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ABSTRACT OF THE DISSERTATION 

 

Transcriptional Analysis of Reciprocal Tumor:Microenvironment Interactions in Glioblastoma 

 

by 

 

Michael Dale Brooks 

 

Doctor of Philosophy in Molecular Genetics and Genomics 

 

Washington University in St. Louis, 2014 

 

Professor Robi Mitra, Chair 

Professor Joshua Rubin, Co-chair 

 

In the last twenty years both computational biology and cancer biology have made great strides 

and in the last 5 years the merger of the two has helped to revolutionize our knowledge of 

personalized targeted therapy and the diversity of cancer.  In cancer, cell-to-cell interactions 

between tumor cells and their microenvironment are critical determinants of tumor tissue biology 

and therapeutic responses.  Interactions between glioblastoma (GBM) cells and endothelial cells 

(ECs) establish a purported stem cell niche. We hypothesized that genes that mediate these 

interactions would be important, particularly as therapeutic targets. Using a novel computational 

approach to deconvoluting expression data from mixed physical coculture of GBM cells and 

ECs, we identified a previously undescribed upregulation of the cAMP specific 

phosphodiesterase PDE7B in GBM cells in response to ECs. We further found that elevated 

PDE7B expression occurs in most GBM cases and has a negative effect on survival.  PDE7B 

overexpression resulted in the expansion of a stem-like cell subpopulation, increased tumor 

aggressiveness, and increased growth in an intracranial GBM model.  This deconvolution 

algorithm provides a new tool for cancer biology, particularly when looking at cell-to-cell 

interactions, and these results identify PDE7B as a therapeutic target in GBM. 
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Chapter 1: Introduction – Research at the interface of 

computational biology and cancer biology 
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History of Cancer 

To best understand where the field of cancer biology is currently, it is important to know where 

the field started.  Cancer, though not called that at the time, has been known since the time of the 

ancient Egyptians.  Studies on mummies have found evidence of a number of tumors (1) and the 

Edwin Smith papyrus appears to be the first document describing cancer (2).  It wasn’t until one 

thousand years later when Hippocrates (c. 460 BC – c. 370 BC), arguably the founding father of 

modern medicine, gave it the name “carcinoma” after the Greek word for crab because of the 

finger like projections from the main tumor.  This was later translated to Latin as “cancer” (3).   

 

Throughout history, the explanation for the cause of cancer has changed drastically.  Original 

theories were archaic by today’s standards and revolved around the theory that the body had 4 

humors, or liquids required for life, and that cancer was caused by an excess of the “black bile” 

humor (4).  As time passed, future theories maintained the idea of a fluid as the cause of cancer, 

but were at least based on some understanding of human anatomy.  Under this hypothesis, lymph 

fluid in the body was a waste product excreted from the blood, and as this collected and grew, it 

formed tumors (4).  It wasn’t until 1838 that Johannes Muller (1801-1858) finally proposed that 

cancer was, in fact, made up of cells (5,6).  It was during this time that Muller, along with Rudolf 

Virchow (1821-1902), the father of modern pathology who used microscopy to start correlating 

cellular tumor patterns with prognosis (7) (8), ushered in the cellular age of cancer biology.   

Even with the knowledge that cancer was a disease of cells, the mechanism of cancer formation 

eluded scientists into the beginning of the twentieth century.  It was Theodor Boveri (1862-1915) 

who, while experimenting on chromosomes in sea urchins, proposed that cancer was a result of 
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scrambled chromosomes causing a single cell to grow into a tumor (9).  Around the same time, 

Peyton Rous (1879-1970) discovered that cancer could be transmitted from chicken to chicken 

through the application of a cell-free filtrate (10). This was later shown to be caused by a virus, 

now known as the Rous sarcoma virus (RSV).  Interestingly, it would be more than 60 years 

before Harold Varmus and J. Michael Bishop discovered the human origin of the viral proto-

oncogene c-Src (11) which is related to v-Src in RSV.  These were both critical developments 

toward the idea that cancer was a cell intrinsic disease, driven by somatic mutations conferring a 

proliferation advantage. 

 

Cancer as a cell instrinsic disease of somatic mutations 

Perhaps themost important hypothesis concerning somatically driven cancer is the two-hit 

hypothesis first put forth by Carl Nordling in 1953 (12) and further refined by Peter Armitage 

and Richard Doll in 1954 (13) and 1957 (14) and formalized by Alfred Knudson in 1971 (15).  

During the 1950s there was a lot of work on mathematical modeling of cancer progression as a 

function of age (16,17), but Carl Nordling made the most significant contributions.  His model, 

based on cancer prevalence as a function of age, predicted, with amazing accuracy, that there 

would be approximately 6 mutations required for any particular cell to become cancerous.  

Nordling studied a number of tumor types to come to this conclusion, but noted that the math did 

not apply to pediatric cancers, which while rare, still occurred far more often than his 6
th

 power 

law relationship would predict (12).   Doll and Armitage would expand upon the higher power 

law model in their 1954 paper but in 1957 would propose a simplier two-stage theory.  Their 

main conclusion was that only two hits were required for carcinogenesis.  An early hit which 
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would be induced by exposure to a carcinogen then followed by a long linear latent period of 

further mutations, finally resulting in tumorigenesis (14).  It wouldn’t be until 1971, when Alfred 

Knudson used the familial predisposition syndrome of retinoblastoma to rigorously define the 

two-hit hypothesis (15).  These studies firmly cemented the idea that cancer was primarily the 

result of somatic mutations driving a proliferation advantage, but what genes these mutations 

were in, or what effect they were having, was only just beginning to be discovered in 1971.   

 

The idea of dividing cancer’s causative mutations up into two classes, now called oncogenes and 

tumor suppressors, far outdated anyone having any idea what they actually were.  In fact the 

original idea probably dates as far back as Theodor Boveri’s 1902 paper showing that abberant 

chromosomes could cause tumorigenesis (9).  In that paper he introduces the terms “hemming-

seinrichtungen”, “teilungshemmende chromosomen”, and “teilungsforedernde chromosomen”, 

roughly “Cell cycle checkpoints”, “Tumor suppressor genes”, and “Oncogenes” respectively (18) 

(9).  The idea that activating mutations, oncogenes, were responsible for tumorigenesis began 

with the discovery of the Rous Sarcoma Virus (10) and further studies of other viruses 

responsible for causing tumors only strengthened the case (19) (20).  Examples of tumor 

suppressors, on the other hand, were hard to come by.  Though in 1971, Henry Harris published 

results of a study that made the case for the importance of tumor suppressors.  Harris showed 

that, using the recently described technique of cell fusion, normal mouse cells were dominant to 

malignant mouse cells (21).  This argues against an activated oncogene being the primary cause 

of malignancy and argues for the required loss of both copies of some sort of tumor suppressing 

gene in the malignant cells for which function was restored once the normal cell fused with the 

cancerous one.  A formal model for loss of both copies of tumor suppressor genes was officially 
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proposed in 1973 by David Comings (22), but it was Cavenee et al in 1983 who not only mapped 

the retinoblastoma (RB) gene to chromosome 13 but showed that both the familial and sporadic 

mutations mapped to the same location and caused homozygous loss of the gene (23).  A large 

number of independent groups worked towards refining the map and cloning of the RB gene 

over the next few years (24) (25) (26) leading to the final complementation experiment where a 

clone of RB was used to rescue retinoblastoma cells (27).  Of course, the other side of the tumor 

suppressor story is p53, which has now been shown to be mutated in a very large percentage of 

cancers (28).  Originally though, it was thought that p53 was an oncogene. Most of the evidence 

for this came from mistakenly using a mutant cDNA (now shown to be a dominant negative form 

of the protein) for the overexpression experiments instead of a wild type version (29) (30).  This 

was corrected only a few years later, in 1989,  when Bert Vogelstein’s group showed, 

conclusively, that p53 was a tumor suppressor mutated in a large percentage of colorectal 

cancers (31).   

 

Moving past cell intrinsic cancer research into cancer as a tissue disease 

While the work done with the idea of cancer mainly being a cell intrinsic proliferation disease 

allowed for huge leaps in advancing the field, and is still important for targeted therapies (32) 

(33),  cancer research has slowly started to change its approach, where it is now appreciated that 

cancer is a disease of tissues, where complex interactions between tumor cells with growth 

advantages and the local tumor microenvironment synergize to produce highly malignant tumors.   
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However, this change didn’t occur overnight.  In 1975 an elegant experiment showed that 

mutation alone could not drive tumorigenesis.  Beatrice Mintz and Karl Illmensee demonstrated 

this by taking malignant teratocarcinoma (a germ cell tumor) and injecting them into normal 

blastocysts of mice.  They saw incorporation of the tumor cells into the developing mice, 

including a gene for a particular coat color, Steel, that was not present beforehand.  This coat 

color could even be passed down to progeny (34).  Later work would show that not all 

tumorigenic lines behave in this way (35) (36), but it was a landmark study showing how 

important the microenvironment could be and that proper cell:cell interactions could block tumor 

growth.   

 

However it was the work of Mina Bissell that really showed just how important disorganization 

(i.e. inflammation) in the local microenvironment could be in driving tumorigenesis and 

propelled the idea to the forefront of cancer research.  Work by Peyton Rous (10) had shown that 

cancer could be caused and propagated by a virus gathered from sarcomas in chickens and then 

injected into other chickens.  In 1984, Mina Bissell and David Dolberg showed, in experiments 

that paralleled the work of Mintz and Illmensee, that introducing the virus into chicken embryos 

caused no tumorigenesis in the developed chickens, even though the virus was spread 

throughout, and active v-src was found in almost all cells.  Furthermore they noted that while the 

adult chickens showed no signs of tumorigenesis, as soon as cells were removed and cultured 

without the proper cell:cell interactions they quickly showed signs of transformation (37).  The 

question became how did a virus that could cause near universal tumorigenesis lose its power 

when introduced early?  It turns out that the key difference was that the previous adult RSV 

experiments had been done by introducing the virus by subcutaneous or intramuscular injection, 
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which caused local wounding.  In a follow up study in 1985, Bissell and colleagues showed that 

it was this local wounding that was required for tumorigenesis.  In fact once the virus was 

established, secondary wounding in other locations would cause tumor formation (38).  A few 

years later Bissell and colleagues would show the mechanism of this phenomenon was through 

transforming growth factor beta 1 (TGF-β) signaling, and that physical wounding was not 

required and adding recombinant TGF-β was sufficient to induce tumorigenesis (39).  This was a 

remarkable set of experiments showing that a cell intrinsic proliferation advantage was not 

sufficient for tumorigenesis and that the microenvironment was playing a much larger role than 

previously appreciated.   

Cancer stem cells (CSCs) are a relatively new, and controversial, addition to the study of the 

tumor microenvironment.  The current definition of CSCs are cells which constitute a small 

subpopulation of the total cells in a tumor, have an increased tumorigenic capacity compared to 

the rest of the tumor cells, are able to self renew, and can reconstitute the various cell types 

found in the original tumor.  Part of the controversy about CSCs comes not only from trying to 

find a consensus on what defines their function, but also of semantics as far as what to call them.  

Some authors prefer cancer stem cells while some prefer tumor initiating cells to further distance 

them from normal stem cells.  Even with the controversies, the literature keeps pouring in to 

support the idea that there is certainly a subpopulation of tumor cells with increased 

tumorigenicity (reviewed in (40) (41) (42)) and understanding them is an extremely important 

step going forward towards improving cancer treatments. 
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The field of cancer stem cells started, for the most part, with an acute myeloid leukemia (AML) 

paper from 1997 (43), though there was other evidence of cells with increased tumorigenicity 

going back as far as 1937 (44).  The AML paper by Dominique Bonnet and John Dick showed 

that taking AML cells and cell sorting them to purify the CD34
+
CD38

-
 population could produce 

a subpopulation of cells which were both more tumorigenic and could recapitulate the limited 

proliferative leukemic blast cell populations.  While the paper itself did not use the term cancer 

stem cell, their direct comparison to the normal stem cell of the hematopoietic lineage that is also 

CD34
+
CD38

- 
and their hypothesis that it was direct somatic event in the normal population of 

hematopoietic stem cells which lead to the hypothesis that they were cancerous stem cells.   

 

While work continued on cancer stem cells in blood cancers, it took another 6 years before 

evidence of cancer stem cells were found in solid tumors.  In 2003, cancer stem cells were found 

in breast cancer (45), followed shortly by identifying them in brain tumors (46).  Different sets of 

cell surface markers are used for different tumors, though there is some overlap.  While leukemic 

CSCs are traditionally isolated with CD34
+
CD38

-
, for breast cancer Al-Hajj et al isolated 

CD44
+
CD24

-
 populations (45) and Singh et al isolated CD133

+
 brain tumor cells for their CSCs 

(46).  The choice of these cell surface antigens is important because while traditionally they have 

just been seen solely as a marker to identify a subpopulation of cells, recently these proteins have 

been shown to have important functions, particularly in the microenvironment.  For example, 

CD44 is a cell surface glycoprotein which functions as the receptor for hyaluronic acid (47) (an 

important component of the extracellular matrix) and has been implicated in breast cancer 

invasion (48)and functions to help mesenchymal stem cells (MSCs) transition to tumor 

associated fibroblasts (49).  CD133 has recently been shown to induce tumorigenic properties in 
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HEK293 cells (50), increase drug resistance in glioma cells (51), increase proliferation of glioma 

cells through ERK pathway activation (52), and even increase epithelial-mesenchymal transition 

(EMT) rates in head and neck cancers (53).   

 

Not only is the field of cancer stem cells extremely complicated with many unanswered 

questions, but cancer stem cells are only the tip of the iceberg as far as the tumor 

microenvironment goes.  The cellular constituents of the tumor microenvironment can vary 

greatly depending on the tumor type but in glioblastoma include: pericytes (54) (55), endothelial 

cells (56), microglia (57), astrocytes (58) (59), cancer stem cells (45), and tumor cells.  The 

specialized glioblastoma tumor microenvironment known as the perivascular niche is extensively 

reviewed in Chapter 1, but the importance here is to note how complex a tumor 

microenvironment can be, and how, with the era of computational biology and bioinformatics 

upon us, these tools can be applied to the tumor microenvironment in a high-throughput fashion 

to expedite our understanding of the functions of a microenvironment to develop improved 

cancer treatments.   

 

History of genomics and bioinformatics 

While genomics refers to the specific study of genomes, bioinformatics refers to the storage and 

manipulation of biological sequencing data.  Both fields are relatively new, having only been 

around for the past 30 years or so.  It was 1977 when the first complete genome, the 

bacteriophage ΦX174, was published (60).  The term genomics wasn’t coined until 1986 by Tom 

Roderick (61) and while the term bioinformatics actually predates genomics (62), during these 
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earlier days it wasn’t particularly applied to DNA based sequencing data since there was not 

enough data being generated to require heavy computational analysis tools.   

 

 The early focus of the field of genomics was on improving the technology of generating 

sequence data. In fact, while the sequence of ΦX174 was generated with the “plus and minus” 

method worked out by Fredrick Sanger, he quickly published an improved method of sequencing 

with dideoxy-terminating nucleotides that same year (63).  This work would later win Sanger, 

along with Paul Berg and Walter Gilbert, the Nobel Prize in Chemistry in 1980.  Sanger’s 

dideoxy sequencing would be quickly become the gold standard, and is still used today for some 

applications, but at the time was still a laborious process.  After running the sequencing 

reactions, they would be loaded onto a polyacrylamide gel, ran out for a very long time (~14 

hours), and then annotated by hand to determine the sequence (63).  As more genes and genomes 

were sequenced, and as scientists looked ahead towards sequencing larger genomes, it became 

clear that running every reaction out on a gel and hand annotating the sequence would be 

impossible.  The next big leap in technology, and perhaps the most critical of all for the genomic 

revolution, came in 1986 when Leroy Hood and collaborators at Applied Biosystems developed 

and commercialized the automated DNA sequencing machine.  Hood improved Sanger’s method 

by using dye-labeled, instead of radioactively, dideoxynucleotides and instead of running out the 

reactions in a large polyacrylamide gel, eventually ran the reactions in capillary tubes filled with 

a denaturing polymer.  This allowed each passing fluorescent band to be detected by laser and 

automatically recorded and greatly improved the throughput of sequencing projects enabling the 

ambitious Human Genome Project (HGP) to be feasible.     
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The human genome project was officially launched in 1990 with funding from the US 

Department of Energy (DOE) and the National Institutes of Health (NIH) along with number of 

international collaborators.  Projected to be a 15 year project costing 3 billion US dollars, it came 

in slightly under budget and nearly two years early, with a draft being released in 2001 (64) and 

the project being declared finished in 2003 (65) (66), though there have been continual smaller 

updates since then.  The HGP was designed as a hierarchical shotgun project, with the original 3 

billion basepair genome being broken up into 150-200,000 bp bacterial artificial chromosomes 

(BACs).  It took about 20,000 BACs to adequately cover the whole genome.  These BACs were 

then subdivided into subclones, each containing about 2000bp.  These were fully sequenced with 

Sanger sequencing, reassembled into the full length BACs and finally into full chromosomes 

(64).   

 

It was during The Human Genome Project that the power of bioinformatics became an important 

cog in the machine of sequence generation.  A given sequencing center could be generating 

millions of basepairs per day and this data needed to be stored and analyzed.  Programs such as 

phred, which took the raw Sanger sequencing traces and turned them into sequence data and 

quality scores (67) (68), and phrap, which assembled the sequences into contigs, were important 

tools used in the data analysis pipeline.  It’s important to note though, that while bioinformatics 

was becoming more important, it was not the rate limiting step, which was still sequence 

generation (69). 
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There are two main ways that the HGP had a profound impact on science; direct research on the 

information gathered and using the sequence as a scaffold to build the next step in sequencing 

technology development.  A number of very important projects grew out of this data, including 

1,000 Genomes (70) and HapMap (71) (72), but the ENCODE (Encyclopedia of DNA Elements) 

project was the largest of these collaborative efforts.  This project produced a vast array of data 

spread out over a number of different journals (73) (74) (75) (76) (77) and continues to this day.  

While the lasting impact and legacy of the ENCODE project is yet to be determined, the 

importance of using the reference genome as a scaffold to build next technologies off of is 

already firmed established.  De novo sequencing of the human genome required the long reads 

provided by Sanger sequencing to have any chance of assembling the data back into 

progressively larger pieces.  Once the entire genome was complete though, it made way for a 

wave of new technologies that sacrificed read length for massive increases in throughput (78).    

 

This era of “next-generation” (next-gen) sequencing started around 2005 when the 454 

Sequencing company released their GS20 sequencer.  Their technology aimed to greatly increase 

the throughput of sequencing compared to Sanger sequencing by running reactions in a highly 

multiplexed microtiter plate and recording the introduction of specific nucleotides by the release 

of pyrophosphate (79).  This 454 sequencing still had read numbers on the low end (compared to 

other soon to come technologies) but did have read lengths comparable to traditional Sanger 

sequencing.  This allowed the technology to specialize in high throughput bacterial sequencing 

where assembling the genome back together de novo without a scaffold was still required. 
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Another important technological milestone of next-gen sequencing was Polony Sequencing, a 

technology developed by Robi Mitra, Jay Shendure, and George Church (80).  The original 

technology, published in 2003,  focused on forming colonies of clonal DNA by PCR which were 

immobilized in polyacrylamide on a microscope slide.  Once created, the Polony could be 

sequenced by synthesis with fluorescent nucleotides.  While not as high-throughput as some of 

the other technologies, Polony Sequencing had the advantage of having a lower cost of entry, 

since a lab could use an existing fluorescent microscope for imaging.  The technology was 

further developed and improved by Jay Shendure to fully sequence a bacterial genome (81), and 

eventually licensed to Dover Systems to produce a self-contained Polony Sequencing machine 

called the Polonator that would serve as a low-cost entry-level sequencing system.   

 

In 2006, Solexa (later purchased by Illumina and generally refered to as “Illumina Sequencing”) 

released their first next-gen sequencing machine the Genome Analyzer.  This technology shares 

some similarities to Polony Sequencing, in that PCR is used to form distinct areas of clonal 

molecules.  While the colonies in Polony Sequencing were supported in a polyacrylamide gel, 

Illumina uses a solid surface as the base for a reaction called Bridge PCR, where the primers for 

amplification are attached directly to glass flow cells, and the reagents to run the PCR can be 

flowed directly into the chamber.  This allowed very high densities of spots of clonal DNA, 

called “clusters” (82).  Through the years this technology has constantly improved with the 

introduction of various new machines with improvements to the cameras, flow cells, and 

reagents leading to continued increases in data generation, pushing the cost of sequencing lower 

and lower towards the goal of a $1,000 genome.   
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Cancer sequencing projects 

As the cost of sequencing became cheaper, scientists were constantly searching out new ways to 

use the technology.  Applying next-gen sequencing to cancer biology was one of early favorites.  

It was already known how important specific mutations could be in driving cancer, but it was 

also clear that a great deal was unknown about the distribution of mutations in cancer as a whole, 

and that by sequencing enough individual patient’s tumor and matched normal DNA it would 

start to paint a picture of what stayed constant between different patients and what was different.   

 

In 2008 the first whole genome cancer sequencing paper was published by Ley and Mardis et al 

(83).  There they took a single acute myeloid leukemia (AML) patient showing a cytogenetically 

normal karyotype and thoroughly sequenced both the tumor and matched normal DNA.  

Analysis of the sequencing results showed that the tumor DNA contained an overwhelming ~2.6 

million single nucleotide varients (SNVs), but by subtracted out those that were also in common 

with the matched normal DNA (and therefore unlikely to be causative), and limiting the analysis 

to only SNVs in coding regions of known genes, the final results showed 10 mutations that were 

potentially causative, 8 novel mutations in a variety of genes, and two previously known 

mutations.  This paper was critical in providing a foundation for the methodology in future 

cancer sequencing projects.  It showed the critical importance of sequencing matched normal 

DNA and gave a starting point for other groups to start sequencing more AML patients, and 

other tumor types. 
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Since 2008, there have been hundreds of papers publishing cancer genomes from groups across 

the world.  A small list of the published cancer types include: AML (84), ALL (85), breast (86), 

prostate (87),  liver, brain (88) (89), lung (90), pancreatic (91), colon (92), melanoma (93), and 

the list could go on.  The first few papers in 2008 focused on one or two patients but as 

sequencing became cheaper, it became possible, and necessary, to include more and more 

samples to get a better idea of what the mutational landscape looked like across patients.  To 

prevent redundancy and facilitate the sharing of data an organizational system was needed.  To 

accomplish this, a number of consortiums, which either previously existed or were created, were 

used to keep the various research groups on the same page.  These included the International 

Cancer Genome Consortium (ICGC) (94), The Cancer Genome Atlas (TCGA) (95), and the 

Cancer Genome Project (96).  These projects have been instrumental in organizing the joint 

effort of multiple research groups and providing databases to deposit data and make it available 

to other researchers.   

 

Heterogeneity has always been an important concern in cancer sequencing projects and while 

they have revealed the huge degree of heterogeneity in some tumors (97) (98), they have also 

struggled with how to deal with that heterogeneity from a technical standpoint.  There are two 

types of heterogeneity in tumor sequencing.  The first is heterogeneity in the cancer cells 

themselves caused by evolution of the tumor as it grows.  The initial causative mutations are 

always present, but as the tumor grows, further mutations are gathered, and these various 

subclones go on to populate different percentages of the final tumor.  The second source of 

heterogeneity is particularly relevant in solid tumors where normal non-tumorous cells can 

account for a large percentage of the local tumor microenvironment.    
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At first, to simplify the experiment and analysis, both types of heterogeneity were minimized as 

much as possible.  The initial Ley and Mardis et al paper was concerned with contamination of 

normal DNA in their tumor DNA and therefore used the fact that an initial bone marrow sample 

contained nearly 100% myeloblasts to help select their patient.  Their analysis also showed a 

pretty low level of intratumoral heterogeneity.  Of the mutations discovered, all eight were in 

almost all of the cells sequenced, both at initial presentation and relapse (83).  On the other hand, 

recently some studies have started to embraced having mixed populations of tumors cells 

(though still treating normal cells as contamination and avoiding them) to look at intratumoral 

heterogeneity and evolution.  These studies have developed new computational tools (99) as well 

as designing experiments to detect the heterogeneity (100) (101).  Unfortunately, heterogeneity 

of the tumor microenvironment has still not been addressed to the same level.  There is a lack of 

knowledge about how tumors cells change as a function of their interaction with the 

microenvironment and what mediates that interaction.   

 

Can whole genome transcriptional analysis be applied to tumor:microenvironment interactions? 

Therefore the question of my thesis revolves around whether computational tools could be 

applied to tumor:microenvironment interactions.  Using glioblastoma as a model system, we 

wondered whether two cell types from the local microenvironment, endothelial cells and tumors 

cells, could be grown together to ask what reciprocal interactions are induced in each cell type, 

and whether any of these differentially expressed genes would make good targets for future 

therapeutically targets.   
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Summary of contribution of thesis to the field 

Cancer biology is in progress of a transition from looking at cancer as mostly a disease of 

somatic mutations leading to proliferation advantages to a whole tissue disease with many 

different cell types contributing to tumorigenesis.  Not only are new tools required for looking at 

complex cellular interactions, but these tools need to provide biologically relevant results.  This 

thesis looks to not only provide a method to look at the global expression profile of the 

reciprocal interactions between two cell types, but takes the example of glioblastoma cells 

interacting with endothelial cells and follows up on a top candidate gene, PDE7B, and begins to 

elucidate its importance in the GBM perivascular niche.   

 

Contribution to co-authored work presented in this thesis 

In accordance with university policies, any co-authored work presented is to be accompanied by 

an explanation of the contribution by the thesis author, Michael Brooks, to those co-authored 

works.  Chapter one of this thesis is a review on the glioblastoma perivascular niche previously 

published in Current Pathobiology Reports under the title “Hitting Them Where They Live: 

Targeting the Glioblastoma Perivascular Stem Cell Niche”.  I was first author on this review and, 

along with Dr. Rubin, we decided on the topics to be covered.  I also wrote the sections on cell 

adhesion signaling, created the figure, and performed final edits of the paper before submission.    

Chapter three of this thesis is a primary research paper on the functions of PDE7B in the 

glioblastoma perivascular niche currently in submission.  I conceived and designed the 
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experiments along with Dr. Mitra and Dr. Rubin.  I performed all of the experiments except the 

tissue microarray.  I also analyzed the data and constructed all figures.  I wrote the manuscript 

with edits and revisions from Dr. Mitra and Dr. Rubin.   

 

References: 

1. Strouhal, E. (1976) Tumors in the remains of ancient Egyptians. American journal of physical 
anthropology, 45, 613-620. 

2. Breasted, J.H. and New York, h.s. (1930) The Edwin Smith surgical papyrus. The University of 
Chicago press, Chicago, Ill.,. 

3. Olson, J.S. (1989) The history of cancer : an annotated bibliography. Greenwood Press, New 
York. 

4. Papavramidou, N., Papavramidis, T. and Demetriou, T. (2010) Ancient Greek and Greco-Roman 
methods in modern surgical treatment of cancer. Annals of surgical oncology, 17, 665-667. 

5.                                          Elements of physiology. Lea and Blanchard, Philadelphia,. 
6. Haggard, H.W. and Smith, G.M. (1938) Johannes Muller and the Modern Conception of Cancer. 

The Yale journal of biology and medicine, 10, 419 b411-436. 
7. Virchow, R. (1881) An Address on the Value of Pathological Experiments. British medical journal, 

2, 198-203. 
8. Virchow, R. (1975) Cellular pathology: Lecture VIII. Blood and lymph. CA: a cancer journal for 

clinicians, 25, 93-97. 
9. Boveri, T. (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and 

annotated by Henry Harris. Journal of cell science, 121 Suppl 1, 1-84. 
10. Rous, P. (1911) A Sarcoma of the Fowl Transmissible by an Agent Separable from the Tumor 

Cells. The Journal of experimental medicine, 13, 397-411. 
11. Stehelin, D., Varmus, H.E., Bishop, J.M. and Vogt, P.K. (1976) DNA related to the transforming 

gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature, 260, 170-173. 
12. Nordling, C.O. (1953) A new theory on cancer-inducing mechanism. British journal of cancer, 7, 

68-72. 
13. Armitage, P. and Doll, R. (1954) The age distribution of cancer and a multi-stage theory of 

carcinogenesis. British journal of cancer, 8, 1-12. 
14. Armitage, P. and Doll, R. (1957) A two-stage theory of carcinogenesis in relation to the age 

distribution of human cancer. British journal of cancer, 11, 161-169. 
15. Knudson, A.G., Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proceedings 

of the National Academy of Sciences of the United States of America, 68, 820-823. 
16. Fix, E. and Neyman, J. (1951) A simple stochastic model of recovery, relapse, death and loss of 

patients. Human biology, 23, 205-241. 
17. Pascua, M. (1956) Trends of female mortality from cancer of the breast and cancer of the genital 

organs. Bulletin of the World Health Organization, 15, 5-41. 
18. Marte, B. (2006) Lack of Principles. Nature Reviews Cancer, 6, S08-S09. 



- 19 - 
 

19. Shope, R.E. and Hurst, E.W. (1933) Infectious Papillomatosis of Rabbits : With a Note on the 
Histopathology. The Journal of experimental medicine, 58, 607-624. 

20. Eddy, B.E., Borman, G.S., Berkeley, W.H. and Young, R.D. (1961) Tumors induced in hamsters by 
injection of rhesus monkey kidney cell extracts. Proceedings of the Society for Experimental 
Biology and Medicine. Society for Experimental Biology and Medicine, 107, 191-197. 

21. Harris, H. (1971) Cell fusion and the analysis of malignancy. Proceedings of the Royal Society of 
London. Series B, Containing papers of a Biological character. Royal Society, 179, 1-20. 

22. Comings, D.E. (1973) A general theory of carcinogenesis. Proceedings of the National Academy 
of Sciences of the United States of America, 70, 3324-3328. 

23. Cavenee, W.K., Dryja, T.P., Phillips, R.A., Benedict, W.F., Godbout, R., Gallie, B.L., Murphree, A.L., 
Strong, L.C. and White, R.L. (1983) Expression of recessive alleles by chromosomal mechanisms 
in retinoblastoma. Nature, 305, 779-784. 

24. Friend, S.H., Bernards, R., Rogelj, S., Weinberg, R.A., Rapaport, J.M., Albert, D.M. and Dryja, T.P. 
(1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma 
and osteosarcoma. Nature, 323, 643-646. 

25. Lee, W.H., Bookstein, R., Hong, F., Young, L.J., Shew, J.Y. and Lee, E.Y. (1987) Human 
retinoblastoma susceptibility gene: cloning, identification, and sequence. Science, 235, 1394-
1399. 

26. Fung, Y.K., Murphree, A.L., T'Ang, A., Qian, J., Hinrichs, S.H. and Benedict, W.F. (1987) Structural 
evidence for the authenticity of the human retinoblastoma gene. Science, 236, 1657-1661. 

27. Huang, H.J., Yee, J.K., Shew, J.Y., Chen, P.L., Bookstein, R., Friedmann, T., Lee, E.Y. and Lee, W.H. 
(1988) Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer 
cells. Science, 242, 1563-1566. 

28. Olivier, M., Hollstein, M. and Hainaut, P. (2010) TP53 mutations in human cancers: origins, 
consequences, and clinical use. Cold Spring Harbor perspectives in biology, 2, a001008. 

29. Eliyahu, D., Raz, A., Gruss, P., Givol, D. and Oren, M. (1984) Participation of p53 cellular tumour 
antigen in transformation of normal embryonic cells. Nature, 312, 646-649. 

30. Eliyahu, D., Michalovitz, D. and Oren, M. (1985) Overproduction of p53 antigen makes 
established cells highly tumorigenic. Nature, 316, 158-160. 

31. Baker, S.J., Fearon, E.R., Nigro, J.M., Hamilton, S.R., Preisinger, A.C., Jessup, J.M., vanTuinen, P., 
Ledbetter, D.H., Barker, D.F., Nakamura, Y. et al. (1989) Chromosome 17 deletions and p53 gene 
mutations in colorectal carcinomas. Science, 244, 217-221. 

32. Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Kantarjian, 
H., Capdeville, R., Ohno-Jones, S. et al. (2001) Efficacy and safety of a specific inhibitor of the 
BCR-ABL tyrosine kinase in chronic myeloid leukemia. The New England journal of medicine, 344, 
1031-1037. 

33. Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, 
P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G. et al. (2004) Activating mutations in the epidermal 
growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The 
New England journal of medicine, 350, 2129-2139. 

34. Mintz, B. and Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant 
teratocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of 
America, 72, 3585-3589. 

35. Stewart, T.A. and Mintz, B. (1981) Successive generations of mice produced from an established 
culture line of euploid teratocarcinoma cells. Proceedings of the National Academy of Sciences of 
the United States of America, 78, 6314-6318. 



- 20 - 
 

36. Rossant, J. and McBurney, M.W. (1982) The developmental potential of a euploid male 
teratocarcinoma cell line after blastocyst injection. Journal of embryology and experimental 
morphology, 70, 99-112. 

37. Dolberg, D.S. and Bissell, M.J. (1984) Inability of Rous sarcoma virus to cause sarcomas in the 
avian embryo. Nature, 309, 552-556. 

38. Dolberg, D.S., Hollingsworth, R., Hertle, M. and Bissell, M.J. (1985) Wounding and its role in RSV-
mediated tumor formation. Science, 230, 676-678. 

39. Sieweke, M.H., Thompson, N.L., Sporn, M.B. and Bissell, M.J. (1990) Mediation of wound-related 
Rous sarcoma virus tumorigenesis by TGF-beta. Science, 248, 1656-1660. 

40. Reya, T., Morrison, S.J., Clarke, M.F. and Weissman, I.L. (2001) Stem cells, cancer, and cancer 
stem cells. Nature, 414, 105-111. 

41. Nguyen, L.V., Vanner, R., Dirks, P. and Eaves, C.J. (2012) Cancer stem cells: an evolving concept. 
Nature reviews. Cancer, 12, 133-143. 

42. Beck, B. and Blanpain, C. (2013) Unravelling cancer stem cell potential. Nature reviews. Cancer, 
13, 727-738. 

43. Bonnet, D. and Dick, J.E. (1997) Human acute myeloid leukemia is organized as a hierarchy that 
originates from a primitive hematopoietic cell. Nature medicine, 3, 730-737. 

44. Furth, J., Kahn, M.C. and Breedis, C. (1937) The Transmission of Leukemia of Mice with a Single 
Cell. The American Journal of Cancer, 31, 276-282. 

45. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. and Clarke, M.F. (2003) 
Prospective identification of tumorigenic breast cancer cells. Proceedings of the National 
Academy of Sciences of the United States of America, 100, 3983-3988. 

46. Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J. and Dirks, P.B. (2003) 
Identification of a cancer stem cell in human brain tumors. Cancer research, 63, 5821-5828. 

47. Ahrens, T., Assmann, V., Fieber, C., Termeer, C., Herrlich, P., Hofmann, M. and Simon, J.C. (2001) 
CD44 is the principal mediator of hyaluronic-acid-induced melanoma cell proliferation. The 
Journal of investigative dermatology, 116, 93-101. 

48. Bourguignon, L.Y., Singleton, P.A., Diedrich, F., Stern, R. and Gilad, E. (2004) CD44 interaction 
with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 
and cathepsin B activation and breast tumor cell invasion. The Journal of biological chemistry, 
279, 26991-27007. 

49. Spaeth, E.L., Labaff, A.M., Toole, B.P., Klopp, A., Andreeff, M. and Marini, F.C. (2013) 
Mesenchymal CD44 expression contributes to the acquisition of an activated fibroblast 
phenotype via TWIST activation in the tumor microenvironment. Cancer research, 73, 5347-
5359. 

50. Canis, M., Lechner, A., Mack, B., Zengel, P., Laubender, R.P., Koehler, U., Heissmeyer, V. and 
Gires, O. (2013) CD133 induces tumour-initiating properties in HEK293 cells. Tumour biology : 
the journal of the International Society for Oncodevelopmental Biology and Medicine, 34, 437-
443. 

51. Angelastro, J.M. and Lame, M.W. (2010) Overexpression of CD133 promotes drug resistance in 
C6 glioma cells. Molecular cancer research : MCR, 8, 1105-1115. 

52. Dong, L., Qi, N., Ge, R.M., Cao, C.L., Lan, F. and Shen, L. (2010) Overexpression of CD133 
promotes the phosphorylation of Erk in U87MG human glioblastoma cells. Neuroscience letters, 
484, 210-214. 

53. Chen, Y.S., Wu, M.J., Huang, C.Y., Lin, S.C., Chuang, T.H., Yu, C.C. and Lo, J.F. (2011) CD133/Src 
axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck 
cancer. PloS one, 6, e28053. 



- 21 - 
 

54. Simonavicius, N., Robertson, D., Bax, D.A., Jones, C., Huijbers, I.J. and Isacke, C.M. (2008) 
Endosialin (CD248) is a marker of tumor-associated pericytes in high-grade glioma. Modern 
pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 21, 
308-315. 

55. Cheng, L., Huang, Z., Zhou, W., Wu, Q., Donnola, S., Liu, J.K., Fang, X., Sloan, A.E., Mao, Y., Lathia, 
J.D. et al. (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function 
and tumor growth. Cell, 153, 139-152. 

56. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., Oh, E.Y., Gaber, M.W., 
Finklestein, D., Allen, M. et al. (2007) A perivascular niche for brain tumor stem cells. Cancer cell, 
11, 69-82. 

57. Zhai, H., Heppner, F.L. and Tsirka, S.E. (2011) Microglia/macrophages promote glioma 
progression. Glia, 59, 472-485. 

58. Becher, O.J., Hambardzumyan, D., Fomchenko, E.I., Momota, H., Mainwaring, L., Bleau, A.M., 
Katz, A.M., Edgar, M., Kenney, A.M., Cordon-Cardo, C. et al. (2008) Gli activity correlates with 
tumor grade in platelet-derived growth factor-induced gliomas. Cancer research, 68, 2241-2249. 

59. Le, D.M., Besson, A., Fogg, D.K., Choi, K.S., Waisman, D.M., Goodyer, C.G., Rewcastle, B. and 
Yong, V.W. (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness: a 
mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-
plasmin cascade. The Journal of neuroscience : the official journal of the Society for 
Neuroscience, 23, 4034-4043. 

60. Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, C.A., Hutchison, C.A., 
Slocombe, P.M. and Smith, M. (1977) Nucleotide sequence of bacteriophage phi X174 DNA. 
Nature, 265, 687-695. 

61. Yadav, S.P. (2007) The wholeness in suffix -omics, -omes, and the word om. Journal of 
biomolecular techniques : JBT, 18, 277. 

62. Hogeweg, P. (2011) The roots of bioinformatics in theoretical biology. PLoS computational 
biology, 7, e1002021. 

63. Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain-terminating 
inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 
5463-5467. 

64. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., 
Doyle, M., FitzHugh, W. et al. (2001) Initial sequencing and analysis of the human genome. 
Nature, 409, 860-921. 

65. Hillier, L.W., Fulton, R.S., Fulton, L.A., Graves, T.A., Pepin, K.H., Wagner-McPherson, C., Layman, 
D., Maas, J., Jaeger, S., Walker, R. et al. (2003) The DNA sequence of human chromosome 7. 
Nature, 424, 157-164. 

66. Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P.J., Cordum, H.S., Hillier, L., Brown, L.G., Repping, S., 
Pyntikova, T., Ali, J., Bieri, T. et al. (2003) The male-specific region of the human Y chromosome 
is a mosaic of discrete sequence classes. Nature, 423, 825-837. 

67. Ewing, B., Hillier, L., Wendl, M.C. and Green, P. (1998) Base-calling of automated sequencer 
traces using phred. I. Accuracy assessment. Genome research, 8, 175-185. 

68. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error 
probabilities. Genome research, 8, 186-194. 

69. Mardis, E.R. (2011) A decade's perspective on DNA sequencing technology. Nature, 470, 198-
203. 

70. International HapMap, C., Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M., Gibbs, R.A., 
Peltonen, L., Dermitzakis, E., Schaffner, S.F., Yu, F. et al. (2010) Integrating common and rare 
genetic variation in diverse human populations. Nature, 467, 52-58. 



- 22 - 
 

71. International HapMap, C. (2003) The International HapMap Project. Nature, 426, 789-796. 
72. International HapMap, C. (2005) A haplotype map of the human genome. Nature, 437, 1299-

1320. 
73. Consortium, E.P., Bernstein, B.E., Birney, E., Dunham, I., Green, E.D., Gunter, C. and Snyder, M. 

(2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74. 
74. Thurman, R.E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M.T., Haugen, E., Sheffield, N.C., 

Stergachis, A.B., Wang, H., Vernot, B. et al. (2012) The accessible chromatin landscape of the 
human genome. Nature, 489, 75-82. 

75. Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., 
Lin, W., Schlesinger, F. et al. (2012) Landscape of transcription in human cells. Nature, 489, 101-
108. 

76. Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M., Karczewski, K.J., 
Park, J., Hitz, B.C., Weng, S. et al. (2012) Annotation of functional variation in personal genomes 
using RegulomeDB. Genome research, 22, 1790-1797. 

77. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., 
Barrell, D., Zadissa, A., Searle, S. et al. (2012) GENCODE: the reference human genome 
annotation for The ENCODE Project. Genome research, 22, 1760-1774. 

78. Mardis, E.R. (2008) Next-generation DNA sequencing methods. Annual review of genomics and 
human genetics, 9, 387-402. 

79. Ronaghi, M., Uhlen, M. and Nyren, P. (1998) A sequencing method based on real-time 
pyrophosphate. Science, 281, 363, 365. 

80. Mitra, R.D., Shendure, J., Olejnik, J., Edyta Krzymanska, O. and Church, G.M. (2003) Fluorescent 
in situ sequencing on polymerase colonies. Analytical biochemistry, 320, 55-65. 

81. Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M., Wang, 
M.D., Zhang, K., Mitra, R.D. and Church, G.M. (2005) Accurate multiplex polony sequencing of an 
evolved bacterial genome. Science, 309, 1728-1732. 

82. Documentation, I.T. (2010), Vol. 2013. 
83. Ley, T.J., Mardis, E.R., Ding, L., Fulton, B., McLellan, M.D., Chen, K., Dooling, D., Dunford-Shore, 

B.H., McGrath, S., Hickenbotham, M. et al. (2008) DNA sequencing of a cytogenetically normal 
acute myeloid leukaemia genome. Nature, 456, 66-72. 

84. Cancer Genome Atlas Research, N. (2013) Genomic and epigenomic landscapes of adult de novo 
acute myeloid leukemia. The New England journal of medicine, 368, 2059-2074. 

85. Holmfeldt, L., Wei, L., Diaz-Flores, E., Walsh, M., Zhang, J., Ding, L., Payne-Turner, D., 
Churchman, M., Andersson, A., Chen, S.C. et al. (2013) The genomic landscape of hypodiploid 
acute lymphoblastic leukemia. Nature genetics, 45, 242-252. 

86. Shah, S.P., Morin, R.D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., Delaney, A., Gelmon, K., 
Guliany, R., Senz, J. et al. (2009) Mutational evolution in a lobular breast tumour profiled at 
single nucleotide resolution. Nature, 461, 809-813. 

87. Berger, M.F., Lawrence, M.S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A.Y., Sboner, A., 
Esgueva, R., Pflueger, D., Sougnez, C. et al. (2011) The genomic complexity of primary human 
prostate cancer. Nature, 470, 214-220. 

88. Brennan, C.W., Verhaak, R.G., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., Zheng, S., 
Chakravarty, D., Sanborn, J.Z., Berman, S.H. et al. (2013) The somatic genomic landscape of 
glioblastoma. Cell, 155, 462-477. 

89. Zhang, J., Wu, G., Miller, C.P., Tatevossian, R.G., Dalton, J.D., Tang, B., Orisme, W., Punchihewa, 
C., Parker, M., Qaddoumi, I. et al. (2013) Whole-genome sequencing identifies genetic 
alterations in pediatric low-grade gliomas. Nature genetics, 45, 602-612. 



- 23 - 
 

90. Pleasance, E.D., Stephens, P.J., O'Meara, S., McBride, D.J., Meynert, A., Jones, D., Lin, M.L., 
Beare, D., Lau, K.W., Greenman, C. et al. (2010) A small-cell lung cancer genome with complex 
signatures of tobacco exposure. Nature, 463, 184-190. 

91. Liang, W.S., Craig, D.W., Carpten, J., Borad, M.J., Demeure, M.J., Weiss, G.J., Izatt, T., Sinari, S., 
Christoforides, A., Aldrich, J. et al. (2012) Genome-wide characterization of pancreatic 
adenocarcinoma patients using next generation sequencing. PloS one, 7, e43192. 

92. Bass, A.J., Lawrence, M.S., Brace, L.E., Ramos, A.H., Drier, Y., Cibulskis, K., Sougnez, C., Voet, D., 
Saksena, G., Sivachenko, A. et al. (2011) Genomic sequencing of colorectal adenocarcinomas 
identifies a recurrent VTI1A-TCF7L2 fusion. Nature genetics, 43, 964-968. 

93. Gartner, J.J., Parker, S.C., Prickett, T.D., Dutton-Regester, K., Stitzel, M.L., Lin, J.C., Davis, S., 
Simhadri, V.L., Jha, S., Katagiri, N. et al. (2013) Whole-genome sequencing identifies a recurrent 
functional synonymous mutation in melanoma. Proceedings of the National Academy of 
Sciences of the United States of America, 110, 13481-13486. 

94. International Cancer Genome, C., Hudson, T.J., Anderson, W., Artez, A., Barker, A.D., Bell, C., 
Bernabe, R.R., Bhan, M.K., Calvo, F., Eerola, I. et al. (2010) International network of cancer 
genome projects. Nature, 464, 993-998. 

95. Cancer Genome Atlas Research, N. (2008) Comprehensive genomic characterization defines 
human glioblastoma genes and core pathways. Nature, 455, 1061-1068. 

96. , Vol. 2013. 
97. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., 

Matthews, N., Stewart, A., Tarpey, P. et al. (2012) Intratumor heterogeneity and branched 
evolution revealed by multiregion sequencing. The New England journal of medicine, 366, 883-
892. 

98. Russnes Hg Fau - Navin, N., Navin N Fau - Hicks, J., Hicks J Fau - Borresen-Dale, A.-L. and 
Borresen-Dale, A.L. Insight into the heterogeneity of breast cancer through next-generation 
sequencing. 

99. Oesper, L., Mahmoody, A. and Raphael, B.J. (2013) THetA: inferring intra-tumor heterogeneity 
from high-throughput DNA sequencing data. Genome biology, 14, R80. 

100. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., 
Levy, D., Esposito, D. et al. (2011) Tumour evolution inferred by single-cell sequencing. Nature, 
472, 90-94. 

101. Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H. et al. (2012) 
Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney 
tumor. Cell, 148, 886-895. 

 

  



- 24 - 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2: Hitting Them Where They Live: Targeting the 

Glioblastoma Perivascular Stem Cell Niche 

 
 

 

 

 

 

 

 

 

 

 

 

This review was published in Current Pathobiology Reports 2013 Jun 1;1(2):101-110. 

 

 

Authors: 

Michael D. Brooks, Rajarshi Sengupta, Steven C. Snyder, & Joshua B. Rubin 

 

 

Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave. St 

Louis, MO 63110 

 

 

 

 



- 25 - 
 

Abstract  

 

Glioblastoma growth potential and resistance to therapy is currently largely attributed to a subset 

of tumor cells with stem-like properties. If correct, this means that cure will not be possible 

without eradication of the stem cell fraction and abrogation of those mechanisms through which 

stem cell activity is induced and maintained. Glioblastoma stem cell functions appear to be non-

cell autonomous and the consequence of tumor cell residence within specialized domains such as 

the perivascular stem cell niche. In this review we consider the multiple cellular constituents of 

the perivascular niche, the molecular mechanisms that support niche structure and function and 

the implications of the perivascular localization of stem cells for anti-angiogenic approaches to 

cure. 

 

Introduction 

 

As initially conceived by Judah Folkman, tumor growth is indeed “angiogenesis dependent” (1). 

While visionary, this revolutionary statement was limited by knowledge current in 1971 to a 

declaration regarding the necessity of a blood supply for nutrients and oxygen. Dr. Folkman and 

his contemporaries could not have imagined that angiogenesis was also a process that creates a 

specialized domain for the support, expansion and spread of a subpopulation of tumor cells with 

stem cell like properties (cancer stem cells (CSCs)). This specialized space, the perivascular 

domain or niche (PVN) is an exquisite collaboration between tumor cells, endothelial cells, 

pericytes and tissue specific components, for the maintenance of the tumor stem cell population. 
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In light of this greater appreciation for the importance of angiogenesis to tumor persistence and 

progression, targeting angiogenesis for cancer therapy would seem to have even greater potential 

than originally conceived. Not only can it disrupt blood supply and oxygen delivery, it can 

abrogate the formation of niche space and thereby terminate the potential for tumor growth. 

However, clinical experience with anti-angiogenic therapy that targets the single most potent 

angiogenic factor, vascular endothelial cell growth factor (VEGF), or its receptors has taught us 

that there are multiple mechanisms by which tumors stimulate angiogenesis and resist anti-

VEGF therapies. These mechanisms are diverse and involve additional soluble angiogenic 

factors, changes in the cellular constituents of the vascular unit, and even transdifferentiation of 

tumor cells into endothelial cells. This experience suggests that targeting the structure of the 

niche by simply trying to block its formation may not be practical. Instead, alternatively targeting 

niche function may have superior therapeutic effect without stimulating resistance mechanisms. 

In order to succeed in this endeavor it is imperative to understand the functions of the niche and 

the mechanisms that serve those functions. In this review we will examine the cellular 

components of the brain tumor stem cell niche and core modes of intercellular communication 

that support its coordinated activities. 

 

Functions of the Perivascular Niche 

 

Experience with culturing brain tumor stem cells suggests that the stem cell state is an unstable 

one and that in the absence of appropriate signals these cells will undergo spontaneous 

differentiation. Thus we can conclude that the functions of the niche include blocking 

differentiation in order to maintain the stem cell phenotype. Consistent with this, when brain 
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tumor stem cells are grown in vitro in the presence of endothelial cells, there is a measureable 

increase in self-renewal capacity and quaternary tumor sphere formation (2-5). Moreover, 

treatment of xenograft brain tumor models with anti-angiogenic agents alone or in combination 

with cytoxic chemotherapy results in decreases in the population of self-renewing CD133+, 

Nestin+ cancer stem cells (3,6). 

 

In addition to maintaining the cancer stem cell population, the PVN also promotes tumor cell 

proliferation (2,3). Primary glioblastoma multiforme (GBM) cells grown in the presence of 

human brain microvascular endothelial cells (HBMECs) exhibit increased growth in vivo and in 

vitro compared to GBM cells alone, and like the normal neural stem cell niche this is due at least 

in part to the actions of endothelial cell-derived CXCL12 (7,8). In addition, GBM-associated 

endothelial cells express sonic hedgehog (SHH, (9)), which can also stimulate tumor cell 

proliferation (10). 

 

Importantly, the PVN can provide sanctuary and protect GBM from the actions of both radiation 

and chemotherapy. The backbone of malignant brain tumor treatment is DNA damaging agents 

like radiation therapy and alkylator chemotherapy. The efficacy of these regimens is highly 

dependent upon mitotic activity in target cells and a fraction of the tumor stem cells are found in 

a slow-cycling or quiescent state, which would render them resistant to DNA damaging agents 

(11,12). In addition, the efficacy of DNA damaging agents is sensitive to changes in DNA repair 

capacity. Within the PVN there is a measureable increase in DNA repair capacity, possibly 

through the actions of microenvironment-derived TGF- (13). This would also mitigate against 

the impact of DNA damaging agents (14,15). Moreover, tumor stem cells exhibit increased 
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expression of multidrug resistance transporters (such as ABC and MDR transporters), which are 

responsible for the efflux of chemotherapeutics out of cells and thus limit the exposure of tumor 

cells within the PVN to DNA damaging agents (16,17). This property has been used to identify 

GBM stem cells as the Hoechst stain negative side-population of tumor cells on FACS analysis 

(18). Finally, GBM stem cells avoid immune detection and suppress immune activity through 

diminished expression of MHC (19) and secretion of immunosuppressive cytokines that block T 

cell proliferation and activation (20), an effect that is augmented by hypoxia (21). 

 

The peri-endothelial space also provides an important conduit for infiltrative spread of GBM 

throughout the brain. In 1938, Scherer described the movement of GBM cells away from the 

primary tumor mass along the perivascular space (22), and dispersal of GBM along through this 

space may be a critical component of tumor recurrence after gross total resections and tumor bed 

irradiation. The basis for this pattern of GBM cell movement may be due to chemotactic effects 

of high levels of CXCL12 found within the PVN (7,23) and CXCL12’s effects on expression of 

cathepsins and matrix metalloproteinases (MMP) (24). 

 

Origins of the Perivascular brain Tumor Stem Cell Niche 

Multiple mechanisms have been proposed through which brain tumor cells might forge stem cell 

supportive interactions with endothelial cells, including: co-opting existing blood vessels and 

stimulating angiogenesis.  Surprisingly, however, in three recent papers (25) (26) (27) it was 

shown that GBM stem cells themselves can transdifferentiate into endothelial cells.  Up to 60% 

of the tumor-associated endothelial cells shared genetic background with tumor cells, and a 

subset of the CD133 positive brain tumor stem cell fraction were also positive for vascular 
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endothelial-cadherin (CD144).  Similar transdifferentiation of normal neural stem cells into 

endothelial cells has also been described (28) and may represent a broadly important 

phenomenon.  The frequency of GBM-derived endothelial cells in patient specimens remains to 

be fully determined and the potential for these GBM-derived endothelial cells to provide 

structural niche space and regulatory control of niche function remains to be defined.   

 

 

Components of the brain tumor stem cell niche 

 

Development of the tumor PVN involves recruitment of a multiple cell types to the niche. We 

are only starting to understand the complex cellular architecture of the niche and the significance 

of each cell type to the functions of this microdomain. The brain tumor PVN is comprised of 

vascular endothelial cells, pericytes and astrocytes as well as macrophages/microglia. 

Understanding the molecular mechanisms by which each of these cell types interact with each 

other and with the CSCs will help us therapeutically target those interactions within the PVN and 

block tumor progression. 

 

Endothelial cells – In adult neurogenic niche, CSCs are often localized along the tumor 

vasculature (29). Glioma stem cells, which are frequently identified by their expression of 

surface markers such as CD133 (30), constitute a small fraction of the total tumor population. 

They appear to preferentially align themselves in the peri-endothelial space, compared to their 

non-stem cell counterparts, and their fractional abundance within total tumor cell numbers is 

strongly and positively correlated with tumor grade (31,32). A repertoire of soluble and cell-
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surface molecules have been identified, which through paracrine and/or autocrine mechanisms 

mediate reciprocal cross talk between the endothelium and tumor cells in GBM. We recently 

reported that brain endothelial cell derived CXCL12 chemoattracts and supports proliferation of 

primary human GBM cells (7). Signaling pathways such as Notch, sonic hedgehog (SHH), 

VEGF, hepatocyte growth factor (HGF), pigment epithelium-derived factor (PEDF) and nitric 

oxide (NO), many of which are also important for neural stem cell proliferation, have been 

implicated in the inter-cellular communication between endothelial and tumor stem cells within 

the PVN (2,4,15,33-37). It is interesting to note that a major distinction between tumor cells and 

normal neural cells, is that the tumor stem cell population can be replenished from the non-stem 

cell fraction, a phenomenon that is not observed for normal neural cells (38). Based on the 

frequent localization of tumor stem cells to the PVN, as well as the observation that pathways 

critical for stem cell survival are active within this niche, the PVN may function to chemoattract 

tumor cells, promote their transition to a “stem” like phenotype and support their maintenance 

and proliferation. 

 

Pericytes – Pericytes are mesenchymal cells that are usually embedded in the vascular basement 

membrane where they surround and stabilize the newly formed vasculature. Several reports have 

indicated that pericytes are an integral part of the tumor PVN and regulate proliferation, invasion 

and angiogenesis through their interactions with endothelial cells. Studies in a variety of cancers 

including melanomas, pancreatic cancer, lung adenocarcinoma and GBM have identified 

different signaling pathways such as platelet-derived growth factor-) (PDGF-), epidermal 

growth factor (EGF), hypoxia-inducible factor- 1 (HIF-1) and CXCL12 that are involved in 

the recruitment of pericytes to the tumor vessels (39). Reciprocal signaling between endothelial 
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cells and adjacent pericytes through soluble, as well as membrane bound, factors such as PDGF, 

angiopoetin-Tie2, and angiotensin can actively regulate angiogenesis (40). In contrast to normal 

pericytes, tumor pericytes are loosely associated with the endothelial cells leading to leaky 

vasculature suggesting that normalization of the tumor vessels may have therapeutic relevance. 

The limited success of anti-VEGF therapy in GBM and other tumors has led to the proposal that 

double targeting of pericytes and endothelial cells might be productive of greater therapeutic 

effect (41). However, the failure of endothelial targeting in the absence of pericytes in certain 

tumor models suggests that the role of pericytes in the PVN needs further investigation (42). 

 

Astrocytes - In the normal brain, astrocytes provide structural support to the brain vasculature 

and maintain blood brain barrier (BBB) integrity through end processes that interact with the 

vascular endothelial cells (43). In the normal adult neurogenic niche, astrocytes induce stem cell 

proliferation through the activation of purinegic receptors on stem cells while negatively 

regulating neurogenesis through the Notch pathway (29,44). Gliomas induce changes in proteins 

expressed in astrocytic endfeet leading to a loss of astrocytic regulation of endothelial functions 

and dysregulation of the BBB (45). Gliomas often contain pathology-associated or reactive 

astrocytes, which may mediate tumor cell invasion via activation of MMPs. Astrocyte elevated 

gene (AEG-1), initially isolated in fetal astrocytes is often implicated in metastatic progression 

and invasion of gliomas (40). In a PDGF-induced glioma model, SHH expressing reactive 

astrocytes were identified in close association with nestin expressing tumor cells (9). Glioma 

stem cells have been shown to express the SHH receptor patched (PTC) and inhibition of the 

pathway leads to the disruption of stem-like and tumorigenic properties suggesting that SHH 

producing microenvironment may act as a stem cell niche. 
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Macrophage/microglia – Tumor associated macrophages/microglia (TAM/Ms) may constitute 

up to 5-30% of the tumor cell population. They are frequently localized adjacent to tumor stem 

cells in the PVN (46). Chemokines such as macrophage chemotactic protein (MCP)-1 and 3 as 

well as cytokines including colony stimulating factor (CSF)-1, granulocyte colony stimulating 

factor (G-CSF), and HGF have been implicated in the chemo-attraction of the macrophages to 

the PVN and CSCs (40). Reciprocal interactions between the glioma cells and macrophages 

facilitate an immune suppressive but tumor supportive phenotype for macrophages that promote 

tumor growth and invasion through activation of MMPs. Glioma CSCs have been shown to 

inhibit macrophage/microglia phagocytosis, induce secretion of immune-suppressive cytokines 

such as IL-10 and transforming growth factor (TGF)-1 and enhance macrophage/microglia 

induced T-cell proliferation via STAT-3 pathway (47,48). Recent studies have demonstrated that 

TAM/Ms can enhance angiogenesis, as well as the proliferation and invasiveness of glioma 

CSCs via release of TGF-1, which induces expression of MMP-9 by glioma CSCs (49). 

 

Extra-cellular matrix – In addition to the cellular milieu cancer stem cells like neural stem cells 

also interact with the extracellular matrix components within the PVN (50), especially laminin 

(51). The composition of laminins has been correlated with tumor grade and patient survival in 

gliomas (52). Furthermore, the laminin receptor integrin α6 β1 has been shown to promote 

endothelial cell growth in GBM, which may indirectly modulate tumor stem cell survival (53). 

The role of other ECM components in modulating CSCs and tumorigenesis needs further 

investigation. 
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Ependymal Cells – While the tumor PVN and normal neural stem cell niche share many 

features, there are also distinct differences on both the cellular and molecular levels.  For 

example, ependymal cells are a critical component of the SVZ stem cell niche, and their cell 

number within the neurogenic zone correlates with stem cell number and neurogenesis (54) (55) 

(56).  Among the identified mechanisms by which ependymal cells regulate stem cell function is 

the negative regulation of BMP signaling through expression of LRP2 (55).  Recently, molecular 

profiles of the cellular constituents of the niche have been published and provide several 

additional intriguing candidate mediators of ependymal effects on stem cell function (56).  

Whether ependymal cells are similarly involved in the brain tumor PVN is unknown at this time, 

though the deeper parenchymal location of most GBM associated niches would suggest that 

ependymal cell involvement is unlikely.  This raises the interesting question of what, if any, 

impact this has on the regulation of stem cell activity within the tumor PVN.   

 

 

Cell adhesion signaling in the PVN 

Many important pathways serve the functions of the niche, and most of these have been expertly 

reviewed elsewhere. Therefore, we will focus on a less frequently discussed aspect of the PVN 

for which potential therapeutics exist, cellular adhesion signaling including: integrins and 

cadherins, and how these molecules influence both cell to cell and cell to ECM interactions 

within the PVN. 
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Integrins in the niche 

 

Integrins are essential transmembrane proteins that both anchor cells to the extracellular matrix 

and transmit extracellular signals across the cell membrane in response to ligation by 

extracellular matrix components like laminin, fibronectin vitronectin, collagen, thrombospondin 

and osteopotin as well as other factors such as FGF. There are currently 24 known heterodimeric 

integrins, comprised of one of 18 alpha subunits and 8 beta subunits. While integrins lack 

intrinsic kinase activity they transmit signals by forming multimeric complexes called focal 

adhesions with other signaling proteins such as focal adhesion kinase (FAK) (57) and adaptor 

proteins like p130CAS (58). Unbound integrins can transmit pro-apoptotic signals (59) while 

complexed integrins activate core growth and migratory pathways such as the MAPK, PI3K, NF-

kB and Src pathways (60). These activities regulate cell:cell interactions between tumor cells and 

endothelial cells as well as between non-tumor stromal elements of the PVN such as perictytes 

and endothelial cells. In this fashion, integrins regulate the three-dimensional structure and 

function of the stem cell niche. 

 

Importantly, the only gene in common between expression profiling analyses of multiple stem 

and progenitor cell populations is the laminin receptor integrin 6 (61-63). Integrin α6 is also 

highly expressed by GBM stem cells where it appears to be required for self-renewal activity 

(64). Consistent with the importance of laminin and laminin receptors to the functions of the 

neural stem cell niche, expression of integrin β1, one of two dimerization partners for integrin 6, 

exhibits restricted expression to proliferative cells within the normal subepenbdymal neural stem 
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cell niche (65). Moreover, surface localization of integrin β1 is enhanced by Galectin 1 (66), an 

adhesion molecule that is expressed in normal neural stem cells where it is known to regulate 

proliferation (67) (68), as well as in GBM where it additionally promotes invasion (69).   

 

Integrin β1 can function in a signaling axis together with the chemokine receptor CXCR4 (70). 

As both Integrin β1 and CXCR4 are highly expressed within the PVN, their crosstalk might 

regulate GBM stem cell functions. The impact of integrins on stem cell biology may relate to 

their modulation of key stem cell pathways like the Wnt (71), SHH (10) and Notch (72) 

pathways. 

 

Malignant transformation is associated with changes in integrin expression in a tumor specific 

fashion. Increased αvβ3 and αvβ5 is found in glioblastoma and associated with increased invasion, 

especially at the margins of the tumor (73). Interestingly, αvβ8 is also expressed in GBM and 

levels of αvβ8 expression correlate with two important growth phenotypes of GBM: angiogenic 

and infiltrative. GBM cells with high levels of αvβ8 expression exhibit correspondingly high 

levels of TGF- pathway activation and an invasive pattern of growth (74). In contrast, GBM 

cells with low levels of αvβ8 expression exhibit correspondingly low levels of TGF- pathway 

activation and an angiogenic pattern of growth. This is relevant to the present discussion, as a 

shift from an angiogenic to infiltrative pattern of growth has been observed in GBM treated with 

anti-angiogenic therapies, which alter PVN structure and function (75-77). 

 

While the molecular basis for changes in integrin expression remains to be fully defined, 

components of the PVN including TGF-β and CXCL12/CXCR4 regulate integrin expression in 
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various tumor types. In GBM, both TGF-β1 and TGF-β2 can increase expression of αvβ3 in 

tumor cells and increase their migratory activity (78). The chemokine CXCL12 and its receptor 

CXCR4 are important components of the PVN where they recruit brain tumor cells and stimulate 

brain tumor cell proliferation (7). Recently it was shown that CXCL12 signaling in prostate 

cancer affects the expression of two different integrins; αvβ3 (79) and α5β3 (80) both of which are 

correlated with tumor progression (73). 

 

Cadherins in the niche 

 

Cadherins are calcium-dependent cell adhesion molecules that mediate cell:cell interactions 

critical for the maintenance of normal tissue structure including the neural stem cell niche (81). 

The cadherin superfamily contains multiple members within several subfamiles in which 

individual members mediate primarily homotypic interactions to form adherens junctions that 

serve to segregate different cells into homogeneous populations or functional units within 

tissues. A number of regulators of fate and function are concentrated in adherens junctions in the 

central nervous system including: -catenin (82), protein kinase C (83), cdc42 (84) and Numb 

(85). Consequently, dynamic regulation of cadherin expression or cadherin-switching controls 

cell migration, fate and function during normal development and oncogenesis. In the normal 

neural stem cell niche, N-cadherin expression is required to maintain the progenitor state while 

loss leads to delamination and differentiation of newly generated neurons (86). Much attention 

has been focused on the regulation of cadherin expression in cancer as dramatic changes in 

cadherins accompany Epithelial-Mesenchymal Transition (EMT), a critical step in malignant 

progression. 
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Alterations in GBM cadherin expression are also documented to accompany alterations in 

growth. The switch from angiogenic to infiltrative pattern of growth seen with VEGF pathway 

antagonism is accompanied not only by changes in integrin expression but also by a T to N 

cadherin switch (87). Similarly, Cadherin 11, a marker of mesenchymal subtype of GBM, 

enhances GBM cell migration and appears to be required for tumor growth in vivo (88). Possibly 

most exciting with regard to cadherins and GBM stem cell activity and the PVN is the 

observation that expression of E-Cadherin in GBM patient specimens is associated with poor 

prognosis (89) and that a subset of E-cadherin expressing CD133 positive GBM stem cells 

appears to have the capacity for transdifferentiation into endothelial cells (25,27). 

 

Cadherin expression is regulated by several transcription factors including FoxP2 and 4 (86), 

Twist (90) and Snail (91). In cancer, it appears that cadherin expression is also regulated by 

cytokines like IL-8 (92). Increased IL-8 expression is associated with EMT in breast cancer (93) 

and positively correlated with astrocytoma grade (94). Importantly, IL8 is expressed at high 

levels by tumor associated endothelial cells (95) and thus is likely to be active within the PVN. 

 

Finally, interactions between cadherins and integrins have been recently observed in GBM stem 

cells (96). These interactions appear to regulate intracellular signaling and migration. Moreover, 

co-regulation of N-cadherin and integrin 1 by the receptor tyrosine kinase Tie2 is required for 

the adhesion of GBM cells to the endothelium as occurs within the PVN (97). 
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Targeting the Niche 

 

The identification of brain tumor stem cells and their perivascular niche has energized efforts to 

develop stem cell directed therapies. Targeting stem cell activity can theoretically be achieved 

by: 1) targeting the stem cells themselves, 2) by targeting PVN formation or, 3) by targeting 

PVN function. 

 

Abrogation of PVN formation through anti-angiogenic therapy is a potentially powerful 

approach to stopping tumor progression. VEGF antagonism is well tolerated and has efficacy but 

alone, or in combination with irinotecan, it does not have a lasting effect on survival. Multiple 

mechanisms can drive tumor progression in the setting of VEGF antagonism (98). The 

mechanisms of resistance to VEGF antagonism are diverse and instructive when considering 

how to block PVN formation. In response to bevacizumab there are increases in expression of 

pro-angiogenic factors like FGFs 1 and 2 and CXCL12
 
(99,100), as well as increased   
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recruitment of pro-angiogenic bone-marrow-derived cells (101-103). In addition, 

transdifferentiation of glioma stem cells into endothelial-like cells may also contribute to VEGF-

independent angiogenesis (26,104,105). Finally, avastin therapy may produce a shift in the 

growth pattern of GBM from angiogenic to infiltrative in which new niche formation may be 

induced in co-opted existing blood vessels (75-77). Thus resistance to VEGF antagonism 

involves a complex mix of responses that suggests it may be difficult to completely block the 

formation of new GBM stem cell niches. 

 

While the logic of targeting stem cells themselves is robust, recent work has demonstrated that 

the stem cell population is heterogeneous and may not be a discrete subpopulation. Instead, stem 

cells may exist as a component of a dynamic steady state involving a number of tumor cell 

phenotypes in which transitions occur between stem cell and non-tumor cell states, including into 

endothelial cells (38,106). Therefore targeting the stem cell state may also prove to have 

limitations with regard to abrogating stem cell activity. 

 

Thus it may be more important to target the mechanisms that favor transitions to the stem cell 

state and thereby prevent the replenishment of tumor-initiating capacity from non-tumor stem 

cells. This may also have the added advantage of targeting functions of non-neoplastic cells 

within the niche, i.e., astrocytes, endothelial cells, pericytes, which may have more limited 

capacity for resistance. 

 

As described above, homeostasis within the stem cell niche is maintained through the 

choreographed activities of a small network of cell types (Figure 1). While the cellular diversity 
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and molecular mechanisms that serve the niche provides many opportunities for targeted 

approaches to GBM therapy, targeting adhesion molecules may have the potential advantage of 

blocking the ability of the component cell types to band together and perform their coordinated 

functions. Over the past several years a number agents that target cadherins and integrins have 

been evaluated in cancer clinical trials including for GBM (107,108). In general these have been 

well tolerated. In fact, in several cases maximal tolerated doses were not defined. In addition 

there are early indications of efficacy that have been attributed to anti-angiogenic effects as well 

as to direct anti-tumor cell effects. Not fully evaluated is whether a component of the anti-tumor 

effects are the result of reduced stem cell activity, and whether a more complete appreciation for 

this potential target of adhesion molecule therapeutics might support refined efforts to abrogate 

stem cell niche function. Particularly important might be the combination of adhesion molecule 

directed therapies with cytotoxic agents and anti-angiogenics. The efficacy of these approaches 

is currently being evaluated for GBM. 
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While Cilengitide, an integrin V antagonist has progressed furthest in clinical trial for GBM 

(Table 1), the N cadherin targeting agent ADH-1 or drugs with the potential to target integrin 1 

(PF-04605412, M200) may deserve special attention for their potential to disrupt the GBM stem 

cell niche. 

 

Conclusions 

 

The complexity of the cancer stem cell niche creates many potential obstacles to the successful 

inhibition of stem cell activity. Understanding the mechanisms that support niche formation and 

function may expose the Achilles heel(s) of the PVN and the key to GBM cure. Particularly 

important will be considerations of treatment regimens that can both target niche formation and 

the mechanisms of stem cell induction and maintenance. In this regard, therapies that target 

adhesion molecules may have the advantage of dual function, with the potential to block both 

niche structure and function. 
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Portions of this chapter were previously published or will be published shortly.  The sections containing 

this data are noted in the text. 
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The Importance of Studying Transcription 

The central dogma of biology is that DNA is transcribed into RNA which is turned into proteins 

(1,2).  The ultimate goal of a cell wanting to change one of its properties is a change in protein 

level, but monitoring protein level changes is sometimes difficult, especially when looking at 

global changes across all proteins.  Changes in RNA levels can also occur on a much shorter 

timescale than changes in protein levels.  Therefore, looking at transcription levels is a popular 

option for determining which pathways are being altered in a cell upon some sort of stimulus or 

perturbation.    

 

Tools for Studying Transcription 

The Northern blot was one of the earliest forms of transcriptional analysis.  It was described in 

1977 (3), a few years after the Southern blot for analyzing DNA was pioneered (4).  A Northern 

blot is a low-throughput technique where RNA from a sample is traditionally ran on an agarose 

gel with formaldehyde to denature secondary structure.  Once the RNA has been completely run 

out on the gel, it is transferred to a nitrocellulose membrane where any particular gene of interest 

can be detected and quantified by using either a radioactively or fluorescently labeled anti-sense 

probe.  While Northern blots are not used a great deal anymore, they do have the advantage of 

being able to detect relatively small changes because the large number of cell’s worth of RNA 

which is loaded onto a single blot.  One of the major disadvantages is that there are a lot of 

processing steps that go into setting up a Northern blot, and that provides numerous opportunities 

to introduce contaminating RNases which can degrade RNA (5).   
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Another technique for transcriptional analysis is quantitative reverse transcription PCR (qRT-

PCR).  In this technique, a PCR reaction is set up with primers designed to amplify a small 

region of a gene of interest.  During the PCR step, amount of the PCR product is detected by a 

number of different techniques including intercalating dyes, TaqMan probes (6), Scorpion probes 

(7), molecular beacons (8), and others, but intercalating dyes and TaqMan probes remain the 

most commonly used.   

 

For all of these methods, the first step is to reverse transcribe the RNA into cDNA.  This 

stabilizes the signal by turning it into the more stable cDNA and makes it easier to perform PCR.   

The specific details of how this cDNA is quantified in the PCR reaction are where the various 

methods start to differ.  One of the most common methods involves addition of a general 

intercalating dye that will increase in fluorescence as the amount of double stranded DNA 

increases.  Ethidium bromide was originally used (9) but today Sybr Green I (10) has become the 

standard, though there are a number of other different dyes, with different properties, available 

(11).  This method requires a simple reaction mix, requiring just the intercalating dye, primers 

for the gene of interest, and PCR reaction mix.  Each cycle creates more PCR products and at the 

end of each of these cycles the detector on the specialized thermocycler detects and records the 

amount of fluorescence from the intercalating dye.  Intercalating dyes also allow for a final step 

called a melt curve.  One downside of a general intercalating dye is that there is little specificity, 

so primer dimers and non-specific mispriming products will produce just as much signal as true 

products, and melt curves are a good way to distinguish true signal from false signal.  At the end 

of the PCR reaction, a starting temperature is picked which is lower than any of the likely 

products formed, approximately 50 degrees C.  This temperature is slowly increased, usually in 
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0.1 degree increments, and after each increase, the fluorescence is recorded.  Each product in the 

reaction, primer dimer, real product, etc, will have a specific melting temperature based on their 

length and base composition. When the temperature is increased to that point, the product will 

melt and the fluorescence will rapidly decrease as the amount of double stranded DNA to 

intercalate into melts.  Therefore if time/temperature is plotted against change in fluorescence, 

each product will produce a specific peak in the melt curve that can reliably be seen from 

reaction to reaction.  Therefore ideally at the end of a run, a melt curve will have only one peak 

that corresponds to the desired PCR product, and if other peaks are present, it can indicate 

contamination or high levels of primer dimer.   

 

Another very common method called Taqman (6) provides a higher degree of specificity but is 

more complicated and expensive.  This method involves two normal PCR primers, similar to the 

previous method, but incorporates a third primer, which binds internally to the forward and 

reverse primers.  This method has no intercalating dye but this internal primer is labeled with one 

of any number of fluorophores.  To prevent constant fluorescence it is also labeled with one or 

more quencher molecules which prevent the fluorophore from actively producing light.  

However, during the PCR cycles, this internal primer will anneal to its complementary region in 

the middle of the PCR product and as the polymerase comes along, it degrades this internal 

primer, releasing the nucleotide with the fluorophore into solution, preventing it from being 

quenched, and thereby producing more and more fluorescence each round, which is again 

detected and recorded at the end of every PCR cycle.  While there is no corresponding melt 

curve to determine the sensitivity of the reaction, the internal primer provides an extra level of 
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specificity since neither primer dimers nor mispriming products will contain the sequence 

complementary to the internal primer.   

 

Overall, qRT-PCR has a number of advantages over Northern blots.  It contains a high dynamic 

range, has high sensitivity, can be easily multiplexed, and requires less manipulation of the RNA 

and therefore provides less opportunity for RNA degradation (12).   

 

With the advent of next-generation sequencing, another option for transcriptional analysis has 

been developed called RNA-sequencing (RNA-Seq).  In this method, RNA is once again turned 

into cDNA, but instead of assessing gene expression with PCR for a specific gene, this cDNA is 

turned into a next-gen library and the number of reads that map back to a particular gene are used 

as a proxy for expression from that gene.  This allows for detection of gene expression globally 

and without any a priori knowledge of gene sequence or expression.  The first publication 

utilizing this approach was from Barbara Wold’s group (13) in 2008.  RNA-Seq provides a large 

number of advantages over other techniques.  Foremost, not only does it provide quantification 

of gene expression, but it can also provide quantification and analysis of many other forms of 

transcription such as alternative splice forms, allelic expression, RNA editing, and SNPs present 

in coding sequences.  It also has, in theory at least, infinite dynamic range.  For example, 

microarrays, which have a large but not infinite dynamic range, will be unable to detect genes 

with very low levels of transcription without having high transcription genes saturated.  RNA-

Seq has the ability to detect genes with a single copy per cell up to genes with hundreds of 

thousands of copies per cell.  Though this requires sequencing to a very high depth to detect the 

very, very lowly expressed genes, but most of the time the reads will be from those very highly 
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expressed genes, therefore wasting computational time and money.  One of the disadvantages of 

the original RNA-Seq was the requirement of starting with a large amount (25ug) or RNA.  The  

main reason for this high starting amount was that the protocol required polyA selection of 

mRNA to avoid sequencing of ribosomal RNA that makes up a very large percentage of total 

RNA but would be relatively uninformative.   This did have the side effect of making detection 

of non-polyadenylated RNA species difficult.  Through continued technology development these 

disadvantages have been overcome for the most part.  Currently there are commercial kits and 

special library preparation methods which allow RNA-Seq all the way down to single cells (14) 

(15) (16) and there are library preparation and analysis methods to detect many of the various 

kinds of RNA present in a variety of organisms (17) (18). 

 

Methods of Microarray Analysis 

Another major category of transcriptional analysis tool is a microarray.  While the term 

microarray refers to any array of probes put down onto a solid surface where each probe 

represents a different gene or protein which can then all be assayed all at the same time, the 

pertinent to this discussion is the expression microarray, designed to assess the levels of mRNA 

genome-wide.  One of the first expression arrays was a set of 4,096 randomly cloned human 

colon cancer cDNAs cloned into E. coli, spotted onto nitrocellulose and probed with radiolabeled 

RNA from other colon cancer related samples (19).  Since then there has been a great deal of 

technology development, and two main commercial products have come to dominate the field, 

Affymetrix Genechips and Illumina BeadArrays.  While being based on different technologies, 

both provide the same function, providing quantification of almost all the genes currently known 

for a variety of model organisms including human, mouse and rat.   
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Once the microarray has been performed and the data generated, the first step of microarray 

analysis is to take the raw data output and background subtract and normalize it.  In the early 

days of cDNA microarrays this would quantifying negative control background spots and 

subtracting that from all of the other spots.  These days each commercial product has separate 

procedures for performing the background subtraction.  For example, Illumina uses a set of 

around 1,000 beads which contain randomized sequences which should have no targets in their 

designed transcriptome to serve as background beads.  They also have a local background 

subtraction step (20).  Conveniently these steps are able to be performed automatically by the 

Illumina software upon initial data generation, though commonly available plug ins are also 

available for R to reanalyze the data completely from raw data (21) (22).   

 

The next step in microarray analysis is normalization.  The goal of normalizing microarray data 

is to remove as much of the systematic variation as possible while leaving biologic variation.  

This is critical when trying to analyze data that was generated on different chips, at different 

times, or by different research groups.  Normalization makes 3 main assumptions; 1) the majority 

of genes are not differentially expressed, 2) any systematic bias that is present is evenly 

distributed across the chip or beads, and 3) the normalization will only remove the systematic 

bias without affecting biological variance (23).  There are many different algorithms to 

normalize data and, while each has their own slight advantages and disadvantages, there are a 

few main ones used more often (24).   
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Another step in microarray data analysis is transformation.  The most common form of data 

transformation is a log2 transformation.  This has two main benefits.  First, it reduces the 

variance of large values.  This is important because microarray data can sometimes have a large 

difference between the highest and lowest expressed genes on the array, and these highly 

expressed genes will just naturally have a much larger variance than the smaller ones.  By taking 

the log2 of all of the data, it helps to make comparisons between high and low expressed genes 

easier.  Secondly it helps to facilitate treating up and down regulated genes similarly.  Meaning 

that if you calculate a fold change for un-transformed data, by dividing condition #1 by condition 

#2, the genes that were higher expressed in condition #1 will all now have a value above 1 for 

their fold change, but genes with a higher value in condition #2 will have a value between 0 and 

1, which would then further need to have the negative reciprocal taken to have comparable fold 

changes.  On the other hand, if the data is already log2 transformed, calculating the fold change 

only requires subtracting condition #2 from condition #1, and the fold change is already correct 

for both situations.   

 

Once the data is background subtracted, normalized, and transformed, the question becomes how 

to tell which genes are differentially expressed between the various samples or conditions.  In the 

early days of microarrays, analysis could consist of as little as determining the fold change for 

each gene between samples or conditions, and considering anything over a two-fold change as 

differentially expressed (19).  Of course this sort of analysis had no real statistical basis and 

created many false positives so researchers moved towards something with more statistical rigor.  

These days there are two main statistical tests done for microarrays.  The easiest is the Student’s 
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t-test.  For each gene, an individual t-test is run for each comparison of interest.  This creates an 

independent p-value for each gene and each comparison.   

 

If microarrays are done on multiple samples, and it is important to test whether there is a 

difference between any of those samples without performing all possible pairwise comparisons 

(and therefore having many more tests to correct against), then the second main statistical test is 

performed instead; the analysis of variance, or ANOVA test.  This will determine if the gene is 

differentially expressed across any of the samples.   

 

No matter the statistical test chosen, for an average microarray, the analysis would have 

consisted of many thousands of statistical tests.  A normal p-value cutoff would be 0.05, and that 

would set the limit that 5% of the results are false positives.  The problem then becomes that if 

there were 40,000 genes, and therefore that many statistical tests, there will be 2,000 false 

positives.  This creates quite a problem, and therefore needs to be accounted for by what is called 

multiple hypothesis (MH) correction.  There are a number of different methods for this including 

Bonferroni correction (25) or Benjamini-Hochberg (26).  The Bonferroni correction is one of the 

simplest but most stringent MH corrections.  It aims to completely reduce type I errors (false 

positives) but in doing so also has a high rate of type II errors (false negatives).  It is 

implemented by multiplying each p-value by the number of tests performed and then asking if 

these new corrected p-values still fall below some cutoff, traditionally 0.05.  One of the other 

less stringent MH corrections is Benjamini-Hochberg.  In this correction, type I errors are not 

completely reduced, they are kept at some threshold level, for example 5%, but this also prevents 

many of the type II errors that a more stringent correction would make (26).  Benjamini-
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Hochberg also has a more complicated implementation.  The results are ranked by p-value from 

lowest to highest (lowest being rank = 1), and each p-value is multiplied by the total number of 

genes in the list divided by its rank in the list of p-values.   

 

Once the statistical tests have been run, and multiple hypothesis correction applied, the end result 

is a list of genes which are differentially expressed, but going through a list and just picking 

random genes and testing them further is a long and expensive process.  Therefore, researchers 

have found ways to determine if there are patterns in these genes and make educated guesses 

about which ones to test first.  The technique is called pathway analysis and there are a number 

of programs and algorithms designed for it including GO Onotology from the original 

consortium (27), KEGG pathway analysis (28), and DAVID analysis tools (29).  The overall idea 

is that given a short list of differentially expressed genes, these programs take the background list 

of all of the possible genes which could have been differentially expressed, and a list of 

associations that each gene has to one or more biological processes, and performs a Fisher’s 

exact test to determine if there is an enrichment of any of these biological processes in the short 

differentially expressed gene list compared to the background gene list (30).  This test will output 

p-values and multiple hypothesis corrected p-values, for each association.  These lists of 

enriched biological processes can then be compared to the experimental design for validation of 

the system, and prioritization of the genes found to be differentially expressed for further 

experimentation.   
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Example Studies 

Having developed an expertise in microarray analysis, I have used these skills to assist in a 

number of other collaborations to analyze microarray data in a variety of systems.  The following 

is a description of those systems, and the analysis performed. 

“Conditional Mutagenesis of Gata6 in SF1-Positive Cells Causes Gonadal-Like Differentiation in the Adrenal 

Cortex of Mice” by Pihlajoki M, Gretzinger E, Cochran R, Kyronlahti A, Schrade A, Hiller T, Sullivan L, Shoykhet 

M, Schoeller EL, Brooks MD, Heikinheimo M, Wilson DB.   

Endocrinology. 2013 May;154(5):1754-67. 

This study (31) focused on the effect of Gata6 in the adrenal cortex of mice.  Gata6 is a known 

transcription factor in adrenocortical development (32).  Since complete knockout of Gata6 is 

embryonic lethal (33), a conditional knockout (cKO) of Gata6 was created using Cre-LoxP 

recombination being driven by SF1-cre.  SF1 is another transcription factor important in adrenal 

steroidogenesis and is highly expressed in fetal and adult adrenal cortex (34).  Therefore Gata6 is 

specifically knocked out in adrenocortical cells in the mouse brain.   

 

Gata6 cKO mice, while viable and fertile, have a number of defects, all of which are thoroughly 

described in the paper.  Briefly though, these mice showed smaller adrenal cortex sizes compared 

to wild type mice and an upregulation of gonadal-like markers.  Also, the x-zone, a transient area 

of cells which disappears in pubescent male mice and during pregnancy in female mice, was 

shown to be significantly reduced in Gata6 cKO mice.   

 

To determine which genes were dysregulated by the cKO of Gata6, a series of microarrays were 

performed on RNA isolated from whole adrenal glands of 2 month old virgin females cKO mice 

(n=3) and control (n=3) mice.  Illumina Mouse6v2 were performed by the Washington 
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University in St. Louis’s Genome Technology Access Core (GTAC) according to standard 

protocols.  Background subtracted data was quantile normalized and imported into Excel for 

further analysis.  Once into Excel, the probes with no expression (as determined by the Illumina 

generated Detection p-value > 0.05) in all 6 datasets were filtered out, taking the dataset from 

45,282 down to 20,073.  Next, genes with a fold change less than 2 fold between cKO and wild 

type (in either direction) were filtered out, leaving only 1,985 probes.  These remaining genes 

then had multiple hypothesis correction applied using the Benjamini-Hochberg method.  The top 

twenty up and down regulated genes are shown in Table 3-1.   

 

One of the genes found to be differentially expressed during the analysis was the downregulation 

of Pik3c2g, a member of the Akt/PI3K signaling pathway, in the cKO mice.  Further analysis 

showed the Pik3c2g was a specific marker of the X-zone by showing that Pik3c2g was present in 
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virgin females and gonadectomized males and females, but not present in post-puberty males or 

previously pregnant females.  To further verify that Pik3c2g was specific to the X-zone, laser 

capture microdissection was used to gather tissue from different areas of from virgin female and 

control mice adrenal glands showing specific Pik3c2g expression in X-zone cells.   

These microarrays helped to identify Pik3c2g as a novel marker of the X-zone in mouse adrenal 

glands.  While the exact function of Pik3c2g is yet unknown, it appears to specifically 

phosphorylate phosphatidylinositol (PI) and PI4P, but does not phosphorylate PI(4,5)P2 (35).  

The overall studies in the paper reveal Gata6 as an important mediator of the balance between 

adrenal and gonadal pathways in stem/progenitor cells in the adrenal gland and that Pik3c2g is 

an important downstream gene in the pathway and that further studies will shed additional 

information about its functional role.   

 

“Cell Intrinsic Sexual Dimorphism in Stem Cell Induction and Transformation Underlies Male Predominance in 

Glioblastoma”  by Sun T, Warrington NM, Luo J, Brooks MD, Dahiya S, Sengupta R, & Rubin J. 

 

Currently under revision at the Journal of Clinical Investigation. 

This study (currently in review at Journal of Clinical Investigation) aims to better characterize 

the phenomenon of males being more susceptible to brain tumor formation than females.  When 

analyzed across a number of brain tumor types including glioblastoma (GBM), medulloblastoma, 

oligodendroglioma, ependymoma, and pilocytic astrocytomas, males invariably showed higher 

rates of tumor formation than females (36).   Since glioblastoma is the most common adult 

malignant primary brain tumor, and has one of the worst prognoses (37), a great deal of work has 

gone in to understanding the basic tumor biology behind it.  Further research on the 

transcriptional signatures of GBM tumors showed four distinct molecular subtypes; classic, 

proneural, neural, and mesenchymal (38).  In this study, data from the TCGA database (38) and 
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additional data from recent studies containing a total of 426 GBM samples (GSE16011 (39) and 

GSE13041 (40) ) were analyzed for tumor formation rate between males and females.  When 

broken down into these four molecular subtypes, the mesenchymal subtype had the greatest 

sexual disparity (Table 3-2).  It has also been shown that the mesenchymal subtype has 

frequently been associated with loss of neurofibromin 1 (NF1), p53, and PTEN (38).  In a mouse 

model of glioblastoma, NF1+/-;p53+/- mice have an increased susceptibility of tumor formation 

(41) and male mice show higher tumor formation than female mice (1.38:1) when the 

chromosome containing the mutant NF1 and p53 is 

maternal in origin (42) (43).  Based on this data, 

NF1 and p53 were prioritized for a stepwise 

transformation model to determine if loss of these 

two genes would reveal a cell intrinsic difference 

between male and female astrocytes which could 

account for difference in tumor formation rates.   

 

For the first stage of the model, male and female 

wild type astrocytes were isolated from p1/p2 

mouse pups.  While a number of different cells in 

the brain, including astrocytes, have been shown to have the potential to be the initiating cell for 

glioblastoma (44,45), astrocytes were chosen because of their abundance in the developing 

mouse brain and ability to grow in vitro.  For the next step of the step-wise transformation, 

astrocytes were gathered from either male or female mouse pups where NF1 had been 

homozygously deleted using a Cre-Lox system (46) (47).  Comparisons between male and 
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female NF
-/-

 astrocytes from this step showed no difference in growth rates and no signs of 

transformation.  For the third step in transformation, the male and female NF1
-/- 

astrocytes were 

infected with a dominant negative form of p53 (DNp53) (48).  While the addition of DNp53 did 

slightly increase the growth rate of the female astrocytes, it drastically increased the growth rate 

of the male astrocytes allowing the male NF1
-/-

;DNp53 cells to grow much faster than their 

female counterparts. However, neither line had been transformed yet as they did not form 

colonies in a soft agar assay.  It wasn’t until a final EGF treatment, which has been shown to 

inactivate the retinoblastoma (Rb) pathway, a key oncogenic event in most cancers (49) (50), that 

male cells were transformed and formed colonies in soft agar yet female cells still showed no 

signs of colony formation.   

 

Further analysis of these lines showed some striking observations including male NF1
-/-

;DNp53 

cells having a greater in vivo tumorigenicity compared to female cells (independent of the sex of 

the local microenvironment) and male cells showing higher levels of stemness in an extreme 

limiting dilution assay (ELDA).  However the mechanism for these changes was unknown, so 

the question became; “What transcriptional changes were occurring during each of these 

stepwise events?”  To answer this, RNA was gathered from both male and female cells from 

each of the four lines:  wild type, NF1
-/-

, NF1
-/-

;DNp53, and NF1
-/-

;DNp53+EGF.  Samples were 

generated in triplicate, and the RNA submitted for Illumina microarrays.  The microarrays were 

performed at Washington University in St. Louis’s GTAC core following standard protocols.  

Quantile normalized, background subtracted data was imported into Excel and as previously 

described, probes with no expression were filtered out, and only probes showing greater than two 

fold up or down-regulation and a p-value less than 0.05 for any particular comparison were kept.   
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Male and female wild type astrocytes were very similar to each other, only having 13 genes with 

expression differences and those included a reasonable number of genes specific to either the X 

or Y chromosomes.  When male NF1
-/-

 astrocytes were compared to female NF1
-/-

 astrocytes the 

number of differentially expressed genes slightly increased to 18.  The addition of DNp53 had 

the greatest effect, increasing the number of differentially expressed genes between NF1
-/-

;DNp53 males and NF1
-/-

;DNp53 females to 606 while the further addition of EGF caused there 

to be 527 gene changes.  The top differentially expressed genes in each group were selected and 

a heatmap was generated to show the stepwise progression of the transcriptional changes (Figure 

3-1).   
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Further analysis and experiments on these changes detected during the stepwise transformation 

of male and female astrocytes will hopefully provide valuable clues as to the molecular 

mechanism behind males developing more brain tumors than females.   

 

The Future of Transcriptional Analysis 

One newly developed method for transcriptional analysis is called translating ribosome affinity 

purification (TRAP)  (51) (52) (53).  It is designed to label a specific cell and then isolate RNA 

from that cell out of a complex cell population to determine any gene expression changes.  The 

idea is to fuse a fluorescent protein, usually GFP, to a ribosomal translating protein and then 

insert that into your cell of interest.  This GFP-ribosomal protein will be incorporated into the 

ribosomes of the cell, and begin translating other proteins.  Then a complex mixture of cells 

(including the cell with the TRAP protein) can be gathered and lysed where the polysomes 

(complexes of ribosomes and mRNAs being translated) can be purified with magnetic beads 

coated in antibodies against GFP.  The magnetic beads are then separated and immediately put 

into Trizol for RNA extraction (51).  This is a great system for complex cellular systems, 

assuming you can isolate and manipulate the cells and then recapitulate that system. This system 

would be particularly helpful for other tumor-microenvironmental interaction studies.   

 

While Illumina sequencing was once called next-generation sequencing because of how 

advanced it was, it is now fully entrenched as a technology, and we are coming up on the next 

generation of sequencing machines.  While there are a number of technologies being developed, 

one of the most promising is what is referred to as nanopore sequencing (54) (55) (56).  Here 
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pores in a membrane have single molecules of DNA threaded through them, and electrical 

conductivity is measured to determine what base is traveling through the pore at any given time.  

How the DNA is threaded through, and how its speed is controlled all questions up in the air and 

being worked on currently.  One major advantage of this technology is that unamplified, native 

molecules, including RNA and methylated DNA, will be able to be sequenced without complex 

library preparation (57).  Since RNA-Seq library preparation can introduce a number of biases, 

being able to directly sequence RNA could be a significant improvement in transcriptional 

quantification.   
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Chapter 4 : Discovery of PDE7B as a novel effector of GBM growth by 

computational deconvolution of an in vitro physical coculture system. 
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Statement of Translational Relevance 

 

Targeting the tumor promoting interactions that occur between tumors cells and stromal elements within 

the perivascular space is gaining traction for glioblastoma. The scope of molecular targets and pathways 

is continually being updated. In this manuscript we identify phosphodiesterase 7B (PDE7B) as a mediator 

of glioblastoma growth whose expression is induced in GBM through functional interactions that occur 

between GBM and endothelial cells. PDE7B was discovered using a novel method for studying reciprocal 

interactions between glioblastoma and endothelial cells that involves computational deconvolution of 

their coincident transcriptional profiles. The translational relevance of PDE7B was evident in analyses of 

RNA and protein expression in primary glioblastoma specimens, survival analysis of clinical data, and the 

effect of PDE7B overexpression on the intracranial growth of U87 xenografts. These new findings 

indicate that PDE7B should be further evaluated as a prognostic marker and as a molecular target in 

glioblastoma. 

 

Abstract 

Cell-to-cell interactions between tumor cells and their microenvironment are critical determinants of 

tumor tissue biology and therapeutic responses. Interactions between glioblastoma (GBM) cells and 

endothelial cells (ECs) establish a purported stem cell niche. We hypothesized that genes that mediate 

these interactions would be important, particularly as therapeutic targets. Using a novel computational 

approach to deconvoluting expression data from mixed physical coculture of GBM cells and ECs, we 

identified a previously undescribed upregulation of the cAMP specific phosphodiesterase PDE7B in 

GBM cells in response to ECs. We further found that elevated PDE7B expression occurs in most GBM 

cases and has a negative effect on survival.  PDE7B overexpression resulted in the expansion of a stem-

like cell subpopulation, increased tumor aggressiveness, and increased growth in an intracranial GBM 
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model.  This deconvolution algorithm provides a new tool for cancer biology, and these results identify 

PDE7B as a therapeutic target in GBM. 

 

Introduction 

Frequently, studies of tumor biology have focused on the intrinsic properties of cancer cells, such as their 

growth rate, signaling cascades, or DNA repair capacity, without fully accounting for how the 

microenvironment can influence these functions.  Tumor progression however, is a consequence of 

collaboration between the genomic lesions present in the tumors cells and alterations in the tumor 

microenvironment (1).  The tumor microenvironment is highly heterogeneous (2) with varying cellular 

constituents within multiple tumor microdomains such as the leading edge of invasion and the peri-

necrotic spaces as well as the perivascular space. Within each of these microdomains, genetically 

identical tumor cells may exhibit different patterns of gene and protein expression resulting in regions of 

distinct cellular phenotypes being simultaneously present within the same tumor.  This intratumor 

heterogeneity creates an experimental challenge in studying cancer biology (3).  

 

Several cancers are reported to display significant intratumor heterogeneity including glioblastoma 

multiforme (GBM), the most common malignant primary brain tumor in adults. While the study of peri-

necrotic and invasive edge biology in GBM has generated insights into the metabolism of cancer cells in 

hypoxia (4), Notch signaling (5), and the importance of matrix metalloproteinases (MMPs) (6), it is the 

focus on the biology of the perivascular niche (PVN) that has yielded the greatest body of information. 

The PVN is home to a subpopulation of tumor cells with stem cell-like properties. The GBM PVN 

contains GBM cancer stem cells (CSCs), endothelial cells, pericytes (7), astrocytes (8), and microglia (9). 

While multiple pathways have been identified as essential for the specialized function of the PVN (10,11) 

how this specialized domain is established remains largely unknown. It is clear that endothelial cells 
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within the GBM PVN are distinct from endothelial cells in the normal brain and that tumor cells within 

the perivascular space are distinct from bulk tumor cells (12). Identifying the reciprocal interactions that 

induce these changes in the component cell types of the PVN will be essential for understanding and 

effectively targeting its function.  

 

Previously, we reported an in vitro model of the GBM PVN comprised of primary cultures of human 

brain microvascular endothelial cells (HBMECs) in Matrigel and either an established GBM cell line 

(U87-MG) or primary GBM cells (13).  Functional studies using this system revealed that expression of 

the chemokine CXCL12 by HBMECs promoted localization of GBM cells to the peri-endothelial cell 

space and triggered their expansion.  These studies demonstrated the utility of an in vitro co-culture 

system for modeling GBM-PVM interactions. Here we sought to use this system to identify the pathways 

that are modulated by interactions between endothelial and GBM cells. 

 

Prior efforts to identify the targets in cell:cell interactions have frequently relied on conditioned media 

experiments (14,15) in which a target cell type of interest (e.g. U87-MG) is grown in media conditioned 

by “controller/inducer” cells (e.g. HBMECs).  One drawback to this approach is that changes induced by 

physical cell:cell interactions or reciprocally induced interactions (feedback loops) cannot be detected.  In 

an alternative approach, two cell types have been labeled with two different fluorescent proteins, so that 

they can be grown together, separated by Fluorescent Activated Cell Sorting (FACS), and then analyzed 

independently (16).  In principle, this method has the potential to capture the effects of both secreted and 

direct interactions between cell types; however, in practice, separating cells from matrix containing three-

dimensional cocultures quickly and efficiently without disrupting the very signal that is being interrogated 

is difficult, especially when analyzing changes in mRNA abundance.   
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Thus, for global gene expression analysis, the ideal system would allow for the immediate isolation of 

RNA during the experiment, without the need for extra processing of cells.  However, the immediate 

purification of RNA mixes the RNA species from both cell types, making the measurement of gene 

expression changes within each cell type a challenging task.  Therefore, we developed a unique 

computational approach to deconvolve the combined transcriptional signal and accurately measure gene 

expression changes that occur when endothelial cells and GBM cells interact.  Using this method, we 

identified a small number of key target pathways involved in PVN function and discovered a new role for 

the cAMP-specific phosphodiesterase (PDE), PDE7B, which is induced in GBM cells by a contact-

mediated interaction with endothelial cells. PDE7B is overexpressed in primary GBM specimens, has 

prognostic significance in human disease and when overexpressed in GBM cell lines, results in increases 

in the stem-like cell population in vitro, and drives tumorigenicity in vivo. Together these studies validate 

this new approach for discovery of pathways that mediate the critical phenotypic variation that occurs 

when tumor cells interact with stromal elements within tumor microdomains.  

 

Results 

 

Global expression profiling identifies genes regulated by GBM cell:endothelial cell interactions 

 

We previously demonstrated that the physical co-culture of primary human brain microvascular 

endothelial cells (HBMECs) and either primary human GBM cells or the U87 GBM cell line resulted in 

endothelial cell-dependent growth of the GBM cells (13). To elucidate how a cooperative interaction 

between tumor cells and their microenvironment might drive GBM growth, we performed gene 

expression profiling with Illumina BeadArray microarrays using RNA isolated from the mixed cell 

population after 48 hours of culture and RNA isolated from parallel monocultures of HBMECs and U87 
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cells (Figure 4-1A).  Because the isolated RNA was derived 

from a mixed population of cells, changes in gene 

expression that were detected could be attributed to either 

changes in the relative numbers of HBMECs and U87 cells 

over the 48-hour co-culture time period, or to gene 

expression changes caused by functional interactions 

between the two cell types. As we were interested only in 

the latter, it became essential to develop computational 

methods to distinguish between these sources of changes in 

expression levels.  

 

Thus we developed an approach that uses gene expression 

data to precisely determine the ratio of HBMEC and U87 

cells within a mixed culture. Our strategy exploits the fact 

that the expression levels of most genes in either cell type 

are likely to be unchanged upon co-culture, and only a small 

percentage of genes altered by their interaction. Using 

expression profiling data obtained separately from HBMEC 

and U87 monocultures, we computed the expected gene 

expression profiles for every possible mixture of the two 

cell types, from a ratio of 0.1% HBMEC/99.9% U87 to a 

ratio of 99.9% HBMEC/0.1%U87.  We then used these 

computed profiles to determine the ratio of GBM and 

HBMECs in the actual co-culture experiment.  To do so, we 
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calculated the Pearson correlation between the experimentally measured co-culture expression data and 

the full series of computational generated expression profiles.  The synthetic profile with the highest 

correlation provided the closest approximation to the actual ratio of U87 cells and HBMECs in the co-

culture (Figure 4-1B).  Once this ratio was determined, we normalized the microarray data to account for 

changes in the amount of each cell type.  This calculation was performed for three independent sets of co-

culture data.  From these combined gene expression data sets, we could then further identify statistically 

significant outliers, which represented candidate genes whose expression was either increased or 

decreased as a consequence of functional interactions between HBMECs and U87 cells.  

 

In this manner, 45 genes were 

identified as significantly (after 

Benjamini-Hochberg multiple 

hypothesis correction) 

upregulated or downregulated by 

greater than a 2-fold as the result 

of functional interactions 

between HBMECs and U87 cells 

(Table 4-1).  Consistent with 

known effects of GBM cells on 

endothelial cells, this list of 

genes contained several 

regulators of angiogenesis such 

as Thrombospondin-1 (17), ICAM1 (18), and CXCL1 (19).  Also notable is the upregulation of WNT 

signaling genes CTHRC1 (20) and Frizzled-9 (21). WNT signaling is known to be involved in 

maintaining stemness and cell proliferation (22).   
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Expression profiling of the mixed co-culture directly identified genes whose expression changed as a 

result of cell:cell interactions, but did not identify in which cells these changes were occurring or whether 

the changes were in response to the actions of secreted factors or cell-cell contact. To establish 

requirements for contact and to identify the target cell for expression changes, we performed monoculture 

experiments in which endothelial cells and U87 cells were treated with either basal media, media 

conditioned by U87 or endothelial cell monocultures, or by U87-endothelial cell co-cultures. We 

validated the approach with three differentially expressed genes: CXCL6, CXCL1, and THBS1. For all 

four genes, conditioned media treatments recapitulated the gene expression changes predicted from the 

microarray results indicating that their regulation was through the actions of secreted factors (Figure 4-2). 

CXCL6, IL8, and CXCL1 all were upregulated in HBMECs in response to factors secreted by U87 cells.  

In contrast, THBS1 was strongly downregulated in U87 cells by media conditioned by HBMECs.  These 

results provided validation for our computational and experimental approach and indicated that 

conditioned media experiments in combination with qRT-PCRs could distinguish the regulator and target 

cell type for most gene expression changes that occurred through secreted GBM and endothelial cell 

interactions.  
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 GBM PDE7B expression is regulated by physical contact with HBMECs  

 

Among the genes upregulated through interactions 

between HBMECs and U87 cells was the cAMP specific 

phosphodiesterase PDE7B (23). This transcript was of 

interest as we previously demonstrated that another 

cAMP-specific phosphodiesterase PDE4A1 had potent 

pro-tumorigenic effects in both low and high-grade 

glioma models (24) (25).  Thus we hypothesized that if 

PDE7B were upregulated in GBM cells, it would also 

stimulate GBM growth.  We first sought to determine 

whether PDE7B regulation occurred through the actions 

of secreted factors or whether it required physical contact 

between HBEMCs and U87 cells.  When we performed 

the conditioned media screen for secreted factor effects 

on expression we saw very low levels of PDE7B that 

were unaffected by the conditioned media (Figure 4-3A).  

Therefore we suspected that PDE7B was being regulated 

by cell:cell contact.  To directly test this hypothesis, 

HBMECs were grown to ~80% confluence, then 

methanol fixed and washed. These fixed cells, and their associated matrix, maintain relevant epitopes for 

cell:cell and cell:matrix interactions but are devoid of secreted factors and RNA (26).  U87 cells were 

then cultured on the fixed HBMECs for 48 hours prior to RNA extraction and qRT-PCR analysis for 
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PDE7B.  Under these conditions, PDE7B was specifically upregulated in the U87 cells, indicating that 

U87 cells were the target cell for gene expression changes detected in the co-culture expression profiling 

and, in contrast to the regulators of angiogenesis previously evaluated, changes in PDE7B occur only 

through physical cell:cell contact with HBMEC cells (Figure 4-3B).  To verify that HBMEC-induced 

changes in PDE7B were not confined to U87 cells and to increase the relevance of these findings to 

GBM, we performed an identical evaluation with a primary low passage GBM cell line B18. Consistent 

with the results obtained with U87 cells, PDE7B was upregulated in B18 cells, but only through direct 

physical contact (Figure 4-3C and 4-3D). 

 

PDE7B is frequently upregulated in GBM and has prognostic significance 

 

If endothelial cell induction is an important mechanism for the regulation of PDE7B expression in GBM, 

then this should be apparent at the mRNA and protein level in primary GBM specimens. We obtained 

RNA from 22 primary GBM specimens from the Siteman Cancer Center Tissue Procurement Core, 

generated cDNA, performed qRT-PCR for PDE7B on these samples, and compared the expression level 

to that in normal human astrocytes.  We saw a strong upregulation of PDE7B in 18 of the 22 samples 

(Figure 4-4A), indicating that upregulation of PDE7B mRNA commonly occurs in GBM. Next, we 

analyzed protein expression by performing immunohistochemical (IHC) staining for PDE7B on a tissue 

microarray containing duplicate cores of 35 different astrocytomas.  These astrocytomas ranged from 

grade 1 to grade 4.  PDE7B was expressed in the majority of tumor specimens, variably involving 

endothelial cells, perivascular cells, and non-perivascular tumor cells (Figure 4-4C, Supplemental Table 

4-S1). When low grade tumors (Grades 1 and 2) were compared to high grade tumors (Grades 3 and 4), 

high grade tumors had significantly more staining than low grade (high grade average = 2.25, low grade 
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average = 1.27, p-value = 0.01 by Student’s t-test, Figure 4-S1).  These results establish that PDE7B is 

expressed in GBM at both the mRNA and protein level and is found within the perivascular space.  

 

To determine whether there is any prognostic significance to PDE7B expression, we examined the 

National Cancer Institute’s (NCI) Rembrandt Database for astrocytomas.  To increase the power of our 

analysis, we evaluated data from patients with all grades of astrocytomas.  In this population, increased 

PDE7B expression was correlated with decreased survival (p-value < 2.55E-5).  Patients with low PDE7B 

expression survived significantly longer than those with intermediate PDE7B expression (Figure 4-4B). 

This survival analysis could either reflect a correlation between PDE7B expression and astrocytoma grade 

and/or an independent effect of PDE7B expression within any or all grades of astrocytoma. Together, 

these results are suggestive of an important role for PDE7B in glioma biology.    
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Overexpression of PDE7B stimulates in vitro stemness and in vivo GBM growth and tumorigenicity 

 

To directly test whether the level of PDE7B expression affects GBM biology, we cloned and 

overexpressed PDE7B in U87-GL cells.  We desired to have a catalytically inactive form of PDE7B as a 

control.  Catalytically inactive forms of other cAMP specific phosphodiesterases have been generated by 

mutating an essential amino acid in the catalytic site (24,27).  Using comparative genomics we aligned the 

sequences of these phosphodiesterases with PDE7B, identified the same essential histidine and generated 

an analogous catalytically inactive histidine to glutamine (H217Q) mutant. Both the wild type and mutant 

forms of PDE7B were stably introduced into U87-GL cells using PiggyBac transposase and hygromycin 

selection. Verification of the overexpression was determined by qRT-PCR (Supplemental Figure 4-S2A), 

and Western blot analysis (Supplemental Figure 4-S2C).  The activity of wild type and mutant PDE7B on 

cAMP levels was verified by cAMP ELISA. Overexpression of wild type PDE7B, but not catalytically 

inactive PDE7B, resulted in significantly lower levels of cAMP (Supplemental Figure 4-S2B).  

 

Since we had previously found that the overexpression of another phosphodiesterase, PDE4A1, 

suppressed intracellular cAMP levels and stimulated growth in multiple brain tumor cell lines (25) (24), 

we hypothesized that the overexpression of PDE7B might have similar effects.  Interactions between 

endothelial cells and GBM cells are known to regulate tumor growth through maintenance of the GBM 

stem-like cell population. To determine whether the induction of PDE7B in GBM cells through an 

interaction with endothelial cells might influence stem-like cell behavior, we first measured the fraction 

of U87 cells with stem-like cell function in extreme limiting dilution assays (ELDAs). Briefly, replicate 

cultures were established with a series of extremely low cell numbers in sphere formation media, and 

allowed to grow for 3 weeks.  Under these conditions, only cultures that contain a stem-like cell are 
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capable of forming a colony. The fraction of wells with colonies as a function of cells plated provides a 

measure of the frequency of cells with stem-like properties (Supplemental Figure 4-S3A).  When 

analyzed, the U87-

GL+PDE7B(WT) 

cell line had a 

significant increase 

in the percentage of 

stem-like cells 

compared to the 

catalytically inactive 

control line (p-value 

= 0.03, 11.1% vs 

7.0% respectively, 

Supplemental 

Figure 4-S3B).   

 

 

In vitro expansion of the stem-like cell population by overexpression of PDE7B, together with the 

negative prognostic effect of PDE7B expression in human disease suggested that overexpression of 

PDE7B might have a pro-tumorigenic effect in vivo. To investigate this possibility, we generated 

intracranial xenografts in NCR nude mice with 50,000 U87-GL+PDE7B(WT) or U87-

GL+PDE7B(H217Q) cells engineered to also express firefly luciferase (24). Tumors were generated in 

three separate cohorts of mice with 5 mice per group in each cohort.  Tumor growth was quantified with 

weekly bioluminescence imaging (BLI) and survival was measured. Tumors expressing wild type PDE7B 
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exhibited a 

significantly 

greater rate of 

growth than those 

expressing 

mutant PDE7B 

(Figure 4-5A) 

and two-way 

ANOVA showed 

a statistically 

significant 

difference with a 

p-value of 0.002.  

The greater rate 

of growth 

resulted in 

significantly 

decreased 

survival as 

determined by 

log-rank testing 

of Kaplan-Meier 

survival (Figure 

4-5B).   
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Consistent with the BLI and survival data, histological analysis revealed that tumor size was consistently 

greater in the PDE7B WT tumor group (Figure 6A) than the PDE7B H217Q tumor group (Figure 6B).  

Strikingly, PDE7B WT tumors exhibited a more aggressive tumor phenotype than is normally seen with 

U87 xenografts (28). This was most evident in the extensive infiltration and neovascularization (Figure 

6C) as compared to the PDE7B H217Q tumors (Figure 6D).  Proliferation was evaluated by 

phosphorylated Histone H3 staining.  Overall cell density was higher in the tumors overexpressing 

PDE7B WT compared to those overexpressing PDE7B H217Q, and phosphorylated Histone H3 staining 

correlated with cell density (Figure 6E & F). 

 

Discussion 

 

The complexity of the tumor microenvironment presents obstacles to progress in both understanding 

molecular oncology and in developing therapeutics to effectively target contextualized tumor biology.  

Advancement may depend upon new model systems in which the multi-faceted microenvironment can be 

deconvoluted in order to assess the contributions that specific subsets of cells, matrix, and three-

dimensional structures make to tumor tissue biology.  Model systems like these should support discovery 

of genes and pathways that mediate the important reciprocal interactions that occur between tumor cells 

and their microenvironment.  We were interested in understanding the interactions between GBM and 

endothelial cells as these are purported to be essential for tumorigenesis (10), tumor progression (29) and 

recurrence after standard treatment (30).  Direct global expression profiling of co-cultured GBM and 

endothelial cells, enabled by our computational deconvolution algorithm, revealed a number of pathways 

that were induced or suppressed by the interaction of these cells. Among them was upregulation of the 

cAMP-specific phosphodiesterase, PDE7B, in GBM cells.     
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A major advantage of this computational approach is the ability to capture changes in gene expression 

that occur as a consequence of the actions of secreted factors and/or physical cell:cell contact. Neither 

conditioned media swap nor trans-well experiments can detect changes mediated by cell:cell contact. 

Moreover, these commonly applied techniques cannot measure changes in gene expression that occur 

through reciprocal interactions between cells.  These types of interactions have been shown to be critical 

in the tumor microenvironment (31).  Therefore, the inability to detect them is a significant limitation to 

the use of conditioned media swap and trans-well experiments alone for assessing paracrine effects in 

tumor biology.    Computational deconvolution supports the immediate isolation of RNA from the co-

cultures, which prevents the degradation of the signal that can result when additional processing time is 

required for cell sorting.   

 

This computational approach has its own limitations.  First, the detected gene expression changes are a 

mixture of the signal from both of the constituent cell types.  Therefore, for each gene, further studies are 

required to determine in which of the cell types the change occurred, and whether this change was a 

function of secreted factors or cell:cell contact.  Furthermore, reciprocal gene induction and suppression 

could theoretically result in no apparent change in signal and a diminution of the model’s sensitivity. We 

suspect that processes like these contribute to the marginally weaker significance we detected for changes 

in gene expression as compared to many other global expression studies.  However, we were able to 

identify 45 genes whose expression was significantly altered.  After multiple hypothesis correction, 

validation by qRT-PCR and in vivo experiments we did not uncover any false positives, reassuring us that 

the analysis provided a high quality list of changes in gene expression as a consequence of functional 

interactions between GBM and endothelial cells.  Currently, the system serves as a proof of principle and 

evaluates a single set of interactions between two cell types from the tumor microenvironment. Further 
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work will be necessary to systematically add other tumor microenvironmental cells types and determine 

the additional effects on gene expression.  

 

Of the genes discovered by our assay, PDE7B was chosen for further studies. This focus was supported 

by our previous work demonstrating that PDE4A1 and cAMP suppression can contribute to tumorigenesis 

(24) and drive intracranial brain tumor xenograft growth (32) (25). Low levels of cAMP have been 

correlated with malignant brain tumors for many years (33), but the mechanisms that control these 

abnormal cAMP levels and their cancer relevant targets are often undefined or remain poorly understood. 

The cyclic AMP pathway is integral to the regulation of numerous cellular processes including growth 

and differentiation (34,35).  While the bulk of cAMP signaling is transmitted by just two mediators, 

protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), exquisite specificity in cAMP 

signaling is achieved through subcellular localization and activation (36). A critical component of this 

specification is the establishment of defined intracellular pools of differing cAMP levels as a result of 

highly localized and regulated cAMP degradation through PDEs.  

 

Humans have 11 families of PDEs, three of which are cAMP specific (PDE4, PDE7, PDE8), and each of 

these families can have multiple gene homologs throughout the genome, and each of these genes can have 

multiple splicing isoforms (36,37). The canonical PDE structure includes a common catalytic domain, an 

amino terminal subcellular localization motif and regulatory kinase sites and protein-protein interacting 

domains.  Consequently, PDE expression and activation result in the generation of highly specific 

gradients of intracellular cAMP (38) and the formation of multiprotein signaling complexes that carry out 

localized functions (39,40).  This process has been most extensively illustrated for the PDE4 family of 

cAMP-specific PDEs (41,42).  
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While we have yet to define how PDE7B promotes GBM tumorigenecity, there are some likely 

mechanisms.  Cyclic AMP is a recently established regulator of neural stem cell proliferation, 

differentiation, and survival (43) and it is known that endothelial cells in the PVN support GBM CSCs 

and therefore the induction of PDE7B expression in tumor cells localized to the perivascular space may 

function to promote CSC function. The detection of a modest, but significant, increase in stemness, as 

measured by our in vitro limiting dilution assay, in U87 cells overexpressing wild type PDE7B is 

consistent with this hypothesis.  This would also be in line with our observation that PDE7B WT 

intracranial tumors showed signs of increased invasion and aggressiveness compared to the PDE7B 

H217Q tumors. The increase in blood vessel density in wild type tumors also suggests that tumor cell 

PDE7B might function as part of a positive feedback loop for promoting angiogenesis.   

 

Finally, the effect of PDE7B on outcome in GBM and its ability to drive intracranial tumor growth in the 

U87 model suggests that inhibition of PDE7B should be evaluated as a novel therapeutic for GBM.  We 

previously demonstrated that targeted inhibition of an alternate cAMP-specific phosphodiesterase PDE4 

had significant anti-brain tumor activity, when tested in a spontaneous model of low-grade glioma and in 

intracranial xenograft models of GBM and medulloblastoma (24) (25). Together with the current findings, 

these results provide a strong rationale for cAMP elevation in the treatment of brain tumors. While there 

have not been any studies of specific PDE7B inhibitors in the context of cancer treatment, there has been 

work done evaluating PDE7B inhibition for the treatment of autoimmune disorders (44,45). Therefore 

future work should focus on taking specific inhibitors of PDE7B from the autoimmune studies and 

determining their efficacy in blocking glioma growth in vitro and in vivo with the hope of translating 

these findings to the clinic as quickly as possible.   
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Materials and Methods 

 

All animals were used in accordance with an established Animal Studies Protocol approved by Animal 

Studies Committees of the Washington University School of Medicine. 

 

Cell culture and reagents: 

U87MG cells (Catalog #HTB-14) authenticated by STR were obtained from ATCC, grown in MEM 

alpha (Life Technologies Cat# 12561-049) with 10% fetal bovine serum (Sigma-Aldrich Cat# F4135-

500ML), and used within 4 months of passage zero.  Cells were then infected with a lentivirus expressing 

a fusion protein of eGFP and Firefly Luciferase (GL) to allow the cells to be visualized by fluorescence 

and quantified by bioluminescent imaging (24).  HBMECs were obtained from ScienCell (Catalog 

#1000), grown in complete endothelial media EGM-2MV (Lonza Cat# CC-3202), and all experiments 

were performed between passage 6 and 10.  B18 GBM line was created following an IRB-approved 

protocol as previously described (46).  Briefly, primary GBM tumor tissue was cleaned manually of 

RBCs, mechanically dissociated with forceps and scalpel, and dissociated with Accutase (Sigma Cat# 

A6964-100ML).  Cells were then spun down, triturated gently, and plated on PLO (Sigma Cat# P4957) 

and Laminin (Sigma Cat# L2020) coated Primaria plates (BD Biosciences Cat# 353824).  Cells were used 

for experiments after the fifth passage.  Media is RHB-A with EGF and FGF. 

 

Fixed cell cocultures: 

Cells were grown to 80% confluence in 6-well plates.  The media was then removed and replaced with ice 

cold 100% methanol, placed at -20C for 20 minutes, and then washed three times with PBS before 

150,000 glioblastoma cells were placed on top in their respective media.   
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In vitro coculture: 

150,000 HBMECs were plated on Matrigel (BD Biosciences Cat# 354234) using the thin gel protocol and 

in EGM-2MV in 6-well plates and allowed to form tubules for 24 hours.  150,000 U87-GL cells were 

plated on top of the HBMEC tubules, grown together for another 48 hours, and then RNA was harvested 

with Trizol (Invitrogen #15596-026).   

 

Microarray analysis 

Starting with the quartile normalized Illumina Beadarray data from the standard Illumina analysis, a perl 

script loaded the data for three biological replicates of U87 monoculture, HBMEC monoculture, and U87 

plus HBMEC coculture.  Data was filtered for genes that had expression p-values > 0.05 (as deteremined 

by the Illumina software).  For each test computational dataset to be created (0.1% U87/99.9% HBMEC 

for example), and for each gene in the dataset, the value for biological replicate 1 of the U87 data was 

multiplied by 0.001 (for example) and added to  the value for biological replicate 1 of the HBMEC data 

after it was multiplied by 0.999.  This was repeated for the other two biological replicates to give 3 new 

computationally derived replicates and then repeated for all of the genes.  After each of these 

computational datasets was complete, a Pearson correlation was calculated between of all the genes for 

biological replicate 1 of the coculture dataset versus all the genes of the computationally derived 

biological replicate 1.  This was repeated for all three replicates, and then these three Pearson correlations 

were averaged, and then recorded.  Figure 1B is a plot of all the different computationally derived 

datasets versus the corresponding average Pearson correlations. 

Once the computational dataset was created, genes without any expression (average of the three 

biological replicates < 30) in any of the samples, were removed from the analysis leaving 14,712 genes.  
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Next, a Student’s t-test was performed between the 3 computational replicates and the three coculture 

replicates.  Further filtering was performed to leave only those genes which had a fold change greater than 

2 fold (up or down) between the computational dataset and the coculture dataset.  Benjamini-Hochberg 

multiple hypothesis correction was then performed, or which 45 genes remained statistically significant.   

 

qRT-PCR: 

qRT-PCR primers were designed in Primer 3 using previously described settings (47).  Primers were: 

GAPDH(F-TGTAGTTGAGGTCAATGAAGGG, R-ACATCGCTCAGACACCATG), CXCL1(F- 

GCACTGCTGCTCCTGCTCCTGGTAG, R- CGCCCATTCTTGAGTGTGGCTATGA), IL8(F- 

GACCACACTGCGCCAACACAGAAAT, R- CCAGTTTTCCTTGGGGTCCAGACAG), THBS1(F- 

CTGAGTTGGACGTCCCCATCCAAAG, R- CCACGTTGTTGTCAAGGGTGAGGAG), CXCL6(F- 

TGCACTTGTTTACGCGTTACGCTGAG, R- TTCCGGGTCCAGACAAACTTGCTTC), and 

PDE7B(F-CTGTTAAGTAGGCGGAAGTCAA, R-CGATCAGAATGCCAAATGTGTT).  Thermo-

Fisher qRT-PCR master mix (Thermo-Fisher Cat # AB-1166/B) was used according to manufacturer’s 

directions.  Data was acquired on a BioRad CFX96 qPCR machine (Cat # 184-5096) and analysis was 

done in Microsoft Excel using the ∆∆C method.   

 

Tissue sections and staining: 

Immunohistochemistry was done as previously described (24). Antibodies used:  phosphorylated Histone 

H3 1:500 (Cell Signaling #9701), Endoglin 1:250 (R&D Systems #AF1320), cleaved caspase 3 1:200 

(Cell Signaling #9664).   
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Creation of overexpression cell lines: 

Wild Type PDE7B or a catalytically inactive version were cloned into a vector with CMV driving cassette 

expression, hygomycin as a selectable marker, and flanked with PiggyBac Transposase LTRs.  These 

plasmids were cotransfected into an existing U87-GL line with a plasmid transiently expressing PiggyBac 

Transposase to create stable lines as described previously (48).   

 

Site directed mutagenesis: 

The catalytically inactive version of PDE7B was created by starting with the already cloned wild type 

version of PDE7B and using a site directed mutagenesis kit (Agilent Cat # 200521), as directed, with 

primers (F- GCTGGTTCACCCCTGGCTGGTCCACATCGTGTGC) and (R- 

GCACACGATGTGGACCAGCCAGGGGTGAACCAGC).   

 

Tissue microarray: 

A tissue microarray for astrocytomas was purchased from US Biomax (Cat # BS17016a).  Citric acid 

antigen retrieval was performed on the slide then blocked with 2% BSA/10% donkey serum in PBST for 

two hours.  PDE7B primary antibody from ThermoScientific (Cat# PA5-32976), or a no primary control, 

was used at 1:50 overnight at room temperature, followed by Biotin labeled anti-Swine secondary (1 

hour) and Streptavidin-HRP tertiary (1 hour).  Slides were developed in DAB and counterstained with 

hematoxylin.   

 

Extreme limiting dilution assays: 
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Extreme limiting dilution assays were performed as described previously (49). Briefly, for each of 5 

biological replicates U87-GL+PDE7B(WT) or U87-GL+PDE7B(H217Q) cells were plated at 81, 27, 9, 3, 

or 1 cells per well (in 12 technical replicate wells each) in tumorsphere media in 96 well plates, grown for 

3 weeks, and then counted. 

 

Generation of intracranial xenografts: 

Intracranial xenografts were generated as described previously (32).  Briefly, homozygous NCR nude 

through a 27 gauge needle over 1 min at 3 mm below the dura mater. 

 

Bioluminescence imaging: 

NCR nude mice bearing intracranial xenografts of U87-GL overexpressing Wild Type PDE7B or 

catalytically inactive control PDE7B-H217Q were injected with D-luciferin (150 µg/g; Biosynth) as 

previously described (24). After anesthesia using 2.5% isoflurane, mice were imaged with a charge-

coupled device camera-based bioluminescence imaging system (IVIS 50; Caliper Perkin-Elmer). Images 

were processed using Living Image and IgorPro Software (Version 2.50) as described. Raw data were 

expressed as total photon flux (photons/s). 
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cAMP measurement 

cAMP was measured by competitive immunoassay using a Correlated Enzyme Immunoassay Kit 

(Assay Designs) according to the manufacturer's instructions and as previously described (50). 

cAMP values were normalized to protein for each sample individually. 
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Supplemental Table 4-S1: 

Sex Age Pathology Grade Staining Score 

M 22 Astrocytoma 1 1 

M 52 Astrocytoma 1 1 

F 45 Astrocytoma 1 2 

F 34 Astrocytoma 1 1 

F 30 Astrocytoma 1 1 

F 49 Astrocytoma 1 1 

F 35 Astrocytoma 2 1 

F 63 Astrocytoma 2 1 

M 32 Astrocytoma 2 1 

M 27 Astrocytoma 2 2 

M 44 Astrocytoma 2 0 

F 26 Astrocytoma 2 1 

M 24 Astrocytoma 2 2 

M 43 Astrocytoma 2 4 

M 51 Astrocytoma 2 0 

F 18 Astrocytoma 2 1 

M 39 Astrocytoma 2 3 

M 48 Oligodendroma 2 0 

M 43 Glioblastoma 2/3 1 

M 66 Astrocytoma 3 4 

M 42 Astrocytoma 3 2 

F 39 Glioblastoma 3 2 

M 37 Glioblastoma 3/4 4 

F 49 Glioblastoma Multiforme 4 2 

M 36 Glioblastoma 4 2 

F 58 Glioblastoma 4 4 

F 43 Glioblastoma Multiforme 4 3 

F 63 Glioblastoma 4 2 

M 65 Glioblastoma 4 2 

F 61 Glioblastoma (with Necrosis) 4 3 

M 42 Glioblastoma 4 1 

M 9 Glioblastoma 4 1 

F 44 Glioblastoma 4 2 

M 59 Glioblastoma (with Necrosis) 4 1 

M 25 Glioblastoma 4 1 

F 8 Adjacent Normal Tissue N/A 1 

M 77 Adjacent Normal Tissue N/A 0 

M 63 Adjacent Normal Tissue N/A 0 

M 30 Adjacent Normal Tissue N/A 0 

F 49 Adjacent Normal Tissue N/A 0 

Table of tissue microarray analysis results.  Scoring was 1 = 0-25% cells staining positive, 2=26-50% cells 

staining positive, 3=51-75% cells staining positive, 4=76-100% cells staining positive.   
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Supplemental Figure 4-S1 

 

 

Average of scoring for low grade (1 & 2) versus high grade (3 & 4) tumors.  p-v  u  = 0 0  b  Stu   t’s t-

test.  N= 18 for low grade (Male, Age 43 Grade 2/3 was excluded), N=16 for high grade.  Error bars are 

Standard Error of the Mean.  

 

 

 

 

 

 

 

 



- 97 - 
 

Supplemental Figure 4-S2: 

 

Validation of PDE7B overexpression cell lines.  (A)  qRT-PCR for PDE7B showed a 415 fold (Wild type) and 

372 fold (H217Q) overexpression in the two cell lines.  (B)  cAMP measurements in the two cell lines 

grown in vitro.   N=5 (WT), N=6 (H217Q).  p-v  u  is 0 0 7 b  Stu   t’s t-test.  (C)  A Western for PDE7B 

showed a ~3 fold overexpression of PDE7B protein in the wild type line and a 1.5 fold overexpression in 

the catalytically inactive H217Q line.   
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Supplemental Figure 4-S3: 

 

 

PDE7B overexpression increases glioma stem-like percentage in vitro.  (A)  Representative curve from 

one biological replicate of an Extreme Limiting Dilution Analysis (ELDA) to determine the percentage of 

cancer stem cells in a U87 line with overexpression of wild type PDE7B compared to overexpression of a 

catalytically inactive H217Q mutation.  (B)  Quantification of the stem like cells in shows that 

overexpression of wild type PDE7B results in significantly more stem-like cells than the catalytically 

inactive H217Q line.  N=5, *p-value = 0.03 
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The amount of research done at the interface between cancer biology and computational biology 

is only going to increase in the foreseeable future.  Certainly cancer research shows no signs of 

slowing down.  Since the war on cancer began in the 1970s, we’ve made good progress in 

treating certain types of cancer while other types have had no significant advances (1).  So there 

is certainly plenty of work left to do.  At the same time, computers are getting faster and faster, 

with Moore’s law (2), the theory that computer speed (i.e. the number of transitors per CPU) 

doubles approximately every 2 years having been true since it was published in 1965, and 

showing no signs of slowing down.  This combined with the fact that next-gen sequencing data is 

becoming so popular that its rate of generation is outpacing Moore’s law, therefore making the 

bottle neck in analyzing the data the computational power available (3) (4).     

 

The amazing power that next-generation sequencing will bring to cancer biology will 

revolutionize cancer to an extent which would have been hard to imagine even just a few years 

ago.  In the not-too-distant future there will be thousands of matched cancer-normal genomes 

sequenced for all of the most common cancer types.  This will give unprecedented power to 

researchers.  Knowledge of the spectrum of mutations and transcriptional profiles present will 

allow refinement of the molecular subtypes of cancers.   Many of which were once thought to be 

the same disease, or at best distinguished only by pathology, and now known to be distinct types.  

This process has already been done for some cancers such as glioblastoma (5) and 

medulloblastoma (6).  In the meantime, pharmaceutical and biotech companies will develop a 

new generation of drugs and therapies for specific driver mutations.  Patients, upon initial 

diagnosis, will have a platform of sequencing done including whole genome, exome, and 
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transcriptional analysis to better determine which cocktail of drugs will best treat those 

mutations.   

 

Next-gen sequencing will also have implications for basic cancer biology research.  Studying the 

epigenetics of cancer biology, including changes to methylation, histone modification, 

transcription etc, is a huge field.  The manipulation of cancer cells and determination of the 

changes to these biological processes is a fundamental part of cancer research and as sequencing 

becomes cheaper, it will become common to switch out qRT-PCR, methylation specifc PCR, and 

other low throughput assays in favor of RNA-Seq, Chip-Seq, RBBS, and other high-throughput 

techniques to get as much information as possible.   

 

Our assay sought to apply computational methods to the fundamental question of, “What are the 

reciprocal interactions between glioblastoma cancer cells and endothelial cells?”.  Since we were 

primarily interested in quantifying changes in transcriptional levels, RNA-Seq was unnecessary, 

and microarrays were an ideal alternative.  As mentioned earlier, not only is the glioblastoma 

tumor microenvironment a complex mixture of many different cell types, but each other tumor 

type has a unique combination of cells present.  So our assay serves as a prototype system for 

looking at other combinations of cell types in coculture, both in glioblastoma and other cancers.  

However, there are a number of minor improvements which could be made to improve the 

system.  Future experiments could increase the number of cell types from 2 to 3 or 4.  Each 

progressive cell type addition would complicate the analysis and diminish the power to detect 

changes, so the limit to the number of cell types would need to be determined empirically, but 
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each progressive addition of a cell type would make the system more and more suitable as a 

model for their in vivo counterparts.  Another improvement would be switching to RNA-Seq 

instead of using microarrays.  This would allow detection of not only the quantification of each 

transcript in general, but also changes in alternative splicing, allelic expression, and expression 

of rare gene-fusion products.  The deconvolution used on the microarrays could just as easily be 

applied to RNA-Seq data, though each library might need to be sequenced to a higher depth than 

a traditional RNA-Seq library to allow for as many genes as possible to show expression above 

background and therefore be used in determination of the computationally mixed dataset.  

Finally, another option that was considered, but ultimately passed up in favor of using 

computational deconvolution, would be using a coculture of mouse and human cell types.  RNA-

Seq would be required to analyze this dataset, since there are no hybrid human-mouse 

microarrays, but RNA-Seq analysis can determine the difference between a read from a human 

transcript versus a mouse transcript when there are SNPs which differ between the two species 

(7,8).   Again, larger than normal datasets would be needed since reads that contained no human-

mouse SNPs would be ambiguous  and therefore wouldn’t really provide significantly to the 

analysis, but this technique would have the advantage of not needing further experimentation to 

determine which cell type any gene expression changes had occurred in.  The analysis would 

automatically differentiate between human derived changes and mouse derived changes.   

 

Our analysis discovered a number of differentially expressed pathways, including those which 

we expected like proliferation and angiogenesis, and those which were relatively unexpected 

such as PDE7B, which we chose to focus on for further experiments.  PDE7B is a 

phosphodiesterase which specifically cleaves cyclic adenosine monophosphate (cAMP) into a 
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non-active, non-cyclic form.  cAMP is a ubiquitous intracellular signaling molecule, found all 

the way down to bacteria and can affect a large number of cellular processes including cell 

proliferation and stemness (9).  cAMP has been well established as an important mediator of 

brain tumor biology (10) (11,12).  Protein Kinase A (PKA) is the main downstream signaling 

molecular through which cAMP can affect gene expression, and EPAC1 is another important 

signaling molecule directly influenced by levels of cAMP.  One of the main ways in which 

cAMP is regulated is through very specific subcellular concentration gradients.  cAMP is 

synthesized at the plasma membrane by g-coupled protein receptors which activate adenyl 

cyclases, which convert AMP into cAMP (13).  This cAMP then diffuses throughout the 

cytoplasm.  Its degradation, on the other hand, is mediated by phosphodiesterases, such as 

PDE7B, which have very specific subcellular localizations.  These PDEs can cause local levels 

of cAMP to drop dramatically and can overcome the rate of cAMP diffusion to create strong 

gradients (14).   

 

So while the specific mechanism of PDE7B is yet to be uncovered, it is easy to create a model 

where surface contact by a glioblastoma cell with an endothelial cell causes the glioblastoma cell 

to change a number of pathways, including the upregulation of PDE7B.  This leads to even lower 

levels of cAMP in some critical subcellular compartment, leading to less PKA activation and 

changes in some downstream signaling cascade resulting in increased growth and tumorigenesis.   

 

There are a number of future experiments to help elucidate the full function of PDE7B.  Given a 

large amount of time I would start on the outside of the glioblastoma cell and work in.  Meaning, 
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I would first try to figure out what is on the endothelial cell that mediates PDE7B upregulation.  

There are some obvious candidate molecules I would focus on, such as integrins associated with 

tumor:endothelial interactions like αVβ3 (15) . Integrin αVβ3 binds to vitronectin (16) which has 

been shown to be important in glioma cell migration (17).  Another possible integrin is α4β1 

which has been shown to interact with vascular cell adhesion molecular 1 (VCAM1), an 

important cell adhesion molecular on endothelial cells (18).  By knocking these factors out 

individually it should be possible to see which one, if any, is required for the upregulation of 

PDE7B in glioma cells.  Depending on ligand is important on the surface of the glioma cell, it 

might be possible to make an educated guess about the downstream pathway, but perhaps more 

importantly would be skipping ahead to looking at the specific subcellular localization of 

PDE7B.  This could easily be done with immunofluorescent microscopy using labeled antibodies 

to PDE7B.  Once determined, the importance of that subcellular localization could be ascertained 

by first knocking down, or out, PDE7B, and then introducing various PDE7B constructs with 

mislocalization domains which would cause PDE7B to be localized to the plasma membrane, 

golgi apparatus, or a number of other locations.  Similar experiments have already been done 

with PDE4 to determine the important of its subcellular localization (19) (20).  The various 

constructs could then be assayed for in vitro growth, in vivo growth, tumorigenesis, cancer stem 

cells frequency, angiogenic potential, etc to determine the effect of different subcellular 

localizations on PDE7B function.  Another interesting set of experiments might be to look at any 

synergistic effects between PDE7B and another phosphodiesterase called PDE4A1.  It has been 

previously shown that in the background of the tumor predisposition syndrome 

neurofibromatosis type 1 (NF1), that overexpression of PDE4A1 is sufficient to drive 

tumorigenesis (12).  By overexpressing and knocking down both PDE7B and PDE4A1 in various 
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combinations it would be possible to tell if they work in concert to lower levels of cAMP and 

drive tumorigenesis. 

 

While there seem to be no current inhibitors of PDE7B that are only specific for it, there are a 

number of inhibitors that have strong inhibition of PDE7B with only minor inhibition of other 

PDEs (21).  We believe that PDE7B is a prime candidate for future studies, in both basic cancer 

biology and translational medicine.  Hopefully inhibition of PDE7B can slow tumorigenesis and 

provide yet another weapon in the fight against glioblastoma.   
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