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Lithium-ion batteries are ubiquitous in modern sbgi ranging from relatively low-
power applications, such as cell phones, to vegh demand applications such as electric
vehicles and grid storage. The higher power andrggnéensity of lithium-ion batteries
compared to other forms of electrochemical enetgyage makes them very popular in such a
wide range of applications. In order to engineeprioved battery design and develop better
control schemes, it is important to understandrinaieand external battery behavior under a
variety of possible operating conditions. This d¢enachieved using physical experiments, but
those can be costly and time consuming, espediafilife-studies which can take years to
perform. Here using mathematical models based oougcelectrode theory to study the internal
behavior of lithium-ion batteries is examined. Ag physical phenomena which govern battery
performance are described using several nonlineatiap differential equations, simulating
battery models can quickly become computationatjye@sive. Thus, much of this work focuses
on reformulating the battery model to improve siatian efficiency, allowing for use to solve
problems which require many iterations to conveérgg. optimization), or in applications which

have limited computational resources (e.g. control)
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Computational time is improved while maintainingca@cy by using a coordinate
transformation and orthogonal collocation to redtloe number of equations which must be
solved using the method of lines. Orthogonal caitmn is a spectral method which
approximates all dependent variables as a serikegicso of trial functions. This approach
discretizes the spatial derivatives with highereordccuracy than standard finite difference
approach. The coefficients are determined by reguithe governing equation be satisfied at
specified collocation points, resulting in a systefdifferential algebraic equations (DAES)
which must be solved with time as the only différ@nvariable. The system of DAEs can be
solved using standard time-adaptive integratingessl The error and simulation time of the
battery model of orthogonal collocation is analyzed

The improved computational efficiency allows for maophysical phenomena to be
considered in the reformulated model. Lithium-icatteries exposed to high temperatures can
lead to internal damage and capacity fade. In mdreases this can lead to thermal runaway, a
dangerous scenario in which energy is rapidly sddaIn the other end of the temperature
spectrum, low temperatures can significantly impgmgformance by increasing diffusion
resistance. Although accounting for thermal effectseases the computational cost, the model
reformulation allows for these important phenomtnbe considered in single cell as well as 2D
and multicell stack battery models.

The growth of the solid electrolyte interface (SElyer contributes to capacity fade by
means of a side reaction which removes lithium frim system irreversibly as well as
increasing the resistance of the transfer lithiomfrom the electrolyte to the active material. As
the reaction kinetics are not well understood, sdveroposed mechanisms are considered and

implemented into the continuum reformulated moddie effects of SEI layer growth on a
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lithium-ion cell over 10,000 cycles is simulateddaanalyzed. Furthermore, a kinetic Monte
Carlo model is developed and implemented to stimty Heterogeneous growth of the solid
electrolyte layer. This is a stochastic approachiciwhconsiders lithium-ion diffusion,
intercalation, and side reactions. As millions mdlividual time steps may be performed for a
single cycle, it is very computationally expensivayt allows for simulation of surface

phenomena which are ignored in continuum models.
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Chapter 1

Introduction

1.1 Lithium-lon Batteries

A growing awareness of the consequences of relgimdossil fuels has increased the
demand for development of renewable sources ofygreard alternative fuels for transportation.
This has led to intense research of many technedogihich directly and indirectly enable the
transition to the wide-scale use of lithium-ionteaes can help facilitate the utilization of non-
carbon based fuels. Many renewable energy soumeemgermittent in nature and require an
energy storage system in order to match energyuptimh to demand. Alternative transportation
fuels must have a high energy and power densitgotopete with petroleum based in terms of
range and performance. Lithium-ion batteries ogewt a higher voltage than other battery

chemistries, which make them particularly usefutigh energy and high power applications.

1.1.1 Standard Lithium-lon Battery Operation

Lithium-ion battery technology is fundamentally bdson the reversible oxidation of

lithium to lithium ions as given by the followindeetrochemical reaction:

. Discharge . _
L|<7T>L|*+e (1.1
arge

Reaction (1.1) has a very high electrochemicalmtae(E° = -3.04V vs. the standard hydrogen
electrode (SHE)). This property combined with tloe Imolecular weight of lithium gives
lithium-ion battery technology an advantage ovéeotlternatives in terms of energy and power

densities. The high energy density of lithium-iattbries has led them to be popular in a variety
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of electronic devices. These range from applicationith small energy demands, such as
implantable cardioverter-defibrillators, to verghienergy and life demanding applications, such

as in satellites, and now hybrid- and full-electréhicles.

f—

Cathode Anode

O

Current Separator Current
Collector Collector

Figure 1-1: Schematic of lithium-ion cell being cheged. The transport of lithium occurs in the oppodie
direction during discharge.

A lithium-ion battery consists of a positive elexte and a negative electrode separated
by a porous membrane, as shown in Figure 1-1. Qwlirarge, lithium deintercalates from the
positive electrode, diffuses in the electrolyted antercalates into the active material in the
negative electrode. Note that in this work, anchtbaommonly in the literature on the subject of
batteries, the term “positive electrode” is usetkrichangeably with “cathode” and “negative
electrode” is used interchangeably with “anode’isTid done to avoid ambiguity by defining the
terms “anode” and “cathode” based on whether oa&ithn or reduction occurs during discharge.
Typically, a lithium metal oxide is used at the ifige electrode, in which the metal in the metal
oxide is reduced during discharge and oxidized ducharging as given by the following

reaction:



Discharge

MO, + Li*+e*$rge> LiIMO, (1.2)

The counter-reaction at the negative electrodeaset on the oxidation of lithium shown in
reaction (1.1). However, lithium metal is typicaliypt used due to the formation of dendrites
which can cross the separator region and shorttitice cell. Such an occurrence can lead to
dangerous thermal runaway reactions as all thedtenergy in the cell is released as heat in a
very short time. Therefore, a host material is ey@ll when designing commercial cells in
which the lithium metal is stored (though the ugétbium foil is popular for research purposes
by minimizing the open circuit potential of the aeoduring cycling). Graphite is often used as
the anodic active material due to its low cost gadd cycling stability, leading to the following

redox reaction to occur at the negative electrode:

Discharge

LiC6$@e>Li++e’+C6 (2.3)

This work focuses principally on graphitic anod#syugh it should be mentioned that other
materials, most notably silicon or Si/C compos#es being researched with the aim to greatly
improve energy density. Currently, such materialfées from extreme volumetric changes that
quickly lead to degradation after a few cycles, itimg their commercial use. Although
simulating operations for materials which experestarge stress strain effects will require the
development of a model which considers these affebe reformulation techniques developed
in this thesis are applicable to other chemistied materials which may be used. The versatility
of the techniques developed here is explained irerdetail in Chapter 2 and Chapter 3.

The electrodes in lithium-ion batteries are poroosnature and flooded with an
electrolyte. The electrolyte and separator fadditédne transfer of lithium ions from the cathode
to the anode during charging and vice versa dudisgharging. The porous nature of the
electrodes increases the available surface ardahiomm intercalation and reduces the diffusive
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resistance, as lithium diffusion in the electroligeorders of magnitude greater than in the solid
phase. This leads to designs which minimize thiusldn length of lithium in the solid phase,
though at the expense of reduced energy densitg. prbvides a trade off in which the optimal
design must be determined based on the intendéditatpm.

Despite the great promise shown by lithium-ion dxaédts, several limitations still exist
and are an active area of research. For exampteeots such SEI layer growth, side reactions,
stress-strain, ohmic and diffusion resistancecattreduce capacity and overall performairtfce.
Researchers have been trying to find novel anodecathode materials with better physical,
mechanical, and chemical properties to addres< tlessies. Furthermore, the robustness and

charge density can vary significantly among differehemistries.

1.2 Motivation of Li-ion Battery Simulation

Modeling and simulation can provide insight thakeither impractical or impossible to
find using physical experiments. Physical experite@an be expensive in terms of money and
time, and can practically test only a finite numldr discrete conditions. In contrast, a
computationally efficient model can perform simidatof many conditions in a short time, and
the feasibility of using detailed physics based eldths only increased as the cost of computer
hardware has decreased while power has incre&sethermore, simulation can provide data on
the internal states of the battery which cannomeasuredn situ. Lithium-ion battery models
can be used to enable better design and contrgbravitle long term predictive capability.

Lithium-ion batteries have historically designedings an Edisonian trial-and-error
approach, which can be expensive in terms of bathay and time, as prototype batteries must

be manufactured and cycled repeatedly, a procassém take years to complete. Furthermore,



it is practical to only consider discrete valueshsd design parameters, with any conclusions for
other designs based on interpolation and extrapalatf the data. In contrast, a well-developed
optimization scheme can consider all parameteraginuous values, and modify them
simultaneously. This can lead to the development of an optimaigtieis a relatively short time.
However, if there are many parameters which aragoeonsidered, the simulation may have to
be run hundreds or thousands of times, increabmgéed for efficient simulation techniques.

A well-defined physics based model can also be tsedtimate the physical parameters
in a system using experimental dat@ypically, only the voltage and current can beedily
measured during battery operation, thus parametémation techniques can be used to
determine internal parameters, such as transpefticents and reaction rate constants. Once
these parameters are found, the behavior of batteder different operating conditions can be
predicted. Furthermore, parameter values can bkeadaas a function of cycle number to provide
predictions of capacity fade.

Similar to estimation of parameter values, a plsybsed model can be used to estimate
the internal states of the battery based on expetiah voltage and current data. This is
particularly important in control applications atttery management systems (BMS), for
example in large scale energy systems such asieleehicles (EVs). When the battery is nearly
depleted there are difficulties in the vehicle nreghigh power demands, such as during high
acceleration, which is aggravated as the batteeg.agurthermore, the present state of charge
(SOC) is not precisely known. Thus, the batterghst off while a significant amount of energy
remains unused. A similar case exists when theetyais nearly completely charged. For this
reason, Li-batteries for EVs are greatly overdesigand carry a significant amount of extra

weight and volume that is never used to propehlttacle resulting in a corresponding increase



in costs>® The BMS controls the flow of current into and @ftthe battery to maximize
performance of the battery while maintaining safdfyom this data, the BMS generally
estimates SOC and state of health of the batte@H]Sof the battery, using a built-in model
capable of predicting battery behavior. For refeegrS5OC refers to the fraction of charge that
remains in the battery that can be used to propmeer, while SOH refers to the maximum
amount of charge that can be currently be storgdfive to the amount of charge that can be
stored in a new battery. By using a validated pisybiased model in such control applications,
the SOC can be more accurately determined and rtimurat of battery overdesign can be

reduced to save money and minimize weight.

1.3 Models Used to Simulate Lithium-lon Batteries

In order to better understand lithium-ion batteqye@tion and predict performance,
several mathematical models have been develoféwse range from simple empirical-based
models or circuit based modé&fso computationally expensive molecular dynamicsusators.
These mathematical models for lithium-ion battenesy widely in terms of complexity,
computational requirements, and reliability of thpredictions> An ideal model would be
perfectly predictive under all operating conditiargd for the entire life of the battery. The SOC
and SOH of the battery would be well known at alngs. The temperature and
charging/discharging under which the device is apeg have a significant impact on output
voltage and performance, which should be accoufdedn a comprehensive model which
considers the coupling of various physical phenamétowever this increases the computation
demands of simulation. Ideally, a model would pecedhe internal behavior while maintaining

minimal computational cost so that it can be solvedantaneously and with limited resources.



This is difficult in battery models, as many phemoa in batteries are best modeled using
complex non-linear partial differential equationvshile others are still not well understood.
Furthermore, there is often a tradeoff between raoguand computational costs for existing

models.

1.3.1 Empirical and circuit based models

Empirical models are minimally detailed and oftenoyide the highest computational
efficiency for lithium-ion batteries models by ugirpolynomial, exponential, power law,
logarithmic, and trigonometric function fits withagt experimental data to predict the future
behavior. However, these models use parameterdatiatany physical meaning, and are not
accurate outside of the operating conditions frohmctv they were developed or as the battery
grows older or as temperature changes occur, higniie insight that can be gained from such
models. Equivalent circuit models try to describe tinderlying system using a representation
that usually employs a combination of capacitoesjstors, voltage sources, and lookup tables,
while capacity fade is often represented by a dggawith a linearly decreasing capacity and
temperature dependence is modeled by a resistacitapcombination. Current research in this
area includes adopting the parameters of the titcased models to be more accurate by

continuously updating the parameters using theeatiand voltage dafa.

1.3.2 Single Particle Model

The single particle model (SPM) is a simple modelcl represents each electrode as a
single particle. The effects of mass transport he solid phase of a lithium-ion cell are
considered within the particle, but the concertratand potential effects in the solution phase

between the particles are neglectéi. The governing equations are based on Fick's Law in



spherical coordinates. The applied flux on the gphk surface is based on Butler-Volmer
kinetics. The governing equation is shown in Tablg, which is identical for both electrodes.
The SPM is a simplified physics based model whitdbwes one to draw conclusions of battery
performance for a range of conditions, althoughassumptions are not valid for high rates or
thick electrodes. The limited computational requirements allow fastf simulation of battery
performance making it popular as an initial attenmgten considering additional physical

phenomena, especially for life simulatidAs?

Table 1-1: Governing Equation of the Single Partia Model

Governing Equation Boundary Conditions
oc
oc 10 oc] o b0
 10ip] oy
ot r°or o 8q| Y
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Additional Equation for Reaction Kinetics
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1.3.3 Porous Electrode Pseudo Two-Dimensional Model

The pseudo-two-dimensional (P2D) model is a moteailéel physics based model that
considers several physically meaningful internatialdes during simulation, including the
electrochemical potentials within the solid phase alectrolyte along with lithium concentration
in both the solid- and liquid-phas¥sDoyle et af** developed a general model based on
concentrated solution theory to describe the iatetmehavior of a lithium-ion sandwich
consisting of positive and negative porous ele@sopd separator, and current collectdBsich a
model allows researchers to quickly and cheaplhdystthe effects of different operating

conditions on battery performance without relyimgomstly physical experiments.



Table 1-2: Porous Electrode Pseudo 2D Model

Governing Equations

Boundary Conditions
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The base P2D model is a detailed engineering muakdd on transport phenomena that
describes the behavior of a 1-D battery subje®dthermal conditions consisting of a total of 10
governing partial differential equations (PDEsXjm, andt, across three regions which are given
in Table 1-2 with appropriate boundary conditiofke boundary conditions at the electrode-
separator interfaces are given to satisfy coniesiind conservation of flux, while the electrode-

current collector interfaces are insulating cowais for all variables except the solid phase
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potential. The solid phase potential boundary coork are dictated by the charging/discharge
protocol considered and drives the ultimate evofutdf the system. Note that the governing
equations for the positive and negative electratesidentical in form and differ only in the
parameter values and correlations. The separatarigsof active material, so all terms relating
to the solid phase are absent. The first equasia®erived from concentrated solution theory and
material balances of lithium in the electrolyte ghaThe second equation is the charge balance
in the liquid phase while the third equation is thearge balance in the solid phase. The fourth
equation is Fick's law of diffusion inside the sbparticles (solid phase), which is analogous to
governing equations of the single particle modstdssed in Section 1.3.2. Thus the P2D model
can be seen as an extension of the SPM which atcéamvariation across the electrodes and
effects of the electrolyte.

The auxiliary equations for the P2D model are givemable 1-3. Butler-Volmer kinetics
links the solid and electrolyte phases by desagibbire transfer of lithium (and charge) between

the two domains. The open circuit potentials, dedasU,, andU  , are empirically determined

functions of the local state of charge and areliiigependent on the active material used.

The validity of the P2D model over a wide rangecohditions has led to it being very
popular among battery researchers. Thus, mucheaivtrk presented in this thesis is based upon
the P2D model. Specifically, Chapter 2 focuses loa tieformulation of the P2D model to
improve computational efficiency. This allows modetailed phenomena to be studied, as

described in Chapter 3
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Table 1-3: Additional Expressions for Li-ion Battery Simulation
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1.3.4Thermal Effects

The temperature at which a cell operates has arrmajgact on performance, safety, and

life.*> At low temperatures, high diffusive resistanceduce the amount of power that a battery

is capable of providing, making operating batteowpred devices difficult in cold weather.

Conversely, a battery subjected to high temperaturextreme demands can be physically

damaged or experience higher levels of capacitgfadn overheated cell may ultimately

undergo thermal runaway, a potentially explositvaeation. A thermal runaway event can occur

when a large release of energy from the cell, f@ngple from a short circuit, causes a rapid
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temperature rise. This can cause the solvent tonzgpand ultimately lead to rupture of the cell.
As lithium is incredibly reactive, such a ruptusnde disastrous.

Although thermal runaway is a severe event, higeraging temperatures can also have
other deleterious effects. Side reactions which contribute to capacity fadaynbe more
favorable under high temperatures. Stresses calgetthermal expansion can contribute to
mechanical fracture.

Maintaining reasonable temperatures for cell opamnais therefore important to ensure
safety and longevity. However, temperature risesaanormal part of battery operations. The
ohmic resistances directly contribute to heat gatimr, as does the lithium reaction themselves.
The temperature rise can be rather pronounced (%0°@ore) under adiabatic conditions,
especially in high power applications. This mustddesn into consideration when designing and
operating lithium-ion batteries and thus considgriime thermal effects in lithium-ion batteries
has been a popular subject in the literatGf@ Further complications arise as the heat generation
within a cell can vary with the temperature. Bandhaet al. examined the heat generation and
capacity fade at different rates of charging arstltrge, and applied their findings to study the

effects when applied to electric vehicle applicasit

1.3.5 Solid Electrolyte Interface

Along with Li-ion intercalation, side reactions caccur during battery operation, such as
decomposition of the electrolyte and the formatidra surface layer, often referred to as the
solid electrolyte interface (SEI) layer. The prdpeey and chemical composition of the SEI layer
have been a subject of intense research due itoptstance in the safety, capacity fade, and the

life cycle of Li-ion secondary batteries.
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The SEI layer is a key element of Li-ion battermsd acts as a safety feature by
maintaining a protective barrier between the negatlectrode and the electrolyte. The SEI layer
typically forms due to the reduction of the solvéypically ethylene carbonate) and contributes
to SEI layer thickness This model assumes that the solvent moleculegjesté carbonate,
must diffuse through the SEI layer to react withilim at the active material surface to create a
layer of lithium ethylene dicarbonate. The overafiction by Safari, et &f.is

2EC+2Li——> (CH,0CO,L i), (1.4)

These byproducts results in increasing the resistédm the intercalation/deintercalation
of lithium ions and results in reducing the capaoitthe battery. These phenomena can increase
temperature and lead to thermal runaway. The Sfdrlahould be highly ion-conductive to
reduce overvoltage, while being mechanically staipie flexible. These objectives requirthm
but stable SEI layer that will not deteriorate or substangiathange its composition or

morphology with time and temperature during cyclamgl storage.

1.4 Scope of Thesis

The work presented here generally focuses on tfieiesit simulation and model
reformulation of lithium-ion batteries. Chapter Balisses the methods developed to improve
simulation times and reduce computational costallimy for the implementation of detailed
models into more computationally limiting applieats. Using a mathematical model for
optimization, parameter estimation, or life studieguires the simulation to be run hundreds to
thousands of times, necessitating efficient sinmatechniques to be used. Similarly, on-line
control applications, such as those found in alectehicles, have limited computational

resources available to do optimization calculatiditgese limitations have led to circuit-based or
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single-particle models (see Sections 1.3.1 and2)l.8& be popular in such applications.
However, the reformulated model developed in Cha@ebecomes a viable option in

applications that would otherwise be too computetily expensive for use of the P2D model.
Using the more complicated P2D model can allowpf@dictions to be made over a wider range
of conditions than is possible with simpler models.

The model reformulation also can be expanded todiecadditional physical phenomena
to better predict battery behavior. Examples of tre shown in Chapter 3. Section 3.1 discusses
the inclusion of thermal effects into the P2D mofiilamework, including into multi-cell stack
model, while Section 3.2 considers 2D effects.usn of the growth of the SEI layer into the
P2D model is also discussed in Section 3.3 to aflewthe long term simulation of life and
capacity fade. Stress and strain effects are atpoitant for life studies as they also contribute
to capacity fade, but that work is left to futuengrations of students.

Chapter 4 examines the growth of the SEI usinghatla Monte Carlo (KMC) approach.
A background on KMC is provided in Appendix C. Tlssignificantly more computationally
intensive simulation strategy that examines thevgroof the SEI layer on the microscale and
demonstrates the surface heterogeneity. The highpetational cost makes the KMC model
infeasible for use in online applications, but mavide insight to the conditions that ultimately
lead to SEI layer growth and capacity fade. To ymekesults for typical battery operation, the
KMC model for growth of the SEI model is also caglwith the P2D model to give a
multiscale model.

Background and examples on the mathematical teabsigsed in this work are provided
in the Appendices. Specifically, the numerical noettof lines can be used to solve partial

differential equations as shown in Appendix A, whadlows efficient time adaptive solvers to
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be used for integration. Appendix B discusses thethod of weighted residuals: a way to
determine the coefficients of spectral series surétize spatial derivatives. A description of the
kinetic Monte Carlo method is given in Appendix Appendix D shows how to solve a system
of differential algebraic equations using the Eubeethod to numerically integrate, and the
Newton-Raphson method to solve the algebraic emumtiA perturbation approach building
upon the method of lines and the method of falsesients is given in Appendix E. Although the
perturbation approach described in Appendix E iag to elliptic partial differential equations,

its development arose from the need to find coaestgnitial conditions for the battery models.
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Chapter 2
Model Reformulation of the Porous Electrode Pseud@D

Model

This chapter contains excerpts (specifically in Séions 2.2 and 2.3) from the following journal artide
reproduced here with permission from The Electrocheical Society:

P. W. C. Northrop, V. Ramadesigan, S. De, and V. RSubramanian, “Coordinate Transformation,
Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of
Lithium-ion Battery Stacks,” Journal of the Electrochemical Society, 158(12), A1461-A1477 (2011).

2.1 Background of Li-ion Battery Simulation

In order to obtain useful information from any methatical model, a method must be
used to solve the equations of that model. Ideally,analytical solution is preferred, as it
eliminates the error that arises when using nuraktechniques and is usually computationally
very cheap. An analytical solution provides insighto the behavior of the system while
explicitly showing the effects of different paramest on the behavior. However, many
engineering models, including most battery modedsinot be solved analytically due to non-
linearities in the equations and state dependemmsport and kinetic parameters. The
mathematical method used to solve the system oétems describing battery operation can

have a significant impact on the computational ocdsimulation.

2.1.1 Traditional Simulation Approaches

Most standard solvers discretize an ODE or PDEgufsnite difference, finite volume, or
finite element approaches. These schemes are nedlrstood by most scientists and engineers
and can be implemented in a straightforward manfiéus, many commercial software

packages, such as COMS®&LFluent® etc. use these methods to numerically solve ODEs o
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PDEs. However, many node points, control volumeslements are required for convergence.
These methods are robust approaches for solvingrtitdem, but the resulting set of algebraic
or differential-algebraic equations can number ith@ thousands and is computationally
expensive, even for linear problems, and is diffictm implement into a microcontroller or other

resource-limited environment. Furthermore, many m@ncial solvers are over-designed in order
to handle a wide variety of problems with minimaput from the user. They do not exploit the
structure and unique characteristics of the undaeglynodels, which can be used to improve the

computational performance without compromisinglmarobustness.

Typically, the P2D model is simulated using findiéference schemes xand taking a
single time step, for example using the BANDJ sofve€lo improve computational efficiency
using adaptive solvers in time, the method of li©L) is used which discretizes the spatial
dimensions X andr) using numerical techniques (often finite diffecehto eliminate the spatial
derivatives?® The method of lines converts the system of PDE® teystem of first order
differential algebraic equations (DAEs) with timg the only differential independent variable,
converting the system to an initial value probletvP).??®* The MOL allows for
computationally efficient time stepping algorithrssich as DASSL and DASKR to be used to
simulate the model. The method of discretizatiod gefinement of the mesh determines the
number of DAEs that are created. However, init@lditions can only be prescribed by the user
for the variables which have explicit time derivas in the system; the initial conditions for the
algebraic variables must satisfy the algebraic #oos and may not be accurately knoan
priori. Finding consistent initial conditions can be tading and increases the difficulty of
simulating battery models. Providing inconsistential conditions can cause many DAE solvers

to fail. Thus, work has been done to better ing&lthe system so that simulation can be
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performed® 2 Note that the initialization approach providedRef.*! is used in the bulk of this
work. As an aside, this initialization work promgtthe development of a perturbation aprroach
generalizable to elliptic partial differential equoas. A detailed description of this perturbaion

approach is given in Appendix E.

2.1.2 Order Reduction and Efficient Simulation

Using traditional approaches to simulate the P2Riehas computationally expensive,
and has limited its use in applications which reghe simulation to be performed dozens to
hundreds of time to arrive at a solution, suchasmeter estimatidrand optimizatiori,or real-
time controf®. The high computational cost of simulation hasiwated researchers to develop
techniques to simplify the battery models and emdbbkter simulation and reduce memory
requirements. For example, proper orthogonal decsitipn has been used to reduce the total
number of states simulatétiQuasi-linearization combined with a Padé approsimnahas also
been used to simplify the mod@IPrevious reformulation work used Galerkin’s metHmat was
unable to handle non-linear parametérs.

Order reduction methods can be used to decreaseuthber of equations that must be
solved simultaneously, and enable faster computatioen using limited resourc&sHowever,
there are disadvantages to using order reductiothads. The most obvious limitation of
reduced order models (ROM) is that information eord in the model is often sacrificed to
improve computational efficiency. A well-incorpoedt ROM is designed such that the loss of
accuracy is minimized for the conditions of intérésowever, the loss of information contained
in the model can make the results invalid for casgsificantly different from those for which

the ROM was developed:*°

18



Additionally, specific order reduction technique® @nly useful for certain classes of
problems. Many (though not all) methods can onlyiged on linear systems, and thus cannot be
used for nonlinear models that describe many eeging systems, including battery mod&ts’
Nonlinear systems can be simplified by linearizatavound a reference point. However, this
linearization is not valid at conditions that degiaignificantly from the reference conditions. It
is important to note that order reduction method@se exist that can be performed directly on
non-linear systems. For example, proper orthogdeabmposition (POD) fits a reduced set of
eigenvalues to get a meaningful solution with feeguations’*® However, rigorous numerical
solutions are required to build the POD models.oAi$ the operating conditions, boundary
conditions, or parameter values are changed, th& m@del must be reconstructed, negating any
computational advantage that it provides. In addjtwhile POD has been reported to be very
useful for ODEs, for large number of ill conditi@h®AEs arising from battery models, POD

methods do not offer the same reduction in CPU fine

2.1.3 Solid Phase Reformulation

The P2D model considers two spatial dimensions:amess the thickness of the cells,
denoted byx in this work, and another across the radius ofgasdicle, denoted here by the
variabler. This greatly increases the computational coatfifll order discretization is performed
for both spatial dimensions, leading to alternatipproaches to discretize the solid pHd$&3°-

2 This has prompted researchers to develop numeeshsiques to reduce the computational
cost of simulating the radial dimension. One cominarsed simplification is the parabolic
profile approximation to eliminate the radial de@gence of the governing equations by
approximating the solid phase concentration ascarsktorder polynomial across the radifis.

Thus, consider the solid phase diffusion equatiomfTable 1-2:
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o 190 oc’ .
P - rzD_S_l | = ’n 2.1
ot r? ar{ La } P (2.1)

By volume average the concentration and governgugton, Equation (2.1) can be split into the

following two equations for the average concendraind the surface concentratfti?

d s,awy ji 1 = 2.2
tq =-32 | p,N ( . )

Dsi s,su av .i _
) (C]’ rf_qs Q)—_J_ r=p,n (23)

This reduces the dimensionality of the problem ealices the overall computational
cost of simulation. This has been shown to be \atitbw rates and long tim&s***and will be
used for majority of the work in this thesis.

Ramadesigan, et &l.provides an alternative for simulation of discleamtes greater
than 1C by using a mixed finite difference approddie mixed finite difference approach uses 6
optimally spaced node points (with 6 correspondgayerning equations) to describe the
behavior of the lithium ion concentration in thelied direction within the solid phase particles.
This is in contrast to the polynomial profile apgiroation, which relies on 2 governing
equations to describe the solid phase concentrafibis allows the mixed finite difference
approach to better capture the dynamics withineleetrode at high rates, though at the cost of
additional computation time. Additionally, Sectio2.5 relaxes the parabolic profile
approximation by allowing for higher order polyn@atsi to be used for the solid phase.

However, even if a parabolic profile approximatignused as given in Equations (2.2)
and (2.3), the number of DAEs that are developethgua full order finite difference

discretization is computationally prohibitive asarlg 1000 nonlinear DAEs must be solved. The
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following sections discuss the application of spEanethods to discretize the P2D equations to

improve computational efficiencies.

2.2 Coordinate Transformation

It should be noted that the original formulation tbé problem has the three regions
defined sequentially. In other words, the equatifmmghe positive electrode are defined on the
region [0,ly], the equations for the separator are definecherregion I, I;+1g], and the negative
electrode equations are defined on the redigr { Ip+ls+1]. In order to decrease the required
computation, each region is rescaled to a doma[f,df]. This effectively reduces the problem

from three regions to a single region. This is sh@naphically in Figure 2-1.

x=1 =1+l +l, X,=0 X,=1

p

Cathode

Cathode [Separatory Anode | Cathode Separator Anode p———Pp(Separator

Anode

x=0 x=1 +1 X,=0 X, =1 X,=0 X,=1 X=0 X=1

Figure 2-1: Coordinate transformation for a single1-D cell—note that the final diagram is used to she that
the cathode, separator, and anode are solved in tteame coordinate domain. It does not indicate thaa
second linear dimension is considered.

As an example, this transformation is shown in itléa the electrolyte concentration in
the cathode, separator, and anode. From TabletHe2governing equations for the electrolyte
concentration are:

oc o oc|

© 5 = x| eff’pg(_+ap(1—t+)jp 0<x<I, (2.4)
€ @zi_D @_ [, <x<l, +I
st ox| eff,sax_ p pTls (2.5)
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oc 0 ocC .
gngza[Deﬁ,n&:l-‘_an(l_L)Jn +lg<x<l +lg+1, (2.6)
with the boundary conditions given as
oc
& |x:0 =0 (27)
oc oc
- Deff,p & |x=|,; == eﬁ,s& |X=|?5 (2.8)
c |x:|’ =C |x:I+ (29)
p p
c |x:|p+|g =cl ot & (2.10)
oc oc
_Deff,s& |X:|p+|s_ = _Deff,n& L:| ot o (2-11)
oc
&lx:lpnsnn = (2.12)

In order to convert the three region cell to a lEnggion, the spatial coordinate,must
first be transformed to the dimensionless cooré®at, X,, andX; in the anode, separator, and

cathode, respectively. These transformations dreeaed using the following equations:

X, =2 (2.13)
Ip
x—1,

X, == (2.14)
X=I, =g

X,=——02 = (2.15)

Equations (2.13) to (2.15) can be applied to Eguat(2.4) to (2.12) to arrive at the transformed

governing equations for the concentration profiles:
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x_1 1-t)j, 0<X, <1
S ok 1, ax |t 0<Xs (2.16)

g, —=— 0<X, <1

ot I oX,| 1, oX, ? (2.17)
oc 1 0 |Dy, oc | .

g —=— ’ +a (1-t 0<X,<1

"ot 1, X, I, X & (1-t) ’ (2.18)

While the boundary conditions become

oc

ax, o 70
1 (2.19)
Deffp ac Deffs oc

L | = .- (2.20)

I, oX, o1 X,

C lx,.2= Clx,-0 (2.21)

Cly,4= Clx,-o (2.22)
Def‘fs 80 Deffn aC

_—efts O~ __ Zeffn U% 2.23
ls oX, |x2:1 ln X, |x3:0 ( )

oc

— 1, . =0 2.24

o o (2.24)

From Equations (2.16) to (2.24), it is clear tKat X,, and X3 are independent variables

that can be replaced by a single dummy variaflehough we must differentiate between

variables in the different regions (i.e. is replaced byc,, C,, or C, for concentration in the

positive electrode, separator and the negativerebie, respectively).

g —— =
Pat L ax| 1, X

p

oc D.. oc
p_1i{ﬂ_p:l+ap(1—t+)jp 0<X<1 (2.25)
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oc, 1 0 | Dgsoc
= = 0<X<1
e, ax{ , ax} (2.26)
oc. 1 0 | Dy, oc .
L=—— | —=—"|+a,(1-t 0<X<1
T, ax{ , ax} &=t (2.27)
With the boundary conditions
ac,
X k-0 =0 (2.28)
Deffp acp Deffs aC
o ka= T ke 2.29
l, X ba= =77 7 beo (2.29)
Co |x:1= Cs |x:o (230)
C, b= Sy ko (2.31)
D OC D, , 0C
T =t 2.32
I, X be-s | oX be-o (2.32)
oc,
_|x=1 =0
oX (2.33)

A similar process is performed on the remainingialdes and the resulting equations and
boundary conditions are given in Table 2-1. Nota this coordinate transformation is used in

the remainder of this thesis.
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Table 2-1: Transformed governing equations for thd>2D model

Governing Equations

Boundary Conditions

Positive Electrode

oc, 1 o |D,,oc , oc -D, oc -D,; oc,
gp_pz__ —E +ap(1_t+) Jp _p|X:0 = —fm_pllez . _IX:O
ot 1 aX| I X oX I, X . oX
_Geff,p 8(1)2'p 3 Keﬁyp oD 2p + —Keﬁ’p aq)zyp | _
X o, X 7
2, ,RT (1-t,) dIn ¢ . X beeo = ~Ky 0D, |
F oL & o ax
1 0D I
1 0|0 0 . — = BL0)
I_&{ |eﬁ’p&q)1'p:|:aplsz Ip X e eff, p - |x:1 -
p p ’ ax
d o gs
dt ° R,
; j
s, surf av
RGNS
Separator
oc, 1 0| D, Oc,
i L
~Kgys OD 2k 4 RT (1-t, ) dInc,
Isﬁ' 6)(25 + If; ( IS ) X =1 (D2,p |x=1: q)z,s |x=o q)z,s |x=1: q)z,n Ix:o
Negative Electrode
—D.s5 0C —Dn OC
€ ac:n :li ha_q”' +an(1_t )J %I - Ieff,s axs |><:1= Ieff,n axn |x:c
"ot 1 oX| 1, oX e : "
_O-eff,n acI)l,n . Keff,n GCD 2n + _Keﬁ,s aq) 2s | _
X 1 X L, oX 7
(DZ,n |><:1 =O
2k, ,RT (1-t,) dInc, N ~Keftp 0D, |
F l, X - ox
1 0|0, O . oo, , 100, , o
L1, X T heo =0 L o
n n 5)( n eff,n
d oo g
dt R,
D® '
_n( rs],sut _C:,avg):_h
R, 5
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2.3 Model Reformulation Using Cosine Collocation

Here we focus on using spectral methods to digerékie spatial coordinates of the P2D
model, specifically by using orthogonal collocatidiine theory of orthogonal collocation is well

established and stability theory has been discusséue literaturé®

“*8 A brief background on
orthogonal collocation is provided here while a enatetailed description is provided in

Appendix B.

2.3.1 Development of DAEs Using Cosine Collocation

In order to set up a system of DAESs, the proposéairmulation discretizes the model in
the x-direction while maintaining the time dependenceatlmw for the implementation of
efficient time-adaptive solvers. Although this cb@ achieved using a variety of approaches,
including finite difference, here each variablarmiérest is approximated by a summation of trial

functions of the form:
u(X,t) = F(X,t)+Z B(OT(X (2.34)

Where u( X, t)is the variable of interesk, ( X) are the chosen trial functions with homogenous
boundary conditions; (X,t)is a function chosen to satisfy the (time-dependé&aundary
conditions, an®, (t) are the coefficients of the trial functions. Thdyorequirement of the trial

functions is that they all be linearly independddtwever, the choice of trial functions does
affect the accuracy of the final solution, and aper choice can improve convergence. For this
model, the homogeneous trial functions are typjycaéllected to be cosine functions while the

boundary conditions are satisfied by linear anddgaiéc terms. The coordinate transformation
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discussed in Section 2.2 allows the cosine trigicfions to be applied in a simple form of

coskr X) for each variable.

Table 2-2: Approximate forms of equations using case collocation

Positive Electrode

c, (X, )=A () Xﬁ% B, . (dcos(kr X)

D, (X0~ Ay (X + 3 By, (§c0s(kr X)

cpllp(x,t)zﬂ{% X2 — x}% B, . (D COS(kr X)

eff, p k=0

Np
C's),surf(x, t) = g prcsvsu,f’k(t) COS(k?T X}

Np
57X, )= 2B, sun (908 X)

Separator

C(X, )= A () X+ A (D X2+§ B, ()cos(k X)

ch,s(x’t) = A&,cpz ,1(t) X+ A&,cpz ,2( ) X +§ Bsq)z ,k( )cos(kr X)

Negative Electrode

C.(X, )= Ah,c(t)(x_1)2+§ B,c«(Dcos(kr X)

0,00~ A, O0X-27+ 3% By (De0g ke X

@, (X, )= —@E X2}+§ B,o, « (D cos(kr X)

eff,n

Nn
(X, )= B, o (DeoS(kr X)
k=0

Np
(X, =D B Lu (Dcos(kr X)
k=0 =
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The approximate form of each variable is given @&bl€ 2-2. For the variables with non-
homogeneous boundary conditions, an additionahtirad/or quadratic term is added to the
approximate solution to satisfy the boundary coadd. This allows the boundary conditions to
be applied analytically before applying the timeyaiive DAE solver. For example, the liquid

phase concentration is approximated by the equation

c,(X,0=A.()X+> B, (t)coskrX) (2.35)
C(X, )= A () X+ A @) x%i B .( Ycos(kX) (2.36)
C(X, D= A (O(X-1F + 3" B (dastrX) (2.37)

for the positive electrode, the separator, anchduative electrode, respectively. For the roughest

approximation, leN,, = Ny = N,, = 1. In this case Equations (2.35) to (2.37) become

c, (X, )= A () X+ B ,()+ B, ()cosEX) (2.38)
C(X, )= A () X+ A () X +B_ 1)+ B, (HcosEX) (2.39)
C.(X, 0= A (D(X=-17+ B, ()+ B, ()cogzX) (2.40)

It should be pointed out that there are no lithilams leaving or entering the cell sandwich, so
the flux at both ends of the cell is set to zerbe§e boundary conditions are included in the
original form above by choosing the linear and gaad terms appropriately. For example, in

Equation (2.35) there is no linear term for the acaniration of the electrolyte in the positive

... 0 .
electrode so that the derivative-c,(X,1), is zero at the current collector located »at 0,

oX

while holding no such restrictions at the positelectrode-separator interface. Similarly, the

(X -1)* term accomplishes the same effect in Equation7]2@ the negative electrode. The
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equations given in Table 2-2 have been developedobgidering the boundary conditions for
each variable in the same manner as described abbeeoefficients of the linear and quadratic

terms,A | (t), are determined by requiring that each variabledminuous at both electrode-

separator interfaces, while also maintaining aiocoous flux.

By applying continuity boundary conditions, it iegsible to analytically solve for these
coefficients simultaneously in terms of the coeéiits of the trial functions. This is shown
below for the positive electrode in which only agle cosine term is used, though this procedure
can be applied for any number of trial functionsdjgor every region, and for every variable of
interest. For example, it can be shown that thdficant of the quadratic term from Equation

(2.38) is related to the remaining coefficients by

ADVC(t) = _BP,C,O(t)-i_ Bp,c,l( t)+ Bsco( t)+ Bs cl( ]) (2'41)

Therefore the concentration equation for the peesiglectrode can be written as:

S (X, =(=Bpeo()+ Braa 9+ Bioo 9+ Bl }) X

(2.42)
+B,.o(t)+ B, (1) costX )
This process is then repeated for each of the ath&nowns (@ ,®,,c>*?) in each

electrode, and the separator, when applicable. fiffla form of the approximated solutions

(including solving for theA (t)’s in terms of theB , (t)’s) are not shown due to the large
number of terms present as eagh, (t) may be a function of up to si& , (t)’s when using a

single cosine term.

The coefficients of the trial functioB, ,, (t), must be determined in order to give the best

possible approximation of the solution to the tveefjoverning equations. This is done using the

Method of Weighted Residuals (MWF)This method solves for the coefficient, , (t), by
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setting the integral of the residual multiplied d&yveight function to zero. By using an adequate
number of independent weight functions, enough pededent equations can be developed to
solve for the unknown coefficients. Collocationaispecific version of the MWR in which the
weight functions are Dirac delta functions, so ttiegt governing equations are exactly satisfied
as specified collocation points. Orthogonal coltararefers to the collocation method in which
the collocation points are chosen as zeros of gahal polynomials, which has been shown to
give better result®“® A detailed discussion on the method of weightesideals is given in
Appendix B

It should be noted here that there is no requireérntet the variables in different regions
be approximated by the same number of terms. Hawelle¢he variables in a single region must
be represented by the same number of terms. Fonm@gaif the concentration profile in the
positive electrode is approximated using two coserms, the liquid and solid phase potentials
must also be approximated by two cosine terms @ pbsitive electrode with the same
collocation points, but the concentration profife the separator may be represented by any
number of terms.

In development of the DAEs to be used to solvethar coefficients, each governing
equation must be accounted for individually so thate are as many residual equations for each
governing equation as there are coefficients tosdiged in that region. For instance, if the
variables in the positive electrode are represebte@ single cosine term, the average solid

phase concentration is approximated by

Co (X t) = B, (1) + B as, (Y COSE X) (2.43)
Therefore, two collocation points are needed twesdbr the two unknownsBp cweo(t) &

chwgl(t). The residuals are calculated using each of the §overning equations in the
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positive electrode. Since each residual is defitede zero at two node points from the
orthogonal collocation method, we have now develapsystem of 10 DAEs to solve for the 10
unknown coefficients in the positive electrode.sTmust be repeated for each of the other two
regions as well. In the case that each variabl@lithree regions are approximated by a single
cosine term, there are 10 DAEs in both the posiind negative electrodes, and four DAES in
the separator for a total of 24 coupled DAEs thastbe solved simultaneously.

In general terms, the dependent variables in tisgtipe electrode, the separator, and the

negative electrodes are representedipy N_, and N, cosine terms respectively. Each variable
thus hasN, +1 coefficients that must be determined in each regitherer denotes the region,

and thereforeN, +1 residuals must be calculated. This resultiNja-1 DAEs for each variable.

Since there are 5 governing equations (and 5 asalfor the positive and negative electrodes

and 2 governing equations in the separator we fawetal of 5(N +1)+2(N, +1)+5(N, +1)

DAEs that must be solved simultaneously.

These equations are functions of time only, somevbich are ordinary differential
equations (ODESs) in time, while the remaining dgelbraic equations. Solving this system of
differential algebraic equations (DAES) is not iy and the algebraic variables must be
initialized prior to solving to ensure that thetial conditions are consistent with the governing
algebraic equations, and is a reason numericallairons often fail for battery models. Once
initialization is complete, this system can be sdiwsing FORTRAN with the help of time-
adaptive solvers such as DASSL or DASKR®

Once the coefficients are determined, the unknovamiables are represented by
continuous functions valid at any position in thedl.cThis is in contrast to a solution obtained

using a finite difference approach in which theiafale is only determined at discrete node
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points and would require interpolation methodsital fthe solution between two node points.
Also, orthogonal collocation converges to a solutidth an error on the order bf", whereN is

the number of collocation points ahds the node spacir§.A typical finite difference solution
that is typically used has error on the ordemhgfthough higher order schemes are possible.
Although the resulting equations are more compidavrhen using orthogonal collocation, fewer
terms are required for a meaningful solution, resglin fewer DAEs that must be solved and a
net reduction in computation tim&.

This reformulation makes no assumptions of the fofrany parameter used in any of the
equations. There are no requirements that neither diffusion coefficients, nor the
conductivities are constant or linear, and succésstults have been obtained using diffusion
coefficients which are functions of the electrolgtencentration and temperature. This model is
also versatile enough to work under galvanostaptitentiostatic, and constant power conditions,
even for continuous cell charge-discharge cycléss Todel also does not assume a particular
chemistry and has proven to be robust for differ@memistries involving a variety of open
circuit potentials and battery design parametenpolrtantly, as we have chosen the polynomials
in the region 0 to 1, globally convergent profitzs be obtained for any condition by increasing

the number of terms in the series.

2.3.2 Model Reformulation

Further reformulations can be done to improve cadatmn time by eliminating the need
to numerically solve for the solid phase surfacecemtration while using the polynomial
approximation for the solid phase. Once the remginariables have been approximated by a
series solution, it is possible to analyticallyvafor ¢ in terms of these variables. First, the

pore wall flux, j,, can be determined by rearranging Equation (h8yeato give:
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D
]‘ — g —solid.i solid, i (Cis,surf _qs avg) | = p,Nn (244)

R

Consider the solid phase governing equation frotmera-1

10 i O . .
|8X|: I_ﬁ X 1,ij|:a|:]i I=p,n (2.45)

Equation (2.44) can be inserted into Equation (Rtdgive the following equation:

10 effi O 5D° ; av )
=, |=—gF (g gs e - 2.46
|ax{ e 1,.} aFg (¢*"—¢"™9) i=p,n (2.46)

From this the surface concentration can be solvederms of the average solid phase

concentration and the solid phase potential, assyrthie solid phase conductivity; ., is a
constant:
o R 0°D .
c>U = g3 iR ! i=p,n (2.47)

5a FD°l* oX?
At this point, the focus will be limited to the ptbge electrode for demonstration purposes. From
Table 2-2, the solid phase potential, , and solid phase average concentratpif, have a

series solution given by

Np
O, = Y +> B t)cos(kr X) (2.48)
v O-eff,p 2 k=0 P&
c avg ZB - k COS( kr X) (249)

By inserting Equations (2.48) and (2.49) into Equat(2.47), the solid phase surface

concentration can be immediately written as

i Np R Kk
T LWSNU R Lt WNTI ST S

5a, FD'l, = 5a, FDFI2
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By solving for the surface concentration analyticah terms of the other variables, we
can eliminate the need to solve for two of the wselinknowns (one from each electrode),

resulting in fewer DAEs that must be solved. Howeifethe solid phase conductivitys,_, , is a

function ofx or is nonlinear, this reformulation cannot be perfed.

2.3.3 Results and Discussion

The model prediction obtained using a collocatieformulation using a varying number
of terms is compared to a full-order finite diffece solution based on 50 node pointg for the
electrodes and 35 node points for the separata. pfimary curve of interest is the discharge
curve in Figure 2-2(a), which shows the full-ordenite difference solution, as well as four
solutions obtained using increasingly accurateogtimal collocation approaches for a 1C rate of
discharge. Figure 2-2(b) shows the residuals ofotttieogonal collocation solutions relative to
the finite difference solution, while Table 2-3 giwa comparison of the root mean squared error
as well as computation time. The least accurat®aation solution is obtained by using only
one cosine term for each region, as shown by thd Boe in Figure 2-2. Progressively more
accurate solutions can be obtained by using ortmalgoollocation with a greater number of
terms. Figure 2-2 also shows collocation solutiobhtained using (3, 2, 3) terms (long dashed

line), (5, 3, 5) terms (short dashed line), and,7), terms (dash-dot line). Note that the
nomenclature(Np, N, Nn), is used to represent the number of cosine tesed in the positive
electrode, the separator, and the negative elestredpectively. Experimental validation of the
porous electrode pseudo-2D model can be found blsewin the literatur&™® Therefore an

established solution method using finite differem@es used to validate the reformulated model

presented in this paper.
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Figure 2-2: (a) Voltage-time curves for a 1C constd current discharge (b) Residual plot of collocatin
solutions vs. finite difference

Figure 2-3(a) and Figure 2-4 show that the elegteolconcentration at the end of
discharge increases across the battery from thévgoslectrode to the negative electrode. These
figures also show that the concentration in thetpeselectrode decreases during discharge,
while it increases in the negative electrode, theulim metal stored in the anode comes out of the
active solid particle and reacts at the surfageréaluce lithium-ions causing an increase in local
lithium salt concentration in the electrolyte. Aglher rates of discharge, more lithium ions are

released at the anode and absorbed in the catinodegasing the concentration gradient.
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Figure 2-3: Variable values at the current collecto’cathode interface (), the cathode/separator interfacerd),
the separator/anode interface 4), and the anode/current collector interface ) for (a) electrolyte
concentration (b) liquid phase potential (c) solidphase potential (d) solid phase surface concentrati and (e)
solid phase average concentration. The markers repsent the finite difference solution, the dash-daline for
(1, 1, 1) collocation, the short dashed line for #(3, 2, 3) collocation, and the long dash line f¢5, 3, 5)

The primary advantage of this method is the spéeshaulation, which arises because a
relatively few number of terms are required to abtaconverged solution. Table 2-3 shows the
simulation time when using various numbers of a@imn points, as well as the root mean
squared error relative to the finite differenceusion. The times are presented using a

FORTRAN based DASSL solver, as well as a M&fdelver for all simulations performed.
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Figure 2-4: Electrolyte concentration across battey for (1, 1, 1) collocation (dashed line), (3, 2,)3
collocation (dotted line), and (5, 3, 5) collocatio (solid line) in (a) transformed coordinates andlf) natural
coordinates at 3500 seconds of discharge.

All simulations were performed using a 3.33. G4, GB RAM machine. Rates of
discharge greater than a 1C rate were simulatedyuke mixed finite difference reformulation
for the solid phase concentration in order to aat®ly track the battery behavior at high rates of
discharge. However, the additional number of egquatiresulting from the mixed finite
difference solution results in slower computatias, can be seen in Table 2-3. Note also that
more terms were required to achieve a convergadigolwhen analyzing greater rates. In order
to quantify convergence of the series, the maxinmagnitude of the coefficients of successive
terms must be analyzed. This is shown in Figur&igire 2-5:  Normalized maximum
magnitude of coefficients for equations in Tabl2 #r (5,3,5) collocation for the cathode (long
dash), separator (dash-dot), and anode (short.dastirating that the first terms are dominant
and that the system converges. Interestingly, #ter Iterms for describing the solid phase
concentration carry more weight than for the otrerables (although still significantly less than

the first term).
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Table 2-3: Simulation time and Root Mean Squared Eor compared to FD

Method Number of | Simulation Simulation RSME
Differential | Time (Maple) | Time (DASSL) | (mV)
Algebraic (ms) (ms)
Equations
Finite Difference 590 N/A" 4617
(50,35,50)
Orthogonal Collocation (1,1,1)[ 20 781 46 17.84
Orthogonal Collocation (3,2,3)| 38 2355 78 5.46
Orthogonal Collocation (5,3,5)| 56 6022 109 1.56
Orthogonal Collocation (7,3,7)| 72 9812 156 0.57
1C Rate MFD 136 28361 530 0.91
(7,3,7) Collocation
2C Rate MFD 136 24680 312 6.18
(7,3,7) Collocation
5C Rate MFD 170 38548 250 5.29
(9,4,9) Collocation
10C Rate MFD 204 64381 218 9.42
(11,4,11) Collocation

The full order finite difference failed when usiktaple solvers
*The 2C, 5C, and 10C rates were compared to afuéirdiFD finite difference formulation which used
982 equations that took 2106 to 4040 ms to runguBiASSL

The behavior of the coefficients for the liquid phaconcentration and potential in the

separator are nearly completely determined by dimstant term alone. In fact, the weight of this

term is in excess of 99.99%. This can be explabmednalyzing the governing equations for the

separator given in Table 1-2:

oc 0 [ 8c}
ss = Deffs
ot ox ~ OX

op, 2, RT dinc
—+

(1-t)

OX F oX

- eff,s
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Figure 2-5: Normalized maximum magnitude of coeffients for equations in Table 2-2 for (5,3,5) collation
for the cathode (long dash), separator (dash-dotand anode (short dash).

If diffusion occurs quickly enough relative to tbleange in boundary conditions from the
electrodes (which would be expected consideringstnall thickness of the region), the time
derivative term in Equation (2.51) would approaci Bis leads to a linear concentration profile
in the separator if the diffusivity is a constaitherefore, the cosine terms of electrolyte
concentration approximation from Table 2-2 wouldt nmontribute much to the final
approximation. If the concentration is nearly linaad the reciprocal of concentration is nearly
constant, the second term of Equation (2.52) wall iearly constant. Since the liquid phase
conductivity, ket s, IS Only a weak function of concentration, and ¢bacentration does not vary
appreciably across the separator (see Figure 2td@ conductivity will also remain nearly
constant. This would lead to a linear profile foe tiquid phase potential across the separator.
This allows very good accuracy to be retained, ef/ea cosine terms are used in the separator.

A similar pattern emerges for the solid phase pakimn the positive and negative

electrodes, with the coefficient of the constanttelominating the cosine terms with a weight of
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over 99.99%. This suggests that the solid phasenpat could be approximated accurately with
only the constant term, further reducing the corapom required and improving computational

speed. However, to implement this would require phecedure used to be adjusted, as it is
required that the collocation points be identicaldach variable in the current form. Preliminary
attempts to limit the number of terms for the sqilthse potential while maintaining a greater
number of terms for the remaining variables havenbensuccessful. In our opinion, this is due
to the fact that althougth; has a nearly flat profile, the current densityslbave a significant

profile across the electrode due to the relatileige conductivities
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Figure 2-6: Current-Time and Voltage-Time curve for two continuous cycles consisting of constant power
discharge followed by constant current charge andanstant potential charge

The proposed approach has been used to estimatalthes of internal parameters from
experimental discharge curves. Also, this approeah simulate continuous battery cycling
operation which undergoes constant current/powschdirging followed by constant current
charging and constant potential charging. This destrates the versatility of this method to
simulate a wide variety of operating conditionsggufe 2-6 shows two such cycles which are

subject to a constant power discharge of 120 Mdntonstant current charge of 25 A/m
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followed by a constant potential charge at 4.1 d:. éomparison, a 1C rate corresponds to ~30
A/m? using this chemistry. Note that the current stdtthe internal variables within the battery
is carried over from the end of each cycle to theticycle. Because the internal variables change
with time, the behavior of the battery during thegeles is not necessarily identical, perhaps due
to incomplete charging of the battery. Also, theeinal parameters, such as porosity, etc. can be
made to change with cycle number. Therefore, asldpments continue in the understanding of
capacity fade this continuous cycling procedure aadlict the future behavior of the battery by
either changing the parameters already included, ly introducing additional
parameters/mechanisms specifically to address tgpéade. This may be achieved by
modifying the continuum model directly, or by cougl the continuum model with microscopic
models, such as Kinetic Monte Caffd”or Stress-Strain modéf&’” to create a true multiscale

model.
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tedulrdel
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Figure 2-7: Voltage-Time curves for higher rates oflischarge

This method can also be used when higher ratessoharge are applied. However, in
those circumstances, it is necessary to use thedirite difference approximation for the solid
phase concentratiofi, rather than the parabolic profile used in thearigj of this paper while
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describing a 1C discharge. The basic method predeiar reformulation in the-direction,
however, is valid for both parabolic profile appimation and for the mixed finite difference
approach. The normalized discharge curves are giv€rgure 2-7 for 2C, 5C, and 10C rates of
discharge, with mixed-finite difference reformudtati for the solid-phase concentration. Table
2-3 shows the computation time required to simullagehigher discharge conditions, as well as
the RMSE of the voltage-time curve relative to b finite difference. Also, more node points
were required to accurately simulate a higher dideharge when using collocation. However,
even when a greater number of node points are ubedsimulation time is reduced by

increasing the rate of discharge because the pattaches a fully discharged state in less time.

2.4 Model Reformulation Using Chebyshev Collocation

Using cosines as trial functions as described ictiG@e 2.3 worked well in many cases,
but several limitations arose under certain coadgi Primarily, oscillations in the approximate
solutions became severe when many terms were usékhble 2-2, limiting the accuracy
achievable during simulation when more than ab&itekrms in the series were used. These
limitations implicitly prevented the simulation bigh charging and discharging rates, as higher
rates of charge require greater accuracy due tontire complicated and non-linear profiles that
arise. This motivated the desire to examine otppr@aches to take advantage of the properties
of orthogonal collocation. Thus, the use of Chebyspolynomials as the trial functions in the
series solutions rather than trigonometric functiomas attempted. It was found that the
oscillations observed when using cosine collocattin not arise when using Chebyshev
polynomials as more node points are used, allowlegnumerical accuracy of the orthogonal

collocation method to be fully realized.
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Chebyshev polynomials are a set of orthogonal potjals which can be defined from

trigonometric functions:
T, (X) = cog( n arccoéx)) (2.53)
This gives Chebyshev polynomials many of the adwgerus properties of Fourier sefi@s.
Practically, calculation of higher order Chebyshemynomials can be performed using a
recurrence relation. The first two Chebyshev polygrads are given as:
T,(2) =1 (2.54)
T(29)=1z (2.55)
Higher order Chebyshev polynomials can be calcdlftem the recurrence relation:
T(2)=22T (9~ T,(2 (2.56)
As the Chebyshev polynomials are defined on therval [-1,1], a change of variable is required
to convert the domain to [0,1], as done in the ey work, whereX is the dimensionless
positions in the electrode or separdtor.
z=2X-1 (2.57)
Therefore, we use the following nomenclature taesent the rescaled Chebyshev polynomials

T.'(X)='ﬁ(2 X-1) (2.58)

J

2.4.1 Development of DAEs Using Chebyshev Collocati

The fundamental idea of using orthogonal collocatigth Chebyshev polynomials is the
same as given in Section 2.3 and Appendix B. Howesame differences do arise which must
be addressed. Specifically, since Chebyshev patyais do not inherently satisfy homogenous
boundary conditions, the BCs must be handled ihightl/ different way than described in

Section 2.3.1, but can still be applied indepenigeln¢fore the time solver is applied so that
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additional equations do not need to be solved sanabusly. Extra linear and quadratic terms
included in the series solutions would not be liheandependent, and are thus avoided.
Therefore, additional Chebyshev polynomial ternesiacluded to satisfy the BCs. The general
series solution for the electrolyte potential almtaentration, and solid phase potential (which

require boundary conditions to be satisfied) takesform of

N+2

D=3 B (9T (X (2.59)

where the subscripts,v,i refer to the region (positive electrode, separator negative

electrode), dependent variable (e.g. electrolytancentration), and coefficient number,

respectively, whileu, , (X, t) refers to the profile of the specific dependentalde, v, in region
r.
In this form, two of the coefficientsB,(t)) can be determined in terms of the

remaining coefficients using the boundary condgiofihe choice of which coefficients to solve

for in this manner is somewhat arbitrary, provideat that the chosen ones can be used to satisfy

the boundary conditions. For examp]l%,(X) is a constant and cannot be used to specify flux

boundary conditions, sdB

rv,0

(t) cannot be reliably solved for because of the m#ay

conditions present in the P2D model. In the workspnted hereB,,,(t) and B

. o(t)are
determined directly using the BCs, but it shoulchb&ed that solving for other coefficients, such
as B, \,.(t) andB,, \,,(t), does not significantly affect performance.

The variables which do not have spatial derivati{aasl thus no boundary conditions),
cannot use BC equations to increase the orderecgehes solution and thus are limited to using

N™ order Chebyshev polynomials:
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WX D=2 B ()T (X) (2.60)

ryv,i

Equation (2.60) provides an applicable series appration for the pore wall flux and the solid
phase concentration. Using trial functions whicle aot homogeneous is advantageous for
variables which do not have boundary conditionst @es not implicitly impose an artificial
boundary condition on the numerical approximatibmposing such a condition increases the
difficulty of accurately representing the real smo and slows the rate of convergence. The

series approximations used with Chebyshev triattions are given in Table 2-4.

Table 2-4: Approximate forms of equations using Cheyshev

collocation

C,(X,t)zNiZjEi,c,i(t)T(X) r=p,s,n
©,, (X.0= 3 B, (OTCX) f=p.sn
D, (X,0= Z B o, (DT(X) r=p.n
LXD=3 8, (OT() r=p.n
CEX, D=3 B 1, (OTOX) r=p.n

Unlike the reformulation given previoudly this modified version solves for the pore
wall flux (j,and j,) directly as series solution, rather than theamgfsolid phase concentration.

The choice of approach is largely a matter of pesfee. The parabolic profile approximafidn

for the solid phase concentration gives the suraceentration as:

Crs,surf — qs &g jr R’

EE r=p,n (2.61)



Recall that j,and c¢®®9 are series solutions, and the&*"is also a series solution. This

approach is favored for several reasons. Firstegatually, ¢>*** and c>*9 are clearly linked
and often of similar value, so the second term gudfion (2.61) can be seen as a correction
factor to calculate the surface concentration. Irtgmdly, this shows that the variation between

c>'fand c>®9 is large at high rates, while at low rate3*'f and c>*?¢ are nearly equal.
Secondly, the profile ofj and j, varies significantly both in time and across thecebde. By

having these variables be solved for directly aei@es the solution is better able to track the

moving front. Thirdly, when collocation is appliegl,and j, can be replaced as a single value in

the resulting discretized equation (i.e. the vaifig | or j at the collocation point of interest).

2.4.2 Results and Discussion

One of the principle flaws of the cosine collocatjaresented earlier was the oscillations
which occurred when a high number of node pointsewesed. These oscillations were
especially prevalent in the estimate for the poadl flux due to the particularly difficult profiles
which arise. Such oscillations in the pore walkfinvariably leads to inaccuracies in the local
SOC. Figure 2-8 shows the pore wall flux acrossiatery at four equispaced points in time
(i.,e. at 0% depth of discharge (DOD), 33% DOD, 6D%D, and 100% DOD) during a 1C
discharge as solved using a second-order finiterdiice with 75 interior node points in each
electrode, and collocation with Chebyshev trialclions. Figure 2-9 shows the same results
using cosine collocation. Note that the pore waik is negative in the cathode and positive in
the anode during discharge. Cosine trial functiaasise unacceptable oscillations in the

numerical solution when many node points are used.
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Figure 2-8: Pore wall flux profile across the celfor a 1C rate of discharge at 0% DODA), 33% DOD (o),
67% DOD (0), and 100% DOD ) when using (1,1,1) Chebyshev collocation (dashitied line), (3,2,3)
Chebyshev collocation (short dash line), (9,3,9) @byshev collocation (long dash line), (25,5,25) Oheshev
collocation (solid line). The converged finite di#rence approach is shown as markers.

Also note that using orthogonal collocation wittsioe trial functions cannot capture the moving
reaction zone exhibited by the pore wall flux, Bitebyshev polynomials can.

The increased diffusion resistances caused byaibie depletion/saturation of lithium in
the electrolyte at moderate to high rates causelbdefined moving reaction zone to develop.
Figure 2-10 demonstrates the moving front in thedanfor a range of discharge rates using
Chebyshev collocation. The reaction zone is moonqgunced at high rates, while at low rates
the variation across the electrode is relativelydsied. Additionally, at low rates, the majority of
the electrode is can be utilized but only a smadjion is accessed at high rates, as the cutoff

voltage is reached before much of the electrodsiliged.
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Figure 2-9: Pore wall flux profile across the celfor a 1C rate of discharge at 0% DODA), 33% DOD (o),
67% DOD (0), and 100% DOD @) when using (1,1,1) cosine collocation (dash-dottdine), (3,2,3) cosine
collocation (short dash line), (9,3,9) cosine cottation (long dash line), (13,4,13) cosine collocati (solid line).
The converged finite difference approach is shownsamarkers. Notice the severe oscillations that occas

more node points are used

During discharge, the rate of lithium ion produnfmonsumption is greater than the rate
of lithium-ion diffusion, creating a spatial vaii@ of the electrolyte concentration, potential and
solid phase concentration (which directly affedie tocal open circuit potential) across the
electrode. Ultimately, these local effects affdwt tate of the pore wall flux reaction across the
electrode. At low rates diffusion plays a relatiw@hinor role; the variation in reaction rates
across the electrode is small and the system isapitiy kinetically limited. At high rates, the
diffusion resistance affects the behavior subsdliptand causes a large variation of the local

reaction rates across the thickness of the eleetrdtlis variation causes the regions of the
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electrodes nearest to the separator to becometedeple saturated to a greater extent than the
regions near the current collectors, ultimatelyvshg the reaction and moving the reaction front
deeper into the electrode. Thus, battery manufestuypically design batteries with thin

electrodes for high power applications.
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Figure 2-10: Pore wall flux for (a) 0.1C , (b) 0.5C(c) 1C, (d) 3C, (e) 5C, and (f) 10C rates of disarge at 0%
DOD (A), 33% DOD (@), 67% DOD (0), and 100% DOD () using (25,5,25) Chebyshev collocation (update
this figure to label the rates and times) Note thak=0 corresponds to the anode/separator interfac&lote that
the 10C solution uses a higher order approximatiofor the radial profile.
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The profiles of the other dependent variables amva in Figure 2-11 for a 1C rate of

discharge and Figure 2-12 for a 5C rate of disahafpese tend to be smoother functions which

tend to be easier to estimate using a series snluind do not experience the same severe

oscillations when cosine collocation is used. Baneple, the electrolyte concentration in each

region can be estimated fairly well by a seconcepmblynomial, as shown in Figure 2-11(a),

despite the nonlinear generation term given byptite wall flux (see Figure 2-8).
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Figure 2-11: Profiles of internal variables for a T rate of discharge at 0% DOD f), 33% DOD (@), 67%
DOD (¢), and 100% DOD ¢) when using (1,1,1) Chebyshev collocation (dash tdiine), (3,2,3) Chebyshev
collocation (short dash line), (9,3,9) Chebyshev kocation (long dash line), (25,5,25) Chebyshev ¢otation
(solid line). The finite difference approach is shwn as markers. The variables considered are the @olyte
concentration (a), electrolyte potential (b), soligphase potential (c), and local state of charge (d)

50



& 1500
5 3
g _ g
E"E 10004 &
03 2
SE 3
$ 50 3
i i
L i \

0 -2.5 s/

0 50 100 150 0 50 100 150
Position in Cell (um) Position in Cell (um)

(d)

Solid Phase

Potential (V)
N

Local SOC

-

0 50 100 150 0 50 100 150
Position in Cell (um) Position in Cell (um)

Figure 2-12: Profiles of internal variables for a & rate of discharge at 0% DOD f), 33% DOD (@), 67%
DOD (), and 100% DOD ¢) when using (1,1,1) Chebyshev collocation (dash tdiine), (3,2,3) Chebyshev
collocation (short dash line), (9,3,9) Chebyshev kocation (long dash line), (25,5,25) Chebyshev ¢otation
(solid line). The converged finite difference apprach is shown as markers. The variables consideredeathe
electrolyte concentration (a), electrolyte potentibg(b), solid phase potential (c), and local statef aharge (d).

However, at high rates, the narrow reaction zonse&s a more complicated profile to arise for
the electrolyte concentration as the diffusionitbfiim is not fast enough to completely smooth
out the peak generation/consumption in the reacone as seen in Figure 2-12.The liquid phase
potential shown in Figure 2-11(b) is quantitativeiyilar to the concentration. Figure 2-11(c)
and Figure 2-12(c) give the solid phase potentil are nearly flat for all cases due to the
relatively high conductivity and small thicknesstloé electrodes. Such flat profiles can be fairly
easily approximated using numerical methods. Figutd (d) and Figure 2-12(d) show the local

SOC across the cell during discharge. The profiess the electrodes is essentially a time
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integration the local pore wall flux. However, Wdi the electrolyte concentration, the
intercalated lithium cannot directly diffuse acrase thickness of the electrode, leading to
variations which do not dissipate. Also note thaguFe 2-12(d) explicitly shows that a large

fraction of the active material is not utilized whihe cell is operated at a high rate of discharge.

2.4.3 Error Analysis
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Figure 2-13: Simulated discharge curves for 0.1Cof, 0.5C @), 1C(0), 3C (A) and 5C (¥)rates of discharge
(1,1,1) Chebyshev collocation (dash-dot line), (3® Chebyshev collocation (short dash line), (9,3,9
Chebyshev collocation (long dash line), (25,5,25)h€byshev collocation (solid line). The convergedniiie
difference approach is shown as markers.

During battery operation, only the voltage diffezencan be experimentally measured
easily; the internal variables cannot be directlgasured. The convergence of the discharge
curve is therefore considered important to quarntify accuracy of the solution. Figure 2-13
shows the discharge curves at five rates of digghasing an increasing number of collocation
points while Figure 2-14 shows the root mean sqeai@ (RMSE) of the discharge curves as a

function of average node spacing. Since an analysiglution does not exist, the RMSE must be
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calculated relative to a solution of a higher ordeamerical solution which presumably has a
negligible error compared the lower order models.

The RMSE values given in Figure 2-14 are calcul@gdomparison to both a full order
finite difference solution with 75 node points retelectrodes and 35 points in the separator, and
a collocation solution with 25 node points in thec&rodes and 5 in the separator. Notice that the
error converges continuously when compared to thiaation solution, but plateaus when
compared to the finite difference solution. Sinhe solution is expected to get progressively
more accurate as more terms are added (as we et nachine precision, the existence of a
plateau suggests that the error of the finite teffiee approximation is not negligible and is the
primary contributing factor to the RMSE calculatitor a high number of collocation points.
Figure 2-15 shows the RMSE of both the finite défece solution and Chebyshev collocation as

a function of the dimensionless node spacing mgddg scale.
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Figure 2-14: Root mean square error (RMSE) estimatdor the discharge curve as a function of number of
collocation terms used in the solution for 0.1Cq), 0.5C @), 1C{©), 3C (A) and 5C (). The short dash lines

are the RMSEs as calculated by comparison with théull order finite difference solution while the long
dashed lines are RMSEs as calculated by comparisavrith the highest order (25, 5, 25) collocation sotion
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Recall from Equation (B.8) that the collocation mteiare not equally spaced across the
electrode, thus the “average node spacing” is tatled as simply the reciprocal of the number of
node points. Figure 2-15 shows that the collocasipproach is more accurate for a given node
spacing, by at least an order of magnitude andhditeseveral orders of magnitude. Notice that
the error when using finite difference decreasasalily on a log-log scale as the node spacing is
reduced, but the error from the collocation appno@ecreases superlinearly. This is established
behavior when using Chebyshev collocattdmeflecting theh?™ order error (whereN is the

number of collocation points afds the node spacing), that exists for orthogon#bcation*®
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Figure 2-15: Root mean squared error of the dischaye curves for a 1C rate as a function of average
dimensionless node spacing using finite differendgong dash) and Chebyshev collocation (short dashThe
RMSE was calculated relative to both the highest a@er Chebyshev solution ) and the finite difference
solution with the smallest node spacing).
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Figure 2-16: Computational time to simulate a singd 1C discharge as a function of number of node pdm
using the finite difference approach ¢), cosine collocation 4), and Chebyshev collocationt)

However, reducing the node spacing and improviegaitcuracy requires the calculation
of the dependent variables at additional collocapoints which increases the computational
cost. The calculation time for simulating a 1C Hemge is shown in Figure 2-16 using the
FORTRAN solver DASKR® run on a 3.33. GHz, 24 GB RAM machine. Notice shraulation
time is largely independent of rate of dischargethe results given in Table 2-5 are for a 1C rate
of discharge. The computation time increases exp@iy as more node points are used,
creating a tradeoff between the computational expamd the numerical accuracy.

The large number of node points required for anuete finite difference solution
reduces the feasibility of using such an approalsareszcomputational demand is limited. Figure
2-17 explicitly shows the tradeoff in computationadst and accuracy by comparing the
simulation time on the abscissa and RMSE on thenatel on a log-log scale. Importantly, the
superlinear reduction of error seen when using ¢$ted collocation offsets the exponential
increase in calculation time, showing a linear dase (on a log-log scale) of the error as

simulation time increases.
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Table 2-5: Computation times and estimated errorsdr selected simulation runs for a
1C rate of discharge. (25,8,25) Chebyshev collocati is used for a baseline for
calculating RMSE. The truncation and coefficient cavergence errors are for the solid
phase potential in the positive electrode.

Simulation | Simulation RMSE | Truncation| Coefficient | Number

Time (ms) | (mV) | Error Convergence of DAEs
(mV) Error (mV)

Fl_JII Finite 16857 0.0889 N/A VA oo5

Difference

(1,1,1) _

Chebyshev | 104 319 | 7.49%-4 | 141 25

(3.2,3) _

Chebyshev | 123 6.99 | 9.9le5 | 1.69 47

(5,3,5) _

Chebyshev | 1°2 244 | 257e5 | 0.156 69

(9,3,9) _ _

Chebyshev | 214 0.328 | 2.74e-6 | 7.38e-4 109

(15,3,15) 417 0.0279| 1.64e-7 5.81e-5 173

Chebyshev

(25,5,25) _

Chebyshev 1190 N/A 1.53e-9 N/A 279

In contrast, the increase in computational costsnadmdding finite difference node points
is greater than the reduction of error, giving dueed marginal benefit as additional points are
added. How many terms in the collocation solutibowd be used is heavily dependent on the
application. Specifically, the acceptable errormpoting resources, and operating conditions
dictate the number of collocation points which mguired.

The numerical source of error can be broadly dviohto two categories. The first is the
truncation error which arises when a finite numbgeterms in the series solution. The second
source of error is the caused by the phenomendnthiacalculated value of any coefficient,

B,,;(t) is dependent on the order of the series approiomatnd is referred to here as the

coefficient convergence error. Estimates of bothrses of error are given in Figure 2-18 for

Chebyshev collocation and Figure 2-19 for cosirocation.
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Figure 2-17: Root mean squared error of the dischaye curves as a function of simulation time using Hite
difference (long dash) and Chebyshev collocationHsrt dash). The RMSE was calculated relative to bdt the
highest order Chebyshev solution andd) the finite difference solution with the smalleshode spacing ¢).

The truncation error can be estimated by analyttiegcoefficients of the series solutions.
For Chebyshev polynomials and cosine functions, ftivetion values are bounded on the
interval [-1,1], so that the magnitude that eaamteontributes to the final solution can be
estimated by directly comparing the coefficientss #e coefficients are time-dependent
functions over the course of the charge or disahaygle, the maximum absolute value is used
so that the coefficients to be represented bygleswalue which can be directly compared.

For a converged solution, the magnitude of theesezoefficients must decrease for each
additional term. The dotted lines in Figure 2-18wh the maximum magnitude of the
coefficients of the series solution of (25,8,25)e6¥shev collocation. All coefficients are scaled
by the maximum absolute value of the coefficienthaf zer8' trial function so that comparisons

can be made among the different variables.

max(
t=0.1,

max(
t=0.t;

B, ¢})

2.62
B..o()) (2:62)

E[runct,i =
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Figure 2-18: Comparison of truncation error as estinated as the final maximum value of the final coeiient
value (short dash) and error due to the changing deulated value of the lowest order term (long dashising
up to (25, 8, 25) Chebyshev collocation for 0.1®), 0.5C @), 1C(9¢), 3C (A) and 5C (%) for the cathode
variables. Note that the behavior of coefficientsnithe anode is similar.

solution. The coefficients of the higher order terohecrease monotonically with coefficient
number, with few exceptions. The solid phase pakabnverges rapidly, as expected due to the
small spatial variation observed because of thatively high electronic conductivity. The
electrolyte concentration does not converge agham the electrodes because of the greater
diffusion resistance requires higher order polyradsio estimate. Of all the variables solved for,
the pore wall flux converges the slowest due tohighly nonlinear and complicated nature of

incorporating Butler-Volmer kinetics. The movingifit of the pore wall flux shown in Figure



2-8 cannot be well captured using low-order polyrasfunctions, and requires more terms to
accurately track the behavior.

Convergence occurred more quickly for lower ratedischarge than for higher rates of
discharge. Diffusion limited problems have largeadients in the profiles of the all the variables
which require higher order polynomials to approxinaThe difficulty of calculating the
variables at high rates is shown by the sloweisrateconvergence and shows the importance of
using highly accurate methods for simulation ofrsognditions.

Similar qualitative trends can be observed fag thuncation error when using
cosine collocation as shown as the dash-dot Im&sgure 2-19. However, numerical errors limit
the number of collocation terms that can be usedthErmore, the maximum coefficient
magnitudes do not reliably decrease monotonicadlynmere terms are added. This lack of
convergence limits the accuracy that can be actHiasang cosine collocation.

The coefficient convergence error is more diffidoltestimate directly, but contributes to
the final error and cannot be ignored. The dashes lof Figure 2-18 and Figure 2-19 estimate
the variance error by comparing the maximum mageitof the lowest order coefficient (which

is the dominant term for all variablesp, , ,(t), as calculated usingN( M, N) collocation

compared to the largest order simulation perforrhed. (25,8,25) for Chebyshev collocation

and (13,4,13) for cosine collocation):

max(
t=0.1

Br,v,o (ti k)_tgo‘.tf Br,v,O ( [)"Imax)
Br,v,O (tj I\lmax) ‘

(2.63)

l0g,, -
t=0.1;
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Figure 2-19: Comparison of truncation error as estinated as the final maximum value of the final coeiient
value (short dash) and error due to the changing deulated value of the lowest order term (long dashising
up to (13, 4, 13) cosine collocation for 0.1®Y, 0.5C @), 1C(9), 3C (A) and 5C (%) for the cathode variables.
Note that the behavior of coefficients in the anodes similar.

In general, the coefficient convergence error s Isignificant than the truncation error.
However, the coefficient convergence error does dexrease as rapidly as more terms are
added, and tends to be less affected at increasedef: The exception is the solid phase
potential, in which the coefficient convergenceoemominates. This can be partially attributed
to the very low truncation errors experienced itinegting the solid phase potential which arises

from the very flat potential profile that existsthre solid phase.
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2.5 Extending the Parabolic Profile Approximation
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Figure 2-20: Simulated discharge curves when usingpectral methods to discretize the radial directiorwhen
using collocation (long dash), Galerkin (short dashand the hybrid method (dash-dot) for increasingévels of

refinement for 5C, 10C, 15C, and 20C. The solid lm is the discharge curve when usingN, =7 for

comparison. Note that the 20C case cannot be simtea using N, =0.

In the work discussed in this section, the solidageh concentration profile was
approximated as a second order polynomial atross the radius of the particle. This has been
shown to be valid at low rates and long times, ibutot valid for high rate® At high rates, a
boundary layer forms near the particle surface @/laerapid change in concentration exists while
the interior concentration profile is fairly flah ithe bulk of the particle. A parabolic profile
approximation cannot capture such a profile andgaen order method is required to ensure
accurate simulation. A mixed finite difference apmh has been used to calculate the solid
phase concentration at discrete points spaced attggcross the radius of the partidfeThis
can better capture the variation of the solid pltaseentration across the radius, but developing

higher or lower order approximations requires theation of the node points to be recalculated
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to determine the optimal spacing. Spectral methosiag Chebyshev series solutions can
calculate the radial profile of the solid phase aaniration with higher order accuracy to better
approximate the concentration gradients and thd pbhse diffusion resistances.

This is especially important at high rates of cleasghen diffusion resistances are
significant. At timet=0, a non-constant concentration profile existhaparticle as a numerical
artifact caused by finding consistent initial cdrafis to equate the flux at the particle surface
with the reaction rate while using the prescrilbb@tal conditions for the differential variables. A
flat concentration profile would be expected at Itleginning of charge/discharge, but that is not
consistent with the flux boundary condition. Theref one degree of freedom must be modified
to create a gradient at the particle surface tesfgathe boundary condition. Based on the
concepts of transport phenomena, the transientegiadreated by the application of the flux
boundary condition would initially only exist inthin boundary layer, with a flat profile seen in
the interior of the particle. However, a parabgrofile which satisfies the flux condition at the
particle surface is not flat, creating a significaifect near the center of the particle. The
instantaneous development of such a profile alse the important effect of inaccurately
estimating the surface concentration which direetfiects the modeled voltage of the cell,
leading to the discrepancies observed in Figur® atZhe beginning of discharge. Higher order
approximations can maintain a flatter profile thgbumost of the particle while satisfying the
imposed gradient boundary conditions. However, las $ystem continues to evolve, the
boundary layer extends to the center of the partal which point the parabolic profile becomes
a much more appropriate approximation.

In order to estimate the radial concentration jpepf series solution inis developed at

each collocation poinj, across the electrode, whepe=ﬁls the dimensionless radial position:
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N,+1

(X=X p 0= Y B, (§2,(0)  1=0.N, (2.60
i=0

With one of theN, +1 terms used to account for the flux condition@tl. The radial trial

functions, Z (p) are chosen as even Chebyshev polynomials

Z,.(p)=T,(p) (2.65)
Recall that Chebyshev polynomials are defined am région [-1, 1]. By using only even
polynomials on the interval [0, 1], the symmetryubhdary condition ato =0 is automatically
satisfied.

Note that a series solution is not explicitly reqdi across th&-dimension for the solid
phase equations. The solid phase concentrationriidsave a derivative with respectdto the
governing equations so discretizatiorxirs not required. Interpolation can be performedrdyu
post processing if greater resolution is requitésing a double summation for the variation in
both x and r simultaneously is possible, but increases the louyf the problem and the
computational cost of simulation. Furthermoresinot physically meaningful that the spherical
diffusion in one particle affects the diffusionather particles so that the form of discretization
given in (2.64) is preferred.

Several options to find the coefficients are coesed here based on the method of
weighted residuals discussed in Section B.2 in AdpeB. Orthogonal collocation can be used
in the radial dimension in a manner in the same asyescribed previously for thedirection.
However, if the solid-phase diffusivity is constaadross the active particles, the governing
equation for the solid phase diffusion Table 1-2ingear and Galerkin’s method is feasible as

analytical integrations can be performed. Here wseu$s the merits of using orthogonal
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collocation, Galerkin’s method, and a hybrid coditon method which retains the advantages of
the parabolic profile approximation used in thekbafl the work.
For the orthogonal collocation approach, the callimn points are again chosen as CGL

points. However, since only even Chebyshev polyatsmare used2(N, +1) CGL points exist

on the domain [-1,1]. Using the points which exmsthe positive part of the domain (which are
physically meaningful), the required number of rodke developed. Since the CGL points are
spaced more tightly near -1 and 1, using only bathe set results in more points clustered near
the particle surface. This is advantageous as adzoy layer develops at the particle surface,
especially during high rates of charge, thus hagreater resolution near the boundary better
captures the transient dynamics of the system.
Galerkin’s method is an alternative to orthogonallacation which uses the trial

functions as the weight functions in the methodwafighted residuals. Equation (B.4) from

Appendix B thus becomes

[ R(B, gomay, (1), X )Ty (p)dp =0 j=0.N, (2.66)

0

If the diffusion coefficient is constant across taglius of the particle, the governing
equation for radial diffusion is linear and the eigtation can be performed analytically.
Gelerkin’s method is an ideal choice because tlagght function minimizes the square of the
residual across the domdihHowever, needing to perform the integral in (2.86)rohibitive in
many nonlinear systems.

The final case considered builds upon the parabwiafile approximation by using
collocation to achieve higher order solutions wlegge gradients exist in the solid phase that are
difficult to approximate with low order polynomial®©ne of the advantages of the parabolic

profile approximation is that it directly tracksettaverage concentration in the solid particles,
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which is useful for determining the state of chagjethe battery, and ensures that mass is

conserved in the solid particles. The average auratton in a spherical particle is given as
avg 1 h 2 H
(6 9=2 6, (Xp. 97 do j=0.N, (2.67)
0

By using a mass balance on the particle, the &oolwf the average concentration is

given by

i avi - _ jr(X,t) 2
dtcs,rg(x,t) B—R (2.68)

Equation (2.68) is identical to Equation (2.2) fioe parabolic profile and, importantly, is
the same regardless of the number of terms us@d@d). This hybrid approach aims to maintain
the mass conservation built into the parabolicifgobut allows for higher order approximations
to be used. At high rates, the boundary conditiaine particle surface requires a steep profile to
meet the flux demand. In order to satisfy the dptigradient while maintaining the specified

average concentration, a change in the initiales@rtoncentration is required numerically.
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Figure 2-21: Root mean square error of the dischamy curve for 5C @), 10C@), 15C(¢) and 20C ¢) an
increasing number of terms in the radial directionusing collocation (long dash), Galerkin (dash dot)and
hybrid approach (short dash).

This large jump in concentration at the surfacedlly affects the calculated open circuit
potential, and can cause the parabolic profile @gpration to give negative concentrations in
the interior of the particle, which is not physigaleasible. Using higher order approximations
avoid this problem. Furthermore, the integration(2067) can be performed analytically if a
polynomial is used to approximate the solid phasgcentration, independent of the governing
equation. This is important as this hybrid approaah be used even in the case of nonlinear
diffusion coefficients, which is important when cemtration dependent diffusivities are

considered.
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Figure 2-22: Concentration profiles in the radial drection for a 15C discharge at the cathode-separat
interface at four equispaced times during dischargdor the hybrid method with for N, =0 (a), N, =1 (o),

N, =2 (0) and N, =3 (5%). The solid line is the solution forN, = 7.

Here the three approaches (collocation, Galerkind &aybrid) are compared using
(15,5,15) Chebyshev collocation across the thickmdéghe electrode, as this was shown to be a

converged solution in the previous section. Theiwalf N was varied from 0 to 7 for a 5C,

10C, 15C, and 20C rate of discharge. The dischemgees are shown in Figure 2-20 for the

three cases usinglp =0,1,2,3terms. TheNp =7 case is a converged solution and used as for
comparison, and the results achieved with = 7 are indistinguishable for the three different
methods considered here. Notice that the solutbamd with N =3 is nearly identical to the

N, = 7 solution. Figure 2-21 shows the root mean squaw ef the estimated discharge curve

using an increasing number of terms compared toNhe 7 solution. Notice that the error
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steadily decreases monotonically and additionahseare expected to further reduce the error,

but even forN =3 the observed RMSE is less than a millivolt ermrd 5C rate of discharge,

though the error is larger when greater dischaagesrare applied. The reason for this is two-
fold. First, larger gradients occur at higher ratefich require more terms to capture the
dynamics. Secondly, we can see in Figure 2-20ttteakerror is greatest early during discharge,
so that the error for the lower rates of charges geteraged out more so than the high rates.
Notice that there is not a substantial differencthe errors for the different methods used except

for the N, =0 case. For theN =0 solid phase approximations, the hybrid case cporeding

to the parabolic profile approximation gives thethresults. However, the error is substantial and
has the additional problem of predicting a negatiwecentration as seen in Figure 2-22 which
gives the predicted concentration profiles for diféerent methods for an increasing number of
node points at the anode-separator interface aseharge times for a 15C rate of discharge.
However, the hybrid approach does ensure that tadéals is conserved, which is not guaranteed
in the other approaches. This is improved for=1, which is a fourth order solution similar to
the result found in a previous watkin all cases, the low-order approximations do cayiture
the flat profile in the interior of the particle oever, the profile converges fairly rapidly fot al
cases, and b\, =2 most oscillations have died out except at the w@ginning of discharge.
At the at the beginning of discharge, the proftwdd be flat with an infinitesimal gradient at

the particle surface corresponding to the pore WaX, but such a profile cannot be captured

with a finite number of terms.

68



2.6 Conclusions

The porous electrode P2D model is a physically nmeguml model that can be used to
simulate lithium ion battery operation. Howevere tomputational cost of simulating the P2D
model using standard techniques is too high to tkzed in computationally expensive
operations, such as optimization and real timerobrit order to increase the feasibility of using
the P2D model in such applications, an improvedrretilated model was developed to reduce
the number of equations that must be solved tolat@battery operation.

The reformulation presented is robust enough tadsel for a variety of conditions with
limited assumptions to maintain the most accuratgsiss of the model. Although only a single
battery chemistry is shown here, this method hasnhbesed successfully for a number of
different chemistries across a wide range of playsparameters. This model thus allows an
efficient battery model simulation for use in cahtand optimization routines, as well as for
parameter estimation.

In order to reduce the computational cost of sithtaeach dependent variable was
approximated as series solution, either using mageetric functions or Chebyshev polynomials.
Although discretizing the system using orthogoralocation is more computationally intense
than an equivalent number of finite difference e¢mues, many fewer terms are required for
convergence so the net simulation time can be sztlumehile improving accuracy. Using
Chebyshev polynomials minimizes oscillations whatlows for more node points to be used for
higher rates.

For higher rates of discharge, the parabolic profipproximation for the solid phase
concentration is not satisfactory so higher orgercral methods were used. In order to develop

the higher order approximation, three approachas Wweed: a collocation approach, a Galerkin
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approach, and a hybrid approach combining collopaivith the volume averaging of the

parabolic profile approximation. It was found théte 3 different approaches were not
substantially different for most cases. For thedstorder approximations (which were generally
considered unsatisfactory for rates greater than 6@ hybrid approach gave the best
approximation of the voltage-time curve, but cadte$ a negative concentration in the interior of
the particle, which is not physically meaningfuhig'is avoided using more terms. Even using a
single additional term (corresponding to "& @rder polynomial) greatly reduces the error and
eliminates the problem of giving non-physical smns. Higher rates of discharge are more

difficult to calculate accurately, but using, =3 provides a converged solution for the cases

considered here.

The number of terms to use in the simulation of B2® is dictated by the application
being considered, as there is a tradeoff betweearacy and computational cost. The use of
spectral methods, such as Chebyshev collocatiafts she tradeoff to improve the accuracy for
a given computational cost. The number of collaratpoints used is dependent on the
computational resources available, required acguraomputational time, and operating
conditions. Furthermore, the design and materialsdun the manufacture of the battery can
affect the accuracy of simulation. In general, abods which increase the diffusion resistance
cause more variation in the dependent variablessadhe electrode or particles. For example,
thicker electrodes or larger particles increasediffasion length that the lithium must travel and
require more terms to accurately simulate. A mateor electrolyte with a large diffusion
coefficient would allow lithium to travel quicklynal would maintain a flatter profile (i.e. smaller

derivatives) which is easier to capture using feteans in a series solution.
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The simulation of a single discharge curve canaub@hly accurate formulation as the
difference between milliseconds and seconds igivelg minor. However, design optimization
requires the simulation of hundreds of dischargeesi These can be performed in a desktop
computer with significant computational resourceghewut strict time constraints. Thus, a
moderate number of terms can be used to give raboaccuracy. To achieve the same level of
accuracy in a finite different formulation, the coatational cost would be prohibitively expense.

The reformulated model described in this chapter been used by others to maximize
the energy density of a lithium-ion battery by nfguig design parameters, specifically
electrode thicknesses and porosifiéEhe work presented in rdfmaximized energy density
while ensuring that the cell provided power forpaafied amount of time for a given discharge
output. For high rates of charge, the energy dgngits maximized by minimizing the diffusion
restance; increasing the porosity and decreasinfgndss. Conversely, when the application had
a low demand, lower porosities could be used toegse the energy density, as having a high
power density is not required.

In contrast to design optimization, online contreduires quick simulation to optimize
the charging/discharging protocol on the order ofllisaconds. Furthermore, mobile
applications, such as electric vehicles, the coatputal resources are limited in order to
minimize cost and weight. Thus, using low order IBfshev series solutions are necessary in
such applications. This shows that such a refortedlenodel can be solved when computational
resources are limited and provides promise for usenline BMS systems to maximize
performance and reduce cost.

Work is being done in the MAPLE lab to incorporatee reformulated model into

microcontrollers with the ultimate of developingredel predicative control (MPC) scheme for
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use in battery management systems (BMS) in onlapdiGations. Incorporating the reformulated
P2D model into MPC schemes can improve the usezdpacity of batteries by allowing a
greater amount of the physical battery capacitybéo safely and reliably used. By better
understanding the internal behavior of the batteg conditions that lead to detrimental
behavior can be predicted so that the safety maucan be reduced. Using reformulated models
and improved simulation techniquég®*®advanced control schemes can be developed leading
to better utilization of any battery chemistry.

Using information on the state of charge and stétbealth of the battery determined
from a physics-based model, the BMS will modify theuts to optimize present and future
performance while ensuring safety. Therefore, a BMfch utilizes a detailed physics-based
model can better control the battery to optimizegyenance as opposed to a BMS that relies
solely on empirical models or tables. Electrochémisphysics and chemical engineering
principles determine the model’s accuracy in priaic the internal states, as well as the
significance of those states. The physics of thetesy dictate what is predictable and
controllable, however, the mathematics enaddd-timeprediction and control.

Recognizing this opportunity to improve the effioty and utilization battery systems
and to increase the viability and cost-effectivenes existing technologies for EVs., the US
Department of Energy (DOE) recently invested $3@vdévelop smarter battery management
systems and advanced sensing technologies to cieminpotential problems due to capacity
fade and safety concerns through its Advanced Mamagt and Protection of Energy Storage
Devices (AMPED) program under Advanced ResearcleBtAgency — Energy (ARPA-E). A
major goal of APRA-E aims to take technical achmeats from the lab and into commercial

applications. Washington University’s MAPLE Labaisecipient of one of the AMPED grants to
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improve Li-ion battery performance in electric vedbas by using the reformulated model

presented in this thesis.
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Chapter 3
Extending the Porous Electrode Pseudo 2D Model Ugin

Reformulation

This chapter contains excerpts (specifically in Séion 3.1) from the following journal article reproduced here
with permission from The Electrochemical Society:

P. W. C. Northrop, V. Ramadesigan, S. De, and V. RSubramanian, “Coordinate Transformation,
Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of
Lithium-ion Battery Stacks,” Journal of the Electrochemical Society, 158(12), A1461-A1477 (2011).

Chapter 2 discussed a model reformulation of theoym electrode P2D which
significantly reduced the computational cost dfilim ion battery simulation, while maintaining
high accuracy. This reformulation enables the dseeP2D model into applications that would
otherwise be too computationally expensive to fysiis use, such as online control,
optimization, and parameter estimation. Furthermtre P2D model has proven to be robust
enough to allow for the inclusion of additional gloal phenomena as understanding
improvest®?°9%8|n this chapter, the reformulated model is usedllmw for more complicated

physical phenomena to be considered for studyydney thermal effects and capacity fade.

3.1 Thermal Modeling and Reformulation of Lithium-lon Battery

Stacks

Accurately predicting temperature effects is esakrid ensure safety, especially in
applications where a significant temperature riseexpected®®® Including thermal effects
increase the complexity and fidelity of the modglibcluding more physical phenomena but
also increases the computational costs of simulaboth directly and indirectly. In addition to

the costs associated with increasing the numbenawks, the equations in the thermal model
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are more nonlinear and more tightly coupled becaisthe existence of thermal dependent
parameters which can further increase stiffnes® atiditional equations which govern the

thermal behavior are given in Table 3-1 with suppatal equations given in Table 3-2.

Table 3-1: Governing Equations for Temperature

Governing Equation | Boundary Conditions
Positive Electrode
oT
p_p - h(Tp _-I:o)
dTp a ﬂ an QX Q Q OoX Xl x=0
—=—A — |+ + +
Poee dt  ox| P ox np T revp T o oT, 0T,
I R
Separator
dT, o[ . oT, Ty e, = Ts bay,
s——~1| 2 S |4+
Ps p.s dt 6X|: S ax:l (POhm's Ts |x=|p+|S= Tn |X=|p+|5
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L (;TS _ . aaTn
X|x- + X x=I ,+
pn p,ndd-l;n :§|:ﬂ’n aa-l:]j|+(?rxn,n+cgrev,n-i_ ohm,r 8T e e
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OX |yt el P

In order to meet power and energy demands, lithmeells are often arranged in a
stack configuration. These stacks can be rathgeland can consist of hundreds of cells in
series or in parallel. Here an 8-cell stack is @nésd as a proof of concept which maintains the
coupling between all the cells within the stack #melfull physics based model with temperature
varying properties, and heat generation and digehtar each cell are calculated simultaneously.
The electrochemical equations used for the themmalel are identical to those given in Table
1-2 with the addition of three more governing eguet to model the temperature in three
regions, as well as nonlinear electrolyte diffuséomd electrolyte conductivity coefficients which
are functions of concentration and temperatureedas work done by Valgen et’dlThese

additional equations are shown in Table 3-1 andeTak. This is computationally difficult and
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an efficient method is required for simulation, amel believe this has slowed the development of
such a stack model.

Bernardi et af® used an energy balance to develop a general thenodel for battery
operation by considering the various modes of geatration within the cell. Other researchers
have built upon this model by incorporating heategation effects during battery discharge for
specific systems and conditidfi§° Kumaresan et dP used the model developed by Gu and
Wand® to couple temperature to other variables for glsioell and validated the model with the
results obtained experimentally.

Pals and Newmaf® modeled the temperature profile of a multi-cedic&t by simulating
the behavior of a single cell, with lithium foil abe anode, to determine the rate of heat
generation and different temperatures and stateharfge. They then modeled a full stack by
considering the effect of heat transfer betweefs gelthe stack by using an approximation for
the heat generation in each cell. In this way, itaividual cells were decoupled and the
calculations for an individual cell were performeadependently of the temperature calculation
for the entire stack® Chen and Everi5”? performed a thermal analysis of a lithium-ion eait
stack in the context of preventing thermal runawegctions. However, they simplified the
model by incorporating empirical discharge data aodstant physical parameters into the
model.

Further complications also arise due to the presefcurrent collectors located between
each pair of cell sandwiches, as well as at botls ef the battery stack. These current collectors
provide additional thermal mass to the system witigh slow the heating of the battery and

should be considered in any comprehensive thertaek snodel.
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Table 3-2: Additional Equations for Calculation of Thermal Effects
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The same orthogonal collocation reformulation apidtgon method presented in Chapter
2 for the isothermal battery simulation was usedréormulation of the thermal model for a
battery stack. The coordinate transformation caaxtended to add multiple cells to a stack. The
inclusion of current collectors in the model ingesathe number of regions which are considered

without a significant increase in the number ofiafales.
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Figure 3-1: Schematic for a multi-cell battery stak

A challenge in the transformation occurs becauseetts one more current collector than
there are cells; there is not a one-to-one corredgace between the current collectors and cell
sandwiches. The transformation is achieved by denisig the current collectors as additional
regions in which only the temperature variableoasidered. The only other variable which is
applicable in the current collector is the solicaph potential, which is assumed to be constant
and equal to the end point potentials of the adipekectrodes. The primary challenge arises in
formulating the equations and boundary conditiona consistent manner in the battery stack.

The approximate expressions for temperature wevelolged with cosine collocation in
the same way as discussed in Section 2.3.1 footther variables. Both linear and quadratic
terms are included in these approximate expressiormder to maintain generality so that
various thermal boundary conditions can be useth as constant temperature, constant flux, or
convection, as well as continuity of temperaturel af heat flux between the regions. The
current collectors are approximated in a similarnn@. Since the current collectors are
constructed of highly conductive materials, thepgierature does not vary significantly across the
current collectors, and no cosine terms are nedde@n accurate approximation. A single
constant term is adequate and must be solved fioig ube governing heat equation. The

inclusion of the current collectors minimally inases the computational load, as only a small
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number of variables are added. For example, ant-eghstack has 298 DAEs that must be
solved for if current collectors are ignored. Thatreases to 307 DAEs when the temperature
within the current collectors is considered.

Model simulation of full battery stacks providesdaibnal challenges which can be
addressed by using this reformulation and orthog@oe#location followed by a numerical
solution to solve the time dependence. It is nergs® consider a full multi-cell battery stack
when thermal effects are included, as a temperaitoBle across the battery can affect cell
performance. In the case of isothermal operati@thecell is exposed to the exact same
conditions which cause each individual cell to heh@entically. If this symmetry is broken, for
instance by forcing a temperature gradient actossell stack, the cells may behave differently

from each other.
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Figure 3-2: Temperature at the center of an 8-celbtack during a 1C rate of discharge subject insulatd
conditions (solid line), a heat transfer coefficienof 1W/m2 (long dash) , a heat transfer coefficidrof 10\W/m2
(short dash), and fixed temperature (dash-dot) bouttary conditions

A schematic of arN-cell stack is given in Figure 3-1, where each @aseparator-
cathode group constitutes a single cell, with alwm current collectors located between

adjacent cathodes and copper current collectoeddddoetween adjacent anodes. Note that both
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electrodes at the end of the stack are anodeseactd successive cell reverses the order of the
electrodes. In the configuration studied here,d#lés are connected in parallel so that the same
voltage is applied at each cell. Therefore, if astant current discharge is applied to the entire
battery stack, the current provided by each indialccell may vary with time. At the boundaries
between the electrodes and current collectorseléerolyte concentration is considered to have
zero flux, whereas the temperature and heat flexcantinuous. Additionally, the solid phase
potential drop between the anode/current collectterface and the cathode/current collector
interface is the same across all cells. This cauile behavior of each cell, so that all cellhia t
stack must be solved simultaneously. Because ofatige number of equations that arise from
the coupled thermal electrochemical multi-cell ktasodel, reformulation was performed to
reduce the number of DAEs for efficient simulation.

In order to perform the stated transformation omMasell stack with current collectors, it
was necessary to mathematically treat alternatiely sandwiches differently. For the odd
numbered cells, the entire sandwich consisted obtal of five regions: a copper current
collector, the anode, the separator, the cathaa,aa aluminum current collector. The even
numbered cells only consisted of the cathode, ¢parator, and the anode. Additionally, the odd
numbered cells were flipped so that they were tated in a cathode-separator-anode
configuration so that all cells are consistent.idalf copper current collector (which is present
regardless of the size of the stack) was considem@ebpendently of the individual cells. This
results in a system in which the positive electrtateeach cell is defined on the region [g},
the separator on the regiol, I+, and the negative electrode on the regipml §, 1+ s+l ]
(the current collectors, where applicable, are immed outside of this range). This simplifies

the problem by eliminating the need to keep traicthe location and orientation of each cell in
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the entire stack during simulation. For the intedells, the boundary conditions at each end of
each cell are determined by continuity. It musnb&d that the application of the continuity of

flux requires the direction of the flux to be resed in adjacent cell to account for flipping every
other cell to achieve a consistent orientation. étigs is done, each cell is transformed to a
single region, as described in Section 2.2 formglsi cell. This reduces the entire stack to a

single region defined from [0, 1], and the stack ¢t® solved in the same way as described

previously.
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Figure 3-3: Temperature profile across an 8-cell thium ion battery at the end of discharge when thends (a)
are maintained to be a fixed temperature differencef 10 K and (b) are exposed to a heat transfer cffieient
of 1 W/m?K and an ambient temperature of 298 K

Extending the model to include the effects of terapee in a multiple cell stack can
allow for more detailed simulation, albeit at asreaased computational cost. Figure 3-2 shows
the temperature rise at the center of the batteith warying values of the heat transfer
coefficients at the end of the stack. For the iat®d (=0) case, there is a 55 K temperature rise
within the battery, whereas there in no discerniel@mperature rise when the battery ends are

held at fixed temperaturédn£). In this case, the battery is sufficiently thion(the order of
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approximately a millimeter) that there is not andigant temperature profile within the battery.
Figure 3-3(b) shows the temperature profile of azel8 stack when the ends are exposed to a
heat transfer coefficient of 1 Wfi. Notice that the observed variation in the batisra small
fraction of a degree. However, for large batter@@san two and three dimensions, the possibility

of creating a hotspot becomes more significant.
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Figure 3-4: Current-Time curves for the first cell (solid line) and last cell (dashed line) within ar8-cell stack

with an applied temperature gradient undergoing costant current discharge (1C) using the coupled thenal
electrochemical model.

Figure 3-3 (a) shows the temperature profile wiin8-cell stack when the temperature
of each end of the multi-cell stack is fixed toateetemperature decrease of 10 K across the
battery. The discharge current for the first anst keell in an 8-cell series stack under these
conditions is shown in Figure 3-4. Notice that tugrent provided by the individual cells are
not identical throughout discharge. while eachvittial cell is at the same voltage. This causes
the individual cells to behave differently, resodfiin the subtlety different current curves
observed in Figure 11. The higher temperature effitist cell causes it to initially discharge at a
faster rate than the last cell. However, by the @ndischarge, the cooler cell provides a greater

82



current because it exists at a greater state ageh&igure 3-5(a) shows the concentration profile
across the entire battery in the transformed coatds for each individual cell, which further

demonstrates how temperature can affect interrtedryacharacteristics. Figure 3-5(b) shows the
concentration profile across the entire stack ituma coordinates at the end of discharge. Note
that there is no electrolyte in the region of therent collectors, leading to a discontinuity at
those points. In this example, the stack is sudfity small that internal heat generation effects

do not significantly alter the temperature profileen the ends are held at a fixed temperature.
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Figure 3-5: Concentration profile across an 8-celstack at the end of discharge for transformed cooridates
(left) and natural coordinates (right). (o) denotes the first cell and§) denotes the last cell in the series

However, for larger stacks, higher applied currantl/or different boundary conditions, the
temperature profile may be significantly affectedibternal heat generation leading to greater
behavior variations among the individual cells withan arbitrarily forced condition. The other
spatial directionsy and z, are important for thermal models at high rates] the coordinate
transformation and the orthogonal collocation apphois still valid. A detailed pseudo 4D

model §, y, zandr) in stack environment can be reduced to a unitafeX, Y, Z varying from 0O
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to 1 in dimensionless transformed coordinates gdaaed earlier. The proposed approach is
also useful for developing models for optimizatiohgraded electrodes or materials wherein
control vector parameterization converts a giveglsi region td\ regions to represent discrete

functions of porosity, particle size or shape.

3.2 Simulating a Two-Dimensional Lithium-lon Cell

In addition for allowing the simulation of multidtestacks, the reformulated model can
also be used to study two-dimensional cells. Thadsdrd P2D model only models variation in
the direction perpendicular to the electrodes,has ts the primary direction of ion transport
under ideal conditions. However, a variation in direction parallel to the electrodes can occur,
for example, due to manufacturing defects, or défiee thermal characteristics at the top and
bottom of the cell. A pseudo 3D model can be usedctount for these occurrences. However,
including an additional dimension greatly increates computational cost. A finite difference
approach with 50 node points in each electrode3®ndode points in separator in thelirection
and 25 node points in thedirection results in a system of nearly 15,000 DAE&t must be
solved for a single celif the parabolic profile is used in the solid phd$ea more detailed
discretization is used for the solid-phase diffasithe number of equations will be even greater.
Thus, much of the work done by researchers mod#hegnal behavior in batteries have used a
1D modet® or decoupled the thermal profile from the eledierical reaction§?2%:3>%97

For example, Evans et dl.modeled heat generation in cylindrical cells usiogal
current density which was decoupled from the oVérarmal effects. Kim et dft simulated a
large format lithium-ion polymer battery using paeters from small cells, but maintained a

one-way coupling between the thermal and electioated effects (i.e. the electrochemical
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reactions and current flow contributed to the tharealculation, but the temperature did not
affect electrochemical behavior). They extended tmiodel for electric vehicle applications
using constant power charge/discharge protdColaui et al’® studied heat generation in
prismatic and cylindrical cells using a finite elemb analysis with resistive heating in each
element. Kim, et al’ developed a Multi-Scale Multi-Dimensional (MSMD)rel to study large
format lithium-ion batteries. This MSMD model simtéd the electrochemical behavior at the
particle, electrode, and cell domains, with appiedprcoupling between the scales. This allowed
multiple cell designs to be tested, while only gsia 1D model for the electrode domain
(analogous to cell sandwich level), but being ablmodel the temperature in 3D.

Gerver and Meyer$® performed 3D thermal simulation of lithium bateriin planar
configurations by arranging several 1D porous ebelet models in series and a grid
configuration. Thus, all current flow in the cellrlwich was in the direction perpendicular to
the electrode, and lithium-ion transport in theadiron parallel to the electrodes was neglected.
The different 1D nodes were coupled at the curcefiectors, which were modeled as a system
of temperature varying resistdfsThis improves the computational efficiency as swj\several
1D models is simpler than solving a full 2- or 3ns@nsional model, while allowing for some
effects of a temperature profile to be analyzedCMary, et al’ extended the work of Gerver
and Meyers by applying a similar approach of usirgeries of 1D porous electrode models to
spirally and prismatically wound cells, which atarglard configurations for commercially made
lithium-ion cells, by accounting for the effects afirvature and increasing electrode surface
areas in the outer layers. They were able to mibdeéffect of the number and positions of tabs

on heat generation but again neglected ion trahgmor current density in the direction parallel

to the electrodeS. Christensen et & coupled the 1D dualfoil modé&l in a Fluent
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environmertt’, allowing a fine mesh grid to be used for the terapure simulation while using a
coarser mesh for the electrochemical reactiongagh time step, the local temperature was used
to determine the behavior of each electrochemidaiment, by using a Newton-Raphson
approach to solve for the voltage to achieve thal tepecified current (with voltage and
temperature being the only variable to couple the electrochemical elements). Once the
electrochemical elements reached a converged eojuhe heat generation was calculated from
the current density and fed into the thermal nf8sfhis approach allowed parallelization of a
multi-core processor performed to solve the systaprove computational speed of the entire
system™ Tourani et af* coupled a series of 1D porous electrode modeleveiulating a 2D
thermal model, with heat generation occurring duée electrochemical reaction and electrical
resistances and experimentally verified their rissfar a lithium polymer cell, and a lithium iron
phosphate cell. Xu et &. performed a two-dimensional modeling using COM30Wvhich
accounted for mass and charge conservation indotbnsions and examined the effect that tab

position had on the temperature profiles.

Table 3-3: Governing equations of the porous eleade model in
higher dimensions

Governing Equations
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Table 3-3 shows how including additional dimensiorake simulation more complicated
and is a generalization of the governing equatmfthe porous electrode model given in Table
1-2 to higher dimensions. Specifically, the chabgdance must be represented asaogder
PDE in the 2D formulation. When only a single dirsien is considered, the charge balance
equation can be simply integrated to give the totatent flowing through the cell, resulting in
the equation given in Table 1-2. Further difficedtiarise when applying the boundary conditions

of the solid phase potential, , at the current collector/electrode interface.eNibtat the current
flowing out of the cell is based on the derivatofed, , in a manner analogous to heat transfer.

In a one dimensional model, the flux @  can thespecified at the boundary. However, in a

multidimensional model, such an approach neglebts gossible variation parallel to the

electrodes. For example, more current may flonodaihe top of the cell than out of the bottom.

3.2.1 Two-Dimensional Stack with Simplified Bouydaonditions

The reformulation strategies discussed in Chapttar 22 one dimensional case can be
applied to the two dimensional case presented oee details on performing collocation in
two dimensions is given in Appendix B. In this settson we consider a two-dimensional 2-cell
stack with a height of 1mm. The small height im@®whe stability and provides an initial proof
of concept for a 2D cell, but limits the variatiavhich can occur in the-direction. The
boundary conditions used are given in Figure 3-@ih whe realization that the solid phase
boundary conditions neglects the possible variatibourrent in they-direction, but is used as
initial approximation of a 2D model. Relaxationstlois assumption are discussed later. Note that

continuity boundary conditions are applied at tleeteode/separator interfaces.
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Figure 3-6: Boundary conditions used as an initiahpproximation of the 2D model

Voltage

Figure 3-7: Discharge curve simulated using the 2inodel (solid line), a 1D model with applied temperare
conditions (long dash line), and a 1D model with adbatic conditions (short dash line)

Note that the boundary conditions for temperatueer®t identical at the top and bottom
of the cell, with the bottom being at a specifiednperature while the top is insulated. This

breaks the symmetry in thedirection and forces variations to exist yn The simulated
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discharge curve for a 1C discharge curve of a Rhmgtery stack is given in Figure 3-7. For
comparison, Figure 3-7 also shows the predictechdige curves using a 1D model.

As the 1D model cannot account for temperatureatian in they-direction, two cases
were considered: insulated conditions and applesdperature conditions. For a single 1C
discharge, the effect of the temperature profiiegy in Figure 3-8) is rather small. However,
even in this case, there is a clear differencéénperformance between the two 1D simulations,
with the insulated case experiencing a slighti\nhbigvoltage due to the decreased resistance that
occurs at higher temperatures. Furthermore, then@Bel predicts a discharge curve between the
two extremes, as would be expected since the 2Demscdhot completely insulated, but there is

enough thermal resistance to allow for a tempeegtuofile.

2084 .. :
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Figure 3-8: Temperature profile (left) and concentation profile (right) at the end of discharge of atwo-cell
2D stack

Additionally, the temperature profile can induceraiation iny-direction of the other
variables, albeit a minor variation. Figure 3-9whdhe solid phase potentials in the anode and
cathode. Note that Figure 3-8 and Figure 3-9 usedsionless values for the positiorxiandy.

Though the magnitude is small under these condifiomder more extreme conditions or for

89



larger cells these variations could significantffeet performance by increasing or decreasing

resistance.
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Figure 3-9: Solid phase potential profile in the ande (left) and cathode (right) at the end of dischge of a

two-cell 2D stack (note that the anode exists fronf0,1] and [5,6], the plotting algorithm automaticaly
connects the two regions)

3.2.2Two-Dimensional Thermal Lithium-lon Cell withvariation of Current
Density

The 2D model presented in Figure 3-6 does not denshe possible variation in tlye
direction for current density, instead specifyinganstant flux at the current collector. Under
most conditions the variation is likely to be minbut under certain circumstances, specifically
those which result in a thermal gradient acrosshthight of the battery, the current density may
not be constant, which can occur in large formdiscés an initial approach at relaxing the
constant current density assumption, a constamemucharge (or discharge) is simulated by
requiring that thentegral of the current density across the current colledoa constant, as

demonstrated in Figure 3-10 and given by

LoD,
!0

x =l app (3.1)
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Thus, although the current density may vary atedgifit points iny, the total current flowing
through the cell is constant. However, the boundawndition given in Equation (3.1) is not
adequate to fully characterize the system, as &niten number of profiles can satisfy the
condition. Therefore, the assumption is made thiel §ihase potential at the current collector
interface does not vary across the height of thie aéhough it is allowed to vary with time.

Mathematically this can be expressed as:

@, (x=0,y,t)= f(t) (3.2)
This assumption is considered valid for most coodg as the high conductivities of the current
collectors (typically constructed of aluminum angpper) which ensure that any variation in

voltage potentials is minimal. Thus, the assumptiba constant (iry) is a better assumption to

use than the constant current density assumptiorost applications.
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Figure 3-10: Alternate boundary conditions for the2D battery model
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Figure 3-11: Temperature (left) and current density at the cathode-() and anode-f) current collector

interfaces (right) for a 1C discharge at 0% DOD (slid line), 33% DOD (long dash), 67% DOD (short dash
and 100% DOD (dash dot)

The boundary conditions given in Equations (3.1d éh2) have been used to solve for
the 2D battery model using reformulation techniquesis approach is robust and allows for
implementation of porous electrode models for agpion in which variation across the height
of the cell is expected to play a major role intéat life and performance. The boundary
conditions shown in Figure 3-10 can result in larg@perature increases within a sufficiently
large cell lithium-ion cell, even when only a 1Gcharge is applied. Note, importantly, that the
current collectors and battery casing, etc. ardeeégd in this model. Including those would
likely reduce the magnitude of the temperaturedase by increasing the thermal mass of the
system. Also, the current collector, being thergnathnductive, would facilitate improved heat
transfer across the height of the cell. The tempesancrease is shown in Figure 3-11, as is the
current density at both electrode-current colleatterfaces, for a cell with a height of 5cm (in
contrast to the 1mm height used in the previousesttipn). The temperature variation across the

thickness of the electrode was negligible, as leas lobserved in the 1D model (Section 3.1).
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Here, the temperature profile yophas a small but noticeable effect on current derier
most of the discharge time. Specifically, areathefcell which are at a higher temperature have
a slightly higher current density. A higher tempera facilitates improved diffusion by reducing
resistance, and directly increases the rate oftimacHowever, at the end of discharge, the
current density is provided principally near theplagal temperature boundary, and at a much
higher rate. This shows that even though the sell @hole undergoes only a 1C discharge, the
local current density can reach well over 2C intaiarregions of the cell. This relatively rapid
discharge in small region of the cell can causeesed SEI growth as well as increasing the
local heat generation which in turn causes a momapticated thermal profile to arise and
possibly causing hot spots and further damageeaheThis localized heat generation is partially
responsible for the oscillations which are obserfeedhe final temperature curve in Figure 3-11,
though the limited ability to use a large numbercoflocation points also contributed to the
inaccuracy. Here, (4,1,4,3) collocation was usedsfmulation (that is, using up to & #rder
Chebyshev polynomial in the electrodes! drder in the separator, and® ®rder in they-
direction). The changing reaction zone is showrliely in Figure 3-12 which shows the local
pore wall flux as contour plots. At the beginnirfgdescharge there is no appreciable variation in
they-direction, only across the thickness of the etet#r as expected from Figure 2-8 for the 1D
model. However, as a greater temperature gradseestablished, the variation of the pore wall
flux across the height of the cell is more sigmifit that across the thickness, as shown in Figure
3-12 (b) and (c). By the end of discharge, onlyralsfraction of the electrode volume (near the
cold plate and separator) provides the majoritycwrrent demand. The spike in local current
density at the end of the discharge can be at&tbtd the saturation (or depletion, at the anode)

of lithium in the warmer areas of the cell. Thusgions which would not otherwise be favored

93



due to the thermal conditions become favorables dibe reaction for thermodynamic reasons.

Figure 3-13 shows the local SOC in the cathode.
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Figure 3-12: Contour plots of the pore wall flux h the cathode at 0% DOD (a), 33% DOD (b), 67% DOD

mo
(c), and 100% DOD (d). Note that the contour linesre in units of a >

m's
current collector interface and y = 5corresponds to the fixed temperature boundary condion.

. X=0 corresponds to the cathode-

Figure 3-13 (b) and (c) show that in the midst istharge, the SOC varies significantly
in both thex- andy- directions, and that the variation across thgltemirrors the gradient of
temperature seen in Figure 3-11. Ultimately, FigBuE3 (d) shows that there is a region of the
cell adjacent to the current collector and neardbid plate which is significantly underutilized.

In this region, the diffusion and ohmic resistargat its highest point in the electrode. It istbot
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cooler, directly limiting lithium diffusion, and fthest from the separator, requiring more current

to be carried in the electrolyte.
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Figure 3-13: Contour plots of the local SOC in theathode at (a) 0% DOD, (b) 33% DOD, (c) 67% DOD, ash
(d) 100% DOD. x =0 corresponds to the cathode-current collector intéiace and Y =5 corresponds to the
fixed temperature boundary condition.

Although these give good results, the battery maidn by Figure 3-10 is not fully

inclusive as the variation of potential across lthéery height is neglected. A natural extension

would be the inclusion of the current flow throutpe current collectors in the model, as shown

in Figure 3-14. Continuity of the solid phase paoirand flux would have to be applied at the

current collector/electrode interfaces. This woualibw for variation of both potential and

current density at the current collector-electradeerface. The current out of the current
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collector could be approximated as having a comdtar at the tab. This formulation would
neglect the possible variation in current densaross the thickness of the current collector, but
that variation is expected to be negligible dughtohigh conductivity and small thickness of the

current collectors.
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Figure 3-14: Proposed boundary conditions for thealid phase potential in a 2D model with current cdectors
included.

3.3 Capacity Fade Due to Growth of the SEI Layer

As batteries are repeatedly cycled, the overalaciy is reduced. One mechanism of
capacity fade is the growth of the solid electrelyiterface (SEI) layer on the graphite surface.
Having capacity fade mechanisms is essential ferldhg term life simulations. As life studies
of batteries require many cycles to be simulatedpormulation can be a useful tool for

performing such studies.
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3.3.1 Development of an SEI Reformulated Model

Here we develop a reformulated model for SEI growyhconsidering reduction of the
solvent (typically ethylene carbonate) to be resjiue for increasing SEI layer thickné&sThis
model assumes that the solvent molecules, ethydangonate, must diffuse through the SEI
layer to react with lithium at the active matersairface to create a layer of lithium ethylene
dicarbonate. The overall rate expression is giveSdafari, et af? is

2EC+2Li—— (H,0CQL ), (3.3)

There is not a clear consensus in the literatureceming the rate expression of the SEI
growth, although most are variations on Butler-Veinkinetics, with different prexponential
dependences on the lithium and solvent concentr&tid ®° This allows for comparisons to be

made among the different mechanisms. The firsttkirexpression examined from the work of

Pinson, et at>:

. o ,. .
= K 2%exp ——| - D, — Uy ——2( .+ _
Jsei seCsol; {FRT[ 1 27 YsEl Ko ( I JSEl)jJ (3.4)

Equation (3.4) results in a diffusion limited reaant for the parameters provided in
Pinson, et al’. The equilibrium potential valud/sg is not well known and values of 0.£%%°

and 0.8 ¥*8 can be found in the literature. Another model aered here was developed by

Ramadass, et &.and postulates kinetically limited SEI growth:

. a o ,. .

Jsei :_ksa ex[{ﬁ-(q)l_q)z_u sa‘;( )it SE)j] (3.5)
Safari et af? gives another kinetic expression based on thergstion that the reduction of the
solvent if the rate limiting step in the mechaniskhis results in the following rate expression

for the SEI layer growth.
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, a o ,. .
Jsei = _k3E|Cso|eXF{ﬁ-£CD1_CD2__( ht Jsgl)]j (3-6)

Ksel
Note that Safari, et &f. neglectedU.., and rather choose to incorporate itseviato the rate

constant.
The pore wall flux given in Table 1-2 must alsorbedified to account for the resistance

caused by the SEI layer. This resistance is caghiaréhe final term in Equation (3.7).

i =2K,0%C | Gan Clg) sin{%[@l—%— U2 (j,+] SE')H 3.7)
Ksei
Although Safari, et &° and Ramadass, et &F applied their fade mechanisms to the single
particle model, reformulation makes it feasibleut® these models in the P2D model. Including
the growth of the SEI layer into the P2D model issttates the addition of more dependent
variables and governing equations, as well as w@figexisting governing equations. Note that
this only directly affects the conditions in theodme, and is not considered on the cathode.

Regardless of the mechanism chosen, the growtiet8El layer is given by

@ —_ jSElM SEI (38)
ot Psel

Equation (3.8) is valid for cases in whioh << Rp,n. A more accurate formulation which

accounts for the spherical nature can be usedslg@nerally not necessary as other assumptions

of the model are likely to fail for cases in whigh<< R, | does not hold.

Developing a reformulated model with SEI growth tendone by using series solutions
to represent the rate of the side reaction andknless of the SEI layer across the electrode in a
manner similar to the other variables as givenhager 2. This allows the variation of the SEI

layer to be studied across the electrode. The rdetiioveighted residuals can be applied to
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Equations (3.4)-(3.5) and Equation (3.8) to detaenb coefficients of the series solution to be

found. Thus, considering SEI layer growth increabesnumber of governing equations by two
and the total number of DAEs B3N, +1) over the base P2D model.

Importantly, it is the concentration of lithium asdlvent at the active material surface
that determine the rate of reaction for both lithiintercalation. As both the solvent molecules
and lithium ions diffuse through the SEI layer, BEIl layer provides a resistance between the
active material and the electrolyte. This resistagauses a variation to exist between the
concentration at the active material surface antha@ielectrolyte interface. This is important to
consider when modeling the system as the elec&ralghcentration external to the SEI does not
directly dictate the rate of reaction. Therefohe toncentration profile for each species must be
calculated in some form.

The diffusion of both species can be modeled usiieg’s law. Again using Cartesian

coordinates a® << R  this is given as

2

OCey -D 0" Co, @ OCqg
ot X ot oOx

(3.9)

Where the final term of Equation (3.9) accountsdny convective effects due to the outward

growth of the SEI layer. Note that the convectigart can be directly rewritten using Equation

(3.8) for the SEI layer growth. Boundary conditicmisthe particle surface and the electrolyte
interface are required to model the transport ef $pecies across the SEI layer. At the SEI-
electrolyte interface the concentrations within tBEl layer are specified as equal to the
electrolyte values. At the active material surfabe, rate of reaction of both species must equal
the rate of diffusion to the surface. For the sotugis is given as

aCsol |

SEl, sol ar

(3.10)

=R, 1 sEl
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Since lithium is consumed in both the intercalatieaction and the SEI formation reaction,

the diffusion of lithium at the active material faoe must satisfy both reactions:

Li*

DSEI,LF or |r:R,,,n:jSE|+jn (3.11)

Importantly, jSEldoes not contribute to the intercalation of lithiumthe graphite, and the

boundary conditions for the solid phase (see Tdbl) remain unchanged. Ratheisa

represents lithium that is irreversibly removedirthe system.

If a linear profile is used to estimate the vaaatiof the lithium and solvent species
within the SEI, no additional equations are nee@sdhe boundary conditions described above
are sufficient to provide the concentration at $heface. This gives the solvent concentration at

the surface to be given by

CsoI,SEI = Csol elec JSEI o (312)

DSEI, sol
Where G, geds the concentration of solvent in the bulk elelgtem Similarly, the concentration

of lithium ions at the active material surface t&ngiven by

c =C _Jsetlng (3.13)

Li*,SEI Li* ,elec
SEI, Li

Appling Equations (3.12) and (3.13) to the reactiate equations increases the complexity
of the resulting DAEs and increases the couplinthefsystem by directly considering diffusion
resistances.

Equations (3.12) and (3.13) assume a linear praofilthe respective species across the SEI
layer. This is valid in a pseudo-steady state 8anafor example if the rate of diffusion is faste

than the growth of the SEI layer and any changeeaction rates. If a more detailed parabolic
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profile is used to track transients, a volume agedaapproach can be applied to Equation (3.9)
to track the average concentration within the Sich an approach better captures the behavior
within the SEI layer. However, including a term fooncentration in the SEI layer increases
overall computational costs, even in ways that Wt at first be apparent. For example, the
governing equation for the electrolyte concentratioust be modified. Rather than the removal
of lithium from the solvent (given by the generatiterm of the lithium-ion mass balance
equation in Table 1-2) being directly equal to fae wall flux, it must be equated to the
diffusion of lithium into the SEI layer. In this wq a linear profile is used exclusively for the

sake of computational efficiency and stability.

3.3.2 Effects of SEI Layer Growth
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Figure 3-15: SEI layer growth over 10,000 cycles faviechanisms A(c), B(o), and C@A) . The
upper lines represent the area of the electrode nezst to the separator while the lower lines
are the area nearest to the current collector.

The growth of the SEI layer is studied by simulgte lithium ion cell over multiple
cycles. Here a single cycle consists of a constanent charge to a specified cutoff, constant

potential charge at the same voltage (with thel tokearging time is constrained to 7200
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seconds), followed by a 1000 second relaxation eol@efore undergoing a constant power
discharge. In this analysis, the diffusion limitedse (Equation (3.4)) will be referred to as
Mechanism A, the kinetically limited case (Equat{@b)) will referred to as Mechanism B, and
the solvent limiting case (Equation (3.6)) will keferred to as Mechanism C. The parameters
were chosen to be consistent with the source da&gmeapossible while providing results that can
be directly compared by ensuring that the SEI ldhekness between the simulations where
within an order of magnitude.

Figure 3-15 shows the growth of the SEI layer @000 cycles (a bit over three years of
continuous cycling) for the three different reantimechanisms at the first and last collocation
points. Importantly, note that the growth of thel &yer is self-limiting; the rate of growth is
greatest at the beginning of life, but decreasethadattery ages, especially for the diffusion

limited case given as Mechanism A.
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Figure 3-16: SEI thickness across the anode at tlend of 10,000 cycles for
Mechanisms Ap), B(o), and CQ).
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Figure 3-17: Discharge curves for Mechanisms A(aB(b), and C(c) at cycle 1 (solid line), cycle 2500ong
dash), cycle 5000 (short dash), cycle 7500 (dash)jJand cycle 10000 (dash double dot). Subplot (dhows the
discharge curve at cycle 10000 for Mechanisms A(slline), B(long dash), and C(short dash) comparedtb
the initial discharge curve (dash dot)

A thicker SEI layer increases the diffusive resista of the solvent molecules to the
active material surface, which directly slows theaation. A thick SEI also increases the
electrical resistance between the solid and elgtéravhich affects the overpotential which
arises in the exponential term of the kinetic egpi@n. Figure 3-16 explicitly shows the final
profile of the SEI thickness at the end of 10,090les across the anode. There is very little
variation in Mechanism A as the diffusion of solvén the limiting factor in that case, which
does not vary significantly. However, for the mameetically limited cases, the variation across
the electrode is rather large. During cycling, plogtion of the electrode nearest to the separator
is most reactive (see Figure 2-8) due to the greaterpotentials which exist. This leads to

greater SEI formation near the separator when coedp® deep in the electrode. This suggests
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that designing and operating lithium-ion cells tdigate the overpotential could minimize SEI
layer growth.

The discharge curves for each mechanism are showigure 3-17, which shows both a
reduction in capacity and a reduction in voltaghe TSEI layer has a two-fold effect on the
battery performance. Any lithium that is boundhe SEI layer as lithium dicarbonate cannot be
recovered in a later cycle. Thus, the growth of$iig layer directly contributes to a reduction in
available lithium and thus capacity. The SEI lagéso increases the resistance of transfer of
lithium from the electrolyte to the electrode (ande versa) as well as increases the electrical
resistance by reducing the overpotential. This thaseffect of reducing the voltage available

during discharge.
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Figure 3-18: Cell capacity (upper lines) and totatapacity lost (lower lines)
for Mechanisms A(c), B(m), and C(A).

Figure 3-18 shows the cell capacity as a functiboyale number. Note that the charge
and discharge capacities are indistinguishableh@s dcale as the columbic efficiency of any
single cycle is over 99.99%. The cumulative capaldst is also shown, which is significant

after a few thousand cycles.
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3.4 Conclusions

The versatility of the porous electrode model afiofer the inclusion of additional
physical phenomena, which is critical for safetyl dife considerations. However, the inclusion
of additional physical phenomena can greatly irm@e@omputational costs, both by requiring
more equations, and by increasing the coupling @mexisting equations. Thus, a reformulated
model can be used to simulate such models. Herdisoeissed the inclusion of temperature,
which has important safety consequences, and ttlasion of the growth of the SEI layer,
which directly affects the life performance of twll.

The addition of Arrhenius type dependence of diffascoefficients and reaction rate
constants on temperature was also included inhtemial model. This increases the fidelity of
the model at the expense of increased complexiycamputation time. This approach is robust
enough to solve these equations faster than ihigefdifference approach were used. This is
especially pronounced when a coupled thermal eelogmical multi-cell stack model is used
due to the large number of equations that mustobeed. However, such a stack model better
describes how individual cells operate in the ceinté a full battery stack. This is important
when thermal or other effects cause the individigdls to not operate identically from each
other. Since it is often not practical or posstioleneasure each cell individually in a stack, these
differences can lead to potentially dangerous enatfng conditions such as overcharging or
overdischarging certain cells within the batteryisiag thermal runaway or explosions. The
ability to efficiently simulate battery stacks féeites monitoring of individual cell behavior
during charging and discharging operations andethereducing the chances of temperature

buildup causing thermal runaway making the usdaufks safer.
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The growth of the SEI layer allowed for a lithiuonicell to be studied over the course of
the life of the battery. The effect of the SEI sr@action is clearly pronounced in reducing the
capacity over 10,000 cycles for the cases examirezd. Critically, the reformulated model
using a (15,3,15) Chebyshev collocation was abkrnmlate 10,000 cycles in only a few hours.
This ultimately allows for long term simulations be run for a range of conditions and cycling
protocols.

The capacity fade due to SEI layer growth can kibated to both removal of lithium
from the system and increased resistance betweesotid and liquid phases, though the lithium
removal seems to be the dominant effect for therpaters presented in this work. As the
mechanism of SEI layer growth is not well underdiothree different mechanisms were
considered, including diffusion limited and kinetliy limited cases. In diffusion limited cases
the thickness of the SEI layer was predicted tanéarly uniform within the electrode, while
kinetically limited cases showed a larger variatidrhether the SEI layer growth is kinetically
or diffusion limited will have an effect on any ategies used to mitigate fade. A kinetically
limited cell can control the growth somewhat dikgdby using more conservative charging
protocols which limit the overpotentials in thelc&i contrast, diffusion limited cells will be les
sensitive to the charging protocol. Rather, in Hudion limited cell, factors which affect
diffusivity of the solvent in the SEI layer are dly to have a more significant effect. This
immediately suggests that a SEI layer model desdrib Section 3.3 should be combined with
the thermal model in Section 3.1 with temperatuspeshdent diffusivities to allow for a
comprehensive model to study capacity fade. Comyithe thermal model with the SEI layer

growth in the reformulated framework presented hess already been done as a proof of
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concept. However, at the time of this writing, artbugh analysis has not been completed for
that effort.

Other mechanisms relating to capacity fade, motthhp due to stress and strain effects,
are currently being explored for simulation in MM&PLE lab. Incorporating those mechanisms

into the reformulated model is left for future studs.

107



Chapter 4
Kinetic Monte Carlo Simulation of the Growth of the SEI

Layer

This chapter contains excerpts (specifically in Séon 4.1.1) from the following journal article reproduced
here with permission from The Electrochemical Socig:

R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Baatz, and V. R. Subramanian, “Kinetic Monte Carlo
Simulation of Surface Heterogeneity in Graphite Andes for Lithium-ion Batteries: Passive Layer
Formation,” Journal of the Electrochemical Society, 158(4), A363-A370 (2011).

The work discussed in the previous chapters focegellisively on continuum models of
lithium-ion batteries. Continuum models based oanaical engineering fundamentals can offer
great insight into battery performance over thersewf many cycles, but are limited in their
ability to capture many phenomena, especially eventthe microscale as shown in Figure 4-1.
For example, the growth of the solid electrolyteeiface (SEI) layer was discussed in Section
3.3 from a continuum perspective. The SEI layar&ated by a side reaction of the solvent with
the lithium. This irreversibly removes lithium frothe system and reduces capacity. A thick SEI
also increases the resistance between the solitiqand, which slows reaction and reduces the
output voltage. However, the continuum model assuthe SEI layer grows uniformly across
the surface of the particle.

This is not necessarily the case, and significatetogeneities in the thickness of the SEI
layer. A very heterogeneous surface will have anmeaghich a thin SEI layer provides areas of
relatively short paths for lithium ions to travebin the electrolyte to the active material. A more
homogeneous surface will not allow “shortcuts” itbhibm intercalation. A kinetic Monte Carlo

(KMC) approach is presented here in an attemptddahthe surface heterogeneity on a lithium
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cell. KMC is a computainally expensive stochastic approach which comsidiéscrete even
within a system.

A general background on the KMC algorithm is giverAppendix C The first part o
this chapter discusses a simplified 2D model foe tharticle surface. This is done fi
independently of any external model, and then calipkith the P2D model. Later three
dimensional model which explicitly considers théckiness of the SEI layer is developed

studied.

- intarnalatinn ntn ftha aranhidta
11 IHis Wil WHiIiMALIWwiIl iV WwW Liidiw MiwvMMmiidiisw

Figure 4-1: The reactions which occur on the electrode surface often glossed over when using continuui
models, necessitating more detailed approacl

4.1Two Dimensional KMC Model

The first attempt at developing a KMC model waselasn a greatly simplified view «
the SEI layer. This considers a electrode surface taoalimensional plane modeled as a 2=

25 rectangular lattice. The growth of the SEI lageconsidered in a binary sense: the SEI |;
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either allows for lithium passage or it does ndtu3, the surface is considered to be comprised
of active sites with lithium reversibly adsorbeddgmassivated sites due to the SEI layer. This
model considers for generals classes of events#moccur at each KMC transition: adsorption
of lithium-ion onto an empty site and intercalatingp the cell, desorption of a lithium-ion from
the surface, surface diffusion of lithium from dlefd site to an adjacent empty site, or an
irreversible passivation of a site on the surfé&cechematic of the possible transitions is given in

Figure 4-2.

"=

Adsorption Desorptio Diffusion Passivation

Figure 4-2: Transitions in the 2D KMC model for SEIl layer growth. White represents empty sites, gray ra
active sites, and black are passivated sites.

Formation and growth of the passive SEI layer isisatered as a side reaction
represented by using the Bulter-Volmer equatfofihe intercalation ofLi* from electrolyte to

the electrode can be described®y

K,C’? expl-oFn RT) (4.1)
The adsorbed Li (see Figure 4-2) can intercalased@éor diffuse on the electrode surface or
form a passive layer. The liberation of Li from #ectrode particle is described®by

K,C” expFn RT) (4.2)
where the nonlinear reaction rate constafisand K, are functions of the active surface

coverage), and are given by:
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K, ==k, (1-6) (4.3)

K, =2—k8 (4.4)

The value ok, (electrochemical rate constant typically usechim ¢continuum model) is given in

Table 4-1 and is the overpotential given by

n=v-U, (4.5)
with V being the applied voltage with respect to grapfiteer voltages results in a faster rate of
charge), and the open-circuit potentialgiven by

U —0.7222+ 01389+ 0.028°—9-0172, 1.8 10

0 (U (4.6)
+0.2808exp(0.9 1% 0.7984exp(0.4465 0.4

The surface diffusion rate is given®y
1
EyDe(l— 0) 4.7)
And the passive SEI layer formation rate is givgn b
K, exp(—O.EF V-U,, )RT) (4.8)
whereKj3 is a function of the exchange current densitydglby used in the continuum model and
is given by:

Ks (4.9)

__3
anF oP
The formation of the passive SEI layer is assumdaetgoverned by Bulter-Volmer kinetics, as

shown in Equation (4.8). The terﬁx{—UnSEl) indicates the overpotential for SEI layer.
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Table 4-1: Parameter values used in the 2D KMC sinlation

Parameters Values
a, Specific surface area of the negative electrodémm 723,600
. Electrolyte concentration, molfn 30,555
D Lithium-ion diffusion coefficient in the intercalan of | 3.9x10"
*" | negative electrode, s
F Faraday’s constant, C/mol 96,487
i Exchange current density, A7m 1.5x10°
kn Intercalation/deintercalation reaction rate constan 5.0307x10"
(mol/m)*/s
| Thickness of negative electrode, m 8.8%10
R Universal gas constant, J/(mol K) 8.314
an Radius of intercalation of negative electrode, m x1@
T Operating temperature, K 303.15
U, Open-circuit potential of the negative electrode, V
UnSE Open-circuit potential of the SEI layer, V 0.4
Vv Applied potential with respect to graphite (eqalentto | 0.001
4.2 - 0.001 =4.199 V for a lithium-ion battery wihe
cathode operating at 4.2 V with no limitations)
YD Diffusion frequency, 1/s 1x19

A surface KMC simulation was implemented in whidfe ttransition rates from one
configuration of the lattice sites to other confafions were computed from Equations (4.1)-

(4.9), where the probability of evehtoccurring is given by

r.
P=o— 4.10
=S (4.10)
and the length of each time step is calculated from
at=-"2) (4.11)

Y
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Where y is a uniformly distributed pseudorandom varialiesen on the domain (0,1] . The

general KMC algorithm is described in detail in A&pplix C.>

4.1.1 Isolated Model

As a first look, the 2D KMC model was applied tosanple system which only
considered the electrode surface and neglected moérfie other phenomena present in a
lithium-ion cell. This requires many of the parasrstpresent in Equations (4.1)-(4.9) to be held
constant, despite normally varying in a standaitl Eer example, variations in overpotentials
and electrolyte concentration can vary substagt@liring a single charging cycle or across the
electrodes. The effects of variables external eodtarface are neglected in the first part of the
work discussed here.

As this work only examined a constant overpotentferging protocol, a much higher
charging rate during the initial seconds of anyrgimay cycle is observed, which tapers to zero as
the battery becomes fully charged. Due to the hifles of charging, the time required for
charging and the simulation time was reduced, hewete electrode fails in nearly 100 cycles.
Low rates of charging would make the KMC simulasidmghly computationally expensive.
High rates of charging will enhance the rate oticalation as well as deintercalation, which
result in high rate of byproduct formation. If thgproduct formation rate is high, then the
surface coverage of the passive SEI layer willigé and capacity fade will occur at a faster rate
causing the life cycle of the to be reduced sigatftly. To make the simulations efficient, some
of the important aspects like mass transfer irelbetrolyte and Ohmic limitations were ignored,
which are important at high rates of charging. e next section, the KMC model will be
coupled with reduced order models for the continyplrases to perform multiscale simulations

for a wide range of operating conditions.
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Figure 4-3: End of cycle active surface coveragerf@arious applied potentials with respect to graphte (this is
roughly equivalent to a charging voltage of 4.2-Vlarger voltages have a lower charge)

Additionally, the effect of charging potential omet surface coverage composition was
examined. Figure 4-3 shows the end-of-charge adiwdace coverage for various applied
potentials. This represents the equilibrium conegion of lithium at the specified overpotential.
The simulations predict that the life of a battergreases for a higher applied potential versus
graphite, which is equivalent to a lower chargimdtage. For all charging potentials, no change
in active surface coverage is observed for the $eseral cycles. The number of cycles that are
run before a change in the active surface coveimgbserved depends on the rate of charge.
This ranges from about 10 cycles for high rateshafrging to hundreds or thousands for lower
rates of charging. For lower charging rates, thevasurface coverage is predicted to be much
less in the initial cycles than with the higheresatThis is expected if we are charging a constant
low potential, since the battery is not charged.® V, as is typical for Li-ion batteries. If the
battery is charged only to 4 V or less, the batteag a large amount of unused capacity that is

reflected in the maximum active surface coverage.
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Figure 4-4: End of cycle passive surface coveragerfvarious applied potentials with respect to graphe
(charging potential = 4.2-V so larger voltages hava lower charge)

Similarly, the growth of the passive layer with &yaumber is shown in Figure 4-4. The
KMC results indicate that the rate of increasehef passive layer is approximately linear during
the first charge cycles. This linear region coroeggs to the cycles in which the active surface
coverage does not change (Figure 4-3). Once theiveasurface coverage reaches a critical
value, the KMC results indicate that the maximurtivacsurface coverage begins to decrease
while the passive layer grows at an increased Tdte.growth of the passive layer then begins to
taper until the battery fails. As would be expectiedver rates of charging results in a lower
initial growth rate of the passive layer, whichoalk the battery to be operated for more cycles.
An interesting observation is that, once the @ltjgassive layer coverage is reached, the rate of
the passive layer growth is similar for all appligotentials. Another interesting observation is
that the lower changing rates can actually reabiigher surface coverage of the passive layer
before a failure mode is reached. Since less ofktimface is required for the active layer sites

when charging to a lower battery voltage (highepli@pl potential versus graphite), more sites
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can be disabled before an effect is noticed orstbady-state active surface coverage at the end

of each cycle.

4.1.2 KMC P2D Coupled Model

The KMC model presented in Section 4.1.1 does ooarrately consider the conditions
which exist under normal battery operation. Speaily, the constant overpotential and constant
electrolyte assumptions are typically not valid @ndormal operating conditions. Furthermore,
although the above model does predict SEI pasawyer Igrowth, it does not predict how such
growth will reduce the capacity of the cell. Ondusion to both shortcomings is to couple the
KMC model with the reformulated P2D model descrilegrevious chapters. This allows the
SEI layer growth to be studied across the thickréshie electrode as well as to perform life
studies on the lithium ion battery for various saté charging.

Conventional charging typically dictates that adxgtis charged by supplying a constant
current until a specified voltage is reached atollpoint the battery is charged at a constant
potential until the current drops below a minimuaiwe (during constant potential charging the
applied current decreases exponentially). Coupdihthe KMC model with the continuum P2D
model is necessary to analyze the effect of theipasayer growth on the battery behavior. The
KMC model has limited predictive capabilities whapplied in isolation, and gives limited
information on the battery system as a whole, laut grovide useful information involving the
growth of the passive layer. Conversely, the P20deh@an predict the behavior of a single
charge/discharge cycle with reasonable accuracly th®i base model does not consider any
mechanism for capacity fade. This means that beravchanges of the battery does not vary
from cycle to cycle, although some work has beemedo use the continuum model to predict

capacity fade, as described in Section 3.3.
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Figure 4-5: Flowchart showing the intermittent couging of the 2D KMC model with the continuum P2D
model

117



The two models were coupled intermittently. Thattiee continuum porous electrode
simulation was initially run to simulate a constaatrent charging condition to a specified cutoff
of 4.1V, followed by a constant potential chargehst same voltage. This was constrained to
simulate one hour of charging time. If the cutofitgntial was not reached in one hour of
charging, no constant potential charging was paréal. For the first cycle, the anode surface
was assumed to be in a virgin state, and no madidics were made to base model. This
assumption was relaxed for later cycles. This satnh provides information on the
overpotential and electrolyte concentration (amottwer variables) at all positions and times
which can be incorporated into the KMC simulation.

Following the continuum simulation, the KMC simudett can be run. At each time step
the probability of each event occurring, as welltlas characteristic time, is dependent on the
lithium ion concentration in the electrolyte as et the overpotential between the solid and
liquid phases, as described in Equations (4.1)}(4n9 Section 4.1.1. The values for the
electrolyte concentration and overpotentials carol@ined from the continuum model. Since
these variables are not constant across the theskokethe electrode, it is reasonable to assume
that the KMC simulations will predict different aonts of passive layer growth at different
points across the electrode. Ideally, the KMC satiah would be performed continuously
across the thickness of the electrodes. Sinceighitesmputationally very demanding, the KMC
simulation has been performed at three represeatatints in the electrode: the electrolyte-
electrode interface, the center of the electrode, the electrode-current collector interface. A
flowchart depicting the coupled algorithm is givarFigure 4-5.

The KMC simulation can be run time step to timegdbg incorporating the calculated

values from the continuum model at each simulatioe and position. All three planes of the
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SEl layer are considered simultaneously. Thahisat each time step, an event may occur at any
planes. The probabilities of an event occurringeach plane are, of course, dependent on the
conditions at that location at that time. Havingrenpossible outcomes that can occur at each

time step reduces the length of each time stejvas ¢h Equation (4.11).
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Figure 4-6: Growth of the passive SEI layer from tle coupled KMC-P2D model for (a) 0.5C, (b) 1C, andcj
2C at the anode-separator interfacer(), the middle of the anode ¢), and anode-current-collector interface ¢)

Cycle Number Cycle Number

The growth of the passive layer can thus be tratckezlighout the cycle, as well as the
active layer coverage. The passivation level at ¢nhd of the charge cycle can then be
incorporated into the continuum model as a redoctioanode capacity for simulation of the
next cycle. Since three points were simulated u$iMC, the entire electrode capacity was
assumed to follow a parabolic profile. This alloti®® discrete data obtained from the KMC
simulation to be incorporated into the continuunDR&odel. This can be repeated for a number

of cycles and capacity fade can be studied.
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Figure 4-7: Active layer coverage from the coupledKMC-P2D model for 0.5C (top row), 1C (middle row),
and 2C (bottom row) at the anode-separator interfae (@), the middle of the anode ¢), and anode-current-
collector interface @), at cycle 1 (left column), cycle 25 (center colum), and cycle 50 (right column).
Importantly note that a 1 hour charge is applied ina CC-CV manner, if applicable.

The results have been consistent with observeddrdrat higher rates of charge are more
detrimental to battery performance. Furthermores¢hdata have shown that the SEI layer
formation can vary significantly across the positaf the electrode, which can be seen in Figure
4-6. Specifically, the KMC predicts the region resdrto the separator experiences the most
severe passivation. This is expected due to therl@verpotential near the separator increasing
the rate of reaction for both lithium intercalatiand SEI layer formation. Also, the rate of
charge affects the SEI layer coverage across #dwretle. Figure 4-6 shows that the growth of

the SEI passivation is more severe for high rateharge. The lower overpotentials required to
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meet the higher charging demand also lead to aehiglidence of the side reaction which leads
to capacity fade. Interestingly, the passive lag@rerage at the separator/anode interface for a
1C rate of charge surpasses that of the 2C rate afout 30 cycles. It is conjectured that this is
caused by the shorter time that the region neaséparator is electrochemically active. It was
shown in Section 2.4.2 (Figure 2-8) that lithiuntencalation occurs within a moving reaction
zone during discharge. It is likely that the reactzone from the higher rate of charge moves
quickly past the plane being studied. This wouldekacerbated by the existence of the passive
layer which would be unable to supply much capaoéfore the reaction zone moved deeper in
the electrode, thereby reducing further passivadioine anode/separator interface. This growth
of the passive layer near the anode/separatorfanterreduces the available active material
present in this region. This effectively increasles utilization of the electrode closer to the
current collector as the lithium must migrate dedp& the electrode to intercalate. This also
increases the internal resistance of the battery.

The active layer coverage also tends to be higheaplane adjacent to the separator, as
can be seen in Figure 4-7, especially for highsrait charge, which reach an equilibrium
concentration. This is logical, as this is the oagnearest to the positive electrode (the source of
the lithium ions during charge) it would be expeécthat lithium would intercalate there first.
Furthermore, this is consistent with the solid gha®ncentrations predicted by the P2D
continuum model. As cycling continues, and pasgwatbecomes more significant, the
equilibrium concentration of lithium decreases. sThs expected as more sites become
passivated, it is not possible for lithium to i@ate. This results in the planes deeper in the
electrode contributing more to the capacity of¢e#, even though this is not favored due to the

increased resistance.
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Figure 4-8: Voltage time curves for constant curreh charging for 0.5C (a), 1C (b), and 2C (c) for cye 1
(solid line), cycle 10 (long dash), cycle 20 (shodiash), cycle 30 (dash dot), cycle 40 (dash doulset), and
cycle 50 (dash triple dot)

The reduction in the amount of charge which castbead is shown explicitly in Figure
4-8, which compares the constant current chargmgopols for 2C, 1C, and 0.5C rates of
charge. Note that for the parameters and conditaossidered here, a substantial fade was
observed within 50 cycles. The high computatiomat @ssociated with the KMC model makes
simulations of thousands of cycles prohibitive. slagh the direct loss of active material
contributes largely to the observed decline in cdpathe non-uniform nature of lithium
intercalation also contributes. The passivatiothef SEI in this model occurs most prominently
near the anode/separator interface, which coincidégswhere lithium intercalation occurs most
prevalently. During later cycles, lithium must irdalate deeper within the electrode which
increases the diffusive resistance. This can be sed-igure 4-7 where the active material
utilization near the separator decreases with aging cycle number, while the other planes of

interest increase in utilization.
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Figure 4-9 shows the discharge curves for the sysonsidered in this work. Here the
capacity fade is noticeable after 50 cycles forltieand 2C rates of discharge Very little fade is
observed for the 0.5C rate as shown in Figure J-9{ais can be attributed to the fact that the
full capacity of the cell is not required in thadpdication, so the effects of reduced capacity are
not visible. The 1C rate maintains voltage fairlglwfor all cycles, but the total capacity
decreases by almost 50%. The 2C condition showmi¢as degree of fade, but also shows a
decrease in voltage output which directly redubegpower that could be retrieved from the cell.

(b) (c)
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Figure 4-9: Voltage time curves for constant currehdischarging for 0.5C (a), 1C (b), and 2C (c) focycle 2
(solid line), cycle 10 (long dash), cycle 20 (shodiash), cycle 30 (dash dot), cycle 40 (dash doulset), and
cycle 50 (dash triple dot). Note that cycle 1 waxeluded as it began from a fully charged state, whieas all
later cycles began after a 1 hour CC-CV charge.

These results suggest that more significant capéanite is observed during high rates of
charge. This observation is present for two print@gsons. The large applied current causes a
lower overpotential to be applied during the chaggiwhich increases the rate of passive layer
formation. Also, the active material utilizationrsore skewed toward the separator interface at

higher rates of charge. That, coupled with the déighassivation, forces even more lithium to
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diffuse even deeper into the electrolyte, caushw diffusive resistances to have a significant

impact on performance.

4.2 Extending the KMC Model to Study SEI Layer Thikness

The two dimensional KMC described in Section 4.hleets many of the important
phenomena concerning the effect and behavior ofSthkelayer. Specifically, it considered the
SEI layer to either allow for unlimited transfer lithium to the active material surface, or it
completely prevented the intercalation of lithiumtoi the active material. This ignores the
physical behavior of the SEI layer as a barrieieen the active material and the electrolyte.
Rather, it is believed that the SEI layer allowSugion of lithium, but that a thicker SEI layer
increases that resistance which contributes to oiigpéade as the lithium ions must diffuse
further to reach the electrolyte surface. Thusel@e2+1D KMC model is developed to study the
growth of the SEI layer by considering the thiclsies

The particle surface is represented by a two dimeast plane divided in a Cartesian
grid. The domain of this simulation is the sectadrthe SEI layer on the particle surface. Above
the SEI layer exists the electrolyte and below texiee active material, neither of which are
directly simulated in the KMC model. This modelnsalers several physical phenomena
occurring within the SEI layer:

1) Diffusion of lithium ions from the electrolyte intbe SEI layer

2) Diffusion of solvent molecules from the electrolytéo the SEI layer

3) Diffusion of lithium ions within the SEI layer

4) Diffusion of solvent molecules within the SEI layer

5) Reaction of lithium ions to intercalate into theiae material

6) Deintercalation of lithium from the active materiaio SEI

7) Reaction of lithium ions with solvent moleculescause SEI layer growth

124



The possibility of each event occurring is depenaenthe geometry of the site being
observed. Event classes 1 and 2 can only occuagant SEI sites adjacent to the electrolyte.
Note that the thickness of the SEI layer is nofarm, and grows during simulation (see event
#7) so which sites are adjacent changes as thdatioruprogresses. Also, diffusion from the
electrolyte need not be from above the SEI layezlectrolyte exists laterally from the SEI site.
Similarly, diffusion of lithium and of solvent camnly occur from a filled site to an adjacent
empty site at any single time step. Additionalhge electrochemical reactions (events #5, #6, and
#7) only occur at the interface with the active enial. Figure 4-10 depicts the events considered
in this model. The lithium intercalation rates assed on Butler-Volmer kinetics. The growth of
the SEI layer is based on the kinetics given byéin et at* and were used in Section 3.3. The

rate of each event is given in Table 4-2.
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Figure 4-10: Depictions of the KMC transitions conglered in the 2+1D model. The slanted lines are si$
where lithium-ions are present, vertical lines aravhere solvent is present, and the crosshatch represts sites
filled by both lithium-ions and solvent. The arrowsare to aid the reader to where the example transin
occurred. Note that the & dimension modeled is in the direction into the pag

Note that Table 4-2 shows the rates of @adividual event. For example, if there are no
lithium ions adjacent to the active material, intdation cannot occur. The relative probabilities

of each event occurring are dependent on the fateastion as described in 5.2Appendix C
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based on the reaction rates given in Table 4-2s Wodel allows variation in thickness of the
SEI layer to be studied throughout the life of ted#l. This heterogeneity can have significant

impacts on overall performance and is an attribmbgch is typically ignored in continuum

models.

Table 4-2: Transition events and rates in the 2+1BMC model

Transition Transition Event Rate Notes
Number Description
(1) Transfer ofLi* to R_equw_es empty
SEI from electrolyte Vs site adjacent to
electrolyte
(2) Transfer of solvent Requires empty
to SEI from Y somvenis SE site adjacent to
electrolyte electrolyte
3) e . Requires filled
Diffusion of Li* in D site adjacent to
SEI Li .
empty site
(4) Diffusion of solvent D! gteeq;gfascggf(tjo
in SEI Solvent )
empty site
5 05
©) , | kGG ma(1-0) eoseXp( o RTn) Requires filled
Intercalation ofLi , .
from SEI to graphite site adjacent to
=¢1—¢2—Un(9)— Ose (in+Jnse)F | active material
SEI
6
©) Deintercalation of kn C max(l O)OSOOSGXF{“ RTn) Requires empty
Li* from graphite to site adjacent to
SEI =, —9,-U, (6)- Ssm (jn+ j.se)F | @ctive material
(7) : E Requires both
lo.sel Sol\ert( ama@) e)@(aﬁn) Li* and solvent
Growth of SEI Iayer to be present ang
=¢,—¢,-U,(0)- Oser —E.(j,+i.se)F | @djacentto active
Keri material

The computational cost of this 2+1D model is mucbkater than the simple 2D model
described in Section 4.1. Several reasons exidihfser The most obvious is the addition of the
third dimension, which increases the number ofsithich must be accounted for. Specifically,

whereas the 2D model has * sites, the 2+1D is closer t8®, although the exact number is
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dependent on the thickness of SEI layer acrossuhace. Thus, in the 2+1D model, the ever-
increasing SEI thickness requires that more sttesansidered, causing the computational cost
to increase with cycle number. In addition to thigér number of sites which must be accounted
for, diffusion plays a much more significant rokor the 2D model from Section 4.1, lithium
intercalation and passivation can immediately oczuthe surface. Although diffusion can occur
on the surface, it does not affect the predictimogsh. Conversely, the 2+1D model requires that
diffusion of lithium occurs through the SEI layesfore intercalation can occur. As diffusion is a
“random-walk” process, with no preferential directi many individual transitions often must be
performed to intercalate any lithium, even for datigely thin SEI. Furthermore, a three
dimensional geometry allows for any individual S§pedo diffuse in up to six direction during
any transition events, which increases the totatlmer of transitions which must be considered.
Including solvent diffusion in the SEI both increaghe number of states that must be accounted
for (as each site can have both, either, or nehdithium and solvent present), as well as the
transitions, as solvent diffuses in the same waditlaam ions, though much slower.

The total number of transition events which mayunds also increased by the inclusion
of more physical phenomena. Lithium intercalatiomoithe active material is considered a
separate from lithium-ion diffusion from the el@yte. Also, the diffusion of lithium from the
electrolyte to the SEI layer can occur anywherewntiich the SEI layer interfaces with the
electrolyte. For a very heterogeneous SEI, this lmarmuch larger tharN >, which further
contributes to the computational cost.

The existence of such a large number of transithoass the side effect of reducing the
length of each time step due to Equation (4.11usThot only is more memory required to store

all the transition events, more events must be lsited during a charging cycle. These
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challenges motivated a move from Maple to MATLABaaglatform of simulation. MATLAB is
much faster at manipulating the vectors and manebkich are used to store the states of the
system as well as to store the transition evemtgottantly, the updating the states and
transitions events is difficult and requires eletseto be found and removed in matrices. For
large systems, this is computationally significamid MATLAB fares better for this type of
work. The ability to write MATLAB functions to uptiathe system can also increase readability
by splitting hundreds to thousands lines of cod#s more manageable segments. This also
makes debugging easier as each transition cansbedtéendividually. It is likely that a true
programming language, such as C++, FORTRAN, or dtytivould have better computational

gains.

4.2.1 2+1D KMC Model in Isolation

Initially, the 2+1D model was applied in isolatianalogously to the system in Section
4.1.1. For example, the potential distributionctal@yte concentration, and solid phase lithium
concentration are not directly incorporated inte thodel. Thus, this model can use very rough
approximations to study SEI layer growth. For exeema constant overpotential can be used for
calculation of the reaction rates throughout theargimg cycle, while the solid phase
concentration can be estimated by the considehagrtaximum lithium concentration, the size
of the domain being simulated, and the numbertbiuln ions which have intercalated during
charge. This simplified approach can be used tw @@nclusions on the general conditions that
lead to SEI layer growth.

Each charge cycle is simulated from an initial estatt charge in the anode of 10% and

continues until the state of charge (SOC) reacld®s. At each time step, an event is chosen
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based on the state of the system correspondingetgliysical phenomena described in Table
4-2. Should a lithium intercalation event occug 80C is updated by the equation:

1
O=0+—— (4.12)

bulk

Where 6 is the SOC and\, is the total number of lithium “sites” in the aetimaterial which

are to be considered as a surrogate for the totalemtration. The value d¥,, is chosen based

on the size of the domain being simulated, theusadf the active material particles, and to allow
for reasonable computational time. The simulatealiowed to continue until the cutoff SOC is
reached. A single charging cycle of a 5x5 site aqegfcan consist of millions of individual

transition events.

SocC

0

0 100 200 300 400 500 600 700 800
Time (s)

Figure 4-11: Charging profiles calculated from the2+1D KMC model for Cycle 1 (solid line), Cycle 10l¢ng
dash), and Cycle 19 (short dash)

At the end of the charge cycle, the profile of 8t&l layer is saved and the cell undergoes
discharge, which is not directly simulated andsibssumed that SEI growth is minimal during
discharge. The SOC is reset to the initial conditimd another charge cycle is performed. This

can be repeated indefinitely. However, the increa$S$E| thickness also increases size of the
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domain which is simulated. Thus, the real time iofiudation increases with cycle number,
limiting the number of cycles which can realistigdde modeled.

Figure 4-11 shows the charging results using the thie 2+1D KMC model described in
this section for the first, middle and last cyclensidered. For this example a 5x5 site
representative surface was used to establish thmaidoand the applied overpotential was held
constant at 0.1V. Although the potential differermween the electrolyte and solid material
was held constant in this model, the equilibriunteptial of the anode was calculated based on
the fractional coverage of lithium in the activetmde. The change in the equilibrium potential
throughout charging causes the rate of charginigetonaximal at the beginning of charge and
taper off near the end. Figure 4-11 also showsthieatime required to reach a fully charged state
increases at later cycles. This is expected ashibker SEI layer which exists at later cycles
requires that any lithium which is to be intercathtnust diffuse a greater distance to react with
the active material.

The growth of the SEI layer over the cycles sinedat depicted in Figure 4-12. Figure
4-12 shows the maximum, minimum, and mean heighhefSEI layer on a 5x5 grid for two
different random number seed values. There is gageement between simulations run
identically, except for different pseudorandom nenstbeing generated. The mean height of the
SEI layer follows a fairly smooth progression thghaout life, as the effects of the random nature

of the system get averaged out over the coursenufiation.
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Figure 4-12: Maximum (A), minimum (o), and mean () SEI thicknesses over 20 cycles of simulation. The
different line styles represent solutions from usig different seed values for the pseudorandom numbsr

Conversely, the maximum and minimum values show @emapparent stepwise
progression, because the minimum and maximum valieesiot change as frequently, and
change by a full integer unit when they do. Theegahtrend for all metrics of measuring the
SEI thickness is the same: the rate of SEI growifticuously decreases with increased cycle
time. The decrease in the observed reaction rateddo the same reasons that the charging time
increases: the diffusion length is greater. Thera iapid growth of SEI layer for the first couple
of cycles which greatly slows after this initiakfieation phase. As diffusion of the solvent in the
SEl is orders of magnitude slower than the diffasod lithium ions, the rate of side reaction is
slowed at a more pronounced rate than the maintioeadVhile Figure 4-12 analyzes the
aggregate data of the SEI layer growth, Figure 4{i@vs the heterogeneous profiles of the SEI
layer at the end of three charging cycle. This giganore visual depiction of the growth of the

SEI layer from cycle to cycle.
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(a) (b) (c)

Figure 4-13: SEI thickness on a 5x5 grid at (a) Cye 1, (b) Cycle 10, and (c) Cycle 20

The thicker SEI layer also increases the simulatiore when using the KMC model.
This is partially due to the greater diffusion lédmgwhich means more steps are required for a
lithium ion to transport through the SEI layer frahe electrolyte to the active material. Recall
that in this model, there is no directional prefee for diffusion; diffusing from the electrolyte
to the active material is done in a strictly randaalk fashion. Thus, the average number of
steps for a lithium ion to successfully intercaledém increase much more than one would expect
from considering a direct path. The thicker SElelaglso increases the domain which must be
simulated and accounted for. As more lithium angesd molecules are considered, the number
of possible events increase, causing a decreadeitime step at each transition. Thus, more
KMC transitions are required. This is shown in Fegd-14 which depicts the simulation time for
each cycle for both a 5x5 grid and a 10x10 gride Tuch higher computation cost associated

with a larger grid demonstrates why the analysihéwork is primarily limited to a 5x5 grid.
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Figure 4-14: Simulation time of the 2+1D KMC modefor a 5x5 grid (o) and a 10x10 grid €)

It is important to note that although quantitatesealysis is not appropriate due to the
limitations of the model and knowledge of the pagtars, some qualitative analysis can be
readily performed. Using a 2+1D KMC model is congiianally very expensive and is not
viable to be used in studies which require numesdusilations to be run. This work serves as a
demonstration of the detail that can be achievedidigg KMC simulations, but is limited to
merely 20 cycles due to the high computational .cé& also limited our analysis to a 5x5
surface grid. Using a larger grid does not haveappneffect on the conclusions which are drawn
from the data and gives similar results for therage thicknesses and charging profiles.
However, a larger grid does show higher maximum laagr minimum thicknesses of the SEI
layer as would be expected by virtue of havingrgdapopulation being drawn from. A more
informative statistic would be the standard dewiatof the SEI thicknesses over the surface of

interest, but that further increases the computatioost.
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4.2.2 KMC P2D Coupled Model
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Figure 4-15: Flowchart showing the more intimate copling used between the 2+1D KMC and P2D models
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In order to improve the meaningfulness of the KMSults and to study variation of the
SEI layer across the electrode, the KMC model vapled with the reformulated P2D model.
This was done more intimately than the work desciibSection 4.1.2. Rather than running the
full P2D charging simulation prior to performingetrKMC analysis, the P2D model was
simulated as the KMC model was run. This was actishgd using the lowest order
reformulated model described in Chapter 2 withSE# layer growth as described in Section 3.3.

The reformulated equations were developed using IéMapth (1,1,1) Chebyshev
collocation. The resulting system of differenti&dyebraic equations and its analytical Jacobian
were translated into MATLAB to allow for incorpoiat of the reformulated P2D model with
the KMC model. At each KMC step the P2D DAE systetas advanced by the time step
calculated from the KMC analysis using an Eulewiand approach. In this work the time steps
are small enough that the potential instabilitiethe Euler forward (or other explicit scheme for
integration) were not considered a problem. Higheler integration schemes were considered
unnecessary because of the very shrs involved in the KMC simulation (on the order of
milliseconds).

The very short times involved ensure that high esxxyican be retained and it may not be
necessary to perform a Newton-Raphson iteratiopaah time step. This is very desirable as
inverting the Jacobian of the system of equati@eneomputationally expensive and should be
avoided if at all possible. To reduce the need\fewton-Raphson iteration, an initial guess for
the algebraic equations at the current time stepxtiapolated from the previous two time steps
using linear extrapolation. If these guesses gatisé residual equations within a specified
tolerance, Newton-Raphson is not performed atttheg step. The short times in this simulation

combined with the intelligent (and cheaply obtajniedtial guesses greatly reduce the number of
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matrix inversions which are required, as even whimwton-Raphson is required, a single
iteration is often sufficient to achieve convergen&n overview of using Euler approaches with

Newton-Raphson methods is given in 5.2Appendix D.
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Figure 4-16: Charge-discharge cycles used in the B2+1D KMC coupled model.

Coupling of the P2D model with the KMC simulatiohoas for the SEI layer to be
modeled across the thickness of the electrode. Gés provide valuable insight as an SEI
thickness which is not uniform across the anodektiess can exacerbate capacity and power
fade. However, this requires that the KMC be rumattiple planes simultaneously. This further
increases the computational costs of the coupledlation. If two planes are considered, the
number of domain sites is doubled, resulting aneiase in the number of simulation events that
must be accounted for at each KMC time step. Asrs@quence, the length of each time step is
reduced proportionally. Thus, many more time stagsperformed during simulation, as well as

a similar increase in the number of Newton-Raphsteps that are required. Due to the large
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number of events that occur during a charge cymmesiderations must be made to conserve
memory. Importantly, it is not necessary thatladl states be recorded at each time step.

A preliminary study was performed for coupling tR2D model with the KMC
algorithm. This was made very challenging due ® high computational cost of simulation,
which made debugging a slow procedure, as runnmegfirst cycle took over a day, and
subsequent cycles often took longer. Here we dsstlus results of four consecutive charge-
discharge cycles simulated using the algorithm mesd in Figure 4-15. For simplicity, only

constant current charging and discharging at aat€was considered, as shown in Figure 4-16.
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Figure 4-17: Maximum (A), minimum (o), and mean (1) SEI thicknesses over 4 cycles of simulation for'l
collocation point (long dash) and 2 collocation points.

The minimum, maximum, and average thicknesseseoSthl layer at the two collocation
points are given in Figure 4-17. For these, theonitgtjof the SEI layer growth occurs during the
first cycle. Note that both charge and dischargedittons are represented on this graph. As the
electrochemical conditions during discharge are awtducive for SEI layer growth (and was

neglected in the KMC model), there is no increas8kl thickness during those times. Note that
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there is also little variation in the SEI profilasthe two different collocation points studiedéner
This is consistent for diffusion limited cases aasvshown in the continuum model in Section
3.3. The SEI profiles at the end of tié,2¢, and 4" cycles are shown in Figure 4-18 for the two

collocation points.

(a) (b) (c)

(d) (e) (f)

Figure 4-18: SEI profiles using 2+1D KMC coupled wth the P2D model for the ' collocation point (a, b, & c)
and the 2 colloaction point (d, e, & f) at the end of the % cycle (a & d), 3° cycle (b & e), and 4 cycle (c & f)

The coupled model presented here is primarily a-veamg coupling and should be
considered as a preliminary work for a two-way dedpmodel to be developed. The P2D model
calculates the overpotentials and other variabl@isiware used to determine the rate constants of
the KMC model, but the events that occur in the KkhGdel are not fed directly back to the
P2D model. Specifically, events which are determhite occur from the KMC model can be

used to change the continuum variables. For exampldéithium-ion diffusion from the
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electrolyte to the SEI layer occurs in the KMC mlpdbe lithium-ion concentration in the
continuum model can be reduced. This would reptheegeneration term in the P2D model.
Thus, the continuum model would be limited to siatulg phenomena which do not explicitly
occur in the KMC model. Thus, the KMC model wouldoyde the linkage between the
electrolyte and solid phase in the continuum modet] allow for the pseudorandom nature to

propagate into the P2D model.
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Chapter 5

Conclusions and Future Directions

5.1 The Reformulated Porous Electrode Model

5.1.1 Improving Computational Efficiency

The reformulation of the porous electrode pseudo dimensional model presented in
Chapter 2 was successful in substantially redutiegcomputational cost of simulation and may
have a significant continuing impact in battery mlty efforts. Although this dissertation
largely focused on the parameters and chemistrgngbw Doyle, et alt? it must be stated that
this model has been used for other applications wifferent chemistries. The reduction in
computational costs has enabled other memberedithPLE lab to use the physics based P2D
model in applications that were considered to caatpnally expensive to use such a detailed
model. De, et al.used the reformulated to perform model based @ptidesign studies to
maximize energy densities of the lithium-ion cejyl imultaneously considering up to four
design parameters. Such optimization requires 2i@ Rodel to be run thousands of times to
find an optimal solution. Thus a computationallfi@ént and accurate model is highly desirable
and allows for more parameters to be consideredptichized in a reasonable time.

Suthar, et af® used the reformulated model to perform optimal tadnand state
estimation. Like design optimization, this requifast and efficient simulation. However, unlike
design optimization, state estimation and contegjuire real-time simulation. Thus, while the
reformulated model was a significant conveniencéhia optimal design study, for control the

reformulated model is essential if a detailed madalesired. Furthermore, in cases in which
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simulation is to be performed on-line in resourceited conditions (e.g. microcontrollers), a
simulation strategy which requires fewer equatienables the use of high-level models to be
used. Ultimately, the DOE’'s ARPA-E AMPED progranshaovided significant funding to the
MAPLE lab to develop a battery management systeimgusodel predictive control based on
the reformulated model described in this work. Tibpe of that project is to improve the usable
energy density and safety of lithium-ion batterieslectric vehicles.

Both collocation using trigonometric function andhebyshev polynomials were
considered as trial functions in Chapter 2. It i@end that for a low number of node points,
both approaches were similar. However, as more podd#s were used, trigonometric functions
led to large oscillations and reduced accuracy,lewloscillations died out and accuracy
continuously improved when using Chebyshev polyradsniThis is especially critical at high
rates, which are more difficult to accurately siataldue to the large gradients that exist in the
cell. A higher order collocation approach was applied to the solid phase, which is necessary
when simulating higher rates or when short timeab@lr is critical, as the parabolic profile can
lead to profiles which are not physically meaningdti high rates. Ultimately, the final base
reformulation code developed in this thesis alldarsa variable number of collocation terms
across the cell thickness and across the paradeis, though mass conservation in the particles
is forced in the same manner as done with the pacatrofile approximation.

Although the work presented in this thesis repressammajor improvement over standard
numerical techniques, it would be naive to belighat further improvements will not be
continued to be made. Work continues in the MAPIt&ug to reformulate the solid phase to
retain accuracy and conserve mass while reduciegntimber of equations which can be

incorporated into the P2D model. Higher order satemlre being examined as an alternative to
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collocation. Furthermore, improvements in the inaign of the resulting differential algebraic
equations in time will have a direct impact on dimion efficiency. As hardware and software
improves, numerical techniques must evolve to fulijize the available resources. Nearly the
entirety of the work presented here would not bsspie without a well developed computer
algebra system to perform the symbolic math necgssgperform orthogonal collocation with
more than a few terms, especially considering tigaly nonlinear and coupled nature of the
battery models. Furthermore, developing solvindgntégues which can parallelize the simulation
steps will fully utilize the processing power awahle, as even the cheapest computing platforms
have multiple cores, which can be further improusohg hyperthreading.

The price of computational power has dropped okieryears following Moore’s law,
creating an attitude the computational limitatia®s not exists. For many simple models that
engineers use on a regular basis this may be Titugs, researchers and engineers tend to be
somewhat unconcerned with the computational remérgs of simulation, as an inefficient (but
easily applied) method can be used to arise aemisgly satisfactory solution. However, the
computational resources available for a given appbn are always finite. There is always a
tradeoff between the detail of the model (e.g.pghgsical phenomena considered), the accuracy
of simulation (e.g. from the number of terms oefiess of a simulation mesh), and time required
to perform a simulation. Improved computationaloregses allow for improvements in all three
areas, and thus the ever-increasing availabilitgamhputational power should be seen as a very
exciting prospect for the future of simulation. Hoxer, this is not the only way in which the
trade-off can be improved. The underlying mathecaatechniques can also improve simulation

time and accuracy, as shown in Chapter 2, and alfowmore detail to be incorporated into the
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model, as shown in Chapter 3. Thus, any reseamhengineer should strive to use an accurate

and efficient simulation whenever performing modglstudies.

5.1.2 Extending the Reformulated Model

Chapter 3 focused on the inclusion of additionalysdal phenomena into the
reformulated model developed in Chapter 2, allowiog more comprehensive studies to be
performed. Thermal analysis is essential to ensha¢ safe limits are maintained. This is
particually important in large format cell in whidhermal gradients can develop, possibly
leading to localized hotspots which cannot be detkuasing surface temperature measurements.

Although simulation of an 8-cell stack was perfodme Section 3.1, commercially made
cells can have upwards of 150 cells connected liesand parallel. The reformulated model
increases the feasibility of performing a fully pbed simulation of a large stack, but further
work needs to be done to address the high memauyireanents of such a configuration,
especially if more collocation terms are to be usedmprove accuracy at high rates. It is
important to realize that only voltage (for cellenoected in parallel) or current (for cells
connected in series) and temperature are coupladeer cells in a stack. Thus, simulation
efficiency could likely be improved by decouplifgetcells at each time step and iterating to find
a converged solution. This approach would alsdifat@ the use of multiple processing cores if
parallel processing is used.

The two dimensional model developed in SectionsB@wved that temperature variations
which are significant in the direction paralleltte electrode can lead to major variations in the
local electrochemical behavior. The amount at whackariation exists in thg-direction is
highly dependent on the specific application coasad and the surrounding environment. As the

computation costs of simulating a thermal-electessital model in two dimensions is large, the
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number of collocation points that could be achiewad limited. This challenge could be at least
partially alleviated by translating the system oAHE» to FORTRAN or C for improved
efficiency. Furthermore, the effect of current flawithin the current collectors should also be
considered in a future work.

A one-dimensional model was also developed whicbviged the framework for
inclusion of SEI layer growth into the P2D modek the kinetics which govern the growth of
the SEI layer are not well understood, three diffitrmechanisms from the literatti& #were
used. Thus, the model developed here can be easeiljfied as understanding of the SEI layer
improves.

As the diffusion of solvent through the SEI laysrniecessary for additional growth to
occur, operating the cell at a higher temperatubelikely increase the rate of capacity fade by
reducing the diffusion resistance. Thus, a comprelre model which includes thermal effects
and SEI layer growth (with temperature varying pagters) can provide the opportunity to
perform life analysis and develop optimal strategighich ultimately minimize fade. A
preliminary effort has been performed by the authsra proof of concept, but the model
stiffness made simulating more than a couple thudisaycles difficult, and time constraints
prevented a thorough analysis to be performed.

As other mechanisms of capacity fade are betteensitabd, they should be incorporated
into the reformulated model. The MAPLE group haselsome work analyzing the stress and
strain effects in a single particle mod&hnd it is expected that the reformulated modelctbe
used to study the variation of the stress acrossetactrode thickness. A stress-strain model
should be combined with the SEI layer growth madefracture of the SEI layer can expose the

active material and accelerate capacity fade. Aenaonbitious work would involve considering
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the particle size distribution within the electredand performing a population balance analysis
to track the changes with cycle number. This carelaasignificant impact in long term battery

performance and will be a significant challengad¢ourately model.

5.2 Kinetic Monte Carlo Simulations

The kinetic Monte Carlo simulation described in Qiea 4 was a much more
fundamental work which examined the heterogeneomsty of the SEI layer. The 2D model in
Section 4.1 greatly simplified the mechanics of $bbéd electrolyte interface layer by ignoring
the effects of SEI thickness and just assuming det@passivation of the electrode surface.
However, useful analysis was able to be perfornesgecially when coupled with the P2D
model. This allowed the SEI layer to vary acrossttiickness of the electrode, and showed that
regions nearest the separator interface tendedetombst passivated due to the lower
overpotentials applied in that region.

The 2+1D KMC model improved the accuracy of the elday including the SEI layer
thickness in the simulation, which is more in limgh SEI behavior. The sheer number of
possible events in a three dimensional domain eages the development of efficient
simulation techniques. Much of the work in devetgpthe 2+1D KMC model focused on the
reducing the cost of each time step and optimipagormance. Ultimately the growth of the
SEI layer was successfully simulated using thisraggh, and a three dimensional profile was
developed. A one-way P2D coupling was performedirch the porous electrode model was
solved at each time step. This considerably ineedlse computational costs, especially as the
domain increased due to the SEI layer growth. fearthiork will be needed to improve the

coupling between the P2D model and KMC simulatomgitze a true two-way coupling. Such a
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work will not be trivial, but the framework develeg with the one-way coupling will provide a
good starting point. Additionally, determination physically meaningful parameters will be

necessary to fully complete the model.
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Appendix A

The Numerical Method of Lines

A.1 Background and Motivation

The method of lines is an efficient routine in white spatial dimensions are discretized
using any of a number of techniques, such as futifference, finite element, finite volume, or
collocation method&>®®° This converts the partial differential equatiorDE to an initial
value problem (IVP) system of ordinary differentejuations (ODE) or differential algebraic
equations (DAEs), which allows for either explioit implicit time stepping algorithms to be
used. Software packages have been developed tificggcsolve problems using the method of
lines®® Alternatively, the resulting DAEs can be solvedings standard efficient time
integrators’? including FORTRAN solvers such as DASKR or DASSLiroa computer algebra
system such as Matl&b(dsolve), Mapl&(dsolve), Mathematic¢a (ndsolve), etc. The versatility
and simplicity of the method of lines has led te use in a wide range of engineering
applications, including fracture problerfisheat transfet’® solving Navier-Stokes equatiofs,
and electromagneti®:!®> Furthermore, Pregla and Cietzorreck used the adetif lines in
conjunction with the source method to handle inhgem@ous boundary conditions and

discontinuities in microstrip lines and antenh&s.

A.2 Mathematical Example

Consider a simple reaction diffusion process matidlg the following application of

Fick’s law with a first order reaction as a seconder partial differential equation:
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Using a finite difference scheme, the second daévederm can be discretized as
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Equation (A.2) can be applied to Equation (A.1l)yteld the following system of ordinary

differential equations:

62’;” _D, At _(2::;; N (A.3)
The system of ODEs given by Equation (A.3) candieesl using a choice of implicit or explicit
IVP solver, including Eular’s forward and backwangthods, the Crank-Nicolson method, or a
Runge-Kutta approach, for example.

The method of lines eliminates the need to direstiye the partial differential equation.
The method described in Equations (A.1) to (A.3h dse extended to higher dimensional
problems, for example for diffusion in two dimensso More importantly for the work presented
in this thesis, the method of lines can be appledlgebraic equations, i.e. those without a time
derivative. This results in a system of differentdgebraic equations (DAES) that must be
solved via efficient time-stepping algorithms.

Although a finite difference discretization is prded here, other methods can be used to

eliminate the spatial derivatives to enable thenmetof lines approach. The model reformulation

discussed in Chapter 2 uses the orthogonal coitotatethod described in Appendix B.
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Appendix B

Method of Weighted Residuals and Orthogonal Collodson

This appendix contains excerpts from the followingournal article reproduced here with permission from
The Electrochemical Society:

P. W. C. Northrop, V. Ramadesigan, S. De, and V. RSubramanian, “Coordinate Transformation,
Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of
Lithium-ion Battery Stacks,” Journal of the Electrochemical Society, 158(12), A1461-A1477 (2011).

B.1 Motivation

Although finite differences can be easily applied discretize differential equations,
many node points are required to achieve high acgurAlternatively, spectral methods can be
used for discretization by approximating the degendrariables as a series solution of trial

functions:
Uprox (% ) = DB (D Z,(X) (B.1)

Where Z(X) are pre-chosen trial functions, and the coeffisiefd (t) are to be determined

numerically. This represents all dependent varghbke continuous functions gf rather than at
discrete node points. Also, orthogonal collocatbmmverges to a solution with an error on the
order ofh®™, whereN is the number of collocation points ahds the node spaciry.The finite
difference solution that is typically used has ema the order of>. Although the resulting
equations are more complicated when using orthdgail@cation, fewer terms are required for
a meaningful solution, resulting in fewer DAEs thatist be solved and a net reduction in
computation timé?

The boundary conditions can be satisfied by incigdhe necessary number of additional

functions to Equation (B.1). These may be addifienal functions of the same form @(X)

or they may be of different forms, for example,usng polynomials to solve for the boundary
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conditions and trigonometric functions for the mawlution, as done in Section 2.3. In either
case, it is possible to determine the coefficietdhe additional terms directly by application of
the boundary conditions to Equation (B.1). Thisegefly holds true for any type of boundary
condition (i.e. Direclet, Neumann, or Robin), pied one does not try something terribly silly

like use a constant term to satisfy flux conditions

B.2 The Method of Weighted Residuals

B.2.1 Development of Equations

The coefficients,l?q(t), of the series approximation from equation (B.f® determined

by using the method of weighted residuals (MWR) alihaims to find the coefficients which

minimize the errof! Consider a general differential equation of thenfo
D[u(x]=0 (B.2)
Define the residual of an approximate solution
R(%) = D[ Uyppron( X | (B.3)
If the residual,R( x), is identically zero for alk, the approximate solution is the exact solution,

but this is not generally the case in numericalismhs. The MWR aims to minimize the residual

across the domain in some average way:

[R(B, (1), )W (x)dx=0 j=0..N (B.4)

Where N +1weight functions,V\/j(X) , are used to generate enough equations to sotviado

unknown coefficients. Some options for the weiglndtions are given in Table B-1.
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Table B-1: Choices of weight functions

Weight Function,

Method Notes
W. (%)
Moments X! Conceptually simple, but better options
Galerkin Zj X Same as trial function; minimizes sum of
squared error
1 X ,<X<X
Subdomain e %
0 otherwise
Dirac delta function; choice of points affect
Collocation O(X—x) accuracy; eliminates need to perform
integration

In the case of highly non-linear governing equatjoss those found in battery models,

the integration in Equation (B.4) must be done nira#ly with significant computational cost.
For collocation, the Dirac delta function is usexlthe weight functionW (X)=0(X%-%), to
eliminate the need to perform the integration aaduces to

R(B, (1), x= x)=0 j=0..N (B.5)

Importantly, the error is minimized when the codton points are chosen specifically as zeros

of orthogonal polynomials. This is referred to ahogonal collocatiofi®

B.2.2 Choosing Collocation Points

In this work, the zeros of Jacobi polynomials aseduwhen trigonometric trial functions
are used, and Chebyshev-Gauss-Lobatto (CGL) pamgtsused when Chebyshev polynomials
are used as trial functions.

In Section 2.3 the collocation points are determhinsing the zeros of a specific class of
orthogonal polynomials called the Jacobi polynomiahen using trigonometric functions. The

Jacobi polynomials are given by the relation:
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Pl (X)= i(—l)N_k 7 X (B.6)

k=0
Where}, =1 and 7, is given by the recurrence relation:

_ N-k+1 N+ k+a+p
" K K+ 3 Yk

(B.7)

For a Jacobi polynomial of ordst, there aréM zeros in the interval [0,1]. Since there &et1

coefficients for each variable in each region, @bapolynomial of ordefN +1 must be used to
develop enough collocation equations& g are characteristic parameters of the Jacobi
polynomial. A trial and error approach found that g = 0 minimized the error of the discharge
curve relative to the finite difference approach fimost simulations. However, at high rates of
charge and high node points, oscillations were mieseas a result of numerical instabilities.
This instability was eliminated by using = g =1for a 5C discharge and = g =2for a 10C
discharge.

When Chebyshev polynomial trial functions are usedjn Section 2.4, Chebyshev-Gauss-

Lobatto (CGL) points are usé8When N trial functions are used, th€' zero is given as

Kk
X, n =—%co (L—é)” +—; (B.8)

These are thé zeros of theN ™ +1 Chebyshev polynomial rescaled to the [0,1] dorf&in.

Both choices of collocation points place more amdkion points near the boundaries and
fewer near the center. This is favored as speatethods inherently have a lower order of
accuracy near the edge of the domain than neaettter so that an equal spacing scheme results

in better accuracy far from the edffeUnequal node spacing addresses this issue. Additjo

159



in many engineering systems modeled using trangaprations, the region near the boundaries
display a steep change in the dependent variableslatively small region. Thus, accuracy in

the boundary layer is critical for overall accurai@ulation.

B.2.3 Collocation in two dimensions
The application of orthogonal collocation to higldenensions is a fairly straightforward

extension of the one-dimensional case. The sempgsoaimation must consist of a double

summation which can generally be given as
Ungprox (6 Y, ) =D D B (0Z, (M Z (¥ (B.9)
j ok

The (:oeffi(:ients,Bj,k (t), are solved in the same way as in the 1D probtemresidual is set to

be zero at specified collocation points. The poareschosen as zeros of orthogonal polynomials

as described in Equations (B.6) or (B.8) for bothand Yy . Furthermore, the boundary
conditions can be applied priori as with the one-dimensional case. However, thigires
many more terms. For example, M collocation points are considered in thdirection, the
boundary conditions ay =0 and y =1 require N functions to satisfy the constraints. In other

words, the collocation point must be consideredooundaries in addition to the interior. This
essentially applies orthogonal collocation to thmurdary conditions in the same way that
orthogonal collocation is applied to the governthfferential equations. This is required as the
boundaries in a two-dimensional domain are linathar than points. Thus, in general, it is not
possible to satisfy the boundary conditions atpalihts using a series solution consisting of a
finite number of terms. The method of weighteddeals is therefore applied at the boundary to

develop enough equations to find a solution.
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B.3 Incorporating Orthogonal Collocation

To maximize computational efficiency, it is importao note that it is most efficient to solve
for the values of the dependent variables at tllecaiion points, rather than directly solving for
the coefficients. The advantage of such an appraadtest shown by the following example.

Consider the reaction-diffusion problem examplefrappendix A:

&, _p 06
ot

'S

—k,C, (B.10)

Approximate the concentration Afby a series solution

Caapmex(% )= 2 B (DZ (X (8.11)

Note that here we are neglecting the inclusionaefridlary conditions, but those can be satisfied
by adding two additional equations to Equation {B.1The collocation pointsX., can be

applied to the series approximation, Equation (Btd@developN +1 equations:
CA(Xk't)=Ck(t)=i B(1)Z(%) k=0...N (B.12)
Where G, (t) is the value of the concentration at tkie collocation point. Solving the
linear system of equations in Equation (B.12) (m@tthat'l'i(&) are calculable numerical

values) forB (t) in terms ofG,(t) results in a modified series solution:

C (% t):ici(t) Z' (%) (B.13)
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Zi* (X) is the linear combination of the trial functiomkich satisfies the system of equations in

(B.12) so that the variable values at the coll@rattan be considered as coefficients. Applying
Equation (B.13) to the governing equation resutisai computational advantage over using
Equation (B.11). Applying Equation (B.11) directly Equation (B.10) results in the following

convoluted system of equations

OB (t N N
ZZ( )—= () AZa(t) Z( l -k B(DZ(x,) j=0..N (B.14)
i=0
However, if equation (B.13) is used, the discreatiggstem of equations simply become
oC, (1) N 622 X
gt’ _DAZCA,(t) ( )| —k,Cy; (1) j=0..N (B.15)

Equation (B.15) is simpler and is easier to solgeeach equation only has a single time
derivative and single forcing term. The form of atjon (B.15) also reduces the numerical
coupling of the system of equations and reducesittes of the system of equations. Using this

approach, only spatial derivatives must be replased series summation, as the non-derivative
terms can be directly replaced by tRg;(t)term. Note that the numerical complexity of the

derivative approximations are unaffected by thiprapch. The advantage is especially
pronounced in the more complicated nonlinear gamgraquations which are seen in the battery
model, and as more series terms are used. Furtherths approach increases the overall

sparsity of the resulting system of equations reduthe computational demands of simulation.
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Appendix C

Kinetic Monte Carlo

This appendix contains excerpts from the followingournal article reproduced with permission from The
Electrochemical Society:

R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Baatz, and V. R. Subramanian, “Kinetic Monte Carlo
Simulation of Surface Heterogeneity in Graphite Andes for Lithium-ion Batteries: Passive Layer
Formation,” Journal of the Electrochemical Society, 158(4), A363-A370 (2011).

Kinetic Monte Carlo (KMC) is a stochastic approachich considers discrete events to
occur in a step-by-step manner in a microscaleesysAt each time step, an event is randomly
chosen to be executed and the states of the sygbelated. The probability of each specific
event occurring in a given time step is determifredn the rates of each phenomena being
simulated. Thus, those events which have fastes rate more likely to occur at any given time

step. Mathematically, this is given as

P

_ N
J_Zri
i

(C.1)

Where the reaction rates are giversih A uniform random numbery; , is then chosen

on the domain [0,1] to choose the specific evéptsuch that

-
=

7

(C.2)

IA
N
A

[;42
1

-
)
I
)

Note that the rates are given for eagecificevent, rather than each class of event. For
example, consider a simplified system with a sirggeticle where only diffusion is considered.
Although diffusion is the only physical phenomereing studied, there are multiple discrete

events considered. A diffusion hop in th¥ direction must be treated as a separate eventdrom

163



diffusion hop in the—Yy direction, for instance. Because each individuané must be

accounted for, there can be hundreds or thousanpsssible KMC moves to be chosen from,
even though only a handful of physical phenomeng ba considered. In practice, the
computational costs of calculating the probab8itan be reduced by considering the class of
events (e.g. diffusion of species A) as group, @&sg all individual events within a class have
the same probability. In this way, the probabilifiyan event occurring within clads can be
given by

=™
DN

P

c

where N. is the number of discrete events possible in caasd M is the number of

classes considered. Thus, a random number isfiosen to decide the class of event which will

occur, analogous to equation (C.2)

(C.4)

Once the class of event is determined, the speeifent (i.e. diffusion of molecul#i
from point (x,y) to point(x’,y')) can be randomly chosen from the subset of eweitksn a

chosen class using a uniform distribution. Simwdtarsly considering hundreds or thousands of

events in Equation (C.2) is computationally verypemsive because of the number of
summations (up td\,,;) that must be performed to determine the speeifent. Equation (C.4)

requires many fewer (up t¥) summations to be performed and sorted, providiggificant

computational cost savings. Since each specificntewgithin a given class has equal
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probabilities, selection of which event can be dbaesimply using a random number to pick an

event out of a list, rather than using the fornkEqbiation (C.2).

/Supply Initial States/

Reached End
Condition?

Calculate Rate Constants,l J-

v

Choose Pseudorandom
Numbers, £1,%2  and 43

v

=1

j=j+1

No

Yes

Output Final
States

Execute Event
Class |

v

k=ceil(N z,)

Update Current
States

Calculate Time Step

In
At = — X3

- M
2N
i=1

Execute Eventk
—

v

From Class |

Figure C-1:Flowchart depicting general kinetic Morte Carlo algorithm with the individual events subdivided

by class. All pseudorandom variables are chosen @he domain (0,1]
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After a specific event is determined, the simulagwogresses to the next time step. The

length of time between KMC events is also not deteistic, but also found probabilistically.
Another uniformly distributed pseudorandom variabjg, is chosen on the domain (0,1] to
calculate the elapsed time between steps usindieqt?a

In
Af = — X3

- M
2N
i=1

(C.5)

Equation (C.5) is convenient as any time step ffbta » is possible (though very long
time steps are very, very unlikely). Furthermottee expected value of (C.5) is equal to the
characteristic time of the system, giving it a pbgly meaningful interpretation and allows the
simulation to progress at an expected rate witfaging a specific time step.

When an event is chosen, the system advances teitestep based on the outcome of
that event. Thus the possible events must be updatel the probabilities recalculated. For a
large system, it is likely that most of the possibl/ents are identical for the new state as for the
old state. For example, if the chosen event inwbleement#i in one area of the domain,

events involving elementjin a spatially separate area are not affected. ,Tonly the events

involving ion #i , or events involving the either the previous arent location must be updated.
This is much more computationally efficient thacaleulating all possible events at every time
step.

The simulation can be continued indefinitely, otilua certain termination condition is
met. Analysis can be performed by considering thal tate of the system, or the events which

occurred during simulation, depending on the sydiemg studied.
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Appendix D
Numerically Integrating a System of DAEs Using Eulgs

Method and Newton-Raphson

Wherever appropriate and possible, this thesizedi efficient numerical simulation of
large scale DAEs using DASKR. For clarity and toyde a simple and robust method of

solving DAESs, this appendix is provided. Considaystem of differential algebraic equations of

the form
dy
_:f t! ]
g (y.2) (D.1)
0=g(t,y,z)

WhereYis the vector of differential variables, is the vector of algebraic variableds
the vector of differential equations, agds the vector of algebraic equations. Severalomgti

exist for the discretization of the differentialuagions in Equation (D.1) to advance the system

to the next time step. The Euler forward methodexlicit method gives

yh=y +H(ty .2 At (D.2)
Euler forward is computationally simple but can bestable. Furthermore, the algerbraic

eguations cannot be integrated directly and mustobee simultaneously. Euler backward is an

implicit method which is unconditionally stable:
yH=y +f(ty 2 At (D.3)
Equation (D.3) is a system of equations which mhestsolved simultaneously to arrive at a

solution, unlike Equation (D.2), which can be ewaddd directly. Both the Euler backward and

Euler forward methods are of ordé&t error, which is less than ideal. The Crank-Nichnls
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method is an alternative method which is accuratéhné orderat?®, without greatly increasing

the computational complexity
yi+1=yi +%(f (t,yi+1,zi+l)+f(t,yi ,Zi )) (D4)

The Crank-Nicholson method is also implicit and amditionally stable, but can experience

spurious oscillations, making the less accurateBuhckward preferred in stiff applications.
Regardless of the specific discretization usetihne, Equation (D.2), (D.3), or (D.4) can

be applied to Equation (D.1) to give the followiggneral system of strictly algebraic equations:

0 — .I:* (t,At,yi ,yi+1 ,Zi ,Zi +l)

7 (D.5)
0 — g(t,yHl,ZHl

As both parts of Equation (D.5) are now algebragcoan combine the two parts for simplicity
O=hg¢.AY y*.2.,2% (D.6)

Where the superscript, refers to the current time step, of which alluesl are known. Note that

if an explicit scheme is used, tHé equation in Equations (D.5) can be solved indepethygle

and h is identical tog, otherwisef™ must be included irh and a simultaneous solution is

required. Finding a solution to Equation (D.6) &endone using the Newton-Raphson approach,

which requires the calculation of the Jacobiarh tfonsists ofN equations withN unknowns,

the Jacobian is aibl x N matrix defined as

J=—>t (D.7)

Wherex is the union ofyi+1 and z'**. The Newton-Raphson approach is an iterative jhaee

which finds the solution to Equation (D.6) using following formula

X" =X +yJ"h (D.8)
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Where x'** is the refined approximation fro{ and y is a relaxation parameter which can take

on values from (0,1]. A smaller relaxation paramei@n prevent overshooting of the solution
(which can cause the method to fail in some cabe$)nay slow convergence. Equation (D.8) is
repeated until the error (as defined as the maxirabsolute value of either*h or h) is less
than a prescribed tolerance. In general, the NeR@phson procedure must be used at the
beginning of simulation to find consistent init@nditions for the algebraic variables.

The convergence of the Newton-Raphson approadfigldy dependent on the initial
guess providedx’, at each time step. A good initial guess can redhe number of iterations
which must be performed in Equation (D.8), whilpaor initial guess may not converge at all.
As the Jacobian calculation and matrix inversiokguation (D.8) is computationally expensive,
any reduction in the number of iterations which pegformed is usually advantageous. For the
algebraic variables, the converged values from pgtevious two time steps can be used to

estimate the value at the current time step usireg extrapolation:

AAtL (2-27 (D.9)

Zi+1,0 — z +

The differential variables can be estimated usimgalr extrapolation as well, or can use the Euler

forward method to give a good initial guess:
y o=y +f(ty 2 At (D.10)
A flowchart depicting the algorithm described hasing the Newton-Raphson approach
with the Euler backward method is given in Figurd.D

It must be noted that other numerical approaches loba incorporated into this

framework. For example, Richardson extrapoloatiolves the system using time steps Aif
and%. Based on the difference between the two solutithresfinal approximation is achieved
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by extrapolating the error down to a time step efozlength. This improves the order of
accuracy in time. Furthermore, it can be determinbdther a smaller time step is required, or a

larger time step can be used, allowing for adaptoleemes to be used.

Provide ICs Inltlal|ze_AIgebralc
Variables

+

Discretize Differential Equations
yi+l — yi +f (t,yi+1,zi +1)At

Reached Endof
Simulation?

Advance Time Step / oUtgtth;nal /

Calculate Jacobian Calculate Initial Guess
At

B dh; —) 7= 7 4 e (2 - i’l)
Tk _K 41,0 _\j i
k Y=y +f(ty 2 )At

Yes

Error
Tolerance Met?

X" =x'"+y3"n

Figure D-1:Using Euler backward and Newton Raphsono solve a system of DAEs

The Newton-Raphson iteration can also be improyeshuby using tearing algorithms.
Tearing algorithms divide the full system of alggbrin multiple smaller systems. Each
subsystem can be iterated upon independently, wsingble values from the other subsystems.

This requires an iterative procedure to be perfarroeer the subsystems. As the Jacobian is
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smaller in each subsystem is much small than theystem, the inversion is much simpler. For
systems which are largely decoupled, or have cesariables which are only weakly coupled
with the remainder of the system, tearing algorghran greatly improve speed. However, for
tightly coupled systems, many iterations betweesn shbsystems are required, negating any

benefit of the smaller size of the Jacobian.
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Appendix E
A Robust False Transient Method of Lines for Elliptc

Partial Differential Equations

This pppendix is reproduced with permission in accalance with the author rights from the following article:
P. W. C. Northrop, P. A. Ramachandran, W. E. Schieser, and V. R. Subramanian, “A Robust False
Transient Method of Lines for Elliptic Partial Diff erential Equations,” Chemical Engineering Science, 90;
32-39 (2013).

Available online at http://www.sciencedirect.com/sence/article/pii/S0009250912006835

E.1 Background

Simulation of lithium-ion battery behavior oftenqreres solving a nonlinear system of
differential algebraic equations (DAEs), as destilin Chapter 2 and Appendix B. One
challenge in solving this system of DAEs is thdiatization problem. That is, finding initial
conditions which satisfy the algebraic equatiohsohsistent initial conditions are not provided,
many DAE solvers fail. This has led to the develeptrof a perturbation approach to initialize
the algebraic variables in battery mod&lsiere we extend that approach to solve generitielli
partial differential equations by building upon timethod of false transiefit€®:8%:931941%jith g
similar perturbation approach.

A wide variety of partial differential equationsiss when describing engineering
systems. For examples, variations on Laplace’stexjuarise frequently in problems of transport
phenomena® In order to solve such a wide range of probleresesal numerical methods exist
to solve partial differential equations. The choiok method is dependent on the desired
accuracy, as well as concerns about the stabilidyrabustness of the system, while maintaining
computational efficiency. Furthermore, these charéstics are dependent on the form of the

partial differential equation to be solved, i.eliptic, parabolic, or hyperbolic. For parabolic
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equations such as the heat equation, several neahenethods exist that can be used to find a
solution?® For example, the method of lines is one such iefficroutine in which the spatial
dimensions are discretized using any of a numbéeafniques, such as finite difference, finite
element, finite volume, or collocation methodsshewn in Appendix B®#**This converts the
partial differential equation (PDE) to an initialalue problem (IVP) system of ordinary
differential equations (ODE) or differential algalr equations (DAES). Software packages have
been developed to specifically to solve problemiagithe method of line¥ Alternatively, the
resulting DAEs can be solved using standard efictame integratoré® including FORTRAN
solvers such as DASKR or DASSL or in a computeeltg system such as Matladsolve),
Maple*®(dsolve), Mathematica (ndsolve), etc. The versatility and simplicity thie method of
lines has led to its use in a wide range of engingepplications, including fracture problefis,
heat transfet?® solving Navier-Stokes equatioff¥, and electromagneti¢:*** Furthermore,
Pregla and Cietzorreck used the method of line®munction with the source method to handle
inhomogeneous boundary conditions and discontisuiti microstrip lines and antenrlds.

The solution of elliptic partial differential equ@ns, such as Laplace’s equation, is more
difficult because there is not a simple way to ehthe equations to an initial value problem to
allow the use of the method of lines. A Newton-Raphmethod, or another approach to solving
a system of nonlinear equations, can be used i$yeem of algebraic equations resulting from
the discretization is sufficiently well behaved aadreasonable initial guess is available. A
semianalytical method of lines, valid for lineatigglc PDEs and certain quasilinear elliptic
PDEs has been presented previod®iyiowever, a more popular choice has been the method
false transients, partially due to its ability tankdle some nonlinear problems, and ease of

implementation. In the false transient method tleables are discretized in the spatial or
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boundary value independent variablesdy), and a pseudo time derivative is arbitrarily atide
to the problem statemefft®®899310410ha addition of this fictitious time derivativeroeerts the
elliptic PDE to a parabolic PDE and allows the soluto be determined by marching in pseudo
time to a steady state condition, in a manner gaais to the standard method of lines. By doing
this, the efficient IVP/DAE solvers can be applirch matter analogous to the method of litfes.

Like the method of lines, the method of false trants is used to solve a variety of
engineering problems. For example, Xu, et al., ubedfalse transient method to describe the
concentration and temperature profiles of catgbgsticles'®® This approach has also been used
to numerically solve for three dimensional velocpyofiles by solving the Navier-Stokes
equation:®® as well as solving the convective diffusion ecoratior axial-diffusion problems in
laminar-flow reactor$® Other researchers have used the false transietitoch for analyzing
mass transfer in porous metdieor laminar film boiling**?

However, as shown in this section, the system oEMIAES resulting from the use of
the false transient method can be unstable andnoiagonverge to the desired (or any) solution.
This problem can sometimes be rectified by moddyihe form of the equations or boundary
conditions using intuition and trial and error. dther cases, the system cannot be made to
converge, regardless of how the problem is predenfen alternative, Jacobian-based
perturbation approach is shown here, which is rblnd does not suffer from the same stability
issues which befall the false transient methodimilar approach has been used as a superior

method for the initialization of the algebraic \aies in systems of DAES.
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E.2 Generic Formulation of the False Transient Metbd and the

Perturbation Method
Consider a general PDE of the form
D(¢(x))=0 (E.1)
Where ¢(X) is the (continuous) dependent variable of interess the vector of independent

variables, andD is a generic linear differential operator with fbem:
Z;%M (E-2)

Equation (E.1) can be discretized using any of mlyer of techniques, such as finite difference,
finite element, finite volume, or collocation, angpathers. This results in a system of algebraic

equations of the form
g(®)=0 (E.3)

where @ is the vector of the discretized dependent vagghin linear systems, Equation (E.3)
can be solved directly, though this is generally th@ case in nonlinear problems. Both the
method of false transients and the perturbatiorhoateintroduce a pseudo time variable such

that Equation (E.3) is represented as:
g(®(r))=0 (E.4)
When using the method of false transients, thdoise by introducing a first order pseudo-time

derivative into Equation (E.4) such that it becomes

g(®(z))= %’ (E.5)
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This allows the use of efficient time adaptive OBdlvers to be used. In order for convergence

to occur, the right hand side must go to zer@gses to infinity:
lim—=0 (E.6)

This reduces Equation (E.5) to Equation (E.3) amsliges that the original problem is satisfied.
However, the method of false transients can fadgtiation (E.6) does not hold, as can occur in
an unstable system. Therefore, an alternative petion approach is shown here. A small
perturbation parametes, can be applied in time to Equation (E.4) such tha

lim g(®(z +0)) = 0 (E.7)

Equation (E.7) can be expanded using a Taylor sésigive

g(cp(r))m@m(&):o (E.8)

Assuming that is sufficiently small that the higher order ternasde neglected, Equation (E.8)

reduces to

g((D(r))H‘)M:O (E.9)

dr
The total derivative in Equation (E.9) can be ré&t@n using the chain rule with partial

derivatives

Jagow o
g(®(r))+o{£5+8—ﬂ:0 (E.10)

Noting that(%g) = J, whereJ is the Jacobian representing the algebraic sysdsn, note that

from Equation (E.3)g is not a function of pseudo time directly; onldirectly as the dependent
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variables,®, are functions of pseudo time. Therefogé,z 0 above and Equation (E.10), can
T

be rearranged to give

g(®(r))= —m%’ (E.11)

Equation (E.11) can be considered as an applicafid@avidenko’s Method?® Note that
the choice ofs is somewhat arbitrary, and must be chosen wittsidenation to the system.
Ideally o must be sufficiently small that the assumptiort tha higher order terms in Equation
(E.8) can be neglected is valid. Heeter 10°° is used throughout the remainder of this work.
This choice is somewhat arbitrary as changing10® by an order of magnitude in either
direction does not affect the steady state resHidggiation (E.11) is similar to Equation (E.5)
given above for the method of false transients, @amdlarly allows for the use of efficient DAE
solvers, although the right hand side consists @fi@ar combination of time derivatives of
several of the dependent variabl@, The use of the Jacobian ensures that Equatidid Y&
stable and more robust than Equation (E.5). Thishei shown for linear models using matrix
algebra and considering the exponential matrixtswiuhat Equation (E.6) is always valid and
Equation (E.11) converges to Equation (E.3) atnitdi times irrespective of the initial
conditions. The concepts can then be extended tdinear models by considering the
eigenvalues of the resulting system of equatiomsointrast, the false transient method may or
may not converge to Equation (E.3) depending oretbenvalues of the Jacobian. This will be

explained in more detail in a later section.
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E.3 Implementation and Comparison of the False Trasient Method

and the Perturbation Method

Several examples will be shown to compare the pmdoce of the false transient
method with the proposed Jacobian approach, as agetb note the conditions which cause
failure of the method of false transients. The epias will be explored in 2-dimensional space
in Cartesian coordinates, although extensions lieratoordinate systems and to 3-dimensional
space are appropriate and can be applied analggdushis paper, the system of ODEs given in
Equations (E.5) and (E.11) were written to a FORNRi#le and simulated using DASKR for
computational efficiency. Furthermore, all symbotalculations for the calculation of the

Jacobian when using the perturbation approach perfermed in Maplé?

E.3.1 Solving Laplace’s Equation

The simplest example to be considered is Laplaeggation, which is given in 2

dimensional rectangular coordinates as:

0, 0% _,, (E.12)

ox*  oy*
Laplace’s equation is used in numerous engineatisgplines such as steady state heat/mass
transfer or when calculating potential fields. Taokowing boundary conditions are considered,

as shown in Figure E-1.

9¢(0,y) _ (E.13)
oX
op(x0)
——===0 E.14
oy (E.14)
¢(l,y)=0 (E.15)
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#(x,1)=1 (E.16)

yg ¢-1
¢ _
&_m $=0
>
W _g X
oy

Figure E-1: Boundary conditions used for solving Eample 1 (Laplace’s equation) and Example 2
(Helmholtz’s Equation)

Notice that Equation (E.16) is made to be non-hanegus in order to avoid the trivial

solution. This problem can be solved analyticalging the standard separation of variables

technique to yield:

. (—1)”4c0{ 2n2+ 17rxj cos){ 2n2+ 17z yJ
$=> 5 (E.17)
~ n+1
7r(2n+1)cosf( 5 ﬂj

Since an analytical solution can be found onlylimited cases (e.g. linear problems), Equation
(E.17) is used to benchmark the accuracy of thpqsed approach.

A numerical solution can be found by discretizinguBgtion (E.12) intdM interior node
points inx andN interior node points iy. This discretizes the domain intd42) x (M+2) node
points when the surface points are considered.fdlleving finite difference schemes of order

h? are used:

82¢(X: y) ~ ¢:\—1_2¢:‘I+¢:’-}—1

PV (AX)2 (E.18)
FHXY) _dn =2+ b

~ 5 E.19

Y (ay) (E.19)
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with m as the node index in thxedirection anch as the node index in tlyedirection. When these
approximations are applied to Equation (E.12), fbleowing equation is obtained for each
interior node point,rg,n):

¢£F1_2¢:1+¢2+1 + ¢$1— 2¢?n+¢ Ir:l
(&) ()

=0 for m=1..M n=1..N (E.20)

A second order forward finite difference is applfedthe Neumann boundary conditions

given in Equations (E.13) and (E.14):

40,y) _ 4 +440 -3
OX 2AX

=0 for n=0..N+1 (E.21)

0P(%,0) _ —gi+ 45— 3%
oy 20y

=0 for m=0..M+1 (E.22)

The Dirichlet boundary conditions from Equationslfi) and (E.16) can be expressed simply as

B =0 for n=0..N+1 (E.23)

# =1 for m=0..M+1 (E.24)

Equations (E.20) to (E.24) are a system of linégelaaic equations which can be solved
trivially using a variety of solvers. However, foonlinear systems which cannot be solved so
simply, other methods can be utilized to arriva @blution, and thus this is used as a verifiable
test problem. When the method of false transiestapplied to Equations (E.20)-(E.24) the

following ordinary differential equations (ODEs)kawbtained.

Af _ fns =t b P Pt b

f =1... =1... E.25
dr (Ax)2 (Ay)2 orm=1..M,n=1..N ( )

dfy -4 +44' -3y .
dr oAX for n=0..N+1 (E.26)
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A g2+ 44

™ for m=0..M+1 (E.27)
dr 2Ay
dg) n
L8 =g, for n=0..N+1 (E.28)
dr
d N-+1
ﬁ—m=1—¢n':'+l for m=0..M+1 (E.29)
T

Note that the formulation of Equations (E.28) aB20) required a rearrangement of Equations
(E.23) and (E.24) in order to develop stable ODBsclwv converge to the solution. In order to
explain why such a rearrangement is necessaryll néed the following condition must be

satisfied for convergence to occur:

im %% _o (E.30)

T—>0 T
Thus, Equations (E.25)-(E.29) reduce to Equati&n2Q)-(E.24) at long psuedo times. However,

if the method of false transients were appliedaliyeto Equation (E.23) to give:

n
%%ﬂ (E.31)
The solution to the eigenfunction problem in Eqmati(E.31) is an exponentially
increasing function. Therefore, the resulting systd ordinary differential equations (ODES) is
unstable and Equation (E.30) will not be satisfidthis relatively simple example, the sign of
Equation (E.31) could simply be changed to enstabilgy, as it can be determined to be

unstable a priori. However, the instability may betso obvious for more complicated problems,

or the stability issue may not be fixed by simptanging the sign.
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When the perturbation approach described abovequetion (E.11) is applied to the
system given in Equations (E.20) to (E.24) theowlhg system of linearly coupled ODEs

results

o (dgn, dgn dgn) o (it o opn )
(Ay)2 dr dr dr (AX)2 dr dr dr
1 1 (E.32)
n _2 n+ n + I'Fl_ n+ 1
o (41— 2¢0+401) ( AX)z(qzﬁm 2%r+d )
-0 _d¢;+4d¢1n_3d¢(? :_¢2n+4¢1n_3¢(? (E.33)
2AX dr dr dr 2A X
-0 (_dgE Ak L) —di+4gi-%, (E.34)
2AY dr dr dr 2Ay
0" = (E.35)
‘¢N+l N+1
%zqﬁm -1 (E.36)
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Figure E-2: Converged solution of Laplace’s Equatin

Equations (E.35) and (E.36) demonstrate the robastof the perturbation method. Regardless
of whether the boundary conditions are applied gsakons (E.23) & (E.24) or in the form
required for the false transient solution, Equatiqi&.35) and (E.36) will converge to the
expected solution. Considering Equations (E.323Ein matrix form, as shown in Equation

(E.11) above, we have

P [ P (E.37)

T
for a linear system of equations. Equation (E.3ah de explicitly solved for in the time

derivatives to yield

a® _ sye a1 (E.38)
dr

which is unconditionally stable and will always eenge to a solution.
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Figure E-3: Convergence of the perturbation methodsolid line) and false transient method (dashed &) for
Laplace’s Equation (Inset shows the graph at verytort pseudo time)

Figure E-2 shows the converged 2-D numerical smhytas determined using 50 interior
node points ix andy (for a total of 2704 points). Figure E-3 compadites solution found with a
perturbation ofo=0.00] with the traditional method of false transientsshpwing the value of
at x=0 andy=0 as a function of the pseudo time variable usebloith methods. The proposed
approach is superior because (1) steady statdisvad at shorter values of the dummy variable

and (2) the method is robust, and is inherentlglstas shown by Equation (E.38).

E.3.2 Solving Helmholtz's Equation

As a slightly more complicated example, Laplacetpation will be expanded to

Helmholtz’'s equation by including a linear termiquation (E.12):

PP ), POY)
X2 8y2

#(xy)=0 (E.39)
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In order to examine a non-trivial case, the boupdanditions used are honhomogeneous and
identical to Equations (E.13) to (E.16). Once agairanalytical solution can be found using the

separation of variables technique:

-4 co{ 2n2+ 17rx) cos{ \/ —k? +( 2n2+ l) n yj
X N=Y,

- (E.40)
"~ z(2n+1) cosr{\/ —K? +(2n2+ 1) ﬂZJ

2n+1]2

which reduces to Equation (E.17) wheh= 0. Note also that for values &f >( %, a

negative value exists under the radical in Equaithd0), leaving an imaginary argument for the

hyperbolic cosine terms. It can be shown using iEufermula that:
cosh(zi)= co$z) (E.41)
Therefore, ask?increases, the behavior of the denominator of EodE.40) changes
from hyperbolic cosine to standard cosine. Thusgudarities exist in the system for certain
values ofk? in which no solution exists. Also, there is a sarange which occurs across these
values. This is worth noting, as it can increasedlficulties in finding a solution when using

numerical methods. Equation (E.39) can be dis@étirsing a finite difference scheme given in

Equations (E.18) and (E.19) as done previously &mace’s equation.
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Figure E-4: Convergence ofg for the Helmholtz Equation with k? =1 using the perturbation method (solid
line) and the false transient method (dashed lineYhe inset shows the convergence at very short pskutime.

The resulting equation is similar to Equation (B.2@h an additional linear term included:

¢:Fl_2¢:1;'¢:+1 + ¢rr:1_2¢rr1nz+¢:11 + kz
(&) (4y)

#=0for m=1..M,n=1..N (E.42)

The boundary conditions are unchanged from befodecan be applied in the same manner as
before and are identical to Equations (E.21) t@4[E.Again, this is a linear system which can be
solved using standard solvers, but we will exanmsotitions obtain via the method of false
transients and the perturbation approach. The odeatih false transients results in the following
system of ODEs to be solved:

AT O Tt

" for m=1..M ,n=1.. E.43
dr () (&)’ ¢ for m=1..M,n=1..N (E.43)

with Equations (E.26) to (E.29) still directly apalble for the boundary conditions. In contrast,

the perturbation method gives the following systdrinearly coupled ODEs:
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0 (d¢al_2d¢;+d¢alJ_ 0 (dqﬁzl_zdyﬁ?n+ dﬂlj_d@%:

C(ayPldr Tdr o odr ) (axPl & T dr de €4
@(¢a_l—2¢;+¢:ﬂ)+ : Ai)z (652~ 26050 972+ K%,

with Equations (E.33) to (E.36) still applicable the boundary conditions. For small values of
k?, this system will converge to the analytical simntusing either approach. Figure E-4 shows
the convergence of the false transient method haderturbation approach at the origin for a

value ofk? =1, while Figure E-5 shows the overall 3-D solutioofpe.

Figure E-5: Solution profile of Helmholtz’s equatian for k? =1.

Notice that the perturbation method converges faktn the false transient method. However, if
a larger value ok?is used, the system does not converge when usengtédmdard method of
false transients. For example, Figure E-6 showsvtiae of gin the domain for a value of
k? = 6. Figure E-7 shows the convegence. In this cagemtthod of false transients does not

converge, whereas the perturbation method dodactnthe method of false transients does not
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T
converge for an)k2 >7. This is in fact, the location of the first singtity in the solution as

can be seen from the analytical expression in EougE.40).
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Figure E-6: Convergence ofg for the Helmholtz Equation with k? = 6 using the perturbation method (solid
line) and the false transient method (dashed lineYhe inset shows the convergence at very short pskutime.

This can also be analyzed by considering Equat{mn3) as developed from the false

transient method in matrix form for linear problems

9 _ Ao b (E.45)
T

Where @ is the variable vectorA is the coefficient matrix (which is equivalent teetJacobian
of the system for a linear problem), ahid a vector of nonhomogeneous terms arising fraen th
boundary conditions. The solution to such a systétinear ODEs can be directly solved using

exponential matrices and is the following fotti

O=expAr L+, (E.46)
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WhereC is a vector of constants chosen to satisfy théalréonditions and®, is the particular

solution to Equation (E.45).

y x

Figure E-7: Solution profile of Helmholtz’s equatian for k? = 6
The exponential matrixexp(Az), is analogous to the standard scalar exponemtigérms of

behavior. Importantly, the eigenvalues &f determine whether the solution will converge to
zero or diverge to infinity. Therefore, if all thEgenvalues are negative, the false transient
method will converge to a meaningful solution. Cersely, if any of the eigenvalues are
positive, the method of false transients will dgerSince the eigenvalues are dependent on the
parameterk® for the system of equations considered here, weptadict how fast the false

transient method will converge, or if it will faiFigure E-8 shows that all eigenvalues are

2
/4
negative fork® <7 for this system and positive otherwise.
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Figure E-8: Effect of k? on the maximum eigenvalue of the false transient siem, notice that the eigenvalues
increase with increasingk? indicating the instability of the false transientmethod.

However, compare this with the proposed perturbatiethod by converting Equations
(E.44) into matrix form by using Equation (E.11)oab and considering that the right hand side
of Equations (E.43) and (E.44) are equivalent weaat the following equation:

03 _pp.b (E.47)

T
which is similar to Equation (E.37) above for Lag& equation. Equation (E.47) can be
converted to explicit form by left multiplying botsides by-6"J"*to arrive at the following
(recognizing thatA =J):

@ _sie—5i3 (E.48)

dr
wherel is the identity matrix. Equation (E.48) can alsosbéved using exponential matrices in a

manner analogous to Equation (E.46) to give

®=exp(-0"1 7 L+ ®, (E.49)
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where Cis a vector of constants chosen to satisfy théaintbnditions and(I)p is the particular

solution, and are not necessarily equal to thos&qnation (E.46) above. Importantly, the
eigenvalues of-0'l are all equal to-6" and always negative regardless of the value of the
parameterk?under consideration. This ensures the stabilitghef perturbation approach and

encourages fast convergence.

E.3.3 Solving the Frank-Kamenetskii Equation

y4 ¢=0
99 _
&—Ol ¢:O
>
%_o
oy

Figure E-9: Boundary conditions used for solving Eample 2 (Frank-Kamenetskii equation)

The advantage of the proposed perturbation appradsks from its ability to handle
nonlinearities, and to solve problems with multigiieeady stats. It is worth noting that this
method can handle nonlinear source terms as welbabnearities in the state additive terms.
However for demonstration purposes, only the Fridakienetskii equation is considered, which
has an exponential source term and exhibits malgolutions. This is given by the following

non-dimensional equatiofT:
@+6—2¢+5exp(¢)—0 (E.50)
o oy '

where § is referred to as the Frank-Kamenetskii parameteFhis represents the dimensionless
temperature when a zeroth order exothermic reacti@urs, while implicitly assuming that the
reactant is being continuously fed. Note that thierce term in Equation (E.50) is derived from
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zeroth order Arrhenius kinetics for a reaction wstifficiently large activation energy such that
some terms can be neglected. A more thorough dienivaan be found in the literatut€. The

following boundary conditions are used, and alsmashin Figure E-9.

0¢(0.y) _ (E.51)
oX
op(x0)
——=~=0 E.52
oy (E.52)
¢(l,y)=0 (E.53)
#(x,1)=0 (E.54)

Note that it is not necessary to apply non-homogesdoundary conditions for this case to
analyze a non-trivial solution due to the nonlinsaurce term. Still, Equation (E.50) cannot be
solved analytically because of the nonlinearity.ailthe finite difference scheme used above is

applied to this problem, the following system ohrdmear algebraic equations is obtained:

A, YU Mo+ ™t o
O 1~ 2 ¢n+1+¢m 2 ¢m+5e<p(¢m)=0for m=1..M,n=1..N (E.55)

(%)’ (ay)
o0 4N n_ngn
¢(ax’y)z % +;§1X % _0for n—0..N+1 (E.56)
42 1 40
a¢((3>;/,0)z ¢m+;425n; ¥n_ 0 for m=0..M+1 (E.57)
#r.p =0 for n=0..N+1 (E.58)
gt =0 for m=0..M+1 (E.59)

Unlike the first two cases considered, this examplgults in a system of non-linear
equations and cannot be solved using basic lineaom-linear solvers, such as Maple’s built-in
fsolve command. Standard numeric based solversatssm have trouble solving this system.
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Therefore, the method of false transients or theuggation method is a good choice for finding
the solution to this problem. Application of théskatransient method gives the following system
of ODEs:

O _ =2t by, O =250
dz (&x)° (ay)’

+5exp(¢,:“) form=1..M,n=1..N (E.60)

With the boundary conditions similar to in the poas cases. Conversely, the perturbation

method gives:

. 02[d¢&1_2d¢;+d¢alj_ oz(wxl_zow;+ dﬁ::lj_wexm)am:
(Ay)"\ dr dr dr (Ax)"\ dr @ dr dr
1 1

n _2n n 1 n 1l S n

(Ay)z(% ¢m+¢m)+(Ax)2(¢m 27+ g7)+ 5 ex(4 )

for m=1..M,n=1..N (E.61)

¢ at center point
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Figure E-10: Converged solution f0r¢ located at the origin for various values of5 determined using the
perturbation approach.

This problem exhibits some interesting behavior. &ample, ford > d,,; , there is no

solution, while ford < d; there exists two solutions. Figure E-10 shows tieti®n value(s) of
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¢ at the origin for various values o as determined using the perturbation approach,

demonstrating the multiple solutions of the prohléwote that the lower branch solution is a
stable equilibrium point, while the upper branchuion is an unstable equilibrium point. When
using the proposed approach, both stable and uestalutions can be found depending upon
the initial guesses used. However, it is not pdsdib find the upper branch solution using the
method of false transients. If the initial guessvialed is less than the upper branch solution, the
false transient method will always converge todtable lower branch solution. Conversely, if an
initial guess is provided which is greater than thgper branch solution, the false transient

method will diverge to infinity.

Maximum Eigenvalue

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
8

Figure E-11: Maximum eigenvalue of the Jacobian fothe equilibrium solutions of the nonlinear problem
This indicates the stability of the lower branch stution, and the instability of the upper branch soltion.

This instability makes it impossible to track thgper branch solution by continuing from
small values ofé using standard solving methods. An arc length agpgraan be used to trace
the solution given in Figure E-10, by integratirguenknowns and all parameters across the arc
length of the solution curve. However, that canbetused to directly determine the solution

profile for a given value of the parametér, as the parameter is solved as a function of arc
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length. Furthermore, such a method requires a te gredictor/corrector approach due to the
nonlinearities, which increases complexity and cotagponal cost.

x10°

Condition Number of the Jacobian Matrix
N
(4,1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure E-12: Condition number of the Jacobian at véious values of the parameterd for the upper and

lower branch solutions. The bifurcation point aso approachesé;rit is particularly ill-conditioned.

The difficulty observed in the convergence of tlaésé transient method to the upper
branch solution can be predicted by considering ¥heobian of the problem. For the lower
branch solution, all the eigenvalues of the Jacohi@ negative, indicating a stable equilibrium
solution. In other words, the system of ODEs degwetbusing the method of false transients will
converge to the lower branch solution, even if glgstem is slightly perturbed from the steady
state solution. In contrast, the upper branch swiatrepresent an unstable equilibrium point, as
evidenced by the positive eigenvalues observedhaget points. Graphically, this is shown in

Figure E-11 which shows the maximum eigenvaluehefacobian for the various equilibrium

points. Even though the upper branch solution desssfy zizo, any deviation from
T

equilibrium will cause the solution to diverge frahe upper branch. If the deviation is above the

upper branch solution, the instability will cauée tsolution to diverge to infinity. However, if

195



the deviation is below the upper branch solutitwe, $system will converge to the lower branch

solution, a stable equilibrium point.

(@) N (b)

08y e e 6o

Figure E-13: Solution profiles when 6 =0.5for (a) upper branch and (b) lower branch. Notice he
qualitative and quantitative differences

It is also worth noting the difficulty of findinghé solution near the bifurcation point,
when 6 =, . At this point, the condition number of the Jaembincreases significantly at the

solution points, indicating the system is particylaill-conditioned as the parameted
approaches its critical value. Interestingly, hoarethe Jacobian as computed from the upper
branch solution is not significantly more ill-cotidned than the lower branch solution. This is
shown graphically in Figure E-12. It is worth ngfithat other techniques, such as the arc-length

tracking method can be used to better track thedation of multiple steady states.
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Figure E-14: Convergence of proposed method (solithe) and false transient (dashed line) for a valuef

0 =0.5, using (Inset shows the graph at very short pado time) using ¢ = 0 as an initial condition (top).

Same system with initial guesses near the upper brah solution—the perturbation method converges tohe
upper branch solution while the false transient sti converges to the lower branch solution (bottomdft).
Same system using = 3 as an initial condition (bottom right); the falsetransient method diverges.

Figure E-13(a) shows the surface plot for the loWweanch solution for the case that
0 =0.5, while Figure E-13(b) shows the profile for thepap branch solution. In order to show

the importance of providing an initial guess aslvasl to compare convergence, Figure E-14
shows the value otlﬁg as a function of pseudo-time for the false tramsimethod and the

perturbation approach whed=0.5. The top figure of Figure E-14 uses an initial spief
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¢rr,“=0 for all m and n, while the bottom left figure of Figure E-14 usi® upper branch

solution for 6 =0.6as an initial guess fod =0.5. This is to show that the perturbation approach
and the method of false transients will not nea@gseonverge to the same solution, even when

identical initial conditions are applied. Furthem@othe bottom right figure of Figure E-14

shows the convergence when an initial guessgpt=3 for all m and n. In this case, the

perturbation approach converges to the upper bramgaite the false transient method fails after
a few pseudo-seconds of simulation. This furthenalestrates the advantages of the purposed
approach.

It also must be stated that the perturbation methiddalso not converge for certain
initial conditions, such as for profiles signifi¢hnabove the values in the upper branch solution.
This is due to the presence of the exponential ®hich becomes unstable for large values of
® . However, the proposed method is much more fangivin that it will converge for a wider

range of initial conditions than the false transimethod.

E.4 Conclusions

A Jacobian-based perturbation approach was preksastan alternative to the method of
false transients when solving elliptic PDEs. Bothtinods discretize the spatial variables using
standard finite different schemes and introducingpsudo time variable, although other
discretization schemes, such as collocation, cbaldsed. However, the perturbation approach is
shown to converge to a meaningful solution for dewxirange of problems and initial guesses
than the method of false transients. Furthermotenausing the method of false transients, the
equations must be carefully applied in such a wayensure that the DAEs are stable and

converge to the expected solution if possible. pitoposed perturbation approach is much more
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robust and the equations can be applied in angddlgiconsistent manner. Also, in cases where
multiple solutions exist, the Jacobian-based phedtimn approach is more capable of finding the
multiple solutions, specifically those which regesunstable equilibrium points. In contrast, the
false transient method may only converge to a stablution regardless of the initial guesses
used. It is important to note that there are maeyhiods to solve elliptic PDEs. The objective of
this paper is to make the false transient methodenmobust. Comparing other numerical

approaches to solve such problems is beyond thpesafathis work.

The primary difficulty of the proposed approachsas from the calculation of the
Jacobian of the system of equations. This requyesbolic calculations that are not trivial and
require the use of a computer algebra system. mtrast, the method of false transients can be
applied relatively easily to any system of equatioWe believe that this has contributed to the
popularity of the method of false transients in plast, despite some of the shortcomings of the
method, some of which have been discussed abowdtidwmhlly, the resulting system of ODEs
is not necessarily in an explicit form (one denwvatin each ODE), which may be difficult for
standard or library solvers to handle. As DAE schand computer algebra systems like M&ple
or Mathematic® are becoming more common and more efficient, greugbation approach is a

viable alternative for solving elliptic PDEs in@bust manner.
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