the minimum power obtained by

optimizing the two rotor controls. These results show the singularity of the collec-

tive mode induced power at the critical advance ratio near µ = 1.0 that is due to

the reverse flow region and the thrust control derivative reversal mentioned in the

Background section. The angle-of-attack mode induced power is significantly lower

than the collective mode, and optimizing the two rotor controls further reduces the

induced power.

Ormiston’s results show significantly larger induced power than the present results,

particularly for the collective mode that compares directly with the [M,K] = [1, 0]

case here. There are two main reasons for this. First, the presence of three blades

significantly increases induced power relative to an infinite-bladed actuator disk; and,

second, the effect of reverse flow is important, particularly near the critical advance

ratio. Although this is not a one-to-one comparison because of several modeling

differences, the two sets of results clearly show very similar qualitative trends for the

rapid increase of induced power at high advance ratio. At µ = 0.8, both the present

[M,K] = [1, 0] trimmed results and Ormiston’s optimum results show an increase of

induced power over the Glauert ideal power by a factor of approximately 3.3.

A few comments are in order here about optimization, rotor controls, constraints, and

trim. As expressed herein, control authority is the ability to control the rotor disk

airload distribution by varying blade radial and azimuthal pitch via the rotor control

variables. The incorporation of blade-element theory frames the performance problem

in terms of relevant rotor blade aerodynamic characteristics. As a consequence, the

rotor pressure distributions are physically limited by the blade geometry. Therefore an

increased number of rotor controls relaxes the rotor blades’ limitations on the rotor

air-load distributions. Low authority collective and cyclic pitch controls of typical

rigid blades significantly constrain the available rotor air-load distribution. Additional
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controls {θ} in the form of radial and azimuthal pitch variations (e.g., active control
via variable geometry) enable increased variability in the air-load distributions. The

rotor trim constraints are expressed in terms of rotor loads constraints through the

{C} load vector.

In view of the above discussion, some of the present optimum induced power re-

sults may be interpreted in a different light. For example, the present results for

the [M,K] = [1, 0], that represent a rigid untwisted blade with steady state collec-

tive and cyclic pitch do not, strictly speaking, represent an optimum solution for

rotor induced power. Despite the fact that the solution is obtained from formal con-

strained quadratic optimization, the available controls are all utilized to satisfy the

rotor loads constraints of producing thrust and rotor moment trim. There are no

additional controls to further change the rotor air-load distribution to reduce induced

power—therefore, the result is not really an optimum in the sense of minimum power.

The induced power in the [1, 0] case is, in fact, the characteristic induced power of

Ormiston’s “collective pitch mode”. The lack of the singularity at the critical advance

ratio is due to the neglect of reverse flow.

The present normalized power results in Figure 9.5a can also be compared with

trimmed results taken from Hall and Hall, Ref.[26]. Figure 8.5 shows these results

for various blade numbers for the edgewise rotor flat wake at 90o wake skew angle as

well as an 85o wake skew angle case (−5o disk angle-of-attack). The Hall and Hall
results are based on minimum power quadratic optimization using a vortex lattice

wake model. These results are important in that they explicitly show the significant

increase in induced power relative to the Glauert ideal power at high advance ra-

tios—and are thus qualitatively consistent with the present results and Ormiston’s

results. The Hall and Hall results are also significant in showing the marked decrease

of induced power with increasing blade number; the 12-bladed case approaches the

actuator disk condition and is very close to the Glauert ideal power. This is very

similar to the present [M,K] = [4, 1] result. In other words, the limit of increasing

the number of blades is effectively equivalent to the limit of increasing the number of

rotor controls. Either approach enables the optimization process sufficient flexibility

to distribute the rotor pressure loading to approach the ideal loading. The neglect of

reversed flow effects in the present results is indirectly similar to the Hall and Hall

results since they treat the rotor blade load as a radial bound circulation distribution
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that is not subject to reverse flow physics arising through the blade-element air-load

formulation.

9.2 Finite Blade Analysis

In this section we treat the optimization theory with a finite number of blades. Also,

the matrices [A] and [B] may be defined to include the reversed flow region. However,

herein we neglect this effect. Third, the effects of inflow feedback are also neglected

since it is assumed that σa/8V � 1. Therefore, the matrix [B] does not enter the

computations.

Typical results for IPE are shown in Fig.9.6. Here, M is the maximum harmonic

allowed for the circulation inputs. Therefore, M = 0 corresponds to a steady state

input; M = 1 to both steady and first harmonic, etc. Results are shown for an

infinite number of blades (which is the Glauert momentum optimum) and also for

Q = 2, 3, 4, and 6. The limit to this finite blade number efficiency—provided by

Betz[2]—states that the minimum power is achieved when the trailing vortex sheet is

contained along a helical path behind the rotor. One can see the clear effect of blade

number on efficiency. For this optimization,M = 10 is virtually full control authority

on available blade twist.

Figure 9.7 shows the effects of including wake rotation for differing blade numbers

in the computation. This is possible because the effect of blade number is distinct

from the effect of swirl—i.e., wake rotation. The magenta, red, and blue lines are

for blade numbers of Q = 2, 4, and 6, respectively. These three plots depict the

induced power efficiency for rotors that do not experience wake rotation. However,

in contrast to this, the yellow, light blue, and green lines—again Q = 2, 4, and 6,

respectively—show the effects of wake rotation due to the tilting of the lift vector.

Note that, at larger values of V∞ , the effect of swirl dominates, whereas at lower

climb rates the effect of blade number becomes more dominate.

The results presented in Fig.9.8 illustrate the rapid convergence by increasing the

number of included terms in the circulation expansion. The difference in adding

the third term is crucial. However, after that only minor increases in accuracy are
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achieved by continuing to add terms. Increasing beyond 3 terms allows the solution

to become more accurate only in the very low region of V∞ which—for axial flow—is

identical to the non-dimensional climb rate λ and the mass-flow parameter V . Figure

9.8a shows the induced-power efficiency for a rotor with 3 blades, whereas Fig.9.8b is

for a rotor with 4 blades. These plots are both for an untrimmed rotor in axial flow

and both include the effects of wake rotation.

The logarithmic plots shown in Fig.9.9 attest to the accuracy of the Finite-State

method. Figure 9.9 shows that increasing the available harmonics drives the conver-

gence towards that of Goldstein. Figure 9.9a exemplifies the difference between the

Betz-Prandtl and Goldstein solutions and thus shows the finite-state method to be

accurate with Goldstein. The data in Fig.9.9b was plotted on a logarithmic scale

to accentuate the high order of agreement. From these graphs one can see that the

finite-state method converges to the Goldstein results at all blade numbers.

The results in Fig.8.8 are examples of blade number effects for a rotor in forward

flight conditions. Using the blade factor in Eq.8.11, the infinite blade solutions from

Fig.9.5a may then be scaled to represent the approximate power loss for a rotor

with a given number of blades. This may then be compared to the results of Hall

& Hall[26]. Despite the analysis and modeling differences noted above, the present

investigation, along with the results of Ref.[41] and [26] compared in Fig. 9.10,

clearly demonstrates the significant increases of induced power over classical Glauert

ideal power when advance ratio is increased above the range of low performance

conventional rotorcraft. Note the difference in the location of the peaks in power loss

between that of Ref.[26] and those of the present investigation. The data from Ref.[26]

peak just before an advante raio of 0.8. However, upon inspection, the critical advance

ratio occurs when the determinant of the trimming matrix becomes zero causing the

system to be singular, Refs.[45]-[48]
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where the determinant of the trimming matrix is defined below.

Det = 1− µ2 − 4
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24π
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1
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When neglecting higher-order terms of µ4 and larger—which implies ignoring the

effects of the reverse-flow region—the determinant becomes zero when µ is approxi-

mately 0.86, see Fig.9.11a.

Det ≈ 1− µ2 − 4

3π
µ3 = 0 (9.3)

The location of the peaks in the finite-state method illustrated in Fig.9.10b are very

near to this value. This is a significant improvement over the results of Ref.[26].

Also, Ref.[24] uses RCAS to extract the induced power from a vast array of rotor

configurations. With a solution to the induced power for finite number of blades, a

comparison to Harris’ data provides fundamental insight into the effect that blade

number has on the induced power. Figure 9.12 shows the comparison between data

extracted from RCAS and the computed values using the finite-state method with the

imperical blade factor found in Sec.8.2. The lower values of the finite-state method

may indicate a difference in rotor modeling. Reference [24] uses a single harmonic

term with only constant pitch, whereas the finite-state model uses four harmonics

with linear twist pitch distribution. This, however, provides great evidence to the

linear dependence of blade number on the induced-power of the lifting rotor.
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(a) Trimmed.

(b) Untrimmed.

Figure 9.1: Conventional collective and cyclic pitch inputs and without blade twist.
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(a) Trimmed.

(b) Untrimmed.

Figure 9.2: Conventional collective and cyclic pitch inputs and higher harmonic con-
trol up to 4/rev; without blade twist.
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(a) Trimmed.

(b) Untrimmed.

Figure 9.3: conventional collective and cyclic pitch inputs and higher harmonic control
up to 4/rev; and with blade twist up to 4/rev.
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(a) Induced Power Efficiency, IPE, Glauert ideal power/Actual
power.

(b) Induced Power Ratio, IPR, Actual power/Glauert ideal power.

Figure 9.4: Induced power for the flat-wake edgewise rotor condition, skew angle
χ = 90o, trimmed and untrimmed for the three rotor control combinations.
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(a) Present results, trimmed and untrimmed for the three rotor con-
trol combinations.

(b) Ormiston results, Ref.[41], three-blade rotor, with reverse flow
effects and trimmed; collective mode, angle-of-attack mode, and op-
timum collective and angle-of-attack

Figure 9.5: Normalized induced power for the flat-wake edgewise rotor condition,
skew angle χ = 90o.
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Figure 9.6: Effects of blade number on Induced-Power Efficiency in axial flow with
Finite-State Model, untrimmed rotor.
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Figure 9.7: Effects of lift tilt on Induced-Power Efficiency with Finite-State Model,
untrimmed rotor.
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(a) 3 Bladed Rotor

(b) 4 Bladed Rotor

Figure 9.8: Number of terms included in lift expansion for 3 and 4 bladed rotors,
untrimmed rotor in axial flow.
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(a) Betz-Prandtl, Goldstein, Peters-File, Q = 4

(b) Goldstein Comparison

Figure 9.9: Log correlations to Betz-Prandtl, Goldstein, and Finite-State models,
untrimmed rotor in axial flow.
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(a) Higher harmonic control and linear twist in edgewise flow, trimmed.

(b) Higher harmonic control and constant pitch in edgewise flow, trimmed.

Figure 9.10: Normalized induced power for the flat-wake, edgewise rotor condition,
skew angle χ = 90o.
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(a) Values for the determinant of the trimming matrix defined in Eq.9.2.

(b) Detailed plot of the areas where the zeros occur for differing truncations
of the trimming matrix determinant.

Figure 9.11: Plots of the determinant of the trimming matrix for specific truncation
values—i.e., µ2, µ3, µ4, · · ·.
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Figure 9.12: Finite-state computation of blade number effect on rotor performance.
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Chapter 10

Summary and Conclusion

10.1 Infinite Blade Summary

Finite-state induced inflow theory has been applied to derive a general analytical

model for rotor performance in forward flight for arbitrary loading and operating

conditions. The theory combines rotor wake induced inflow with rotor blade-element

theory to yield rotor forces and induced power in terms of arbitrary rotor controls

and conventional rotor blade configuration parameters.

This present formulation is analogous to traditional blade-element momentum theory

based on uniform inflow. However it explicitly incorporates the important complex-

ity of non-uniform inflow from finite-state inflow theory responsible for significant

increases in induced power at moderate and high advance ratio that is lacking in

Glauert ideal power.

The general finite-state wake inflow rotor performance model provides the basis for

classical, constrained, quadratic optimization to minimize induced power. A compact

analytical expression was obtained for optimum induced power efficiency (IPE) in

terms of wake skew angle and advance ratio that shows how additional controls for

blade radial twist and higher harmonic azimuthal pitch enable induced power at high

advance ratio to be minimized.

The present numerical results were limited to the infinite number of blades actuator

disk case with both reverse flow and induced inflow feedback neglected. These are not

restrictions of the general performance formulation presented herein and despite the
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limitations of the numerical results, important new information was obtained that

shows how optimum induced power varies with advance ratio, wake skew angle, trim

condition, and the number of available rotor controls.

For the most constrained problem, the trimmed rotor with only conventional collective

and cyclic controls, the induced power was significantly higher than Glauert ideal

power for advance ratios above 0.5. As the number of available controls was increased,

the induced power decreased rapidly to approach Glauert ideal power.

The present results were found to be generally consistent with recent previous in-

vestigations of induced power for the lifting rotor operating at high advance ratios.

The present results reinforce the significance of rotor trim constraints in influencing

induced power and the ability of additional rotor blade controls to redistribute the

rotor loading to yield optimized minimum power. Insights from this investigation

should help to guide for the development of future high-speed rotorcraft with higher

aerodynamic efficiency.

The numerical results were limited to the actuator disk case with both reverse flow

and induced inflow feedback neglected. These are not restrictions of the general

performance formulation presented herein and despite the limitations of the numerical

results, important new information was obtained that shows how optimum induced

power varies with advance ratio, wake skew angle, trim condition, and the number of

available rotor controls.

10.2 Finite Blade Summary

Applying the finite-state model to the dynamic inflow of the lifting rotor proves

viable to a working solution of the induced-power for rotors with finite blade number.

This formulation applies blade-element theory to account for the rotor loads on each

blade. Combining these two theories has rendered an improved correction factor over

the previous quadratic function to account for the swirl velocities in the rotor wake.
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The modified correction factor has provided greater insight to the nature of the swirl

velocities that had previously remained obscure. The presence of swirl vortices dra-

matically increases the induced-power demand and, thus, decreases the performance

of the rotor for a given number of blades. However, the previous quadratic term

drives the inflow solution to diverge from the results of Goldstein at inflow ratios

close to unity. The improved swirl function compensates for the unique behavior at

these higher velocities.

Blade number has a direct effect on the induced-power efficiency of the helicopter

rotor. Plotting the induced-power ratio—that is, the induced-power coefficient CP

divided by the Glauert ideal induced-power coefficient CPI—as a function of the in-

verse of blade number displays a highly linear distribution that increases in slope with

increasing advance ratio. The results presented provide evidence that increasing the

number of blades on a lifting rotor greatly reduces the induced-power demand, thus

reducing the overall power consumption. By introducing higher blade numbers, the

rotor then redistributes the load throughout the disk in a more efficient manner—thus,

increasing the number of blades increases the efficiency of the induced-power of the

rotor.

The results presented were found to be in close agreement with previous investigations

by Goldstein and others of induced power of the lifting rotor operating at moderate

to high inflow ratios. There is also good correlation with data from Hall & Hall and

Harris at moderate to high advance ratios. Insights from this investigation will aid

in the design of future high-speed rotorcraft with higher aerodynamic efficiency.

10.3 Future Work

Inflow Feedback: The effect of inflow inducing circulation which, in turn, induces

flow.

Reverse Flow: Inclusion of that portion of the rotor disk that encounters negative

flow velocities during forward flight.

Circulation/Controls Mapping: Develop a transformation matrix that maps cir-

culation to the controls vector and/or vice versa.
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The effects of inflow feedback and reverse flow should be surveyed. Inflow feedback

will better gauge the effects of solidity on induced-power and may account, at least

in part, for the lower values compared with that of Harris. Including the effects of

reverse flow will greatly aid in representing the singularity at the critical advance

ratio in foward flight conditions. Mapping the controls to a desired circulation—and

vice versa—will allow engineers to better design rotor blades that will generate more

desirable results for lift, etc. These examinations will allow for modeling the behavior

of realistic helicopter rotors—due, in part, to the limited amount of blade twist in

current rotor designs as well as the complex nature of the flow distribution through

the rotor.
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Appendix A

Ellipsoidal Coordinate System

It is convenient to model the inflow and pressure distribution of the helicopter rotor

in Ellipsoidal coordinates. This is a fully three dimensional orthogonal system in �3.

A.1 Rotor Disk Coordinates

The rotor disk coordinate system (Cartesian, (x, y, z)) is located on the surface of

the disk with its origin at the root, or hub, of the disk. Convention dictates that the

x-axis points in the direction of forward flight. The z-axis points “downward” or with

the direction of air flow. Thus, the y-axis must therefore lie in the plane of the disk

pointing in the starboard direction, as depicted in the following diagram.

A.2 Ellipsoidal Coordinates

The Ellipsoidal coordinate system is defined by the following conditions.

x = −
√
1− ν2

�
1 + η2 cos(ψ)

y =
√
1− ν2

�
1 + η2 sin(ψ) (A.1)

z = −ην
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It should be noted that the quantities (ν, η, ψ) account for the entire domain of the

flow field once and only once provided we restrict their values to the following ranges.

−1 ≤ ν ≤ +1
0 ≤ η <∞ (A.2)

0 ≤ ψ < 2π

The ν equals constant surfaces are hyperboloids and change signs from one side of

the disk to the other. The η equals constant surfaces are ellipsoids that approach

spheres for very large η’s and flatten to a disk—the rotor disk, in particular—for

η = 0. ψ is the azimuthal angle that is measured positive from rotor aft (negative

x-axis), counterclockwise as viewed from above the rotor disk.

The inverse of Eq.(A.1) is also available and is defined by the follwing.

ν =
−sign(z)√

2

�
(1− S) +

�
(1− S)2 + 4z2

η = −z
ν

(A.3)

ψ = tan− 1(
y

−x)

where, S ≡ x2 + y2 + z2.
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Appendix B

Normalized Associated Legendre

Functions

B.1 Laplace’s Equation

In the development of the finite-state model, the fundamental equations of fluid dy-

namics—namely the continuity and momentum equations—where transformed into

Laplace’s equations ∇2Φ = 0. It turns out that in three-dimensional Ellipsoidal

coordinates, Laplace’s equation is a partial differential equation that is daunting in

appearance.

∂

∂ν

�
(1− ν2)∂Φ

∂ν

�
+
∂

∂η

�
(1 + η2)

∂Φ

∂η

�
+
∂

∂ψ

�
(ν2 + η2)

(1− ν2)(1 + η2)
∂Φ

∂ψ

�
= 0 (B.1)

However, if one choses a solution that is separable by way of products, i.e., Φ(ν, η, ψ) =

Φ1(ν)Φ2(η)Φ3(ψ), the above partial differential equation becomes a set of ordinary

differential equations.

d

dν

�
(1− ν2)dΦ1

dν

�
+

�
− m2

1− ν2 + n(n+ 1)
�
Φ1 = 0

d

dη

�
(1 + η2)

dΦ2

dη

�
+

�
m2

1 + η2
− n(n+ 1)

�
Φ2 = 0 (B.2)

dΦ3

dψ
+m2Φ3 = 0
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where m and n are constants of separation—written with appropriate exponents from

hindsight. It is recognized that the first two equations in the above ordinary differ-

ential equations are forms of Legendre’s associated differential equation. A general

solution to the first equation is Pmn (ν) and a general solution to the second is Q
m
n (iη),

where i is the imaginary
√
−1. These are referred to as associated Legendre func-

tions of the first and second kind, respectively. There are also solutions of Pmn (iη)

and Qmn (ν), but we allow the leading coefficients to these functions to be zero for all

values of ν and η. This is due to the fact these functions yield divergent solutions for

the pressure distribution in the flow field.

The third equation is also well known. This is the equation for simple harmonic

motion. A general solution to the third equation is a combination of sines and

cosines—e.g., cos(mψ) + sin(mψ)—with some set of leading coefficients to satisfy

boundary conditions.

Therefore, a general solution to Laplace’s equation in Ellipsoidal coordinates (from

the method of separation of variables) is the product of all three solutions to the

above ordinary differential equations.

Φmn (ν, η, ψ) = Φ1(ν)Φ2(η)Φ3(ψ) = P
m
n (ν)Q

m
n (iη) (C1 cos(mψ) + C2 sin(mψ)) (B.3)

where C1 and C2 are allowed to be functions of both m and n. They may also be time

varying, so long as they remain independent of ellipsoidal coordinates (ν, η, ψ). The

most general solution to the differential equation is the sum of all solutions. However,

not just a summation but a sum that permits valid Legendre functions—i.e., the

superscripts must not be greater in value than the subscripts. In should be noted

that in this research, another restriction occurs on m and n. Boundary conditions

require that only m+ n odd be retained due to the fact that this combination causes

Pmn to be an odd function. However, in this appendix we will disregard boundary

conditions which were addressed in detail in Chapter2.1.

Φ(ν, η, ψ) =
∞�

m=0

∞�

n=m,m+1,···
Pmn (ν)Q

m
n (iη) (C1 cos(mψ) + C2 sin(mψ)) (B.4)
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B.2 Normalized Legendre Function

In this research the associated Legendre functions are normalized. For the normal-

ization of Pmn (ν), we use the following characteristic.

1�

0

(Pmn (ν))
2 dν =

1

2n+ 1

(n+m)!

(n−m)! ≡ (ρ
m
n )

2 (B.5)

Therefore, a normalized associated Legendre function can be defined as follows.

P̄mn (ν) ≡
(−1)m
ρmn

Pmn (ν) (B.6)

such that,
1�

0

P̄mn (ν)P̄
m
j (ν)dν = δnj (B.7)

where δnj is the Kronecker delta that equals 0 for all n �= j and equals 1 for n = j.
Also, the normalization of Qmn (iη) is defined in the following manner.

Q̄mn (iη) ≡
Qmn (iη)

Qmn (i0)
(B.8)

Also, note that in this research, only the pressure distribution on the disk is of im-

portance. This demands that the ellipsoidal coordinate η be zero for all computation.

Thus, for all values of m and n

Q̄mn (i0) =
Qmn (i0)

Qmn (i0)
= 1 (B.9)

Therefore, the solution to Laplace’s equation for the pressure distribution on the

surface of the rotor disk is as follows.

Φ(ν, ψ) =
�

n,m

P̄mn (ν) (C1 cos(mψ) + C2 sin(mψ)) (B.10)

where, again, the coefficients C1 and C2 may be functions of m and n as well as time

varying.
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Appendix C

General Galerkin Method

In the Galerkin Method, the goal is to seek an approximate solution to the linear5

differential equation of interest. This is accomplished by assuming a solution that is

comprised of a summation of known “trial” solutions. The general process is outlined

here.

C.1 General Process

First let L(u) be the linear differential operator. Then

L(u) = 0 (C.1)

is the linear differential equation of interest. The approximate solution may then be

expressed as;

ua(x) = u0 +
N�

n=1

an · φn(x) (C.2)

where φn(x) are the known/predetermined trial functions and u0 is typically related

to a boundary condition and thus considered known. This (u0) may be thought of as

a0 · u(x = 0), where a0 is unity, if u(x = 0) is known, or some combination therein.
One may now define a residual (or amount of error) in the approximate solution by

5Linear implies that the equation is linear in the dependent variable. This says nothing about
the independent variable which may be of any order and generally of any complexity.
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substituting this solution back into the differential equation.

R(a0, a1, · · · , aN−1, aN , x) ≡ L(ua) = L(u0) +
N�

n=1

an · L(φn) (C.3)

According to Galerkin, one may solve for the unkown coefficients an by solving the

following system of equations.

< R, φm >= 0, m = 1, 2, · · · , N (C.4)

where, by definition, the above equation is an inner product defined as follows.

< f, g >≡
�

D

(f · g)dx (C.5)

Here, D is the domain of interest. Substitution of R and φm into Eq.C.4 yields the

following.
N�

n=1

an < L(φn), φm > + < L(u0), φm >= 0 (C.6)

or rewritten in matrix form,

M̄ �A = �D (C.7)

where

mmn ≡< L(φn), φm > (C.8)

dm ≡< L(u0), φm > (C.9)

are all know values and an are the unknowns to be solved for.

C.2 Simple Example

As an illustration, consider the following linear differential equation, see Ref.[50].

du

dx
= u (C.10)
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with the boundary condition, u0 = u(x = 0) = 1, and bound to the following domain,

0 ≤ x ≤ 1. Therefore, the linear differential operator may be defined as follows.

L(u) =
du

dx
− u = 0 (C.11)

Then, assume a solution of the form presented in Eq.C.2.

ua(x) = 1 +
N�

n=1

an · φn(x) (C.12)

The choice of trial functions is somewhat of an art and in general might not be

arbitrarily chosen. Experience is often beneficial and in this case, the functions chosen

is a power series.

φn(x) ≡ xn (C.13)

Then the differential operator becomes:

L(ua) =
dua
dx

− ua = R (C.14)

where,

dua
dx

= 0 +
N�

n=1

an
dφn(x)

dx
=

N�

n=1

n · an · xn−1 (C.15)

Therefore,

R =
N�

n=1

n · an · xn−1 −
�
1 +

N�

n=1

an · xn
�
= −1 +

N�

n=1

an(n · xn−1 − xn) (C.16)

Chose φm (in Eq.C.4) from the set of trial functions φn. Also, φm must be the lowest-

order members when evaluating the inner product, namely φm(x) ≡ xm−1. This,

then, produces the following as the inner product.

< R, φm >=

1�

0

(−1 +
N�

n=1

an(n · xn−1 − xn)) · xm−1dx = 0 (C.17)

87



or rewritten,
N�

n=1

an

1�

0

�
n · xn−1 − xn

�
· xm−1dx =

1�

0

xm−1dx (C.18)

or in matrix form,

M̄ �A = �D (C.19)

where the elements of M and D are denoted as mmn and dm, respectively.

mmn ≡< xn−1 − xn, xm−1 >=
n

m+ n− 1 −
1

m+ n
(C.20)

dm ≡< 1, xm−1 >=
1

m
(C.21)

and an are the unknown coefficients to be solved for. In this case, for n = 4, the

elements of A become:

AT = {0.9990, 0.5095, 0.1399, 0.0699} (C.22)

Therefore, the approximate solution to the differential equation Eq.C.10 is

ua(x) = 1+
N�

n=1

an · xn = 1+0.9990 · x+0.5095 · x2+0.1399 · x3+0.0699 · x4 (C.23)

The solution to the original differential equation is well known, u(x) = ex. The

below table illustrates the high accuracy of the Galerkin method with seemingly low

algebraic effort.

Approximate Solution, ua
x N = 1 N = 2 N = 3 N = 4 ex

0.0 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.4000 1.2057 1.2220 1.2214 1.2214
0.4 1.8000 1.4800 1.4913 1.4919 1.4918
0.6 2.2000 1.8229 1.8214 1.8221 1.8221
0.8 2.6000 2.2343 2.2259 2.2255 2.2255
1.0 3.0000 2.7143 2.7183 2.7183 2.7183

Table C.1: This table demonstrates the high order of accuracy that can be achieved
with a minimal amount of algebraic effort.

88



Appendix D

Table Method

The computation of the induced-flow states from the Peters-He generalized dynamic

wake model uses a series of harmonics. For each harmonic the radial term is then

expanded in harmonics of polynomial powers. This method may be accomplished by

first defining the number of harmonics to expand the induced velocity. This number

is chosen based on the highest dynamic frequency of interest for a given condition.

This provides the model with a limit to the degree of polynomial in r̄.

Highest
power of r̄ m Total

Inflow States

0 1 2 3 4 5
0 1 1
1 1 1 3
2 2 1 1 6
3 2 2 1 1 10
4 3 2 2 1 1 15
5 3 3 2 2 1 2 21

Table D.1: Choice of number of spatial modes (n+m =odd).

In order to determine the number of inflow states needed to obtain accurate results,

the induced-power efficiency for differing numbers of harmonics was computed. The

following table and plot shows the values of the efficiency for an actuator disk (no

tilting of the lift vector) with an infinite number of blades (Q = ∞) in axial flow
(skew angle χ is zero). In the limit that the harmonic terms continue to infinity, the

induced-power efficiency is driven to unity. However, in the scope of this research,

much of the computation is limited to a maximum harmonic of 10 which gives an

efficiency value of more than 99%.
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Mmax Induced-Power Efficiency
0 0.887
2 0.971
4 0.988
6 0.994
8 0.996
10 0.997
12 0.998
18 0.999

Table D.2: Numerical results of convergence with increasing number of harmonics.

Figure D.1: Plot that demonstrates the rapid convergence of the finite-state method
with increasing number of harmonics.
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Appendix E

Transformation Matrices

The development of the [A] matrix was outlined in Chapter 5.1 as part of the in-

troduction of blade-element theory to the general performance formulation and the

constraints for induced power optimization. This appendix is provided to clarify the

finite-state inflow theory and details of the derivation of [A].

In the mathematical notation of Associated Legendre functions, there is a superscript

m and a subscript n. These arise from the separation of variables that is used in the

solution of Laplaces equation in elliptical coordinates6. The ellipsoids of ellipsoidal

coordinates collapse down to a circle of radius unity at mid-plane, and the Legendre

functions are allowed discontinuities across that disk. The superscript m denotes the

harmonic number of the solution, and the subscript n denotes the order of the radial

term on the disk.

Because the solutions to Laplaces equation must be analytical across the center of the

circular disk, it follows that only n ≥ m values are allowed—i.e., Legendre functions
are defined for only those values. Furthermore, functions with m + n odd represent

discontinuities in the function across the disk; and they are used for pressure drop

across the disk—i.e., lift—whereas functions withm+n even represent a discontinuity

in the normal derivative—i.e., a mass source. As a consequence, the only values of

n admitted in the Peters-He model of dynamic inflow, Ref.[43], are n = m + 1,m +

3,m+ 5, · · ·.

In the Peters-He theory, both the dynamic-inflow states, Eq.(3.4), and the pressure

expansion coefficients, Eq.(3.6), have this standard superscript/subscript notation.

6See AppendixB
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As a consequence, the matrix that relates these two sets of variables, [L̄], has a set of

superscripts/subscripts (m, n) that relate to the inflow state (i.e., the row location)

and another set of superscripts/subscripts (r, j) that relate to the pressure expansion

(i.e., the column location). In addition, the harmonic numbers (m and r) have an

associated superscript c or s to indicate whether they refer to a cosine harmonic

or a sine harmonic. In order to facilitate the computations with standard matrix

subroutines, Ref.[43] has elected to write the matrices of the dynamic wake model in

partitions that represent the harmonic numbers with rows and columns within each

partition (that refer to the allowed values on n (or j) for that row (or column) of

the matrix). Reference [43] shows that the most consistent inflow model (and the

one with the best convergence) is one for which the subscripts of any given harmonic

are all limited to some maximum value, nmax = M + 1. This automatically limits

the highest harmonic of the matrices to be M = nmax − 1. As a consequence of this
procedure, the inflow expansion functions φmn are polynomials in the radial position

r̄ that go as (r̄)m, (r̄)m+2, (r̄)m+4 with the maximum allowed power of r̄ being M :

φmn (r̄) =
�
Hmn · (2n+ 1)

n−1�

q=m,m+2,···
r̄q

(−1)(q−m)/2(n+ q)! !

(q −m)! ! (q +m)! ! (n− q − 1)! ! (E.1)

where

Hmn =
(n+m− 1)! ! (n−m− 1)! !

(n+m)! ! (n−m)! ! (E.2)

E.1 Finite-State Wake Notation

The indexing of [L̄c] in Eq.(5) takes the following form.

[L̄mrcnj ] =




00
11

00
13

01
12

01
14

02
13

03
14

00
31

00
33

01
32

01
34

02
33

03
34

10
21

10
23

11
22

11
24

12
23

13
24

10
41

10
43

11
42

11
44

12
43

13
44

20
31

20
33

21
32

21
34

22
33

23
34

30
41

30
43

31
42

31
44

32
43

33
44




(E.3)
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Equation (E.3) shows the row/column superscripts and subscripts for [L̄c] for the case

M = 3. The indices for [L̄s] are the same with the exception that the m = 0, r = 0

rows and columns are omitted. Notice that, due to this truncation of n at M + 1,

not all of the partitioned matrices (for given values of m and r) are of the same size

and not all are square. Since both inflow states and pressure expansions are given

the same limitation, the maximum r is also M and the maximum j is also M + 1.

Thus, [L̄] is a square matrix even though its partitions need not be square. The total

number of states (cosine + sine) is (M +1)(M +2)/2. Thus, a three-harmonic model

(M = 3) has 10 states as seen in Eq.(E.3).

Since this notation has been used throughout the history of the theory for inflow

and pressure expansions, it has been modified here to be used for the allowable pitch

inputs introduced in Eq.(5.1) (rewritten here for convenience).

θ(r̄, ψq) =
K�

k=0

M�

m=0

�
r̄k [θmck · cos(mψq) + θmsk · sin(mψq)]

�
(E.4)

Here, the superscript m represents the harmonic of the allowed pitch input and the

subscript k represents the power of r in the expansion.

E.2 [A] Matrix Explanation

The integral equations (Eq.(5.6)) used to determine [A] are based on blade-element

theory, and the derivation is given in Chapter 6. It follows that the matrices [A]

and [P ] will have row partitions and row indices that correspond to the [L̄] matrix.

They will also have column indices such that the superscript is a harmonic partition r.

However, within each column partition, k is allowed to go up to any desired maximum

value K that need not be the same for each partition. Thus, these matrices need not

be square. Equation (E.5) shows the subscripts and superscripts for the case M = 3,

rmax = 1 (1 pitch harmonic) for both uniform and linear twist (k = 0, 1). Thus, the
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indexing of [A] will be in the following manner:

[Amrnj ] =




00
10

00
13

01
12

01
14

02
13

03
14

01
12

01
14

02
13

03
14

00
30

00
33

01
32

01
34

02
33

03
34

01
32

01
34

02
33

03
34

10
20

10
23

11
22

11
24

12
23

13
24

11
22

11
24

12
23

13
24

10
40

10
43

11
42

11
44

12
43

13
44

11
42

11
44

12
43

13
44

20
30

20
33

21
32

21
34

22
33

23
34

21
32

21
34

22
33

23
34

30
40

30
43

31
42

31
44

32
43

33
44

31
42

31
44

32
43

33
44

10
20

10
23

11
22

11
24

12
23

13
24

11
22

11
24

12
23

13
24

10
40

10
43

11
42

11
44

12
43

13
44

11
42

11
44

12
43

13
44

20
30

20
33

21
32

21
34

22
33

23
34

21
32

21
34

22
33

23
34

30
40

30
43

31
42

31
44

32
43

33
44

31
42

31
44

32
43

33
44




(E.5)

The structure of Eq.(5.6) indicates the following integrals over r̄ which, due to

Eq.(E.1), can be done in closed form.

Smn,k(r̄) ≡
1�

0

φmn (r̄) · r̄kdr̄ (E.6)

With this definition, one can construct all the elements of [Amrnk ] in closed form.

Equation E.7 shows the elements of [Amrnk ] for M = 3, Rmax = 1, where m(c,s) is the

harmonic number of τ , and r(c,s) is the harmonic number of θ. The matrix [B] is
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formed in a similar manner but that derivation is not given herein.

[Amrnk ] =




mc = 0, rc = 0

S0
n,k+2 +

1
2
µ2S0

n,k

mc = 0, rc = 2

1
4
µ2S0

n,k

mc = 0, rs = 1

µS0
n,k+1

mc = 2, rc = 0

1
2
µ2S2

n,k

mc = 1, rc = 1

S1
n,k+2 +

1
4
µ2S1

n,k

mc = rc > 1

Sr>1n,k+2 +
1
2
µ2Sr>1n,k

mc = rc ± 2, r > 2

−1
4
µ2Sr±2

n,k

mc = rs + 1

−µSr+1
n,k+1

mc = rs − 1

µSr−1
n,k+1

ms = 1, rc = 0

2µS1
n,k+1

ms = rc + 1

µSr+1
n,k+1

ms = rc − 1

−µSr−1
n,k+1

ms = 1, rs = 1

S1
n,k+2 +

3
4
µ2S1

n,k

ms = rs > 1

Sr>1n,k+2 +
1
2
µ2Sr>1n,k

ms = rs ± 2, r > 2

−1
4
µ2Sr±2

n,k




(E.7)
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E.3 [T ] Matrix Explanation

The orthogonality matrix [Tmrnj ] defined in Eq.(6.7) follows the notation from the

Peters-He inflow theory. For example, the cosine partition exhibits the following

convention.

[Tmrnj ]⇒




00
11

00
13

01
12

01
14

02
13

03
14

00
31

00
33

01
32

01
34

02
33

03
34

10
21

10
23

11
22

11
24

12
23

13
24

10
41

10
43

11
42

11
44

12
43

13
44

20
31

20
33

21
32

21
34

22
33

23
34

30
41

30
43

31
42

31
44

32
43

33
44




(E.8)

where the 0th harmonic terms are only present in the cosine states (i.e., the sine

partition will contain the same terms as the cosine partition with the exception of the

zeroeth terms). From the definition of the orthogonality matrix, the pressure loading

coefficients may be expressed in the following manner:

(E.9){τ 0cn } =
�

r,j

T 0r
nj

�
γrcj cos(rt) + γ

rs
j sin(rt)

�

(E.10){τmcn } =
�

r,j

Tmrnj
�
γrcj (cos ((m+ r)t) + cos ((m− r)t))

+ γrsj (sin ((m+ r)t)− sin ((m− r)t))
�

(E.11){τmsn } =
�

r,j

Tmrnj
�
γrcj (sin ((m+ r)t) + sin ((m− r)t))

− γrsj (cos ((m+ r)t)− cos ((m− r)t))
�

The above equations may be recast into a set of matrices that map the lift coefficients

γrj to the pressure expansion coefficients τ
m
n for a given blade harmonic k. These

matrices are partitioned by the sum/difference of m and r based on the following:

|m± r| = k (E.12)
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which comes about from the use of trigonometric rules when carrying out the inte-

grals in Eq.(6.6). The above relation states the only values that are allowed in the

computation are the sum and/or difference of harmonic numbers that are, in turn,

equal to integer multiples of blade number (i.e., k = 0, Q, 2Q, · · ·). This, along with
the orthogonality of the Legendre functions, allows values from Eq.(6.7) into only

partitions of m and r that are equal to k, Eq.(E.12). All other harmonic partitions

are zero.

This defines a simple set of matrices that may be used to transorm the influence

coefficient matrices into the appropriate harmonics for a rotor with a given number

of blades.

To demonstrate this assume a rotor with, say, 2 blades. Then, the only allowable

blade harmonics are k = 0, 2, 4, 6, · · · up to a maximum harmonic kmax. To illustrate
further, below are the matrix partitions for the example of k = 2:

[T cc]2 ⇒

m�r 0 1 2 3 4

0

1

2

3

4

5




T 02

T 11 T 13

2T 20 . . .

T 31

T 42

. . .




[T cs]2 ⇒

m�r 1 2 3 4 5

0

1

2

3

4

5




T 02

T 11 T 13

T 24

−T 31 . . .

−T 42

. . .



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[T sc]2 ⇒

m�r 0 1 2 3 4

1

2

3

4

5




T 11 −T 13

2T 20 . . .

T 31

T 42

. . .




[T ss]2 ⇒

m�r 1 2 3 4 5

1

2

3

4

5




−T 11 T 13

T 24

T 31 . . .

T 42

. . .




where the submatrix, say, T 31 takes the following form:

[T 3,1
n,j ] =

1�

0

P̄ 3
n(ν)P̄

1
j (ν)dν (E.13)

The partitions of the harmonic transformation matrix [T xxk ] where |m ± r| �= k are
zero matrices.

The above relations therefore reduce the pressure integrals of Eq.(6.6) to the compact

matrix representation found in Eq.(6.9)
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