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Lithium-ion batteries are ubiquitous in modern society, ranging from relatively low-

power applications, such as cell phones, to very high demand applications such as electric 

vehicles and grid storage. The higher power and energy density of lithium-ion batteries 

compared to other forms of electrochemical energy storage makes them very popular in such a 

wide range of applications. In order to engineer improved battery design and develop better 

control schemes, it is important to understand internal and external battery behavior under a 

variety of possible operating conditions. This can be achieved using physical experiments, but 

those can be costly and time consuming, especially for life-studies which can take years to 

perform. Here using mathematical models based on porous electrode theory to study the internal 

behavior of lithium-ion batteries is examined. As the physical phenomena which govern battery 

performance are described using several nonlinear partial differential equations, simulating 

battery models can quickly become computationally expensive. Thus, much of this work focuses 

on reformulating the battery model to improve simulation efficiency, allowing for use to solve 

problems which require many iterations to converge (e.g. optimization), or in applications which 

have limited computational resources (e.g. control).  
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Computational time is improved while maintaining accuracy by using a coordinate 

transformation and orthogonal collocation to reduce the number of equations which must be 

solved using the method of lines. Orthogonal collocation is a spectral method which 

approximates all dependent variables as a series solution of trial functions. This approach 

discretizes the spatial derivatives with higher order accuracy than standard finite difference 

approach. The coefficients are determined by requiring the governing equation be satisfied at 

specified collocation points, resulting in a system of differential algebraic equations (DAEs) 

which must be solved with time as the only differential variable. The system of DAEs can be 

solved using standard time-adaptive integrating solvers. The error and simulation time of the 

battery model of orthogonal collocation is analyzed.   

The improved computational efficiency allows for more physical phenomena to be 

considered in the reformulated model. Lithium-ion batteries exposed to high temperatures can 

lead to internal damage and capacity fade. In extreme cases this can lead to thermal runaway, a 

dangerous scenario in which energy is rapidly released. In the other end of the temperature 

spectrum, low temperatures can significantly impede performance by increasing diffusion 

resistance. Although accounting for thermal effects increases the computational cost, the model 

reformulation allows for these important phenomena to be considered in single cell as well as 2D 

and multicell stack battery models.   

The growth of the solid electrolyte interface (SEI) layer contributes to capacity fade by 

means of a side reaction which removes lithium from the system irreversibly as well as 

increasing the resistance of the transfer lithium-ion from the electrolyte to the active material. As 

the reaction kinetics are not well understood, several proposed mechanisms are considered and 

implemented into the continuum reformulated model. The effects of SEI layer growth on a 
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lithium-ion cell over 10,000 cycles is simulated and analyzed. Furthermore, a kinetic Monte 

Carlo model is developed and implemented to study the heterogeneous growth of the solid 

electrolyte layer. This is a stochastic approach which considers lithium-ion diffusion, 

intercalation, and side reactions. As millions of individual time steps may be performed for a 

single cycle, it is very computationally expensive, but allows for simulation of surface 

phenomena which are ignored in continuum models.  
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Chapter 1 

Introduction 

1.1 Lithium-Ion Batteries 

A growing awareness of the consequences of relying on fossil fuels has increased the 

demand for development of renewable sources of energy and alternative fuels for transportation. 

This has led to intense research of many technologies which directly and indirectly enable the 

transition to the wide-scale use of lithium-ion batteries can help facilitate the utilization of non-

carbon based fuels. Many renewable energy sources are intermittent in nature and require an 

energy storage system in order to match energy production to demand. Alternative transportation 

fuels must have a high energy and power density to compete with petroleum based in terms of 

range and performance. Lithium-ion batteries operate at a higher voltage than other battery 

chemistries, which make them particularly useful in high energy and high power applications.  

1.1.1 Standard Lithium-Ion Battery Operation 

Lithium-ion battery technology is fundamentally based on the reversible oxidation of 

lithium to lithium ions as given by the following electrochemical reaction: 

 
Discharge

Charge
L i ei L + −→←  +   (1.1) 

Reaction (1.1) has a very high electrochemical potential ( 0 3.04VE = −  vs. the standard hydrogen 

electrode (SHE)). This property combined with the low molecular weight of lithium gives 

lithium-ion battery technology an advantage over other alternatives in terms of energy and power 

densities. The high energy density of lithium-ion batteries has led them to be popular in a variety 
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of electronic devices. These range from applications with small energy demands, such as 

implantable cardioverter-defibrillators, to very high energy and life demanding applications, such 

as in satellites, and now hybrid- and full-electric vehicles. 

 

Figure 1-1: Schematic of lithium-ion cell being charged. The transport of lithium occurs in the opposite 
direction during discharge. 

A lithium-ion battery consists of a positive electrode and a negative electrode separated 

by a porous membrane, as shown in Figure 1-1. During charge, lithium deintercalates from the 

positive electrode, diffuses in the electrolyte, and intercalates into the active material in the 

negative electrode. Note that in this work, and found commonly in the literature on the subject of 

batteries, the term “positive electrode” is used interchangeably with “cathode” and “negative 

electrode” is used interchangeably with “anode”. This is done to avoid ambiguity by defining the 

terms “anode” and “cathode” based on whether oxidization or reduction occurs during discharge. 

Typically, a lithium metal oxide is used at the positive electrode, in which the metal in the metal 

oxide is reduced during discharge and oxidized during charging as given by the following 

reaction: 

Cathode Anode  

Separator Current 
Collector 

Current 
Collector 

Li+

e- 
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Discharge

Chargey yMO Li e LiMO+ − →+ + ←  (1.2) 

The counter-reaction at the negative electrode is based on the oxidation of lithium shown in 

reaction (1.1). However, lithium metal is typically not used due to the formation of dendrites 

which can cross the separator region and short-circuit the cell. Such an occurrence can lead to 

dangerous thermal runaway reactions as all the stored energy in the cell is released as heat in a 

very short time. Therefore, a host material is employed when designing commercial cells in 

which the lithium metal is stored (though the use of lithium foil is popular for research purposes 

by minimizing the open circuit potential of the anode during cycling). Graphite is often used as 

the anodic active material due to its low cost and good cycling stability, leading to the following 

redox reaction to occur at the negative electrode: 

 
Discharge

Charge6 6LiC Li e C+ −→ + +←  (1.3) 

This work focuses principally on graphitic anodes, though it should be mentioned that other 

materials, most notably silicon or Si/C composites are being researched with the aim to greatly 

improve energy density. Currently, such materials suffer from extreme volumetric changes that 

quickly lead to degradation after a few cycles, limiting their commercial use. Although 

simulating operations for materials which experience large stress strain effects will require the 

development of a model which considers these effects, the reformulation techniques developed 

in this thesis are applicable to other chemistries and materials which may be used. The versatility 

of the techniques developed here is explained in more detail in Chapter 2 and Chapter 3. 

 The electrodes in lithium-ion batteries are porous in nature and flooded with an 

electrolyte. The electrolyte and separator facilitate the transfer of lithium ions from the cathode 

to the anode during charging and vice versa during discharging. The porous nature of the 

electrodes increases the available surface area for lithium intercalation and reduces the diffusive 
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resistance, as lithium diffusion in the electrolyte is orders of magnitude greater than in the solid 

phase. This leads to designs which minimize the diffusion length of lithium in the solid phase, 

though at the expense of reduced energy density. This provides a trade off in which the optimal 

design must be determined based on the intended application.  

Despite the great promise shown by lithium-ion batteries, several limitations still exist 

and are an active area of research. For example, concerns such SEI layer growth, side reactions, 

stress-strain, ohmic and diffusion resistance, etc can reduce capacity and overall performance.1,2 

Researchers have been trying to find novel anode and cathode materials with better physical, 

mechanical, and chemical properties to address these issues. Furthermore, the robustness and 

charge density can vary significantly among different chemistries.  

1.2 Motivation of Li-ion Battery Simulation 

Modeling and simulation can provide insight that is either impractical or impossible to 

find using physical experiments. Physical experiments can be expensive in terms of money and 

time, and can practically test only a finite number of discrete conditions. In contrast, a 

computationally efficient model can perform simulation of many conditions in a short time, and 

the feasibility of using detailed physics based model has only increased as the cost of computer 

hardware has decreased while power has increased,. Furthermore, simulation can provide data on 

the internal states of the battery which cannot be measured in situ. Lithium-ion battery models 

can be used to enable better design and control and provide long term predictive capability.  

Lithium-ion batteries have historically designed using an Edisonian trial-and-error 

approach, which can be expensive in terms of both money and time, as prototype batteries must 

be manufactured and cycled repeatedly, a process that can take years to complete. Furthermore, 
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it is practical to only consider discrete values of the design parameters, with any conclusions for 

other designs based on interpolation and extrapolation of the data. In contrast, a well-developed 

optimization scheme can consider all parameters as continuous values, and modify them 

simultaneously.3 This can lead to the development of an optimal design in a relatively short time. 

However, if there are many parameters which are being considered, the simulation may have to 

be run hundreds or thousands of times, increasing the need for efficient simulation techniques.  

A well-defined physics based model can also be used to estimate the physical parameters 

in a system using experimental data.4 Typically, only the voltage and current can be directly 

measured during battery operation, thus parameter estimation techniques can be used to 

determine internal parameters, such as transport coefficients and reaction rate constants. Once 

these parameters are found, the behavior of battery under different operating conditions can be 

predicted. Furthermore, parameter values can be tracked as a function of cycle number to provide 

predictions of capacity fade.  

Similar to estimation of parameter values, a physics based model can be used to estimate 

the internal states of the battery based on experimental voltage and current data. This is 

particularly important in control applications and battery management systems (BMS), for 

example in large scale energy systems such as electric vehicles (EVs). When the battery is nearly 

depleted there are difficulties in the vehicle meeting high power demands, such as during high 

acceleration, which is aggravated as the battery ages. Furthermore, the present state of charge 

(SOC) is not precisely known. Thus, the battery is shut off while a significant amount of energy 

remains unused. A similar case exists when the battery is nearly completely charged. For this 

reason, Li-batteries for EVs are greatly overdesigned and carry a significant amount of extra 

weight and volume that is never used to propel the vehicle resulting in a corresponding increase 
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in costs.5,6  The BMS controls the flow of current into and out of the battery to maximize 

performance of the battery while maintaining safety. From this data, the BMS generally 

estimates SOC and state of health of the battery (SOH) of the battery, using a built-in model 

capable of predicting battery behavior. For reference, SOC refers to the fraction of charge that 

remains in the battery that can be used to provide power, while SOH refers to the maximum 

amount of charge that can be currently be stored, relative to the amount of charge that can be 

stored in a new battery. By using a validated physics based model in such control applications, 

the SOC can be more accurately determined and the amount of battery overdesign can be 

reduced to save money and minimize weight.  

1.3 Models Used to Simulate Lithium-Ion Batteries 

In order to better understand lithium-ion battery operation and predict performance, 

several mathematical models have been developed.2 These range from simple empirical-based 

models or circuit based models7,8 to computationally expensive molecular dynamics simulators. 

These mathematical models for lithium-ion batteries vary widely in terms of complexity, 

computational requirements, and reliability of their predictions.2 An ideal model would be 

perfectly predictive under all operating conditions and for the entire life of the battery. The SOC 

and SOH of the battery would be well known at all times. The temperature and 

charging/discharging under which the device is operating have a significant impact on output 

voltage and performance, which should be accounted for in a comprehensive model which 

considers the coupling of various physical phenomena. However this increases the computation 

demands of simulation. Ideally, a model would predict the internal behavior while maintaining 

minimal computational cost so that it can be solved instantaneously and with limited resources. 
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This is difficult in battery models, as many phenomena in batteries are best modeled using 

complex non-linear partial differential equations, while others are still not well understood. 

Furthermore, there is often a tradeoff between accuracy and computational costs for existing 

models.  

1.3.1 Empirical and circuit based models 

Empirical models are minimally detailed and often provide the highest computational 

efficiency for lithium-ion batteries models by using polynomial, exponential, power law, 

logarithmic, and trigonometric function fits with past experimental data to predict the future 

behavior. However, these models use parameters that lack any physical meaning, and are not 

accurate outside of the operating conditions from which they were developed or as the battery 

grows older or as temperature changes occur, limiting the insight that can be gained from such 

models. Equivalent circuit models try to describe the underlying system using a representation 

that usually employs a combination of capacitors, resistors, voltage sources, and lookup tables,7 

while capacity fade is often represented by a capacitor with a linearly decreasing capacity and 

temperature dependence is modeled by a resistor-capacitor combination. Current research in this 

area includes adopting the parameters of the circuit based models to be more accurate by 

continuously updating the parameters using the current and voltage data.8  

1.3.2 Single Particle Model 

The single particle model (SPM) is a simple model which represents each electrode as a 

single particle. The effects of mass transport in the solid phase of a lithium-ion cell are 

considered within the particle, but the concentration and potential effects in the solution phase 

between the particles are neglected.9-11 The governing equations are based on Fick’s Law in 
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spherical coordinates. The applied flux on the spherical surface is based on Butler-Volmer 

kinetics. The governing equation is shown in Table 1-1, which is identical for both electrodes. 

The SPM is a simplified physics based model which allows one to draw conclusions of battery 

performance for a range of conditions, although the assumptions are not valid for high rates or 

thick electrodes.9 The limited computational requirements allow for fast simulation of battery 

performance making it popular as an initial attempt when considering additional physical 

phenomena, especially for life simulations.12,13   

Table 1-1: Governing Equation of the Single Particle Model 
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1.3.3 Porous Electrode Pseudo Two-Dimensional Model 

The pseudo-two-dimensional (P2D) model is a more detailed physics based model that 

considers several physically meaningful internal variables during simulation, including the 

electrochemical potentials within the solid phase and electrolyte along with lithium concentration 

in both the solid- and liquid-phases.14 Doyle et al.14 developed a general model based on 

concentrated solution theory to describe the internal behavior of a lithium-ion sandwich 

consisting of positive and negative porous electrodes, a separator, and current collectors.2 Such a 

model allows researchers to quickly and cheaply study the effects of different operating 

conditions on battery performance without relying on costly physical experiments.  
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Table 1-2: Porous Electrode Pseudo 2D Model 
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The base P2D model is a detailed engineering model based on transport phenomena that 

describes the behavior of a 1-D battery subject to isothermal conditions consisting of a total of 10 

governing partial differential equations (PDEs) in x, r, and t, across three regions which are given 

in Table 1-2 with appropriate boundary conditions. The boundary conditions at the electrode-

separator interfaces are given to satisfy continuities and conservation of flux, while the electrode-

current collector interfaces are insulating conditions for all variables except the solid phase 
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potential. The solid phase potential boundary conditions are dictated by the charging/discharge 

protocol considered and drives the ultimate evolution of the system. Note that the governing 

equations for the positive and negative electrodes are identical in form and differ only in the 

parameter values and correlations. The separator is void of active material, so all terms relating 

to the solid phase are absent. The first equation is derived from concentrated solution theory and 

material balances of lithium in the electrolyte phase. The second equation is the charge balance 

in the liquid phase while the third equation is the charge balance in the solid phase. The fourth 

equation is Fick’s law of diffusion inside the solid particles (solid phase), which is analogous to 

governing equations of the single particle model discussed in Section 1.3.2. Thus the P2D model 

can be seen as an extension of the SPM which accounts for variation across the electrodes and 

effects of the electrolyte.  

The auxiliary equations for the P2D model are given in Table 1-3. Butler-Volmer kinetics 

links the solid and electrolyte phases by describing the transfer of lithium (and charge) between 

the two domains. The open circuit potentials, denoted as nU  and pU , are empirically determined 

functions of the local state of charge and are highly dependent on the active material used.  

The validity of the P2D model over a wide range of conditions has led to it being very 

popular among battery researchers. Thus, much of the work presented in this thesis is based upon 

the P2D model. Specifically, Chapter 2 focuses on the reformulation of the P2D model to 

improve computational efficiency. This allows more detailed phenomena to be studied, as 

described in Chapter 3 
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Table 1-3: Additional Expressions for Li-ion Battery Simulation 
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1.3.4Thermal Effects 

The temperature at which a cell operates has a major impact on performance, safety, and 

life.15  At low temperatures, high diffusive resistances reduce the amount of power that a battery 

is capable of providing, making operating battery powered devices difficult in cold weather. 

Conversely, a battery subjected to high temperature or extreme demands can be physically 

damaged or experience higher levels of capacity fade.15 An overheated cell may ultimately 

undergo thermal runaway, a potentially explosive situation. A thermal runaway event can occur 

when a large release of energy from the cell, for example from a short circuit, causes a rapid 
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temperature rise. This can cause the solvent to vaporize and ultimately lead to rupture of the cell. 

As lithium is incredibly reactive, such a rupture can be disastrous. 

Although thermal runaway is a severe event, high operating temperatures can also have 

other deleterious effects.15 Side reactions which contribute to capacity fade may be more 

favorable under high temperatures. Stresses caused by thermal expansion can contribute to 

mechanical fracture.  

Maintaining reasonable temperatures for cell operation is therefore important to ensure 

safety and longevity. However, temperature rises are a normal part of battery operations. The 

ohmic resistances directly contribute to heat generation, as does the lithium reaction themselves. 

The temperature rise can be rather pronounced (50°C or more) under adiabatic conditions, 

especially in high power applications. This must be taken into consideration when designing and 

operating lithium-ion batteries and thus considering the thermal effects in lithium-ion batteries 

has been a popular subject in the literature.16-20 Further complications arise as the heat generation 

within a cell can vary with the temperature. Bandhauer, et al. examined the heat generation and 

capacity fade at different rates of charging and discharge, and applied their findings to study the 

effects when applied to electric vehicle applications.21 

1.3.5 Solid Electrolyte Interface 

Along with Li-ion intercalation, side reactions can occur during battery operation, such as 

decomposition of the electrolyte and the formation of a surface layer, often referred to as the 

solid electrolyte interface (SEI) layer. The properties and chemical composition of the SEI layer 

have been a subject of intense research due to its importance in the safety, capacity fade, and the 

life cycle of Li-ion secondary batteries. 
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The SEI layer is a key element of Li-ion batteries and acts as a safety feature by 

maintaining a protective barrier between the negative electrode and the electrolyte. The SEI layer 

typically forms due to the reduction of the solvent (typically ethylene carbonate) and contributes 

to SEI layer thickness.22 This model assumes that the solvent molecules, ethylene carbonate, 

must diffuse through the SEI layer to react with lithium at the active material surface to create a 

layer of lithium ethylene dicarbonate. The overall reaction by Safari, et al.22 is 

 2 2 22EC+2Li (C OCO i)H L→  (1.4) 

These byproducts results in increasing the resistance to the intercalation/deintercalation 

of lithium ions and results in reducing the capacity of the battery. These phenomena can increase 

temperature and lead to thermal runaway. The SEI layer should be highly ion-conductive to 

reduce overvoltage, while being mechanically stable and flexible. These objectives require a thin 

but stable SEI layer that will not deteriorate or substantially change its composition or 

morphology with time and temperature during cycling and storage.  

1.4 Scope of Thesis 

The work presented here generally focuses on the efficient simulation and model 

reformulation of lithium-ion batteries. Chapter 2 discusses the methods developed to improve 

simulation times and reduce computational costs to allow for the implementation of detailed 

models into more computationally limiting applications. Using a mathematical model for 

optimization, parameter estimation, or life studies requires the simulation to be run hundreds to 

thousands of times, necessitating efficient simulation techniques to be used. Similarly, on-line 

control applications, such as those found in electric vehicles, have limited computational 

resources available to do optimization calculations. These limitations have led to circuit-based or 
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single-particle models (see Sections 1.3.1 and 1.3.2) to be popular in such applications. 

However, the reformulated model developed in Chapter 2 becomes a viable option in 

applications that would otherwise be too computationally expensive for use of the P2D model. 

Using the more complicated P2D model can allow for predictions to be made over a wider range 

of conditions than is possible with simpler models.  

The model reformulation also can be expanded to include additional physical phenomena 

to better predict battery behavior. Examples of this are shown in Chapter 3. Section 3.1 discusses 

the inclusion of thermal effects into the P2D model framework, including into multi-cell stack 

model, while Section 3.2 considers 2D effects. Inclusion of the growth of the SEI layer into the 

P2D model is also discussed in Section 3.3 to allow for the long term simulation of life and 

capacity fade. Stress and strain effects are also important for life studies as they also contribute 

to capacity fade, but that work is left to future generations of students.  

Chapter 4 examines the growth of the SEI using a kinetic Monte Carlo (KMC) approach. 

A background on KMC is provided in Appendix C. This is significantly more computationally 

intensive simulation strategy that examines the growth of the SEI layer on the microscale and 

demonstrates the surface heterogeneity. The high computational cost makes the KMC model 

infeasible for use in online applications, but can provide insight to the conditions that ultimately 

lead to SEI layer growth and capacity fade. To analyze results for typical battery operation, the 

KMC model for growth of the SEI model is also coupled with the P2D model to give a 

multiscale model.  

Background and examples on the mathematical techniques used in this work are provided 

in the Appendices. Specifically, the numerical method of lines can be used to solve partial 

differential equations as shown in Appendix A, which allows efficient time adaptive solvers to 
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be used for integration. Appendix B discusses the method of weighted residuals: a way to 

determine the coefficients of spectral series to discretize spatial derivatives. A description of the 

kinetic Monte Carlo method is given in Appendix C. Appendix D shows how to solve a system 

of differential algebraic equations using the Euler method to numerically integrate, and the 

Newton-Raphson method to solve the algebraic equations. A perturbation approach building 

upon the method of lines and the method of false transients is given in Appendix E. Although the 

perturbation approach described in Appendix E is applied to elliptic partial differential equations, 

its development arose from the need to find consistent initial conditions for the battery models.  

  



 

16 
 

Chapter 2 

Model Reformulation of the Porous Electrode Pseudo 2D 

Model 

This chapter contains excerpts (specifically in Sections 2.2 and 2.3) from the following journal article 
reproduced here with permission from The Electrochemical Society: 
P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, “Coordinate Transformation, 
Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of 
Lithium-ion Battery Stacks,” Journal of the Electrochemical Society, 158(12), A1461-A1477 (2011). 

2.1 Background of Li-ion Battery Simulation 

In order to obtain useful information from any mathematical model, a method must be 

used to solve the equations of that model. Ideally, an analytical solution is preferred, as it 

eliminates the error that arises when using numerical techniques and is usually computationally 

very cheap. An analytical solution provides insight into the behavior of the system while 

explicitly showing the effects of different parameters on the behavior. However, many 

engineering models, including most battery models, cannot be solved analytically due to non-

linearities in the equations and state dependent transport and kinetic parameters. The 

mathematical method used to solve the system of equations describing battery operation can 

have a significant impact on the computational cost of simulation. 

2.1.1 Traditional Simulation Approaches 

Most standard solvers discretize an ODE or PDE using finite difference, finite volume, or 

finite element approaches. These schemes are well understood by most scientists and engineers 

and can be implemented in a straightforward manner. Thus, many commercial software 

packages, such as COMSOL,23 Fluent,24 etc. use these methods to numerically solve ODEs or 
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PDEs. However, many node points, control volumes, or elements are required for convergence. 

These methods are robust approaches for solving the problem, but the resulting set of algebraic 

or differential-algebraic equations can number into the thousands and is computationally 

expensive, even for linear problems, and is difficult to implement into a microcontroller or other 

resource-limited environment. Furthermore, many commercial solvers are over-designed in order 

to handle a wide variety of problems with minimal input from the user. They do not exploit the 

structure and unique characteristics of the underlying models, which can be used to improve the 

computational performance without compromising on the robustness. 

Typically, the P2D model is simulated using finite difference schemes in x and taking a 

single time step, for example using the BANDJ solver.25 To improve computational efficiency 

using adaptive solvers in time, the method of lines (MOL) is used which discretizes the spatial 

dimensions (x and r) using numerical techniques (often finite difference) to eliminate the spatial 

derivatives.26 The method of lines converts the system of PDEs to a system of first order 

differential algebraic equations (DAEs) with time as the only differential independent variable, 

converting the system to an initial value problem (IVP).27-29 The MOL allows for 

computationally efficient time stepping algorithms, such as DASSL and DASKR,30 to be used to 

simulate the model.  The method of discretization and refinement of the mesh determines the 

number of DAEs that are created. However, initial conditions can only be prescribed by the user 

for the variables which have explicit time derivatives in the system; the initial conditions for the 

algebraic variables must satisfy the algebraic equations and may not be accurately known a 

priori . Finding consistent initial conditions can be challenging and increases the difficulty of 

simulating battery models. Providing inconsistent initial conditions can cause many DAE solvers 

to fail. Thus, work has been done to better initialize the system so that simulation can be 
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performed.31,32 Note that the initialization approach provided in Ref. 31 is used in the bulk of this 

work. As an aside, this initialization work prompted the development of a perturbation aprroach 

generalizable to elliptic partial differential equations. A detailed description of this perturbaion 

approach is given in Appendix E. 

2.1.2 Order Reduction and Efficient Simulation 

Using traditional approaches to simulate the P2D model is computationally expensive, 

and has limited its use in applications which require the simulation to be performed dozens to 

hundreds of time to arrive at a solution, such as parameter estimation4 and optimization,3 or real-

time control33. The high computational cost of simulation has motivated researchers to develop 

techniques to simplify the battery models and enable faster simulation and reduce memory 

requirements. For example, proper orthogonal decomposition has been used to reduce the total 

number of states simulated.34 Quasi-linearization combined with a Padé approximation has also 

been used to simplify the model.35 Previous reformulation work used Galerkin’s method, but was 

unable to handle non-linear parameters.27  

Order reduction methods can be used to decrease the number of equations that must be 

solved simultaneously, and enable faster computation when using limited resources.34 However, 

there are disadvantages to using order reduction methods. The most obvious limitation of 

reduced order models (ROM) is that information contained in the model is often sacrificed to 

improve computational efficiency. A well-incorporated ROM is designed such that the loss of 

accuracy is minimized for the conditions of interest. However, the loss of information contained 

in the model can make the results invalid for cases significantly different from those for which 

the ROM was developed.37,40  
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Additionally, specific order reduction techniques are only useful for certain classes of 

problems. Many (though not all) methods can only be used on linear systems, and thus cannot be 

used for nonlinear models that describe many engineering systems, including battery models.36,37 

Nonlinear systems can be simplified by linearization around a reference point. However, this 

linearization is not valid at conditions that deviate significantly from the reference conditions. It 

is important to note that order reduction methodologies exist that can be performed directly on 

non-linear systems. For example, proper orthogonal decomposition (POD) fits a reduced set of 

eigenvalues to get a meaningful solution with fewer equations.34,38 However, rigorous numerical 

solutions are required to build the POD models. Also, if the operating conditions, boundary 

conditions, or parameter values are changed, the POD model must be reconstructed, negating any 

computational advantage that it provides. In addition, while POD has been reported to be very 

useful for ODEs, for large number of ill conditioned DAEs arising from battery models, POD 

methods do not offer the same reduction in CPU time.34 

2.1.3 Solid Phase Reformulation  

The P2D model considers two spatial dimensions: one across the thickness of the cells, 

denoted by x in this work, and another across the radius of the particle, denoted here by the 

variable r. This greatly increases the computational cost if a full order discretization is performed 

for both spatial dimensions, leading to alternative approaches to discretize the solid phase.14,28,39-

42 This has prompted researchers to develop numerous techniques to reduce the computational 

cost of simulating the radial dimension. One commonly used simplification is the parabolic 

profile approximation to eliminate the radial dependence of the governing equations by 

approximating the solid phase concentration as a second-order polynomial across the radius.28 

Thus, consider the solid phase diffusion equation from Table 1-2:  
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By volume average the concentration and governing equation, Equation (2.1) can be split into the 

following two equations for the average concentration and the surface concentration:43,44 
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This reduces the dimensionality of the problem and reduces the overall computational 

cost of simulation. This has been shown to be valid at low rates and long times28,39,45 and will be 

used for majority of the work in this thesis. 

Ramadesigan, et al.39 provides an alternative for simulation of discharge rates greater 

than 1C by using a mixed finite difference approach. The mixed finite difference approach uses 6 

optimally spaced node points (with 6 corresponding governing equations) to describe the 

behavior of the lithium ion concentration in the radial direction within the solid phase particles. 

This is in contrast to the polynomial profile approximation, which relies on 2 governing 

equations to describe the solid phase concentration. This allows the mixed finite difference 

approach to better capture the dynamics within the electrode at high rates, though at the cost of 

additional computation time. Additionally, Section 2.5 relaxes the parabolic profile 

approximation by allowing for higher order polynomials to be used for the solid phase. 

However, even if a parabolic profile approximation is used as given in Equations (2.2) 

and (2.3), the number of DAEs that are developed using a full order finite difference 

discretization is computationally prohibitive as nearly 1000 nonlinear DAEs must be solved. The 
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following sections discuss the application of spectral methods to discretize the P2D equations to 

improve computational efficiencies.  

2.2 Coordinate Transformation 

It should be noted that the original formulation of the problem has the three regions 

defined sequentially. In other words, the equations for the positive electrode are defined on the 

region [0, lp], the equations for the separator are defined on the region [lp, lp+l s], and the negative 

electrode equations are defined on the region [lp+l s, lp+l s+l n]. In order to decrease the required 

computation, each region is rescaled to a domain of [0, 1]. This effectively reduces the problem 

from three regions to a single region. This is shown graphically in Figure 2-1.  

 

Figure 2-1: Coordinate transformation for a single 1-D cell—note that the final diagram is used to show that 
the cathode, separator, and anode are solved in the same coordinate domain. It does not indicate that a 
second linear dimension is considered. 

As an example, this transformation is shown in detail for the electrolyte concentration in 

the cathode, separator, and anode. From Table 1-2, the governing equations for the electrolyte 

concentration are: 

( )p p peff,p  ε 1
c c

D a t j
t x x +

 
  

∂ ∂ ∂
= + −

∂ ∂ ∂
  0 px l< <  (2.4)

 

eff,sεs
c c

D
t x x

 
  

∂ ∂ ∂
=

∂ ∂ ∂
 p p sl x l l< +<  (2.5)

 

Cathode Anode Separator Cathode Anode Separator 

Cathode 

Anode 

Separator 

0x =  

px l=  

p sx l l= +  

p s nx l l l= + +  

1 0X = 1 1X = 3 1X =

2 1X =  

3 0X =

2 0X =

0X = 1X =



 

22 
 

( )eff,n  ε 1n n n
c c

D a t j
t x x +

 
  

∂ ∂ ∂
= + −

∂ ∂ ∂
 p s p s nl x ll l l< < + ++  (2.6)
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In order to convert the three region cell to a single region, the spatial coordinate, x, must 

first be transformed to the dimensionless coordinates X1, X2, and X3 in the anode, separator, and 

cathode, respectively. These transformations are achieved using the following equations: 

1
p
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Equations (2.13) to (2.15) can be applied to Equations (2.4) to (2.12) to arrive at the transformed 

governing equations for the concentration profiles: 
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From Equations (2.16) to (2.24), it is clear that X1, X2, and X3 are independent variables 

that can be replaced by a single dummy variable X, though we must differentiate between 

variables in the different regions (i.e. c  is replaced by pc , sc , or nc  for concentration in the 

positive electrode, separator and the negative electrode, respectively). 
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A similar process is performed on the remaining variables and the resulting equations and 

boundary conditions are given in Table 2-1. Note that this coordinate transformation is used in 

the remainder of this thesis. 
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Table 2-1: Transformed governing equations for the P2D model 
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2.3 Model Reformulation Using Cosine Collocation 

Here we focus on using spectral methods to discretize the spatial coordinates of the P2D 

model, specifically by using orthogonal collocation. The theory of orthogonal collocation is well 

established and stability theory has been discussed in the literature.46-48 A brief background on 

orthogonal collocation is provided here while a more detailed description is provided in 

Appendix B.  

2.3.1 Development of DAEs Using Cosine Collocation 

In order to set up a system of DAEs, the proposed reformulation discretizes the model in 

the x-direction while maintaining the time dependence to allow for the implementation of 

efficient time-adaptive solvers. Although this can be achieved using a variety of approaches, 

including finite difference, here each variable of interest is approximated by a summation of trial 

functions of the form: 

0

( , ) ( , ) ( ) ( )
N

k
k ku X t F X t B t T X

=

= +∑    (2.34)  

Where ( , )u X t is the variable of interest,( )kT X are the chosen trial functions with homogenous 

boundary conditions, ( , )F X t is a function chosen to satisfy the (time-dependent) boundary 

conditions, and ( )kB t are the coefficients of the trial functions. The only requirement of the trial 

functions is that they all be linearly independent. However, the choice of trial functions does 

affect the accuracy of the final solution, and a proper choice can improve convergence. For this 

model, the homogeneous trial functions are typically selected to be cosine functions while the 

boundary conditions are satisfied by linear and quadratic terms. The coordinate transformation 
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discussed in Section 2.2 allows the cosine trial functions to be applied in a simple form of

cos( )k Xπ for each variable. 

Table 2-2: Approximate forms of equations using cosine collocation 

Positive Electrode 

2
, , ,

0

( , ) ( ) ( )cos( )
pN

p p c p c k
k

c X t A t X B t k Xπ
=

= +∑
 

2 2

2
2, , , ,

0

( , ) ( ) ( )cos( )
pN

p p p k
k

X t A t X B t k XπΦ Φ
=

Φ = +∑
 

1

2
1, , ,

0,

1
( , ) ( )cos( )

2

pN
app p

p p k
keff p

i l
X t X X B t k Xπ

σ Φ
=

 Φ = − +  
∑  
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, ,
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( , ) ( )cos( )
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s surf

N
s surf
p p c k

k

c X t B t k Xπ
=

=∑
 

,
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, ,
0

( , ) ( )cos( )
p
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N
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p p c k

k

c X t B t k Xπ
=

=∑
 

Separator 

2
, ,1 , ,2 , ,

0

( , ) ( ) ( ) ( ) cos( )
sN

s s c s c s c k
k

c X t A t X A t X B t k Xπ
=

= + +∑
 

2 2 2

2
2, , ,1 , ,2 , ,

0

( , ) ( ) ( ) ( ) cos( )
sN

s s s s k
k

X t A t X A t X B t k XπΦ Φ Φ
=
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Negative Electrode 

2
, , ,

0

( , ) ( )( 1) ( )cos( )
nN

n n c n c k
k

c X t A t X B t k Xπ
=

= − +∑
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The approximate form of each variable is given in Table 2-2. For the variables with non-

homogeneous boundary conditions, an additional linear and/or quadratic term is added to the 

approximate solution to satisfy the boundary conditions. This allows the boundary conditions to 

be applied analytically before applying the time-adaptive DAE solver. For example, the liquid 

phase concentration is approximated by the equations: 

2
, , ,

0

)( , ) ( ) ( )cos(
p

p p

N

c
k

p c kc X t A t X B Xt kπ
=

= +∑   (2.35) 

2
, ,1 , ,2 ,

0
,( , ) ( ) ( ) )( ) cos(

s

s s c s c s c i

N

k

c X t A t X A X B t k Xt π
=

= + +∑  (2.36)  

2
, ,

0
,( , ) ( )( 1) ( )c ( )os

nN

n n c
k

n c kc X t A t X B t Xkπ
=

= − +∑  (2.37) 

for the positive electrode, the separator, and the negative electrode, respectively. For the roughest 

approximation, let �� � �� � �� � 1. In this case Equations (2.35) to (2.37) become 

2
, , ,0 , ,1( , ) ( ) ( o )) ( )c s(p p c p c p cc X t A t X B t B t Xπ= + +  (2.38) 

2
, ,1 , ,2 , ,0 , ,1( , ) ( ) ( ) ( ) ( ) )cos(s s c s c s c s cc X t A t X A t X XB t B t π= + + +  (2.39) 

2
, , ,0 , ,1( , ) ( )( 1) ( ) ( )cos )(n n c n c n cc X t A t X B t B t Xπ= − + +  (2.40) 

It should be pointed out that there are no lithium ions leaving or entering the cell sandwich, so 

the flux at both ends of the cell is set to zero. These boundary conditions are included in the 

original form above by choosing the linear and quadratic terms appropriately. For example, in 

Equation (2.35) there is no linear term for the concentration of the electrolyte in the positive 

electrode so that the derivative, ( , )pc X t
X

∂

∂
, is zero at the current collector located at 0X = , 

while holding no such restrictions at the positive electrode-separator interface. Similarly, the  

2( 1)X −  term accomplishes the same effect in Equation (2.37) for the negative electrode. The 
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equations given in Table 2-2 have been developed by considering the boundary conditions for 

each variable in the same manner as described above. The coefficients of the linear and quadratic 

terms, ( ),r vA t , are determined by requiring that each variable be continuous at both electrode-

separator interfaces, while also maintaining a continuous flux.  

By applying continuity boundary conditions, it is possible to analytically solve for these 

coefficients simultaneously in terms of the coefficients of the trial functions. This is shown 

below for the positive electrode in which only a single cosine term is used, though this procedure 

can be applied for any number of trial functions used, for every region, and for every variable of 

interest. For example, it can be shown that the coefficient of the quadratic term from Equation 

(2.38) is related to the remaining coefficients by 

 ( ) ( ) ( ) ( ), , ,0 , ,1 , ,0 , ,1( )p c p c p c s c s cA t B t B t B t B t= − + + +  (2.41) 

Therefore the concentration equation for the positive electrode can be written as: 

 
( ) ( ) ( ) ( )( )

( ) ( )

2
, ,0 , ,1 , ,0 , ,1

, ,0 , ,1

, ( )

                 cos( )

p p c p c s c s c

p c p c

c X t B t B t B t B t X

B t B t Xπ

= − + + +

+ +
 (2.42)  

This process is then repeated for each of the other unknowns ( 1 2

,
Φ ,Φ , s avgc ) in each 

electrode, and the separator, when applicable. The final form of the approximated solutions 

(including solving for the ( ), ,r v iA t ’s in terms of the ( ), ,r v iB t ’s) are not shown due to the large 

number of terms present as each ( ), ,r v iA t  may be a function of up to six ( ), ,r v iB t ’s when using a 

single cosine term. 

The coefficients of the trial function, ( ), ,r v iB t , must be determined in order to give the best 

possible approximation of the solution to the twelve governing equations. This is done using the 

Method of Weighted Residuals (MWR).47 This method solves for the coefficients, ( ), ,r v iB t , by 



 

30 
 

setting the integral of the residual multiplied by a weight function to zero. By using an adequate 

number of independent weight functions, enough independent equations can be developed to 

solve for the unknown coefficients. Collocation is a specific version of the MWR in which the 

weight functions are Dirac delta functions, so that the governing equations are exactly satisfied 

as specified collocation points. Orthogonal collocation refers to the collocation method in which 

the collocation points are chosen as zeros of orthogonal polynomials, which has been shown to 

give better results.46-48 A detailed discussion on the method of weighted residuals is given in 

Appendix B 

It should be noted here that there is no requirement that the variables in different regions 

be approximated by the same number of terms. However, all the variables in a single region must 

be represented by the same number of terms. For example, if the concentration profile in the 

positive electrode is approximated using two cosine terms, the liquid and solid phase potentials 

must also be approximated by two cosine terms in the positive electrode with the same 

collocation points, but the concentration profile in the separator may be represented by any 

number of terms.   

In development of the DAEs to be used to solve for the coefficients, each governing 

equation must be accounted for individually so that there are as many residual equations for each 

governing equation as there are coefficients to be solved in that region. For instance, if the 

variables in the positive electrode are represented by a single cosine term, the average solid 

phase concentration is approximated by 

( ) ( ) ( ), ,
,

, ,0 , ,1
, cos( ) s avg s avg

s avg
p p c p c

c X t B t B t Xπ= +  (2.43) 

Therefore, two collocation points are needed to solve for the two unknowns, ( ),, ,0s avgp c
B t  & 

( ),, ,1s avgp c
B t . The residuals are calculated using each of the five governing equations in the 
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positive electrode. Since each residual is defined to be zero at two node points from the 

orthogonal collocation method, we have now developed a system of 10 DAEs to solve for the 10 

unknown coefficients in the positive electrode. This must be repeated for each of the other two 

regions as well. In the case that each variable in all three regions are approximated by a single 

cosine term, there are 10 DAEs in both the positive and negative electrodes, and four DAEs in 

the separator for a total of 24 coupled DAEs that must be solved simultaneously.  

In general terms, the dependent variables in the positive electrode, the separator, and the 

negative electrodes are represented by pN , sN , and nN  cosine terms respectively. Each variable 

thus has 1rN +  coefficients that must be determined in each region, where r  denotes the region, 

and therefore 1rN +  residuals must be calculated. This results in 1rN +  DAEs for each variable. 

Since there are 5 governing equations (and 5 variables) for the positive and negative electrodes 

and 2 governing equations in the separator we have a total of 5( 1)pN + +2( 1)sN + +5( 1)nN +  

DAEs that must be solved simultaneously.  

These equations are functions of time only, some of which are ordinary differential 

equations (ODEs) in time, while the remaining are algebraic equations. Solving this system of 

differential algebraic equations (DAEs) is not trivial, and the algebraic variables must be 

initialized prior to solving to ensure that the initial conditions are consistent with the governing 

algebraic equations, and is a reason numerical simulations often fail for battery models. Once 

initialization is complete, this system can be solved using FORTRAN with the help of time-

adaptive solvers such as DASSL or DASKR.27,30 

Once the coefficients are determined, the unknown variables are represented by 

continuous functions valid at any position in the cell. This is in contrast to a solution obtained 

using a finite difference approach in which the variable is only determined at discrete node 
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points and would require interpolation methods to find the solution between two node points. 

Also, orthogonal collocation converges to a solution with an error on the order of h2N, where N is 

the number of collocation points and h is the node spacing.46 A typical finite difference solution 

that is typically used has error on the order of h2, though higher order schemes are possible. 

Although the resulting equations are more complicated when using orthogonal collocation, fewer 

terms are required for a meaningful solution, resulting in fewer DAEs that must be solved and a 

net reduction in computation time. 46  

This reformulation makes no assumptions of the form of any parameter used in any of the 

equations. There are no requirements that neither the diffusion coefficients, nor the 

conductivities are constant or linear, and successful results have been obtained using diffusion 

coefficients which are functions of the electrolyte concentration and temperature. This model is 

also versatile enough to work under galvanostatic, potentiostatic, and constant power conditions, 

even for continuous cell charge-discharge cycles. This model also does not assume a particular 

chemistry and has proven to be robust for different chemistries involving a variety of open 

circuit potentials and battery design parameters. Importantly, as we have chosen the polynomials 

in the region 0 to 1, globally convergent profiles can be obtained for any condition by increasing 

the number of terms in the series.   

2.3.2 Model Reformulation 

Further reformulations can be done to improve computation time by eliminating the need 

to numerically solve for the solid phase surface concentration while using the polynomial 

approximation for the solid phase.  Once the remaining variables have been approximated by a 

series solution, it is possible to analytically solve for surf

sc in terms of these variables. First, the 

pore wall flux, ij , can be determined by rearranging Equation (2.3) above to give: 
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( ), , ,5 solid i s surf s avg
i i i

i

D
j c c

R
= − −   ,i p n=  (2.44) 

Consider the solid phase governing equation from Table 2-1 

,
1,

1 eff i
i i i

i i

a Fj
l X l X

σ ∂ ∂
Φ = ∂ ∂ 

  ,i p n=  (2.45) 

Equation (2.44) can be inserted into Equation (2.45) to give the following equation: 

 ( )1,
,, ,51 s

s surf s avgi
i

eff i
i

i i
i i

il X l

D
F

X
a c c

R

σ ∂ ∂
Φ = − − ∂ ∂ 

 ,i p n=  (2.46) 

From this the surface concentration can be solved in terms of the average solid phase 

concentration and the solid phase potential, assuming the solid phase conductivity, effσ , is a 

constant: 

2
,, , 1

2 2

Φ

5
eff i is surf s avg

i i s
i i i

R
c c

a FD l X

σ ∂
= −

∂
  ,i p n=  (2.47) 

At this point, the focus will be limited to the positive electrode for demonstration purposes. From 

Table 2-2, the solid phase potential, 1,Φ p  and solid phase average concentration,, s avg

pc , have a 

series solution given by 

( )
1

2
1, ,Φ ,

0,

1
Φ cos( ) 

2

pN
app p

p p k
keff p

i l
X X B t k Xπ

σ =

 = − +  
∑  (2.48) 

( ) ( ),

,

, ,
0

cos
p

s avg
p

N
s avg
p p c k

k

c B t k Xπ
=

=∑     (2.49) 

By inserting Equations (2.48) and (2.49) into Equation (2.47), the solid phase surface 

concentration can be immediately written as  

( ) ( ) ( ) ( ), ,
1

2 2
,,

,Φ ,2, ,0 , ,
1

cos
5 5

p

s avg s avg

N
p app eff p ps surf

p p ks sp c p c k
kp i p p i p

R i R k
c B t B t B t k X

a FD l a FD l

σ π
π

=

  
= − + + − 

  
∑  (2.50) 
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By solving for the surface concentration analytically in terms of the other variables, we 

can eliminate the need to solve for two of the twelve unknowns (one from each electrode), 

resulting in fewer DAEs that must be solved. However, if the solid phase conductivity, effσ , is a 

function of x or is nonlinear, this reformulation cannot be performed. 

2.3.3 Results and Discussion 

The model prediction obtained using a collocation reformulation using a varying number 

of terms is compared to a full-order finite difference solution based on 50 node points in x for the 

electrodes and 35 node points for the separator. The primary curve of interest is the discharge 

curve in Figure 2-2(a), which shows the full-order finite difference solution, as well as four 

solutions obtained using increasingly accurate orthogonal collocation approaches for a 1C rate of 

discharge. Figure 2-2(b) shows the residuals of the orthogonal collocation solutions relative to 

the finite difference solution, while Table 2-3 shows a comparison of the root mean squared error 

as well as computation time. The least accurate collocation solution is obtained by using only 

one cosine term for each region, as shown by the solid line in Figure 2-2. Progressively more 

accurate solutions can be obtained by using orthogonal collocation with a greater number of 

terms. Figure 2-2 also shows collocation solutions obtained using (3, 2, 3) terms (long dashed 

line), (5, 3, 5) terms (short dashed line), and (7,3,7) terms (dash-dot line). Note that the 

nomenclature, ( ), ,p s nN N N , is used to represent the number of cosine terms used in the positive 

electrode, the separator, and the negative electrode, respectively. Experimental validation of the 

porous electrode pseudo-2D model can be found elsewhere in the literature.3-13 Therefore an 

established solution method using finite difference was used to validate the reformulated model 

presented in this paper. 
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Figure 2-3(a) and Figure 2-4 show that the electrolyte concentration at the end of 

discharge increases across the battery from the positive electrode to the negative electrode. These 

figures also show that the concentration in the positive electrode decreases during discharge, 

while it increases in the negative electrode, as lithium metal stored in the anode comes out of the 

active solid particle and reacts at the surface to produce lithium-ions causing an increase in local 

lithium salt concentration in the electrolyte. At higher rates of discharge, more lithium ions are 

released at the anode and absorbed in the cathode, increasing the concentration gradient.  

 

Figure 2-2: (a) Voltage-time curves for a 1C constant current discharge (b) Residual plot of collocation 
solutions vs. finite difference 
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Figure 2-3: Variable values at the current collector/cathode interface (○), the cathode/separator interface (□), 
the separator/anode interface (∆), and the anode/current collector interface (◊) for (a) electrolyte 
concentration (b) liquid phase potential (c) solid phase potential (d) solid phase surface concentration and (e) 
solid phase average concentration.  The markers represent the finite difference solution, the dash-dot line for 
(1, 1, 1) collocation, the short dashed line for the (3, 2, 3) collocation, and the long dash line for (5, 3, 5) 

The primary advantage of this method is the speed of simulation, which arises because a 

relatively few number of terms are required to obtain a converged solution. Table 2-3 shows the 

simulation time when using various numbers of collocation points, as well as the root mean 

squared error relative to the finite difference solution. The times are presented using a 

FORTRAN based DASSL solver, as well as a Maple49 solver for all simulations performed. 
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Figure 2-4: Electrolyte concentration across battery for (1, 1, 1) collocation (dashed line), (3, 2, 3) 
collocation (dotted line), and (5, 3, 5) collocation (solid line) in (a) transformed coordinates and (b) natural 
coordinates at 3500 seconds of discharge. 

 All simulations were performed using a 3.33. GHz, 24 GB RAM machine. Rates of 

discharge greater than a 1C rate were simulated using the mixed finite difference reformulation 

for the solid phase concentration in order to accurately track the battery behavior at high rates of 

discharge. However, the additional number of equations resulting from the mixed finite 

difference solution results in slower computation, as can be seen in Table 2-3. Note also that 

more terms were required to achieve a converged solution when analyzing greater rates. In order 

to quantify convergence of the series, the maximum magnitude of the coefficients of successive 

terms must be analyzed. This is shown in Figure 2-5Figure 2-5: Normalized maximum 

magnitude of coefficients for equations in Table 2-2 for (5,3,5) collocation for the cathode (long 

dash), separator (dash-dot), and anode (short dash)., indicating that the first terms are dominant 

and that the system converges. Interestingly, the later terms for describing the solid phase 

concentration carry more weight than for the other variables (although still significantly less than 

the first term). 
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Table 2-3: Simulation time and Root Mean Squared Error compared to FD 

Method Number of 
Differential 
Algebraic 
Equations 

Simulation 
Time (Maple) 
(ms) 

Simulation 
Time (DASSL) 
(ms) 

RSME 
(mV) 

Finite Difference 
(50,35,50) 

590 N/A1 4617 --- 

Orthogonal Collocation (1,1,1) 20 781 46 17.84 
Orthogonal Collocation (3,2,3) 38 2355 78 5.46 
Orthogonal Collocation (5,3,5) 56 6022 109 1.56 
Orthogonal Collocation (7,3,7) 72 9812 156 0.57 
1C Rate MFD 
(7,3,7) Collocation 

136 28361 
 

530 0.91 

2C Rate MFD 
(7,3,7) Collocation  

136 24680 312 6.182 

5C Rate MFD 
(9,4,9) Collocation  

170 38548 250 5.292 

10C Rate MFD 
(11,4,11) Collocation  

204 64381 218 9.422 

1The full order finite difference failed when using Maple solvers 
2The 2C, 5C, and 10C rates were compared to a full order MFD finite difference formulation which used 
982 equations that took 2106 to 4040 ms to run using DASSL 
     

The behavior of the coefficients for the liquid phase concentration and potential in the 

separator are nearly completely determined by the constant term alone. In fact, the weight of this 

term is in excess of 99.99%. This can be explained by analyzing the governing equations for the 

separator given in Table 1-2: 

eff,sεs

c c
D

t x x

∂ ∂ ∂
=

∂ ∂ ∂
 
            (2.51)

 

( )eff,s2

eff,s

2κ ln
κ 1

RT c
t I

x F x
+

∂Φ ∂
− + − =

∂ ∂        (2.52)
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Figure 2-5: Normalized maximum magnitude of coefficients for equations in Table 2-2 for (5,3,5) collocation 
for the cathode (long dash), separator (dash-dot), and anode (short dash). 

If diffusion occurs quickly enough relative to the change in boundary conditions from the 

electrodes (which would be expected considering the small thickness of the region), the time 

derivative term in Equation (2.51) would approach 0. This leads to a linear concentration profile 

in the separator if the diffusivity is a constant. Therefore, the cosine terms of electrolyte 

concentration approximation from Table 2-2 would not contribute much to the final 

approximation. If the concentration is nearly linear and the reciprocal of concentration is nearly 

constant, the second term of Equation (2.52) will be nearly constant. Since the liquid phase 

conductivity, κeff,s, is only a weak function of concentration, and the concentration does not vary 

appreciably across the separator (see Figure 2-4),  the conductivity will also remain nearly 

constant. This would lead to a linear profile for the liquid phase potential across the separator. 

This allows very good accuracy to be retained, even if no cosine terms are used in the separator.  

A similar pattern emerges for the solid phase potential in the positive and negative 

electrodes, with the coefficient of the constant term dominating the cosine terms with a weight of 
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over 99.99%. This suggests that the solid phase potential could be approximated accurately with 

only the constant term, further reducing the computation required and improving computational 

speed. However, to implement this would require the procedure used to be adjusted, as it is 

required that the collocation points be identical for each variable in the current form. Preliminary 

attempts to limit the number of terms for the solid phase potential while maintaining a greater 

number of terms for the remaining variables have been unsuccessful. In our opinion, this is due 

to the fact that although Φ1 has a nearly flat profile, the current density does have a significant 

profile across the electrode due to the relatively large conductivities 

 
Figure 2-6: Current-Time and Voltage-Time curve for two continuous cycles consisting of constant power 
discharge followed by constant current charge and constant potential charge 

The proposed approach has been used to estimate the values of internal parameters from 

experimental discharge curves. Also, this approach can simulate continuous battery cycling 

operation which undergoes constant current/power discharging followed by constant current 

charging and constant potential charging. This demonstrates the versatility of this method to 

simulate a wide variety of operating conditions. Figure 2-6 shows two such cycles which are 

subject to a constant power discharge of 120 W/m2 a constant current charge of 25 A/m2, 
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followed by a constant potential charge at 4.1 V. For comparison, a 1C rate corresponds to ~30 

A/m2 using this chemistry. Note that the current state of the internal variables within the battery 

is carried over from the end of each cycle to the next cycle. Because the internal variables change 

with time, the behavior of the battery during these cycles is not necessarily identical, perhaps due 

to incomplete charging of the battery.  Also, the internal parameters, such as porosity, etc. can be 

made to change with cycle number. Therefore, as developments continue in the understanding of 

capacity fade this continuous cycling procedure can predict the future behavior of the battery by 

either changing the parameters already included, or by introducing additional 

parameters/mechanisms specifically to address capacity fade. This may be achieved by 

modifying the continuum model directly, or by coupling the continuum model with microscopic 

models, such as Kinetic Monte Carlo50-54 or Stress-Strain models55-57 to create a true multiscale 

model.  

 
Figure 2-7: Voltage-Time curves for higher rates of discharge 

This method can also be used when higher rates of discharge are applied. However, in 

those circumstances, it is necessary to use the mixed finite difference approximation for the solid 

phase concentration,39  rather than the parabolic profile used in the majority of this paper while 
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describing a 1C discharge. The basic method presented for reformulation in the x-direction, 

however, is valid for both parabolic profile approximation and for the mixed finite difference 

approach. The normalized discharge curves are given in Figure 2-7 for 2C, 5C, and 10C rates of 

discharge, with mixed-finite difference reformulation for the solid-phase concentration. Table 

2-3 shows the computation time required to simulate the higher discharge conditions, as well as 

the RMSE of the voltage-time curve relative to a full finite difference. Also, more node points 

were required to accurately simulate a higher rate discharge when using collocation. However, 

even when a greater number of node points are used, the simulation time is reduced by 

increasing the rate of discharge because the battery reaches a fully discharged state in less time.  

2.4 Model Reformulation Using Chebyshev Collocation 

Using cosines as trial functions as described in Section 2.3 worked well in many cases, 

but several limitations arose under certain conditions. Primarily, oscillations in the approximate 

solutions became severe when many terms were used in Table 2-2, limiting the accuracy 

achievable during simulation when more than about 13 terms in the series were used. These 

limitations implicitly prevented the simulation of high charging and discharging rates, as higher 

rates of charge require greater accuracy due to the more complicated and non-linear profiles that 

arise. This motivated the desire to examine other approaches to take advantage of the properties 

of orthogonal collocation. Thus, the use of Chebyshev polynomials as the trial functions in the 

series solutions rather than trigonometric functions was attempted. It was found that the 

oscillations observed when using cosine collocation do not arise when using Chebyshev 

polynomials as more node points are used, allowing the numerical accuracy of the orthogonal 

collocation method to be fully realized. 
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Chebyshev polynomials are a set of orthogonal polynomials which can be defined from 

trigonometric functions: 

 ( )( )( ) cos arccosnT x n x=  (2.53) 

This gives Chebyshev polynomials many of the advantageous properties of Fourier series.48 

Practically, calculation of higher order Chebyshev polynomials can be performed using a 

recurrence relation. The first two Chebyshev polynomials are given as:  

 0( ) 1T z =  (2.54) 

 1( )T z z=  (2.55) 

Higher order Chebyshev polynomials can be calculated from the recurrence relation: 

 1 2( ) 2 ( ) ( )j j jz z z T zT T − −= −  (2.56) 

As the Chebyshev polynomials are defined on the interval [-1,1], a change of variable is required 

to convert the domain to [0,1], as done in the previous work, where X is the dimensionless 

positions in the electrode or separator.29  

 2 1z X= −  (2.57) 

Therefore, we use the following nomenclature to represent the rescaled Chebyshev polynomials 

 ( ) ( )2 1j jT X T X′ = −  (2.58)  

2.4.1 Development of DAEs Using Chebyshev Collocation 

The fundamental idea of using orthogonal collocation with Chebyshev polynomials is the 

same as given in Section 2.3 and Appendix B. However, some differences do arise which must 

be addressed.  Specifically, since Chebyshev polynomials do not inherently satisfy homogenous 

boundary conditions, the BCs must be handled in a slightly different way than described in 

Section 2.3.1, but can still be applied independently before the time solver is applied so that 
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additional equations do not need to be solved simultaneously. Extra linear and quadratic terms 

included in the series solutions would not be linearly independent, and are thus avoided. 

Therefore, additional Chebyshev polynomial terms are included to satisfy the BCs. The general 

series solution for the electrolyte potential and concentration, and solid phase potential (which 

require boundary conditions to be satisfied) takes the form of 

 ( ) ( )
2

, ,,
0

( , )
N

r v i ir
i

vu X t B t T X
+

=

′=∑  (2.59) 

where the subscripts , ,r v i  refer to the region (positive electrode, separator, or negative 

electrode), dependent variable (e.g. electrolyte concentration), and coefficient number, 

respectively, while , ( , )r vu X t  refers to the profile of the specific dependent variable, v , in region 

r .   

In this form, two of the coefficients ( ( ), ,r v iB t ) can be determined in terms of the 

remaining coefficients using the boundary conditions. The choice of which coefficients to solve 

for in this manner is somewhat arbitrary, provided that that the chosen ones can be used to satisfy 

the boundary conditions. For example, ( )0T X is a constant and cannot be used to specify flux 

boundary conditions, so ( ), ,0r vB t  cannot be reliably solved for because of the many flux 

conditions present in the P2D model. In the work presented here, ( ), ,1r vB t  and ( ), ,2r vB t are 

determined directly using the BCs, but it should be noted that solving for other coefficients, such 

as ( ), , 1r v NB t+  and ( ), , 2r v NB t+ , does not significantly affect performance. 

The variables which do not have spatial derivatives (and thus no boundary conditions), 

cannot use BC equations to increase the order of the series solution and thus are limited to using 

Nth order Chebyshev polynomials: 
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 ( ) ( )
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0

( , )
r v i

N

i
i

u X t B t T X
=

′=∑  (2.60) 

Equation (2.60) provides an applicable series approximation for the pore wall flux and the solid 

phase concentration. Using trial functions which are not homogeneous is advantageous for 

variables which do not have boundary conditions as it does not implicitly impose an artificial 

boundary condition on the numerical approximation. Imposing such a condition increases the 

difficulty of accurately representing the real solution and slows the rate of convergence. The 

series approximations used with Chebyshev trial functions are given in Table 2-4. 

Table 2-4: Approximate forms of equations using Chebyshev 
collocation 
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Unlike the reformulation given previously29, this modified version solves for the pore 

wall flux ( pj and nj ) directly as series solution, rather than the surface solid phase concentration. 

The choice of approach is largely a matter of preference. The parabolic profile approximation28 

for the solid phase concentration gives the surface concentration as: 

 
, ,

,5
s surf s a r r
r r

vg

s r

j R
c c

D
= −              ,r p n=  (2.61) 
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Recall that rj and , g
r
s avc  are series solutions, and thus , f

r
s surc is also a series solution. This 

approach is favored for several reasons. First, conceptually, , f
r
s surc and , g

r
s avc are clearly linked 

and often of similar value, so the second term in Equation (2.61) can be seen as a correction 

factor to calculate the surface concentration. Importantly, this shows that the variation between 

, f
r
s surc and , g

r
s avc  is large at high rates, while at low rates , f

r
s surc and , g

r
s avc  are nearly equal. 

Secondly, the profile of pj and nj varies significantly both in time and across the electrode. By 

having these variables be solved for directly as a series the solution is better able to track the 

moving front. Thirdly, when collocation is applied, pj and nj can be replaced as a single value in 

the resulting discretized equation (i.e. the value of pj  or nj at the collocation point of interest).  

2.4.2 Results and Discussion 

One of the principle flaws of the cosine collocation presented earlier was the oscillations 

which occurred when a high number of node points were used. These oscillations were 

especially prevalent in the estimate for the pore wall flux due to the particularly difficult profiles 

which arise. Such oscillations in the pore wall flux invariably leads to inaccuracies in the local 

SOC. Figure 2-8 shows the pore wall flux across the battery at four equispaced points in time 

(i.e. at 0% depth of discharge (DOD), 33% DOD, 67% DOD, and 100% DOD) during a 1C 

discharge as solved using a second-order finite difference with 75 interior node points in each 

electrode, and collocation with Chebyshev trial functions. Figure 2-9 shows the same results 

using cosine collocation. Note that the pore wall flux is negative in the cathode and positive in 

the anode during discharge. Cosine trial functions cause unacceptable oscillations in the 

numerical solution when many node points are used.  
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Figure 2-8: Pore wall flux profile across the cell for a 1C rate of discharge at 0% DOD(∆), 33% DOD (□), 
67% DOD (◊), and 100% DOD (○) when using (1,1,1) Chebyshev collocation (dash-dotted line), (3,2,3) 
Chebyshev collocation (short dash line), (9,3,9) Chebyshev collocation (long dash line), (25,5,25) Chebyshev 
collocation (solid line). The converged finite difference approach is shown as markers. 

Also note that using orthogonal collocation with cosine trial functions cannot capture the moving 

reaction zone exhibited by the pore wall flux, but Chebyshev polynomials can.  

The increased diffusion resistances caused by the rapid depletion/saturation of lithium in 

the electrolyte at moderate to high rates cause a well-defined moving reaction zone to develop. 

Figure 2-10 demonstrates the moving front in the anode for a range of discharge rates using 

Chebyshev collocation. The reaction zone is more pronounced at high rates, while at low rates 

the variation across the electrode is relatively subdued. Additionally, at low rates, the majority of 

the electrode is can be utilized but only a small region is accessed at high rates, as the cutoff 

voltage is reached before much of the electrode is utilized. 



 

48 
 

 
Figure 2-9: Pore wall flux profile across the cell for a 1C rate of discharge at 0% DOD(∆), 33% DOD (□), 
67% DOD (◊), and 100% DOD (○) when using (1,1,1) cosine collocation (dash-dotted line), (3,2,3) cosine 
collocation (short dash line), (9,3,9) cosine collocation (long dash line), (13,4,13) cosine collocation (solid line). 
The converged finite difference approach is shown as markers. Notice the severe oscillations that occur as 
more node points are used 

During discharge, the rate of lithium ion production/consumption is greater than the rate 

of lithium-ion diffusion, creating a spatial variation of the electrolyte concentration, potential and 

solid phase concentration (which directly affects the local open circuit potential) across the 

electrode. Ultimately, these local effects affect the rate of the pore wall flux reaction across the 

electrode. At low rates diffusion plays a relatively minor role; the variation in reaction rates 

across the electrode is small and the system is primarily kinetically limited. At high rates, the 

diffusion resistance affects the behavior substantially and causes a large variation of the local 

reaction rates across the thickness of the electrode. This variation causes the regions of the 
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electrodes nearest to the separator to become depleted or saturated to a greater extent than the 

regions near the current collectors, ultimately slowing the reaction and moving the reaction front 

deeper into the electrode. Thus, battery manufactures typically design batteries with thin 

electrodes for high power applications.  

 
Figure 2-10: Pore wall flux for (a) 0.1C , (b) 0.5C, (c) 1C, (d) 3C, (e) 5C, and (f) 10C rates of discharge at 0% 
DOD (∆), 33% DOD (□), 67% DOD (◊), and 100% DOD (○) using (25,5,25) Chebyshev collocation (update 
this figure to label the rates and times) Note that x=0 corresponds to the anode/separator interface. Note that 
the 10C solution uses a higher order approximation for the radial profile. 
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The profiles of the other dependent variables are shown in Figure 2-11 for a 1C rate of 

discharge and Figure 2-12 for a 5C rate of discharge. These tend to be smoother functions which 

tend to be easier to estimate using a series solution, and do not experience the same severe 

oscillations when cosine collocation is used. For example, the electrolyte concentration in each 

region can be estimated fairly well by a second order polynomial, as shown in Figure 2-11(a), 

despite the nonlinear generation term given by the pore wall flux (see Figure 2-8).  

 
Figure 2-11: Profiles of internal variables for a 1C rate of discharge at 0% DOD (∆), 33% DOD (□), 67% 
DOD (◊), and 100% DOD (○) when using (1,1,1) Chebyshev collocation (dash dot line), (3,2,3) Chebyshev 
collocation (short dash line), (9,3,9) Chebyshev collocation (long dash line), (25,5,25) Chebyshev collocation 
(solid line). The finite difference approach is shown as markers. The variables considered are the electrolyte 
concentration (a), electrolyte potential (b), solid phase potential (c), and local state of charge (d). 
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Figure 2-12: Profiles of internal variables for a 5C rate of discharge at 0% DOD (∆), 33% DOD (□), 67% 
DOD (◊), and 100% DOD (○) when using (1,1,1) Chebyshev collocation (dash dot line), (3,2,3) Chebyshev 
collocation (short dash line), (9,3,9) Chebyshev collocation (long dash line), (25,5,25) Chebyshev collocation 
(solid line). The converged finite difference approach is shown as markers. The variables considered are the 
electrolyte concentration (a), electrolyte potential (b), solid phase potential (c), and local state of charge (d). 

However, at high rates, the narrow reaction zone causes a more complicated profile to arise for 

the electrolyte concentration as the diffusion of lithium is not fast enough to completely smooth 

out the peak generation/consumption in the reaction zone as seen in Figure 2-12.The liquid phase 

potential shown in Figure 2-11(b) is quantitatively similar to the concentration. Figure 2-11(c) 

and Figure 2-12(c) give the solid phase potential and are nearly flat for all cases due to the 

relatively high conductivity and small thickness of the electrodes. Such flat profiles can be fairly 

easily approximated using numerical methods. Figure 2-11(d) and Figure 2-12(d) show the local 

SOC across the cell during discharge. The profile across the electrodes is essentially a time 
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integration the local pore wall flux. However, unlike the electrolyte concentration, the 

intercalated lithium cannot directly diffuse across the thickness of the electrode, leading to 

variations which do not dissipate. Also note that Figure 2-12(d) explicitly shows that a large 

fraction of the active material is not utilized when the cell is operated at a high rate of discharge. 

2.4.3 Error Analysis 

 
Figure 2-13: Simulated discharge curves for 0.1C (○), 0.5C (□), 1C(◊), 3C (∆) and 5C (☆☆☆☆)rates of discharge 
(1,1,1) Chebyshev collocation (dash-dot line), (3,2,3) Chebyshev collocation (short dash line), (9,3,9) 
Chebyshev collocation (long dash line), (25,5,25) Chebyshev collocation (solid line). The converged finite 
difference approach is shown as markers. 

During battery operation, only the voltage difference can be experimentally measured 

easily; the internal variables cannot be directly measured. The convergence of the discharge 

curve is therefore considered important to quantify the accuracy of the solution. Figure 2-13 

shows the discharge curves at five rates of discharge using an increasing number of collocation 

points while Figure 2-14 shows the root mean square error (RMSE) of the discharge curves as a 

function of average node spacing. Since an analytical solution does not exist, the RMSE must be 
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calculated relative to a solution of a higher order numerical solution which presumably has a 

negligible error compared the lower order models.  

The RMSE values given in Figure 2-14 are calculated by comparison to both a full order 

finite difference solution with 75 node points in the electrodes and 35 points in the separator, and 

a collocation solution with 25 node points in the electrodes and 5 in the separator. Notice that the 

error converges continuously when compared to the collocation solution, but plateaus when 

compared to the finite difference solution. Since the solution is expected to get progressively 

more accurate as more terms are added (as we are not at machine precision, the existence of a 

plateau suggests that the error of the finite difference approximation is not negligible and is the 

primary contributing factor to the RMSE calculation for a high number of collocation points. 

Figure 2-15 shows the RMSE of both the finite difference solution and Chebyshev collocation as 

a function of the dimensionless node spacing on a log-log scale.  

 
Figure 2-14: Root mean square error (RMSE) estimate for the discharge curve as a function of number of 
collocation terms used in the solution for 0.1C (○), 0.5C (□), 1C(◊), 3C (∆) and 5C (☆☆☆☆). The short dash lines 
are the RMSEs as calculated by comparison with the full order finite difference solution while the long 
dashed lines are RMSEs as calculated by comparison with the highest order (25, 5, 25) collocation solution 
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Recall from Equation (B.8) that the collocation points are not equally spaced across the 

electrode, thus the “average node spacing” is calculated as simply the reciprocal of the number of 

node points. Figure 2-15 shows that the collocation approach is more accurate for a given node 

spacing, by at least an order of magnitude and often by several orders of magnitude. Notice that 

the error when using finite difference decreases linearly on a log-log scale as the node spacing is 

reduced, but the error from the collocation approach decreases superlinearly. This is established 

behavior when using Chebyshev collocation,48 reflecting the h2N order error (where N is the 

number of collocation points and h is the node spacing), that exists for orthogonal collocation.46 

 
Figure 2-15: Root mean squared error of the discharge curves for a 1C rate as a function of average 
dimensionless node spacing using finite difference (long dash) and Chebyshev collocation (short dash). The 
RMSE was calculated relative to both the highest order Chebyshev solution (□) and the finite difference 
solution with the smallest node spacing (○). 
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Figure 2-16: Computational time to simulate a single 1C discharge as a function of number of node points 
using the finite difference approach (○), cosine collocation (∆), and Chebyshev collocation (□) 

However, reducing the node spacing and improving the accuracy requires the calculation 

of the dependent variables at additional collocation points which increases the computational 

cost. The calculation time for simulating a 1C discharge is shown in Figure 2-16 using the 

FORTRAN solver DASKR58 run on a 3.33. GHz, 24 GB RAM machine. Notice the simulation 

time is largely independent of rate of discharge, so the results given in Table 2-5 are for a 1C rate 

of discharge. The computation time increases exponentially as more node points are used, 

creating a tradeoff between the computational expense and the numerical accuracy.  

The large number of node points required for an accurate finite difference solution 

reduces the feasibility of using such an approach where computational demand is limited. Figure 

2-17 explicitly shows the tradeoff in computational cost and accuracy by comparing the 

simulation time on the abscissa and RMSE on the ordinate on a log-log scale. Importantly, the 

superlinear reduction of error seen when using Chebyshev collocation offsets the exponential 

increase in calculation time, showing a linear decrease (on a log-log scale) of the error as 

simulation time increases.  
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Table 2-5: Computation times and estimated errors for selected simulation runs for a 
1C rate of discharge. (25,8,25) Chebyshev collocation is used for a baseline for 
calculating RMSE. The truncation and coefficient convergence errors are for the solid 
phase potential in the positive electrode. 

Simulation Simulation 
Time (ms) 

RMSE 
(mV) 

Truncation 
Error 
(mV) 

Coefficient 
Convergence 
Error (mV) 

Number 
of DAEs 

Full Finite 
Difference 

16857 0.0889 N/A N/A 995 

(1,1,1) 
Chebyshev 

104 31.9 7.49e-4 14.1 25 

(3,2,3) 
Chebyshev 

123 6.99 9.91e-5 1.69 47 

(5,3,5) 
Chebyshev 

152 2.44 2.57e-5 0.156 69 

(9,3,9) 
Chebyshev 

214 0.328 2.74e-6 7.38e-4 109 

(15,3,15) 
Chebyshev 

417 0.0279 1.64e-7 5.81e-5 173 

(25,5,25) 
Chebyshev 

1190 N/A 1.53e-9 N/A 279 

      
In contrast, the increase in computational costs when adding finite difference node points 

is greater than the reduction of error, giving a reduced marginal benefit as additional points are 

added. How many terms in the collocation solution should be used is heavily dependent on the 

application. Specifically, the acceptable error, computing resources, and operating conditions 

dictate the number of collocation points which are required. 

The numerical source of error can be broadly divided into two categories. The first is the 

truncation error which arises when a finite number of terms in the series solution. The second 

source of error is the caused by the phenomenon that the calculated value of any coefficient, 

, , ( )r v iB t  is dependent on the order of the series approximation and is referred to here as the 

coefficient convergence error. Estimates of both sources of error are given in Figure 2-18 for 

Chebyshev collocation and Figure 2-19 for cosine collocation.  
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Figure 2-17: Root mean squared error of the discharge curves as a function of simulation time using finite 
difference (long dash) and Chebyshev collocation (short dash). The RMSE was calculated relative to both the 
highest order Chebyshev solution and (□) the finite difference solution with the smallest node spacing (○). 

The truncation error can be estimated by analyzing the coefficients of the series solutions. 

For Chebyshev polynomials and cosine functions, the function values are bounded on the 

interval [-1,1], so that the magnitude that each term contributes to the final solution can be 

estimated by directly comparing the coefficients. As the coefficients are time-dependent 

functions over the course of the charge or discharge cycle, the maximum absolute value is used 

so that the coefficients to be represented by a single value which can be directly compared.  

For a converged solution, the magnitude of the series coefficients must decrease for each 

additional term. The dotted lines in Figure 2-18 shows the maximum magnitude of the 

coefficients of the series solution of (25,8,25) Chebyshev collocation. All coefficients are scaled 

by the maximum absolute value of the coefficient of the zeroth trial function so that comparisons 

can be made among the different variables.  
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Figure 2-18: Comparison of truncation error as estimated as the final maximum value of the final coefficient 
value (short dash) and error due to the changing calculated value of the lowest order term (long dash) using 
up to (25, 8, 25) Chebyshev collocation for 0.1C (○), 0.5C (□), 1C( ◊), 3C (∆) and 5C (☆☆☆☆) for the cathode 
variables. Note that the behavior of coefficients in the anode is similar. 

For all the dependent variables, the series converges as more terms are included in the 

solution. The coefficients of the higher order terms decrease monotonically with coefficient 

number, with few exceptions. The solid phase potential converges rapidly, as expected due to the 

small spatial variation observed because of the relatively high electronic conductivity. The 

electrolyte concentration does not converge as rapidly in the electrodes because of the greater 

diffusion resistance requires higher order polynomials to estimate. Of all the variables solved for, 

the pore wall flux converges the slowest due to the highly nonlinear and complicated nature of 

incorporating Butler-Volmer kinetics. The moving front of the pore wall flux shown in Figure 
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2-8 cannot be well captured using low-order polynomials functions, and requires more terms to 

accurately track the behavior.  

Convergence occurred more quickly for lower rates of discharge than for higher rates of 

discharge. Diffusion limited problems have larger gradients in the profiles of the all the variables 

which require higher order polynomials to approximate. The difficulty of calculating the 

variables at high rates is shown by the slower rates of convergence and shows the importance of 

using highly accurate methods for simulation of such conditions. 

  Similar qualitative trends can be observed for the truncation error when using 

cosine collocation as shown as the dash-dot lines in Figure 2-19. However, numerical errors limit 

the number of collocation terms that can be used. Furthermore, the maximum coefficient 

magnitudes do not reliably decrease monotonically as more terms are added. This lack of 

convergence limits the accuracy that can be achieved using cosine collocation. 

The coefficient convergence error is more difficult to estimate directly, but contributes to 

the final error and cannot be ignored. The dashed lines of Figure 2-18 and Figure 2-19 estimate 

the variance error by comparing the maximum magnitude of the lowest order coefficient (which 

is the dominant term for all variables), , ,0( )r vB t , as calculated using (N, M, N) collocation 

compared to the largest order simulation performed ( i.e. (25,8,25) for Chebyshev collocation 

and (13,4,13) for cosine collocation): 
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Figure 2-19: Comparison of truncation error as estimated as the final maximum value of the final coefficient 
value (short dash) and error due to the changing calculated value of the lowest order term (long dash) using 
up to (13, 4, 13) cosine collocation for 0.1C (○), 0.5C (□), 1C( ◊), 3C (∆) and 5C (☆☆☆☆) for the cathode variables. 
Note that the behavior of coefficients in the anode is similar. 

In general, the coefficient convergence error is less significant than the truncation error. 

However, the coefficient convergence error does not decrease as rapidly as more terms are 

added, and tends to be less affected at increased C-rates. The exception is the solid phase 

potential, in which the coefficient convergence error dominates. This can be partially attributed 

to the very low truncation errors experienced in estimating the solid phase potential which arises 

from the very flat potential profile that exists in the solid phase.   
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2.5 Extending the Parabolic Profile Approximation 

 
Figure 2-20: Simulated discharge curves when using spectral methods to discretize the radial direction when 
using collocation (long dash), Galerkin (short dash) and the hybrid method (dash-dot) for increasing levels of 

refinement for 5C, 10C, 15C, and 20C. The solid line is the discharge curve when using 7rN =  for 

comparison. Note that the 20C case cannot be simulated using 0=rN . 

In the work discussed in this section, the solid phase concentration profile was 

approximated as a second order polynomial in r across the radius of the particle. This has been 

shown to be valid at low rates and long times, but is not valid for high rates.28 At high rates, a 

boundary layer forms near the particle surface where a rapid change in concentration exists while 

the interior concentration profile is fairly flat in the bulk of the particle. A parabolic profile 

approximation cannot capture such a profile and a higher order method is required to ensure 

accurate simulation. A mixed finite difference approach has been used to calculate the solid 

phase concentration at discrete points spaced unequally across the radius of the particle.39 This 

can better capture the variation of the solid phase concentration across the radius, but developing 

higher or lower order approximations requires the location of the node points to be recalculated 
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to determine the optimal spacing. Spectral methods using Chebyshev series solutions can 

calculate the radial profile of the solid phase concentration with higher order accuracy to better 

approximate the concentration gradients and the solid phase diffusion resistances. 

This is especially important at high rates of charge when diffusion resistances are 

significant. At time t=0, a non-constant concentration profile exists in the particle as a numerical 

artifact caused by finding consistent initial conditions to equate the flux at the particle surface 

with the reaction rate while using the prescribed initial conditions for the differential variables. A 

flat concentration profile would be expected at the beginning of charge/discharge, but that is not 

consistent with the flux boundary condition. Therefore, one degree of freedom must be modified 

to create a gradient at the particle surface to satisfy the boundary condition. Based on the 

concepts of transport phenomena, the transient gradient created by the application of the flux 

boundary condition would initially only exist in a thin boundary layer, with a flat profile seen in 

the interior of the particle. However, a parabolic profile which satisfies the flux condition at the 

particle surface is not flat, creating a significant effect near the center of the particle. The 

instantaneous development of such a profile also has the important effect of inaccurately 

estimating the surface concentration which directly affects the modeled voltage of the cell, 

leading to the discrepancies observed in Figure 2-20 at the beginning of discharge. Higher order 

approximations can maintain a flatter profile through most of the particle while satisfying the 

imposed gradient boundary conditions. However, as the system continues to evolve, the 

boundary layer extends to the center of the particle, at which point the parabolic profile becomes 

a much more appropriate approximation.  

In order to estimate the radial concentration profile, a series solution in r is developed at 

each collocation point, j, across the electrode, where 
r

r

R
ρ = is the dimensionless radial position:   
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With one of the 1rN +  terms used to account for the flux condition at 1ρ = . The radial trial 

functions, ( ), jZρ ρ  are chosen as even Chebyshev polynomials  

 , 2( ) ( )j jTZρ ρ ρ=  (2.65) 

Recall that Chebyshev polynomials are defined on the region [-1, 1]. By using only even 

polynomials on the interval [0, 1], the symmetry boundary condition at 0ρ =  is automatically 

satisfied.  

Note that a series solution is not explicitly required across the x-dimension for the solid 

phase equations. The solid phase concentration does not have a derivative with respect to x in the 

governing equations so discretization in x is not required. Interpolation can be performed during 

post processing if greater resolution is required. Using a double summation for the variation in 

both x and r simultaneously is possible, but increases the coupling of the problem and the 

computational cost of simulation. Furthermore, it is not physically meaningful that the spherical 

diffusion in one particle affects the diffusion in other particles so that the form of discretization 

given in (2.64) is preferred.  

Several options to find the coefficients are considered here based on the method of 

weighted residuals discussed in Section B.2 in Appendix B. Orthogonal collocation can be used 

in the radial dimension in a manner in the same way as described previously for the x-direction. 

However, if the solid-phase diffusivity is constant across the active particles, the governing 

equation for the solid phase diffusion Table 1-2 is linear and Galerkin’s method is feasible as 

analytical integrations can be performed. Here we discuss the merits of using orthogonal 
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collocation, Galerkin’s method, and a hybrid collocation method which retains the advantages of 

the parabolic profile approximation used in the bulk of the work.  

For the orthogonal collocation approach, the collocation points are again chosen as CGL 

points. However, since only even Chebyshev polynomials are used, 2( 1)rN +  CGL points exist 

on the domain [-1,1]. Using the points which exist in the positive part of the domain (which are 

physically meaningful), the required number of nodes is developed. Since the CGL points are 

spaced more tightly near -1 and 1, using only half of the set results in more points clustered near 

the particle surface. This is advantageous as a boundary layer develops at the particle surface, 

especially during high rates of charge, thus having greater resolution near the boundary better 

captures the transient dynamics of the system.  

Galerkin’s method is an alternative to orthogonal collocation which uses the trial 

functions as the weight functions in the method of weighted residuals. Equation (B.4) from 

Appendix B thus becomes  

 ( )( ), 20 , , ,
, ( ) 0

r

s avg

R

jr c i j
B t T dXR ρ ρ =∫                      0...j Nρ=  (2.66) 

If the diffusion coefficient is constant across the radius of the particle, the governing 

equation for radial diffusion is linear and the integration can be performed analytically. 

Gelerkin’s method is an ideal choice because this weight function minimizes the square of the 

residual across the domain.47 However, needing to perform the integral in (2.66) is prohibitive in 

many nonlinear systems.  

The final case considered builds upon the parabolic profile approximation by using 

collocation to achieve higher order solutions when large gradients exist in the solid phase that are 

difficult to approximate with low order polynomials. One of the advantages of the parabolic 

profile approximation is that it directly tracks the average concentration in the solid particles, 
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which is useful for determining the state of charge of the battery, and ensures that mass is 

conserved in the solid particles. The average concentration in a spherical particle is given as  

 
1

,

0

2
, , ( , ) ( ,

1

3
, )s

r
avg
s r j jc X t c X t dρ ρ ρ= ∫ 0...j Nρ=  (2.67) 

 By using a mass balance on the particle, the evolution of the average concentration is 

given by 

 
,

( , )
( , ) 3avg r

s r
r

x t
j x td

c
dt R

= −  (2.68) 

Equation (2.68) is identical to Equation (2.2) for the parabolic profile and, importantly, is 

the same regardless of the number of terms used in (2.64). This hybrid approach aims to maintain 

the mass conservation built into the parabolic profile, but allows for higher order approximations 

to be used. At high rates, the boundary condition at the particle surface requires a steep profile to 

meet the flux demand. In order to satisfy the specified gradient while maintaining the specified 

average concentration, a change in the initial surface concentration is required numerically.  
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Figure 2-21: Root mean square error of the discharge curve for 5C (∆), 10C(□), 15C( ◊)  and 20C (○) an 
increasing number of terms in the radial direction using collocation (long dash), Galerkin (dash dot), and 
hybrid approach (short dash). 

This large jump in concentration at the surface directly affects the calculated open circuit 

potential, and can cause the parabolic profile approximation to give negative concentrations in 

the interior of the particle, which is not physically feasible. Using higher order approximations 

avoid this problem. Furthermore, the integration in (2.67) can be performed analytically if a 

polynomial is used to approximate the solid phase concentration, independent of the governing 

equation. This is important as this hybrid approach can be used even in the case of nonlinear 

diffusion coefficients, which is important when concentration dependent diffusivities are 

considered.  
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Figure 2-22: Concentration profiles in the radial direction for a 15C discharge at the cathode-separator 

interface at four equispaced times during discharge for the hybrid method with for 0=rN  (∆), 1=rN  (□), 

2=rN  ( ◊)  and 3=rN  (☆☆☆☆). The solid line is the solution for 7rN = . 

Here the three approaches (collocation, Galerkin, and hybrid) are compared using 

(15,5,15) Chebyshev collocation across the thickness of the electrode, as this was shown to be a 

converged solution in the previous section. The value of Nρ was varied from 0 to 7 for a 5C, 

10C, 15C, and 20C rate of discharge. The discharge curves are shown in Figure 2-20 for the 

three cases using 0,1, 2,3Nρ = terms. The 7Nρ =  case is a converged solution and used as for 

comparison, and the results achieved with 7Nρ =  are indistinguishable for the three different 

methods considered here. Notice that the solution found with 3Nρ =  is nearly identical to the 

7Nρ = solution. Figure 2-21 shows the root mean square error of the estimated discharge curve 

using an increasing number of terms compared to the 7Nρ =  solution. Notice that the error 
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steadily decreases monotonically and additional terms are expected to further reduce the error, 

but even for 3Nρ =  the observed RMSE is less than a millivolt error for a 5C rate of discharge, 

though the error is larger when greater discharge rates are applied. The reason for this is two-

fold. First, larger gradients occur at higher rates, which require more terms to capture the 

dynamics. Secondly, we can see in Figure 2-20 that the error is greatest early during discharge, 

so that the error for the lower rates of charge gets averaged out more so than the high rates.  

Notice that there is not a substantial difference in the errors for the different methods used except 

for the 0Nρ =  case. For the 0Nρ =  solid phase approximations, the hybrid case corresponding 

to the parabolic profile approximation gives the best results. However, the error is substantial and 

has the additional problem of predicting a negative concentration as seen in Figure 2-22 which 

gives the predicted concentration profiles for the different methods for an increasing number of 

node points at the anode-separator interface at 4 discharge times for a 15C rate of discharge. 

However, the hybrid approach does ensure that total mass is conserved, which is not guaranteed 

in the other approaches. This is improved for 1Nρ = , which is a fourth order solution similar to 

the result found in a previous work.28 In all cases, the low-order approximations do not capture 

the flat profile in the interior of the particle. However, the profile converges fairly rapidly for all 

cases, and by 2=rN  most oscillations have died out except at the very beginning of discharge. 

At the at the beginning of discharge, the profile should be flat with an infinitesimal gradient at 

the particle surface corresponding to the pore wall flux, but such a profile cannot be captured 

with a finite number of terms. 
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2.6 Conclusions 

The porous electrode P2D model is a physically meaningful model that can be used to 

simulate lithium ion battery operation. However, the computational cost of simulating the P2D 

model using standard techniques is too high to be utilized in computationally expensive 

operations, such as optimization and real time control. In order to increase the feasibility of using 

the P2D model in such applications, an improved reformulated model was developed to reduce 

the number of equations that must be solved to simulate battery operation.  

The reformulation presented is robust enough to be used for a variety of conditions with 

limited assumptions to maintain the most accurate physics of the model. Although only a single 

battery chemistry is shown here, this method has been used successfully for a number of 

different chemistries across a wide range of physical parameters. This model thus allows an 

efficient battery model simulation for use in control and optimization routines, as well as for 

parameter estimation.  

In order to reduce the computational cost of simulation each dependent variable was 

approximated as series solution, either using trigonometric functions or Chebyshev polynomials. 

Although discretizing the system using orthogonal collocation is more computationally intense 

than an equivalent number of finite difference equations, many fewer terms are required for 

convergence so the net simulation time can be reduced while improving accuracy. Using 

Chebyshev polynomials minimizes oscillations which allows for more node points to be used for 

higher rates.  

For higher rates of discharge, the parabolic profile approximation for the solid phase 

concentration is not satisfactory so higher order spectral methods were used. In order to develop 

the higher order approximation, three approaches were tried: a collocation approach, a Galerkin 
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approach, and a hybrid approach combining collocation with the volume averaging of the 

parabolic profile approximation. It was found that the 3 different approaches were not 

substantially different for most cases. For the lowest order approximations (which were generally 

considered unsatisfactory for rates greater than 5C) the hybrid approach gave the best 

approximation of the voltage-time curve, but calculates a negative concentration in the interior of 

the particle, which is not physically meaningful. This is avoided using more terms. Even using a 

single additional term (corresponding to a 4th order polynomial) greatly reduces the error and 

eliminates the problem of giving non-physical solutions. Higher rates of discharge are more 

difficult to calculate accurately, but using 3=rN  provides a converged solution for the cases 

considered here.  

The number of terms to use in the simulation of the P2D is dictated by the application 

being considered, as there is a tradeoff between accuracy and computational cost. The use of 

spectral methods, such as Chebyshev collocation, shifts the tradeoff to improve the accuracy for 

a given computational cost. The number of collocation points used is dependent on the 

computational resources available, required accuracy, computational time, and operating 

conditions. Furthermore, the design and materials used in the manufacture of the battery can 

affect the accuracy of simulation. In general, conditions which increase the diffusion resistance 

cause more variation in the dependent variables across the electrode or particles. For example, 

thicker electrodes or larger particles increase the diffusion length that the lithium must travel and 

require more terms to accurately simulate. A material or electrolyte with a large diffusion 

coefficient would allow lithium to travel quickly and would maintain a flatter profile (i.e. smaller 

derivatives) which is easier to capture using fewer terms in a series solution.  
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 The simulation of a single discharge curve can use a highly accurate formulation as the 

difference between milliseconds and seconds is relatively minor. However, design optimization 

requires the simulation of hundreds of discharge curves. These can be performed in a desktop 

computer with significant computational resources without strict time constraints. Thus, a 

moderate number of terms can be used to give reasonable accuracy. To achieve the same level of 

accuracy in a finite different formulation, the computational cost would be prohibitively expense.  

The reformulated model described in this chapter has been used by others to maximize 

the energy density of a lithium-ion battery by modifying design parameters, specifically 

electrode thicknesses and porosities.3 The work presented in ref.3 maximized energy density 

while ensuring that the cell provided power for a specified amount of time for a given discharge 

output. For high rates of charge, the energy density was maximized by minimizing the diffusion 

restance; increasing the porosity and decreasing thickness. Conversely, when the application had 

a low demand, lower porosities could be used to increase the energy density, as having a high 

power density is not required.       

In contrast to design optimization, online control requires quick simulation to optimize 

the charging/discharging protocol on the order of milliseconds. Furthermore, mobile 

applications, such as electric vehicles, the computational resources are limited in order to 

minimize cost and weight. Thus, using low order Chebyshev series solutions are necessary in 

such applications. This shows that such a reformulated model can be solved when computational 

resources are limited and provides promise for use in online BMS systems to maximize 

performance and reduce cost.   

Work is being done in the MAPLE lab to incorporate the reformulated model into 

microcontrollers with the ultimate of developing a model predicative control (MPC) scheme for 
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use in battery management systems (BMS) in online applications. Incorporating the reformulated 

P2D model into MPC schemes can improve the useable capacity of batteries by allowing a 

greater amount of the physical battery capacity to be safely and reliably used. By better 

understanding the internal behavior of the battery, the conditions that lead to detrimental 

behavior can be predicted so that the safety margins can be reduced.  Using reformulated models 

and improved simulation techniques,27-29,39 advanced control schemes can be developed leading 

to better utilization of any battery chemistry. 

Using information on the state of charge and state of health of the battery determined 

from a physics-based model, the BMS will modify the inputs to optimize present and future 

performance while ensuring safety. Therefore, a BMS which utilizes a detailed physics-based 

model can better control the battery to optimize performance as opposed to a BMS that relies 

solely on empirical models or tables. Electrochemistry, physics and chemical engineering 

principles determine the model’s accuracy in predicting the internal states, as well as the 

significance of those states. The physics of the system dictate what is predictable and 

controllable, however, the mathematics enable real-time prediction and control. 

Recognizing this opportunity to improve the efficiency and utilization battery systems 

and to increase the viability and cost-effectiveness of existing technologies for EVs., the US 

Department of Energy (DOE) recently invested $30M to develop smarter battery management 

systems and advanced sensing technologies to circumvent potential problems due to capacity 

fade and safety concerns through its Advanced Management and Protection of Energy Storage 

Devices (AMPED) program under Advanced Research Projects Agency – Energy (ARPA-E). A 

major goal of APRA-E aims to take technical achievements from the lab and into commercial 

applications. Washington University’s MAPLE Lab is a recipient of one of the AMPED grants to 
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improve Li-ion battery performance in electric vehicles by using the reformulated model 

presented in this thesis.  
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Chapter 3 

Extending the Porous Electrode Pseudo 2D Model Using 

Reformulation 

This chapter contains excerpts (specifically in Section 3.1) from the following journal article reproduced here 
with permission from The Electrochemical Society: 
P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, “Coordinate Transformation, 
Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of 
Lithium-ion Battery Stacks,” Journal of the Electrochemical Society, 158(12), A1461-A1477 (2011). 

 

Chapter 2 discussed a model reformulation of the porous electrode P2D which 

significantly reduced the computational cost of lithium ion battery simulation, while maintaining 

high accuracy. This reformulation enables the use of the P2D model into applications that would 

otherwise be too computationally expensive to justify its use, such as online control, 

optimization, and parameter estimation. Furthermore, the P2D model has proven to be robust 

enough to allow for the inclusion of additional physical phenomena as understanding 

improves.10,25,59-68 In this chapter, the reformulated model is used to allow for more complicated 

physical phenomena to be considered for study, including thermal effects and capacity fade.  

3.1 Thermal Modeling and Reformulation of Lithium-Ion Battery 

Stacks 

Accurately predicting temperature effects is essential to ensure safety, especially in 

applications where a significant temperature rise is expected.20,69 Including thermal effects 

increase the complexity and fidelity of the model by including more physical phenomena but 

also increases the computational costs of simulation, both directly and indirectly. In addition to 

the costs associated with increasing the number unknowns, the equations in the thermal model 
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are more nonlinear and more tightly coupled because of the existence of thermal dependent 

parameters which can further increase stiffness. The additional equations which govern the 

thermal behavior are given in Table 3-1 with supplemental equations given in Table 3-2.  

Table 3-1: Governing Equations for Temperature 

Governing Equation Boundary Conditions 
Positive Electrode 
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In order to meet power and energy demands, lithium-ion cells are often arranged in a 

stack configuration. These stacks can be rather large and can consist of hundreds of cells in 

series or in parallel. Here an 8-cell stack is presented as a proof of concept which maintains the 

coupling between all the cells within the stack and the full physics based model with temperature 

varying properties, and heat generation and discharge for each cell are calculated simultaneously. 

The electrochemical equations used for the thermal model are identical to those given in Table 

1-2 with the addition of three more governing equations to model the temperature in three 

regions, as well as nonlinear electrolyte diffusion and electrolyte conductivity coefficients which 

are functions of concentration and temperature, based on work done by Valøen et al.73 These 

additional equations are shown in Table 3-1 and Table 3-2. This is computationally difficult and 
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an efficient method is required for simulation, and we believe this has slowed the development of 

such a stack model.  

Bernardi et al.16 used an energy balance to develop a general thermal model for battery 

operation by considering the various modes of heat generation within the cell. Other researchers 

have built upon this model by incorporating heat generation effects during battery discharge for 

specific systems and conditions17-20 Kumaresan et al.70 used the model developed by Gu and 

Wang20 to couple temperature to other variables for a single cell and validated the model with the 

results obtained experimentally. 

Pals and Newman17,69 modeled the temperature profile of a multi-cell stack by simulating 

the behavior of a single cell, with lithium foil as the anode, to determine the rate of heat 

generation and different temperatures and states of charge. They then modeled a full stack by 

considering the effect of heat transfer between cells in the stack by using an approximation for 

the heat generation in each cell. In this way, the individual cells were decoupled and the 

calculations for an individual cell were performed independently of the temperature calculation 

for the entire stack.69 Chen and Evens71,72 performed a thermal analysis of a lithium-ion battery 

stack in the context of preventing thermal runaway reactions. However, they simplified the 

model by incorporating empirical discharge data and constant physical parameters into the 

model.  

Further complications also arise due to the presence of current collectors located between 

each pair of cell sandwiches, as well as at both ends of the battery stack. These current collectors 

provide additional thermal mass to the system which can slow the heating of the battery and 

should be considered in any comprehensive thermal stack model.  
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Table 3-2: Additional Equations for Calculation of Thermal Effects 
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The same orthogonal collocation reformulation and solution method presented in Chapter 

2 for the isothermal battery simulation was used for reformulation of the thermal model for a 

battery stack. The coordinate transformation can be extended to add multiple cells to a stack. The 

inclusion of current collectors in the model increases the number of regions which are considered 

without a significant increase in the number of variables. 



 

78 
 

 

Figure 3-1: Schematic for a multi-cell battery stack 

A challenge in the transformation occurs because there is one more current collector than 

there are cells; there is not a one-to-one correspondence between the current collectors and cell 

sandwiches. The transformation is achieved by considering the current collectors as additional 

regions in which only the temperature variable is considered. The only other variable which is 

applicable in the current collector is the solid phase potential, which is assumed to be constant 

and equal to the end point potentials of the adjacent electrodes. The primary challenge arises in 

formulating the equations and boundary conditions in a consistent manner in the battery stack.  

The approximate expressions for temperature were developed with cosine collocation in 

the same way as discussed in Section 2.3.1 for the other variables. Both linear and quadratic 

terms are included in these approximate expressions in order to maintain generality so that 

various thermal boundary conditions can be used, such as constant temperature, constant flux, or 

convection, as well as continuity of temperature and of heat flux between the regions. The 

current collectors are approximated in a similar manner. Since the current collectors are 

constructed of highly conductive materials, the temperature does not vary significantly across the 

current collectors, and no cosine terms are needed for an accurate approximation. A single 

constant term is adequate and must be solved for using the governing heat equation. The 

inclusion of the current collectors minimally increases the computational load, as only a small 
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number of variables are added. For example, an eight-cell stack has 298 DAEs that must be 

solved for if current collectors are ignored. That increases to 307 DAEs when the temperature 

within the current collectors is considered.   

Model simulation of full battery stacks provides additional challenges which can be 

addressed by using this reformulation and orthogonal collocation followed by a numerical 

solution to solve the time dependence. It is necessary to consider a full multi-cell battery stack 

when thermal effects are included, as a temperature profile across the battery can affect cell 

performance. In the case of isothermal operation, each cell is exposed to the exact same 

conditions which cause each individual cell to behave identically. If this symmetry is broken, for 

instance by forcing a temperature gradient across the cell stack, the cells may behave differently 

from each other.  

 
Figure 3-2: Temperature at the center of an 8-cell stack during a 1C rate of discharge subject insulated 
conditions (solid line), a heat transfer coefficient of 1W/m2 (long dash) , a heat transfer coefficient of 10W/m2 
(short dash), and fixed temperature (dash-dot) boundary conditions 

A schematic of an N-cell stack is given in Figure 3-1, where each anode-separator-

cathode group constitutes a single cell, with aluminum current collectors located between 

adjacent cathodes and copper current collectors located between adjacent anodes. Note that both 
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electrodes at the end of the stack are anodes, and each successive cell reverses the order of the 

electrodes. In the configuration studied here, the cells are connected in parallel so that the same 

voltage is applied at each cell. Therefore, if a constant current discharge is applied to the entire 

battery stack, the current provided by each individual cell may vary with time. At the boundaries 

between the electrodes and current collectors, the electrolyte concentration is considered to have 

zero flux, whereas the temperature and heat flux are continuous. Additionally, the solid phase 

potential drop between the anode/current collector interface and the cathode/current collector 

interface is the same across all cells. This couples the behavior of each cell, so that all cells in the 

stack must be solved simultaneously. Because of the large number of equations that arise from 

the coupled thermal electrochemical multi-cell stack model, reformulation was performed to 

reduce the number of DAEs for efficient simulation.   

In order to perform the stated transformation on an N-cell stack with current collectors, it 

was necessary to mathematically treat alternating cell sandwiches differently. For the odd 

numbered cells, the entire sandwich consisted of a total of five regions: a copper current 

collector, the anode, the separator, the cathode, and an aluminum current collector. The even 

numbered cells only consisted of the cathode, the separator, and the anode. Additionally, the odd 

numbered cells were flipped so that they were orientated in a cathode-separator-anode 

configuration so that all cells are consistent. A final copper current collector (which is present 

regardless of the size of the stack) was considered independently of the individual cells. This 

results in a system in which the positive electrode for each cell is defined on the region [0, lp], 

the separator on the region [lp, lp+l s], and the negative electrode on the region [lp+l s, lp+l s+l n] 

(the current collectors, where applicable, are considered outside of this range). This simplifies 

the problem by eliminating the need to keep track of the location and orientation of each cell in 
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the entire stack during simulation. For the interior cells, the boundary conditions at each end of 

each cell are determined by continuity. It must be noted that the application of the continuity of 

flux requires the direction of the flux to be reversed in adjacent cell to account for flipping every 

other cell to achieve a consistent orientation. Once this is done, each cell is transformed to a 

single region, as described in Section 2.2 for a single cell. This reduces the entire stack to a 

single region defined from [0, 1], and the stack can be solved in the same way as described 

previously.  

 
 

Figure 3-3: Temperature profile across an 8-cell lithium ion battery at the end of discharge when the ends (a) 
are maintained to be a fixed temperature difference of 10 K and (b) are exposed to a heat transfer coefficient 
of 1 W/m2K and an ambient temperature of 298 K  

Extending the model to include the effects of temperature in a multiple cell stack can 

allow for more detailed simulation, albeit at an increased computational cost. Figure 3-2 shows 

the temperature rise at the center of the battery with varying values of the heat transfer 

coefficients at the end of the stack. For the insulated (h=0) case, there is a 55 K temperature rise 

within the battery, whereas there in no discernible temperature rise when the battery ends are 

held at fixed temperature (h=∞). In this case, the battery is sufficiently thin (on the order of 
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approximately a millimeter) that there is not a significant temperature profile within the battery. 

Figure 3-3(b) shows the temperature profile of an 8-cell stack when the ends are exposed to a 

heat transfer coefficient of 1 W/m2K. Notice that the observed variation in the battery is a small 

fraction of a degree. However, for large batteries, or in two and three dimensions, the possibility 

of creating a hotspot becomes more significant.   

 
 

Figure 3-4: Current-Time curves for the first cell (solid line) and last cell (dashed line) within an 8-cell stack 
with an applied temperature gradient undergoing constant current discharge (1C) using the coupled thermal 
electrochemical model.  

Figure 3-3 (a) shows the temperature profile within an 8-cell stack when the temperature 

of each end of the multi-cell stack is fixed to create temperature decrease of 10 K across the 

battery. The discharge current for the first and last cell in an 8-cell series stack under these 

conditions is shown in Figure 3-4.  Notice that the current provided by the individual cells are 

not identical throughout discharge. while each individual cell is at the same voltage. This causes 

the individual cells to behave differently, resulting in the subtlety different current curves 

observed in Figure 11. The higher temperature of the first cell causes it to initially discharge at a 

faster rate than the last cell. However, by the end of discharge, the cooler cell provides a greater 
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current because it exists at a greater state of charge. Figure 3-5(a) shows the concentration profile 

across the entire battery in the transformed coordinates for each individual cell, which further 

demonstrates how temperature can affect internal battery characteristics. Figure 3-5(b) shows the 

concentration profile across the entire stack in natural coordinates at the end of discharge. Note 

that there is no electrolyte in the region of the current collectors, leading to a discontinuity at 

those points. In this example, the stack is sufficiently small that internal heat generation effects 

do not significantly alter the temperature profile when the ends are held at a fixed temperature.  

 
Figure 3-5: Concentration profile across an 8-cell stack at the end of discharge for transformed coordinates 
(left) and natural coordinates (right). (○) denotes the first cell and (◊) denotes the last cell in the series 

However, for larger stacks, higher applied current and/or different boundary conditions, the 

temperature profile may be significantly affected by internal heat generation leading to greater 

behavior variations among the individual cells without an arbitrarily forced condition. The other 

spatial directions, y and z, are important for thermal models at high rates, and the coordinate 

transformation and the orthogonal collocation approach is still valid. A detailed pseudo 4D 

model (x, y, z and r) in stack environment can be reduced to a unit cell of X, Y, Z varying from 0 
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to 1 in dimensionless transformed coordinates as explained earlier. The proposed approach is 

also useful for developing models for optimization of graded electrodes or materials wherein 

control vector parameterization converts a given single region to N regions to represent discrete 

functions of porosity, particle size or shape.  

3.2 Simulating a Two-Dimensional Lithium-Ion Cell 

In addition for allowing the simulation of multi-cell stacks, the reformulated model can 

also be used to study two-dimensional cells. The standard P2D model only models variation in 

the direction perpendicular to the electrodes, as that is the primary direction of ion transport 

under ideal conditions. However, a variation in the direction parallel to the electrodes can occur, 

for example, due to manufacturing defects, or difference thermal characteristics at the top and 

bottom of the cell. A pseudo 3D model can be used to account for these occurrences. However, 

including an additional dimension greatly increases the computational cost. A finite difference 

approach with 50 node points in each electrode and 35 node points in separator in the x-direction 

and 25 node points in the y-direction results in a system of nearly 15,000 DAEs that must be 

solved for a single cell, if the parabolic profile is used in the solid phase. If a more detailed 

discretization is used for the solid-phase diffusion, the number of equations will be even greater. 

Thus, much of the work done by researchers modeling thermal behavior in batteries have used a 

1D model15 or decoupled the thermal profile from the electrochemical reactions.19,20,35,69-71  

For example, Evans et al.71 modeled heat generation in cylindrical cells using local 

current density which was decoupled from the overall thermal effects. Kim et al.74 simulated a 

large format lithium-ion polymer battery using parameters from small cells, but maintained a 

one-way coupling between the thermal and electrochemical effects (i.e. the electrochemical 
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reactions and current flow contributed to the thermal calculation, but the temperature did not 

affect electrochemical behavior). They extended this model for electric vehicle applications 

using constant power charge/discharge protocols.75 Inui et al.76 studied heat generation in 

prismatic and cylindrical cells using a finite element analysis with resistive heating in each 

element. Kim, et al.77 developed a Multi-Scale Multi-Dimensional (MSMD) model to study large 

format lithium-ion batteries. This MSMD model simulated the electrochemical behavior at the 

particle, electrode, and cell domains, with appropriate coupling between the scales. This allowed 

multiple cell designs to be tested, while only using a 1D model for the electrode domain 

(analogous to cell sandwich level), but being able to model the temperature in 3D.77 

Gerver and Meyers 78 performed 3D thermal simulation of lithium batteries in planar 

configurations by arranging several 1D porous electrode models in series and a grid 

configuration. Thus, all current flow in the cell sandwich was in the direction perpendicular to 

the electrode, and lithium-ion transport in the direction parallel to the electrodes was neglected. 

The different 1D nodes were coupled at the current collectors, which were modeled as a system 

of temperature varying resistors.78 This improves the computational efficiency as solving several 

1D models is simpler than solving a full 2- or 3-dimensional model, while allowing for some 

effects of a temperature profile to be analyzed. McCleary, et al.79 extended the work of Gerver 

and Meyers by applying a similar approach of using a series of 1D porous electrode models  to 

spirally and prismatically wound cells, which are standard configurations for commercially made 

lithium-ion cells, by accounting for the effects of curvature and increasing electrode surface 

areas in the outer layers. They were able to model the effect of the number and positions of tabs 

on heat generation but again neglected ion transport and current density in the direction parallel 

to the electrodes.79. Christensen et al.80 coupled the 1D dualfoil model18 in a Fluent 
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environment24, allowing a fine mesh grid to be used for the temperature simulation while using a 

coarser mesh for the electrochemical reactions. At each time step, the local temperature was used 

to determine the behavior of each electrochemical element, by using a Newton-Raphson 

approach to solve for the voltage to achieve the total specified current (with voltage and 

temperature being the only variable to couple the 1D electrochemical elements). Once the 

electrochemical elements reached a converged solution, the heat generation was calculated from 

the current density and fed into the thermal mesh.80 This approach allowed parallelization of a 

multi-core processor performed to solve the system improve computational speed of the entire 

system.80 Tourani et al.81 coupled a series of 1D porous electrode models while simulating a 2D 

thermal model, with heat generation occurring due to the electrochemical reaction and electrical 

resistances and experimentally verified their results for a lithium polymer cell, and a lithium iron 

phosphate cell. Xu et al.82 performed a two-dimensional modeling using COMSOL23 which 

accounted for mass and charge conservation in both dimensions and examined the effect that tab 

position had on the temperature profiles.  

Table 3-3: Governing equations of the porous electrode model in 
higher dimensions 
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Table 3-3 shows how including additional dimensions make simulation more complicated 

and is a generalization of the governing equations of the porous electrode model given in Table 

1-2 to higher dimensions. Specifically, the charge balance must be represented as a 2nd order 

PDE in the 2D formulation. When only a single dimension is considered, the charge balance 

equation can be simply integrated to give the total current flowing through the cell, resulting in 

the equation given in Table 1-2. Further difficulties arise when applying the boundary conditions 

of the solid phase potential, 1Φ , at the current collector/electrode interface. Note that the current 

flowing out of the cell is based on the derivative of , in a manner analogous to heat transfer. 

In a one dimensional model, the flux of  can thus be specified at the boundary. However, in a 

multidimensional model, such an approach neglects the possible variation parallel to the 

electrodes. For example, more current may flow out of the top of the cell than out of the bottom. 

3.2.1 Two-Dimensional Stack with Simplified Boundary Conditions 

The reformulation strategies discussed in Chapter 2 for a one dimensional case can be 

applied to the two dimensional case presented here. More details on performing collocation in 

two dimensions is given in Appendix B. In this subsection we consider a two-dimensional 2-cell 

stack with a height of 1mm. The small height improves the stability and provides an initial proof 

of concept for a 2D cell, but limits the variation which can occur in the y-direction. The 

boundary conditions used are given in Figure 3-6, with the realization that the solid phase 

boundary conditions neglects the possible variation of current in the y-direction, but is used as 

initial approximation of a 2D model. Relaxations of this assumption are discussed later. Note that 

continuity boundary conditions are applied at the electrode/separator interfaces. 

1Φ

1Φ
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Figure 3-6: Boundary conditions used as an initial approximation of the 2D model 

 

 
Figure 3-7: Discharge curve simulated using the 2D model (solid line), a 1D model with applied temperature 
conditions (long dash line), and a 1D model with adiabatic conditions (short dash line) 

Note that the boundary conditions for temperature are not identical at the top and bottom 

of the cell, with the bottom being at a specified temperature while the top is insulated. This 

breaks the symmetry in the y-direction and forces variations to exist in y. The simulated 
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discharge curve for a 1C discharge curve of a 2-cell battery stack is given in Figure 3-7. For 

comparison, Figure 3-7 also shows the predicted discharge curves using a 1D model.  

As the 1D model cannot account for temperature variation in the y-direction, two cases 

were considered: insulated conditions and applied temperature conditions. For a single 1C 

discharge, the effect of the temperature profile (given in Figure 3-8) is rather small. However, 

even in this case, there is a clear difference in the performance between the two 1D simulations, 

with the insulated case experiencing a slightly higher voltage due to the decreased resistance that 

occurs at higher temperatures. Furthermore, the 2D model predicts a discharge curve between the 

two extremes, as would be expected since the 2D model is not completely insulated, but there is 

enough thermal resistance to allow for a temperature profile. 

  
Figure 3-8: Temperature profile (left) and concentration profile (right) at the end of discharge of a two-cell 
2D stack 

Additionally, the temperature profile can induce a variation in y-direction of the other 

variables, albeit a minor variation. Figure 3-9 shows the solid phase potentials in the anode and 

cathode. Note that Figure 3-8 and Figure 3-9 use dimensionless values for the position in x and y. 

Though the magnitude is small under these conditions, under more extreme conditions or for 
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larger cells these variations could significantly affect performance by increasing or decreasing 

resistance. 

  
Figure 3-9: Solid phase potential profile in the anode (left) and cathode (right) at the end of discharge of a 
two-cell 2D stack (note that the anode exists from [0,1] and [5,6], the plotting algorithm automatically 
connects the two regions) 

3.2.2Two-Dimensional Thermal Lithium-Ion Cell with y-variation of Current 

Density 

The 2D model presented in Figure 3-6 does not consider the possible variation in the y-

direction for current density, instead specifying a constant flux at the current collector. Under 

most conditions the variation is likely to be minor, but under certain circumstances, specifically 

those which result in a thermal gradient across the height of the battery, the current density may 

not be constant, which can occur in large format cells. As an initial approach at relaxing the 

constant current density assumption, a constant current charge (or discharge) is simulated by 

requiring that the integral of the current density across the current collector is a constant, as 

demonstrated in Figure 3-10 and given by 
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Thus, although the current density may vary at different points in y, the total current flowing 

through the cell is constant. However, the boundary condition given in Equation (3.1) is not 

adequate to fully characterize the system, as an infinite number of profiles can satisfy the 

condition. Therefore, the assumption is made the solid phase potential at the current collector 

interface does not vary across the height of the cell, although it is allowed to vary with time. 

Mathematically this can be expressed as: 

 ( )1 0, , ( )x y t f t= =Φ  (3.2) 

This assumption is considered valid for most conditions as the high conductivities of the current 

collectors (typically constructed of aluminum and copper) which ensure that any variation in 

voltage potentials is minimal. Thus, the assumption of a constant (in y) is a better assumption to 

use than the constant current density assumption in most applications. 

 
Figure 3-10: Alternate boundary conditions for the 2D battery model 
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Figure 3-11: Temperature (left) and current density at the cathode-(□) and anode-(○) current collector 
interfaces (right) for a 1C discharge at 0% DOD (solid line), 33% DOD (long dash), 67% DOD (short dash), 
and 100% DOD (dash dot) 

The boundary conditions given in Equations (3.1) and (3.2) have been used to solve for 

the 2D battery model using reformulation techniques. This approach is robust and allows for 

implementation of porous electrode models for application in which variation across the height 

of the cell is expected to play a major role in battery life and performance. The boundary 

conditions shown in Figure 3-10 can result in large temperature increases within a sufficiently 

large cell lithium-ion cell, even when only a 1C discharge is applied. Note, importantly, that the 

current collectors and battery casing, etc. are neglected in this model. Including those would 

likely reduce the magnitude of the temperature increase by increasing the thermal mass of the 

system. Also, the current collector, being thermally conductive, would facilitate improved heat 

transfer across the height of the cell. The temperature increase is shown in Figure 3-11, as is the 

current density at both electrode-current collector interfaces, for a cell with a height of 5cm (in 

contrast to the 1mm height used in the previous subsection). The temperature variation across the 

thickness of the electrode was negligible, as has been observed in the 1D model (Section 3.1). 
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Here, the temperature profile in y has a small but noticeable effect on current density for 

most of the discharge time. Specifically, areas of the cell which are at a higher temperature have 

a slightly higher current density. A higher temperature facilitates improved diffusion by reducing 

resistance, and directly increases the rate of reaction. However, at the end of discharge, the 

current density is provided principally near the applied temperature boundary, and at a much 

higher rate. This shows that even though the cell as a whole undergoes only a 1C discharge, the 

local current density can reach well over 2C in certain regions of the cell. This relatively rapid 

discharge in small region of the cell can cause increased SEI growth as well as increasing the 

local heat generation which in turn causes a more complicated thermal profile to arise and 

possibly causing hot spots and further damage the cell. This localized heat generation is partially 

responsible for the oscillations which are observed for the final temperature curve in Figure 3-11, 

though the limited ability to use a large number of collocation points also contributed to the 

inaccuracy. Here, (4,1,4,3) collocation was used for simulation (that is, using up to a 4th order 

Chebyshev polynomial in the electrodes, 1st order in the separator, and 3rd order in the y-

direction). The changing reaction zone is shown explicitly in Figure 3-12 which shows the local 

pore wall flux as contour plots. At the beginning of discharge there is no appreciable variation in 

the y-direction, only across the thickness of the electrode, as expected from Figure 2-8 for the 1D 

model. However, as a greater temperature gradient is established, the variation of the pore wall 

flux across the height of the cell is more significant that across the thickness, as shown in Figure 

3-12 (b) and (c). By the end of discharge, only a small fraction of the electrode volume (near the 

cold plate and separator) provides the majority of current demand. The spike in local current 

density at the end of the discharge can be attributed to the saturation (or depletion, at the anode) 

of lithium in the warmer areas of the cell. Thus, regions which would not otherwise be favored 
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due to the thermal conditions become favorable sites for reaction for thermodynamic reasons. 

Figure 3-13 shows the local SOC in the cathode. 

 
Figure 3-12:  Contour plots of the pore wall flux in the cathode at 0% DOD (a), 33% DOD (b), 67% DOD 

(c), and 100% DOD (d). Note that the contour lines are in units of 2

µmol

m s
. 0x =  corresponds to the cathode-

current collector interface and 5y = corresponds to the fixed temperature boundary condition. 

Figure 3-13 (b) and (c) show that in the midst of discharge, the SOC varies significantly 

in both the x- and y- directions, and that the variation across the height mirrors the gradient of 

temperature seen in Figure 3-11. Ultimately, Figure 3-13 (d) shows that there is a region of the 

cell adjacent to the current collector and near the cold plate which is significantly underutilized. 

In this region, the diffusion and ohmic resistance is at its highest point in the electrode. It is both 
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cooler, directly limiting lithium diffusion, and furthest from the separator, requiring more current 

to be carried in the electrolyte.  

 
Figure 3-13: Contour plots of the local SOC in the cathode at (a) 0% DOD, (b) 33% DOD, (c) 67% DOD, and 
(d) 100% DOD. 0x =  corresponds to the cathode-current collector interface and 5y =  corresponds to the 
fixed temperature boundary condition. 

Although these give good results, the battery model given by Figure 3-10 is not fully 

inclusive as the variation of potential across the battery height is neglected. A natural extension 

would be the inclusion of the current flow through the current collectors in the model, as shown 

in Figure 3-14. Continuity of the solid phase potential and flux would have to be applied at the 

current collector/electrode interfaces. This would allow for variation of both potential and 

current density at the current collector-electrode interface. The current out of the current 
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collector could be approximated as having a constant flux at the tab. This formulation would 

neglect the possible variation in current density across the thickness of the current collector, but 

that variation is expected to be negligible due to the high conductivity and small thickness of the 

current collectors. 

 
Figure 3-14: Proposed boundary conditions for the solid phase potential in a 2D model with current collectors 
included.  

3.3 Capacity Fade Due to Growth of the SEI Layer 

As batteries are repeatedly cycled, the overall capacity is reduced. One mechanism of 

capacity fade is the growth of the solid electrolyte interface (SEI) layer on the graphite surface. 

Having capacity fade mechanisms is essential for the long term life simulations. As life studies 

of batteries require many cycles to be simulated, reformulation can be a useful tool for 

performing such studies. 
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3.3.1 Development of an SEI Reformulated Model 

Here we develop a reformulated model for SEI growth by considering reduction of the 

solvent (typically ethylene carbonate) to be responsible for increasing SEI layer thickness.22 This 

model assumes that the solvent molecules, ethylene carbonate, must diffuse through the SEI 

layer to react with lithium at the active material surface to create a layer of lithium ethylene 

dicarbonate. The overall rate expression is given by Safari, et al.22 is 

 2 2 22EC+2Li (C OCO i)H L→  (3.3) 

There is not a clear consensus in the literature concerning the rate expression of the SEI 

growth, although most are variations on Butler-Volmer kinetics, with different prexponential 

dependences on the lithium and solvent concentration.13,22,66 This allows for comparisons to be 

made among the different mechanisms. The first kinetic expression examined from the work of  

Pinson, et al.13: 

 ( )0.5 0.5
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SEI

k c c U j j
FRT

j
α δ

κ
+= − Φ −Φ

  
    

− +


−   (3.4) 

Equation (3.4) results in a diffusion limited reaction for the parameters provided in 

Pinson, et al.13. The equilibrium potential value, SEIU  is not well known and values of 0.4 V66,83 

and 0.8 V13,84 can be found in the literature. Another model considered here was developed by 

Ramadass, et al.66 and postulates kinetically limited SEI growth: 
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Safari et al.22 gives another kinetic expression based on the assumption that the reduction of the 

solvent if the rate limiting step in the mechanism. This results in the following rate expression 

for the SEI layer growth. 
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Note that Safari, et al.22 neglected  and rather choose to incorporate its value into the rate 

constant. 

The pore wall flux given in Table 1-2 must also be modified to account for the resistance 

caused by the SEI layer. This resistance is captured in the final term in Equation (3.7). 
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Although Safari, et al.22 and Ramadass, et al. 66 applied their fade mechanisms to the single 

particle model, reformulation makes it feasible to use these models in the P2D model. Including 

the growth of the SEI layer into the P2D model necessitates the addition of more dependent 

variables and governing equations, as well as affecting existing governing equations. Note that 

this only directly affects the conditions in the anode, and is not considered on the cathode. 

Regardless of the mechanism chosen, the growth to the SEI layer is given by 

 SEI SEI

SEI

j M

t

δ
ρ

∂
= −

∂
 (3.8) 

Equation (3.8) is valid for cases in which ,p nRδ << . A more accurate formulation which 

accounts for the spherical nature can be used, but is generally not necessary as other assumptions 

of the model are likely to fail for cases in which  ,p nRδ <<  does not hold.  

Developing a reformulated model with SEI growth can be done by using series solutions 

to represent the rate of the side reaction and thickness of the SEI layer across the electrode in a 

manner similar to the other variables as given in Chapter 2.  This allows the variation of the SEI 

layer to be studied across the electrode. The method of weighted residuals can be applied to 

SEIU
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Equations (3.4)-(3.5) and Equation (3.8) to determine to coefficients of the series solution to be 

found. Thus, considering SEI layer growth increases the number of governing equations by two 

and the total number of DAEs by 2( 1)nN +  over the base P2D model.  

Importantly, it is the concentration of lithium and solvent at the active material surface 

that determine the rate of reaction for both lithium intercalation. As both the solvent molecules 

and lithium ions diffuse through the SEI layer, the SEI layer provides a resistance between the 

active material and the electrolyte. This resistance causes a variation to exist between the 

concentration at the active material surface and at the electrolyte interface. This is important to 

consider when modeling the system as the electrolyte concentration external to the SEI does not 

directly dictate the rate of reaction. Therefore, the concentration profile for each species must be 

calculated in some form.  

The diffusion of both species can be modeled using Fick’s law. Again using Cartesian 

coordinates as ,p nRδ <<  this is given as  
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∂ ∂ ∂ ∂
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Where the final term of Equation (3.9) accounts for any convective effects due to the outward 

growth of the SEI layer. Note that the convective term can be directly rewritten using Equation 

(3.8) for the SEI layer growth. Boundary conditions at the particle surface and the electrolyte 

interface are required to model the transport of the species across the SEI layer. At the SEI-

electrolyte interface the concentrations within the SEI layer are specified as equal to the 

electrolyte values. At the active material surface, the rate of reaction of both species must equal 

the rate of diffusion to the surface. For the solvent this is given as  
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Since lithium is consumed in both the intercalation reaction and the SEI formation reaction, 

the diffusion of lithium at the active material surface must satisfy both reactions: 
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Importantly, SEIj does not contribute to the intercalation of lithium in the graphite, and the 

boundary conditions for the solid phase (see Table 1-2) remain unchanged. Rather, SEIj  

represents lithium that is irreversibly removed from the system.  

If a linear profile is used to estimate the variation of the lithium and solvent species 

within the SEI, no additional equations are needed, as the boundary conditions described above 

are sufficient to provide the concentration at the surface. This gives the solvent concentration at 

the surface to be given by 

 , ,
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Where ,sol elecc is the concentration of solvent in the bulk electrolyte. Similarly, the concentration 

of lithium ions at the active material surface can be given by 
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Appling Equations (3.12) and (3.13) to the reaction rate equations increases the complexity 

of the resulting DAEs and increases the coupling of the system by directly considering diffusion 

resistances.  

 Equations (3.12) and (3.13) assume a linear profile of the respective species across the SEI 

layer. This is valid in a pseudo-steady state situation, for example if the rate of diffusion is faster 

than the growth of the SEI layer and any change in reaction rates. If a more detailed parabolic 
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profile is used to track transients, a volume averaged approach can be applied to Equation (3.9) 

to track the average concentration within the SEI. Such an approach better captures the behavior 

within the SEI layer. However, including a term for concentration in the SEI layer increases 

overall computational costs, even in ways that would not at first be apparent. For example, the 

governing equation for the electrolyte concentration must be modified. Rather than the removal 

of lithium from the solvent (given by the generation term of the lithium-ion mass balance 

equation in Table 1-2) being directly equal to the pore wall flux, it must be equated to the 

diffusion of lithium into the SEI layer. In this work, a linear profile is used exclusively for the 

sake of computational efficiency and stability.  

3.3.2 Effects of SEI Layer Growth 

 
Figure 3-15: SEI layer growth over 10,000 cycles for Mechanisms A(○), B(□), and C(∆) . The 
upper lines represent the area of the electrode nearest to the separator while the lower lines 
are the area nearest to the current collector. 

The growth of the SEI layer is studied by simulating a lithium ion cell over multiple 

cycles. Here a single cycle consists of a constant current charge to a specified cutoff, constant 

potential charge at the same voltage (with the total charging time is constrained to 7200 
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seconds), followed by a 1000 second relaxation phase before undergoing a constant power 

discharge. In this analysis, the diffusion limited case (Equation (3.4)) will be referred to as 

Mechanism A, the kinetically limited case (Equation (3.5)) will referred to as Mechanism B, and 

the solvent limiting case (Equation (3.6))  will be referred to as Mechanism C. The parameters 

were chosen to be consistent with the source data where possible while providing results that can 

be directly compared by ensuring that the SEI layer thickness between the simulations where 

within an order of magnitude. 

Figure 3-15 shows the growth of the SEI layer for 10,000 cycles (a bit over three years of 

continuous cycling) for the three different reaction mechanisms at the first and last collocation 

points. Importantly, note that the growth of the SEI layer is self-limiting; the rate of growth is 

greatest at the beginning of life, but decreases as the battery ages, especially for the diffusion 

limited case given as Mechanism A. 

 
Figure 3-16: SEI thickness across the anode at the end of 10,000 cycles for 
Mechanisms A(○), B(□), and C(∆). 
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Figure 3-17: Discharge curves for Mechanisms A(a), B(b), and C(c) at cycle 1 (solid line), cycle 2500 (long 
dash), cycle 5000 (short dash), cycle 7500 (dash dot), and cycle 10000 (dash double dot). Subplot (d) shows the 
discharge curve at cycle 10000 for Mechanisms A(solid line), B(long dash), and C(short dash) compared to 
the initial discharge curve (dash dot) 

A thicker SEI layer increases the diffusive resistance of the solvent molecules to the 

active material surface, which directly slows the reaction. A thick SEI also increases the 

electrical resistance between the solid and electrolyte which affects the overpotential which 

arises in the exponential term of the kinetic expression. Figure 3-16 explicitly shows the final 

profile of the SEI thickness at the end of 10,000 cycles across the anode. There is very little 

variation in Mechanism A as the diffusion of solvent is the limiting factor in that case, which 

does not vary significantly. However, for the more kinetically limited cases, the variation across 

the electrode is rather large. During cycling, the portion of the electrode nearest to the separator 

is most reactive (see Figure 2-8) due to the greater overpotentials which exist. This leads to 

greater SEI formation near the separator when compared to deep in the electrode. This suggests 
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that designing and operating lithium-ion cells to mitigate the overpotential could minimize SEI 

layer growth.  

The discharge curves for each mechanism are shown in Figure 3-17, which shows both a 

reduction in capacity and a reduction in voltage. The SEI layer has a two-fold effect on the 

battery performance. Any lithium that is bound in the SEI layer as lithium dicarbonate cannot be 

recovered in a later cycle. Thus, the growth of the SEI layer directly contributes to a reduction in 

available lithium and thus capacity. The SEI layer also increases the resistance of transfer of 

lithium from the electrolyte to the electrode (and vice versa) as well as increases the electrical 

resistance by reducing the overpotential. This has the effect of reducing the voltage available 

during discharge.   

 
Figure 3-18: Cell capacity (upper lines) and total capacity lost (lower lines) 
for Mechanisms A(○), B(□), and C(∆). 

Figure 3-18 shows the cell capacity as a function of cycle number. Note that the charge 

and discharge capacities are indistinguishable on this scale as the columbic efficiency of any 

single cycle is over 99.99%. The cumulative capacity lost is also shown, which is significant 

after a few thousand cycles.  
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3.4 Conclusions 

The versatility of the porous electrode model allows for the inclusion of additional 

physical phenomena, which is critical for safety and life considerations. However, the inclusion 

of additional physical phenomena can greatly increase computational costs, both by requiring 

more equations, and by increasing the coupling among existing equations. Thus, a reformulated 

model can be used to simulate such models. Here we discussed the inclusion of temperature, 

which has important safety consequences, and the inclusion of the growth of the SEI layer, 

which directly affects the life performance of the cell.  

The addition of Arrhenius type dependence of diffusion coefficients and reaction rate 

constants on temperature was also included in the thermal model. This increases the fidelity of 

the model at the expense of increased complexity and computation time. This approach is robust 

enough to solve these equations faster than if a finite difference approach were used. This is 

especially pronounced when a coupled thermal electrochemical multi-cell stack model is used 

due to the large number of equations that must be solved. However, such a stack model better 

describes how individual cells operate in the context of a full battery stack. This is important 

when thermal or other effects cause the individual cells to not operate identically from each 

other. Since it is often not practical or possible to measure each cell individually in a stack, these 

differences can lead to potentially dangerous or damaging conditions such as overcharging or 

overdischarging certain cells within the battery causing thermal runaway or explosions. The 

ability to efficiently simulate battery stacks facilitates monitoring of individual cell behavior 

during charging and discharging operations and thereby reducing the chances of temperature 

buildup causing thermal runaway making the use of stacks safer. 
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The growth of the SEI layer allowed for a lithium-ion cell to be studied over the course of 

the life of the battery. The effect of the SEI side reaction is clearly pronounced in reducing the 

capacity over 10,000 cycles for the cases examined here. Critically, the reformulated model 

using a (15,3,15) Chebyshev collocation was able to simulate 10,000 cycles in only a few hours. 

This ultimately allows for long term simulations to be run for a range of conditions and cycling 

protocols.  

The capacity fade due to SEI layer growth can be attributed to both removal of lithium 

from the system and increased resistance between the solid and liquid phases, though the lithium 

removal seems to be the dominant effect for the parameters presented in this work. As the 

mechanism of SEI layer growth is not well understood, three different mechanisms were 

considered, including diffusion limited and kinetically limited cases. In diffusion limited cases 

the thickness of the SEI layer was predicted to be nearly uniform within the electrode, while 

kinetically limited cases showed a larger variation. Whether the SEI layer growth is kinetically 

or diffusion limited will have an effect on any strategies used to mitigate fade. A kinetically 

limited cell can control the growth somewhat directly by using more conservative charging 

protocols which limit the overpotentials in the cell. In contrast, diffusion limited cells will be less 

sensitive to the charging protocol. Rather, in a diffusion limited cell, factors which affect 

diffusivity of the solvent in the SEI layer are likely to have a more significant effect. This 

immediately suggests that a SEI layer model described in Section 3.3 should be combined with 

the thermal model in Section 3.1 with temperature dependent diffusivities to allow for a 

comprehensive model to study capacity fade. Combining the thermal model with the SEI layer 

growth in the reformulated framework presented here has already been done as a proof of 
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concept. However, at the time of this writing, a thorough analysis has not been completed for 

that effort.  

Other mechanisms relating to capacity fade, most notably due to stress and strain effects, 

are currently being explored for simulation in the MAPLE lab. Incorporating those mechanisms 

into the reformulated model is left for future students.  
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Chapter 4 

Kinetic Monte Carlo Simulation of the Growth of the SEI 

Layer 

This chapter contains excerpts (specifically in Section 4.1.1) from the following journal article reproduced 
here with permission from The Electrochemical Society: 
R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, “Kinetic Monte Carlo 
Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-ion Batteries: Passive Layer 
Formation,” Journal of the Electrochemical Society, 158(4), A363-A370 (2011). 

 

The work discussed in the previous chapters focused exclusively on continuum models of 

lithium-ion batteries. Continuum models based on chemical engineering fundamentals can offer 

great insight into battery performance over the course of many cycles, but are limited in their 

ability to capture many phenomena, especially events on the microscale as shown in Figure 4-1. 

For example, the growth of the solid electrolyte interface (SEI) layer was discussed in Section 

3.3 from a continuum perspective. The SEI layer is created by a side reaction of the solvent with 

the lithium. This irreversibly removes lithium from the system and reduces capacity. A thick SEI 

also increases the resistance between the solid and liquid, which slows reaction and reduces the 

output voltage. However, the continuum model assumes the SEI layer grows uniformly across 

the surface of the particle.  

This is not necessarily the case, and significant heterogeneities in the thickness of the SEI 

layer. A very heterogeneous surface will have areas in which a thin SEI layer provides areas of 

relatively short paths for lithium ions to travel from the electrolyte to the active material. A more 

homogeneous surface will not allow “shortcuts” to lithium intercalation. A kinetic Monte Carlo 

(KMC) approach is presented here in an attempt to model the surface heterogeneity on a lithium 



 

 

cell. KMC is a computationally expensive stochastic approach which considers discrete events 

within a system. 

A general background on the KMC algorithm is given in 

this chapter discusses a simplified 2D model for the particle surface. This is done first 

independently of any external model, and then coupled with the P2D model. Later a 

dimensional model which explicitly considers the thickness of the SEI layer is developed and 

studied.   

Figure 4-1: The reactions which occur on the electrode surface a often glossed over when using continuum 
models, necessitating a more detailed approach

4.1Two Dimensional KMC Model

The first attempt at developing a KMC model was based on a greatly simplified view of 

the SEI layer. This considers a electrode surface as a two dimensional plane modeled as a 25 by 

25 rectangular lattice. The growth of the SEI layer is considered in a binary sense: the SEI layer 
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ionally expensive stochastic approach which considers discrete events 

A general background on the KMC algorithm is given in Appendix C. The first part of 

this chapter discusses a simplified 2D model for the particle surface. This is done first 

independently of any external model, and then coupled with the P2D model. Later a 

dimensional model which explicitly considers the thickness of the SEI layer is developed and 

The reactions which occur on the electrode surface a often glossed over when using continuum 
a more detailed approach 

Two Dimensional KMC Model 

The first attempt at developing a KMC model was based on a greatly simplified view of 

SEI layer. This considers a electrode surface as a two dimensional plane modeled as a 25 by 

25 rectangular lattice. The growth of the SEI layer is considered in a binary sense: the SEI layer 

ionally expensive stochastic approach which considers discrete events 

. The first part of 

this chapter discusses a simplified 2D model for the particle surface. This is done first 

independently of any external model, and then coupled with the P2D model. Later a three 

dimensional model which explicitly considers the thickness of the SEI layer is developed and 

 

The reactions which occur on the electrode surface a often glossed over when using continuum 

The first attempt at developing a KMC model was based on a greatly simplified view of 

SEI layer. This considers a electrode surface as a two dimensional plane modeled as a 25 by 

25 rectangular lattice. The growth of the SEI layer is considered in a binary sense: the SEI layer 
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either allows for lithium passage or it does not. Thus, the surface is considered to be comprised 

of active sites with lithium reversibly adsorbed and passivated sites due to the SEI layer. This 

model considers for generals classes of events that can occur at each KMC transition: adsorption 

of lithium-ion onto an empty site and intercalating into the cell, desorption of a lithium-ion from 

the surface, surface diffusion of lithium from a filled site to an adjacent empty site, or an 

irreversible passivation of a site on the surface. A schematic of the possible transitions is given in 

Figure 4-2. 

 
Figure 4-2: Transitions in the 2D KMC model for SEI layer growth. White represents empty sites, gray are 
active sites, and black are passivated sites. 

Formation and growth of the passive SEI layer is considered as a side reaction 

represented by using the Bulter-Volmer equation.66 The intercalation of Li + from electrolyte to 

the electrode can be described by85     

 0.5
1 exp( / )

Li
K C F RT+ −α η  (4.1) 

The adsorbed Li (see Figure 4-2) can intercalate inside or diffuse on the electrode surface or 

form a passive layer. The liberation of Li from the electrode particle is described by83 

 0.5
2 exp( / )

Li
K C F RT+ α η  (4.2) 

where the nonlinear reaction rate constants K1 and K� are functions of the active surface 

coverage θ, and are given by: 

Adsorption Desorption Diffusion Passivation 
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 1
3 (1 )n
pn

K k
R

= −θ  (4.3) 

 2
3

n
pn

K k
R

= θ (4.4) 

The value of kn (electrochemical rate constant typically used in the continuum model) is given in 

Table 4-1 and η is the overpotential given by 

 nV Uη= −  (4.5) 

with V being the applied voltage with respect to graphite (lower voltages results in a faster rate of 

charge), and the open-circuit potential Un given by  

 

3
0.5

1.5
0.0172 1.9 100.7222 0.1387 0.029

0.2808exp(0.9 15 ) 0.7984exp(0.4465 0.4108)

nU
−×= + θ+ θ − +

θ θ
+ − θ − θ−

 (4.6) 

The surface diffusion rate is given by83 

 
1 (1 )
2 Dγ θ −θ  (4.7) 

And the passive SEI layer formation rate is given by  

 ( )3 exp 0.5 ( )/
SEInK F V U RT− −  (4.8) 

where K3 is a function of the exchange current density typically used in the continuum model and 

is given by: 

 3 0,
3

P
pn

K i
R F

=  (4.9) 

The formation of the passive SEI layer is assumed to be governed by Bulter-Volmer kinetics, as 

shown in Equation (4.8). The term ( )
SEInV U−  indicates the overpotential for SEI layer. 
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Table 4-1: Parameter values used in the 2D KMC simulation 

 Parameters Values 

na
 

Specific surface area of the negative electrode, m2/m3 723,600 

nct
 

Electrolyte concentration,  mol/m3 30,555 

snD
 

Lithium-ion diffusion coefficient  in the intercalation of 
negative electrode,  m2/s 

3.9×10-14 

F Faraday’s constant, C/mol 96,487 

0,Pi
 

Exchange current density,  A/m2 1.5×10-9 

nk
 

Intercalation/deintercalation reaction rate constant, 
(mol/m)0.5/s 

5.0307×10-11 

nl  
Thickness of negative electrode, m 8.8×10-5 

R Universal gas constant, J/(mol K) 8.314 

pnR
 

Radius of  intercalation of negative electrode, m 2×10-6 

T Operating temperature, K 303.15 
nU  Open-circuit potential of the negative electrode, V  

SEInU
 

Open-circuit potential of the SEI layer, V 0.4 

V Applied potential with respect to graphite (equivalent to 
4.2 − 0.001 = 4.199 V for a lithium-ion battery with the 
cathode operating at 4.2 V with no limitations) 

0.001 

γD Diffusion frequency, 1/s 1×10-10 
   
A surface KMC simulation was implemented in which the transition rates from one 

configuration of the lattice sites to other configurations were computed from Equations (4.1)-

(4.9), where the probability of event i  occurring is given by 

 j
j

i
i

r
P

r
=
∑

 (4.10) 

and the length of each time step is calculated from  

 
ln( )

i
i

t
r

χ
∆ = −

∑
 (4.11) 
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Where χ  is a uniformly distributed pseudorandom variable chosen on the domain (0,1] . The 

general KMC algorithm is described in detail in Appendix C. 52 

4.1.1 Isolated Model 

As a first look, the 2D KMC model was applied to a simple system which only 

considered the electrode surface and neglected many of the other phenomena present in a 

lithium-ion cell. This requires many of the parameters present in Equations (4.1)-(4.9) to be held 

constant, despite normally varying in a standard cell. For example, variations in overpotentials 

and electrolyte concentration can vary substantially during a single charging cycle or across the 

electrodes. The effects of variables external to the surface are neglected in the first part of the 

work discussed here.  

As this work only examined a constant overpotential charging protocol, a much higher 

charging rate during the initial seconds of any charging cycle is observed, which tapers to zero as 

the battery becomes fully charged. Due to the high rates of charging, the time required for 

charging and the simulation time was reduced, however, the electrode fails in nearly 100 cycles. 

Low rates of charging would make the KMC simulations highly computationally expensive. 

High rates of charging will enhance the rate of intercalation as well as deintercalation, which 

result in high rate of byproduct formation. If the byproduct formation rate is high, then the 

surface coverage of the passive SEI layer will be high and capacity fade will occur at a faster rate 

causing the life cycle of the to be reduced significantly. To make the simulations efficient, some 

of the important aspects like mass transfer in the electrolyte and Ohmic limitations were ignored, 

which are important at high rates of charging. In the next section, the KMC model will be 

coupled with reduced order models for the continuum phases to perform multiscale simulations 

for a wide range of operating conditions. 
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Figure 4-3: End of cycle active surface coverage for various applied potentials with respect to graphite (this is 
roughly equivalent to a charging voltage of 4.2-V so larger voltages have a lower charge) 

Additionally, the effect of charging potential on the surface coverage composition was 

examined. Figure 4-3 shows the end-of-charge active surface coverage for various applied 

potentials. This represents the equilibrium concentration of lithium at the specified overpotential. 

The simulations predict that the life of a battery increases for a higher applied potential versus 

graphite, which is equivalent to a lower charging voltage. For all charging potentials, no change 

in active surface coverage is observed for the first several cycles. The number of cycles that are 

run before a change in the active surface coverage is observed depends on the rate of charge. 

This ranges from about 10 cycles for high rates of charging to hundreds or thousands for lower 

rates of charging. For lower charging rates, the active surface coverage is predicted to be much 

less in the initial cycles than with the higher rates. This is expected if we are charging a constant 

low potential, since the battery is not charged to 4.2 V, as is typical for Li-ion batteries. If the 

battery is charged only to 4 V or less, the battery has a large amount of unused capacity that is 

reflected in the maximum active surface coverage. 
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Figure 4-4: End of cycle passive surface coverage for various applied potentials with respect to graphite 
(charging potential = 4.2-V so larger voltages have a lower charge) 

Similarly, the growth of the passive layer with cycle number is shown in Figure 4-4. The 

KMC results indicate that the rate of increase of the passive layer is approximately linear during 

the first charge cycles. This linear region corresponds to the cycles in which the active surface 

coverage does not change (Figure 4-3). Once the passive surface coverage reaches a critical 

value, the KMC results indicate that the maximum active surface coverage begins to decrease 

while the passive layer grows at an increased rate. The growth of the passive layer then begins to 

taper until the battery fails. As would be expected, lower rates of charging results in a lower 

initial growth rate of the passive layer, which allows the battery to be operated for more cycles. 

An interesting observation is that, once the critical passive layer coverage is reached, the rate of 

the passive layer growth is similar for all applied potentials. Another interesting observation is 

that the lower changing rates can actually reach a higher surface coverage of the passive layer 

before a failure mode is reached. Since less of the surface is required for the active layer sites 

when charging to a lower battery voltage (higher applied potential versus graphite), more sites 
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can be disabled before an effect is noticed on the steady-state active surface coverage at the end 

of each cycle. 

4.1.2 KMC P2D Coupled Model 

The KMC model presented in Section 4.1.1 does not accurately consider the conditions 

which exist under normal battery operation. Specifically, the constant overpotential and constant 

electrolyte assumptions are typically not valid under normal operating conditions. Furthermore, 

although the above model does predict SEI passive layer growth, it does not predict how such 

growth will reduce the capacity of the cell. One solution to both shortcomings is to couple the 

KMC model with the reformulated P2D model described in previous chapters. This allows the 

SEI layer growth to be studied across the thickness of the electrode as well as to perform life 

studies on the lithium ion battery for various rates of charging.  

Conventional charging typically dictates that a battery is charged by supplying a constant 

current until a specified voltage is reached at which point the battery is charged at a constant 

potential until the current drops below a minimum value (during constant potential charging the 

applied current decreases exponentially). Coupling of the KMC model with the continuum P2D 

model is necessary to analyze the effect of the passive layer growth on the battery behavior. The 

KMC model has limited predictive capabilities when applied in isolation, and gives limited 

information on the battery system as a whole, but can provide useful information involving the 

growth of the passive layer. Conversely, the P2D model can predict the behavior of a single 

charge/discharge cycle with reasonable accuracy, but the base model does not consider any 

mechanism for capacity fade. This means that behavioral changes of the battery does not vary 

from cycle to cycle, although some work has been done to use the continuum model to predict 

capacity fade, as described in Section 3.3. 
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Figure 4-5: Flowchart showing the intermittent coupling of the 2D KMC model with the continuum P2D 
model 
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The two models were coupled intermittently. That is, the continuum porous electrode 

simulation was initially run to simulate a constant current charging condition to a specified cutoff 

of 4.1V, followed by a constant potential charge at the same voltage. This was constrained to 

simulate one hour of charging time. If the cutoff potential was not reached in one hour of 

charging, no constant potential charging was performed. For the first cycle, the anode surface 

was assumed to be in a virgin state, and no modifications were made to base model. This 

assumption was relaxed for later cycles. This simulation provides information on the 

overpotential and electrolyte concentration (among other variables) at all positions and times 

which can be incorporated into the KMC simulation.  

Following the continuum simulation, the KMC simulation can be run. At each time step 

the probability of each event occurring, as well as the characteristic time, is dependent on the 

lithium ion concentration in the electrolyte as well as the overpotential between the solid and 

liquid phases, as described in Equations (4.1)-(4.9) in Section 4.1.1. The values for the 

electrolyte concentration and overpotentials can be obtained from the continuum model. Since 

these variables are not constant across the thickness of the electrode, it is reasonable to assume 

that the KMC simulations will predict different amounts of passive layer growth at different 

points across the electrode. Ideally, the KMC simulation would be performed continuously 

across the thickness of the electrodes. Since this is computationally very demanding, the KMC 

simulation has been performed at three representative points in the electrode: the electrolyte-

electrode interface, the center of the electrode, and the electrode-current collector interface. A 

flowchart depicting the coupled algorithm is given in Figure 4-5. 

The KMC simulation can be run time step to time step by incorporating the calculated 

values from the continuum model at each simulation time and position. All three planes of the 
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SEI layer are considered simultaneously. That is, the at each time step, an event may occur at any 

planes. The probabilities of an event occurring on each plane are, of course, dependent on the 

conditions at that location at that time. Having more possible outcomes that can occur at each 

time step reduces the length of each time step as given in Equation (4.11).  

 
Figure 4-6: Growth of the passive SEI layer from the coupled KMC-P2D model for (a) 0.5C, (b) 1C, and (c) 
2C at the anode-separator interface (□), the middle of the anode (○), and anode-current-collector interface (◊) 

The growth of the passive layer can thus be tracked throughout the cycle, as well as the 

active layer coverage. The passivation level at the end of the charge cycle can then be 

incorporated into the continuum model as a reduction in anode capacity for simulation of the 

next cycle. Since three points were simulated using KMC, the entire electrode capacity was 

assumed to follow a parabolic profile. This allows the discrete data obtained from the KMC 

simulation to be incorporated into the continuum P2D model. This can be repeated for a number 

of cycles and capacity fade can be studied.  
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Figure 4-7: Active layer coverage from the coupled KMC-P2D model for 0.5C (top row), 1C (middle row), 
and 2C (bottom row) at the anode-separator interface (□), the middle of the anode (○), and anode-current-
collector interface (◊), at cycle 1 (left column), cycle 25 (center column), and cycle 50 (right column). 
Importantly note that a 1 hour charge is applied in a CC-CV manner, if applicable.  

The results have been consistent with observed trends that higher rates of charge are more 

detrimental to battery performance. Furthermore, these data have shown that the SEI layer 

formation can vary significantly across the position of the electrode, which can be seen in Figure 

4-6. Specifically, the KMC predicts the region nearest to the separator experiences the most 

severe passivation. This is expected due to the lower overpotential near the separator increasing 

the rate of reaction for both lithium intercalation and SEI layer formation. Also, the rate of 

charge affects the SEI layer coverage across the electrode. Figure 4-6 shows that the growth of 

the SEI passivation is more severe for high rates of charge. The lower overpotentials required to 
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meet the higher charging demand also lead to a higher incidence of the side reaction which leads 

to capacity fade. Interestingly, the passive layer coverage at the separator/anode interface for a 

1C rate of charge surpasses that of the 2C rate after about 30 cycles. It is conjectured that this is 

caused by the shorter time that the region near the separator is electrochemically active. It was 

shown in Section 2.4.2 (Figure 2-8) that lithium intercalation occurs within a moving reaction 

zone during discharge. It is likely that the reaction zone from the higher rate of charge moves 

quickly past the plane being studied. This would be exacerbated by the existence of the passive 

layer which would be unable to supply much capacity before the reaction zone moved deeper in 

the electrode, thereby reducing further passivation at the anode/separator interface.  This growth 

of the passive layer near the anode/separator interface reduces the available active material 

present in this region. This effectively increases the utilization of the electrode closer to the 

current collector as the lithium must migrate deeper into the electrode to intercalate. This also 

increases the internal resistance of the battery. 

The active layer coverage also tends to be high at the plane adjacent to the separator, as 

can be seen in Figure 4-7, especially for high rates of charge, which reach an equilibrium 

concentration. This is logical, as this is the region nearest to the positive electrode (the source of 

the lithium ions during charge) it would be expected that lithium would intercalate there first. 

Furthermore, this is consistent with the solid phase concentrations predicted by the P2D 

continuum model. As cycling continues, and passivation becomes more significant, the 

equilibrium concentration of lithium decreases. This is expected as more sites become 

passivated, it is not possible for lithium to intercalate. This results in the planes deeper in the 

electrode contributing more to the capacity of the cell, even though this is not favored due to the 

increased resistance.   
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Figure 4-8: Voltage time curves for constant current charging for 0.5C (a), 1C (b), and 2C (c) for cycle 1 
(solid line), cycle 10 (long dash), cycle 20 (short dash), cycle 30 (dash dot), cycle 40 (dash double dot), and 
cycle 50 (dash triple dot) 

The reduction in the amount of charge which can be stored is shown explicitly in Figure 

4-8, which compares the constant current charging protocols for 2C, 1C, and 0.5C rates of 

charge. Note that for the parameters and conditions considered here, a substantial fade was 

observed within 50 cycles. The high computational cost associated with the KMC model makes 

simulations of thousands of cycles prohibitive. Although the direct loss of active material 

contributes largely to the observed decline in capacity, the non-uniform nature of lithium 

intercalation also contributes. The passivation of the SEI in this model occurs most prominently 

near the anode/separator interface, which coincides with where lithium intercalation occurs most 

prevalently. During later cycles, lithium must intercalate deeper within the electrode which 

increases the diffusive resistance. This can be seen in Figure 4-7 where the active material 

utilization near the separator decreases with increasing cycle number, while the other planes of 

interest increase in utilization.   
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Figure 4-9 shows the discharge curves for the systems considered in this work. Here the 

capacity fade is noticeable after 50 cycles for the 1C and 2C rates of discharge Very little fade is 

observed for the 0.5C rate as shown in Figure 4-9(a). This can be attributed to the fact that the 

full capacity of the cell is not required in that application, so the effects of reduced capacity are 

not visible. The 1C rate maintains voltage fairly well for all cycles, but the total capacity 

decreases by almost 50%. The 2C condition shows a similar degree of fade, but also shows a 

decrease in voltage output which directly reduces the power that could be retrieved from the cell.  

 
Figure 4-9: Voltage time curves for constant current discharging for 0.5C (a), 1C (b), and 2C (c) for cycle 2 
(solid line), cycle 10 (long dash), cycle 20 (short dash), cycle 30 (dash dot), cycle 40 (dash double dot), and 
cycle 50 (dash triple dot). Note that cycle 1 was excluded as it began from a fully charged state, whereas all 
later cycles began after a 1 hour CC-CV charge. 

These results suggest that more significant capacity fade is observed during high rates of 

charge. This observation is present for two primary reasons. The large applied current causes a 

lower overpotential to be applied during the charging, which increases the rate of passive layer 

formation. Also, the active material utilization is more skewed toward the separator interface at 

higher rates of charge. That, coupled with the higher passivation, forces even more lithium to 
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diffuse even deeper into the electrolyte, causing the diffusive resistances to have a significant 

impact on performance.  

4.2 Extending the KMC Model to Study SEI Layer Thickness  

The two dimensional KMC described in Section 4.1 neglects many of the important 

phenomena concerning the effect and behavior of the SEI layer. Specifically, it considered the 

SEI layer to either allow for unlimited transfer of lithium to the active material surface, or it 

completely prevented the intercalation of lithium into the active material. This ignores the 

physical behavior of the SEI layer as a barrier between the active material and the electrolyte. 

Rather, it is believed that the SEI layer allows diffusion of lithium, but that a thicker SEI layer 

increases that resistance which contributes to capacity fade as the lithium ions must diffuse 

further to reach the electrolyte surface. Thus, here a 2+1D KMC model is developed to study the 

growth of the SEI layer by considering the thickness.  

The particle surface is represented by a two dimensional plane divided in a Cartesian 

grid.  The domain of this simulation is the section of the SEI layer on the particle surface. Above 

the SEI layer exists the electrolyte and below exists the active material, neither of which are 

directly simulated in the KMC model.  This model considers several physical phenomena 

occurring within the SEI layer: 

1) Diffusion of lithium ions from the electrolyte into the SEI layer 
2) Diffusion of solvent molecules from the electrolyte into the SEI layer 
3) Diffusion of lithium ions within the SEI layer 
4) Diffusion of solvent molecules within the SEI layer 
5) Reaction of lithium ions to intercalate into the active material 
6) Deintercalation of lithium from the active material into SEI  
7) Reaction of lithium ions with solvent molecules to cause SEI layer growth 
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The possibility of each event occurring is dependent on the geometry of the site being 

observed. Event classes 1 and 2 can only occur in vacant SEI sites adjacent to the electrolyte. 

Note that the thickness of the SEI layer is not uniform, and grows during simulation (see event 

#7) so which sites are adjacent changes as the simulation progresses. Also, diffusion from the 

electrolyte need not be from above the SEI layer, if electrolyte exists laterally from the SEI site. 

Similarly, diffusion of lithium and of solvent can only occur from a filled site to an adjacent 

empty site at any single time step. Additionally, the electrochemical reactions (events #5, #6, and 

#7) only occur at the interface with the active material. Figure 4-10 depicts the events considered 

in this model. The lithium intercalation rates are based on Butler-Volmer kinetics. The growth of 

the SEI layer is based on the kinetics given by Pinson, et al.13 and were used in Section 3.3. The 

rate of each event is given in Table 4-2.  

 
Figure 4-10: Depictions of the KMC transitions considered in the 2+1D model. The slanted lines are sites 
where lithium-ions are present, vertical lines are where solvent is present, and the crosshatch represents sites 
filled by both lithium-ions and solvent. The arrows are to aid the reader to where the example transition 
occurred. Note that the 3rd dimension modeled is in the direction into the page. 

Note that Table 4-2 shows the rates of each individual event. For example, if there are no 

lithium ions adjacent to the active material, intercalation cannot occur. The relative probabilities 

of each event occurring are dependent on the rate of reaction as described in 5.2Appendix C 

(1) (2) (4) (5) (6) (3) (7) 

Active 
Material 

SEI Layer 
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based on the reaction rates given in Table 4-2. This model allows variation in thickness of the 

SEI layer to be studied throughout the life of the cell. This heterogeneity can have significant 

impacts on overall performance and is an attribute which is typically ignored in continuum 

models. 

Table 4-2: Transition events and rates in the 2+1D KMC model 

Transition 
Number 

Transition Event 
Description 

Rate Notes 

(1) 
Transfer of L i + to 
SEI from electrolyte 

*

Li SEI
γ +→

 
Requires empty 
site adjacent to 
electrolyte 

(2) Transfer of solvent 
to SEI from 
electrolyte 

*
Solvent SEIγ →  

Requires empty 
site adjacent to 
electrolyte 

(3) 
Diffusion of L i + in 
SEI 

*

Li
D +  

Requires filled 
site adjacent to 
empty site 

(4) 
Diffusion of solvent 
in SEI 

*
SolventD  

Requires filled 
site adjacent to 
empty site 

(5) 

Intercalation of L i +

from SEI to graphite 

( ) ( )0.5 0.5 0.5
,

1 2 ,

1 exp

( ) ( )

n s max

SEI
n n n SEI

SEI

Li

F
RT

U j

k c c

j F

+ θ θ η

δ
η = φ −φ − θ − +

κ

− −α
 

Requires filled 
site adjacent to 
active material 

(6) 
Deintercalation of 
L i + from graphite to 
SEI 

( ) ( )0.5 0.5 0.5
,

1 2 ,

1 exp

( ) ( )

Ln s max

SEI
n n n SEI

i

SEI

k c F
RT

j

c

U j F

+ θ θ η

δ
η = φ −φ − θ − +

κ

− α
 

Requires empty 
site adjacent to 
active material 

(7) 

Growth of SEI layer 
( ) ( )0. 0.5

0, ,

1 2 ,

5 ex

( ) ( )

pSEI s max

SEI
n n n SE

Solv

S

en

I

t

I
E

c c Fi
RT

U j j F

θ η

δ
η = φ −φ − θ − +

κ

α
 

Requires both 
L i + and solvent 
to be present and 
adjacent to active 
material 

    
The computational cost of this 2+1D model is much greater than the simple 2D model 

described in Section 4.1. Several reasons exist for this. The most obvious is the addition of the 

third dimension, which increases the number of sites which must be accounted for. Specifically, 

whereas the 2D model has 2N  sites, the 2+1D is closer to 3N , although the exact number is 
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dependent on the thickness of SEI layer across the surface. Thus, in the 2+1D model, the ever-

increasing SEI thickness requires that more sites are considered, causing the computational cost 

to increase with cycle number. In addition to the larger number of sites which must be accounted 

for, diffusion plays a much more significant role. For the 2D model from Section 4.1, lithium 

intercalation and passivation can immediately occur on the surface. Although diffusion can occur 

on the surface, it does not affect the predictions much. Conversely, the 2+1D model requires that 

diffusion of lithium occurs through the SEI layer before intercalation can occur. As diffusion is a 

“random-walk” process, with no preferential direction, many individual transitions often must be 

performed to intercalate any lithium, even for a relatively thin SEI. Furthermore, a three 

dimensional geometry allows for any individual species to diffuse in up to six direction during 

any transition events, which increases the total number of transitions which must be considered. 

Including solvent diffusion in the SEI both increases the number of states that must be accounted 

for (as each site can have both, either, or neither of lithium and solvent present), as well as the 

transitions, as solvent diffuses in the same way as lithium ions, though much slower.      

The total number of transition events which may occur is also increased by the inclusion 

of more physical phenomena. Lithium intercalation into the active material is considered a 

separate from lithium-ion diffusion from the electrolyte. Also, the diffusion of lithium from the 

electrolyte to the SEI layer can occur anywhere in which the SEI layer interfaces with the 

electrolyte. For a very heterogeneous SEI, this can be much larger than 2N , which further 

contributes to the computational cost.   

The existence of such a large number of transitions has the side effect of reducing the 

length of each time step due to Equation (4.11). Thus, not only is more memory required to store 

all the transition events, more events must be simulated during a charging cycle. These 
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challenges motivated a move from Maple to MATLAB as a platform of simulation. MATLAB is 

much faster at manipulating the vectors and matrices which are used to store the states of the 

system as well as to store the transition events. Importantly, the updating the states and 

transitions events is difficult and requires elements to be found and removed in matrices. For 

large systems, this is computationally significant and MATLAB fares better for this type of 

work. The ability to write MATLAB functions to update the system can also increase readability 

by splitting hundreds to thousands lines of codes into more manageable segments. This also 

makes debugging easier as each transition can be tested individually. It is likely that a true 

programming language, such as C++, FORTRAN, or Python would have better computational 

gains.  

4.2.1 2+1D KMC Model in Isolation 

Initially, the 2+1D model was applied in isolation analogously to the system in Section 

4.1.1. For example, the potential distribution, electrolyte concentration, and solid phase lithium 

concentration are not directly incorporated into the model. Thus, this model can use very rough 

approximations to study SEI layer growth. For example, a constant overpotential can be used for 

calculation of the reaction rates throughout the charging cycle, while the solid phase 

concentration can be estimated by the considering the maximum lithium concentration, the size 

of the domain being simulated, and the number of lithium ions which have intercalated during 

charge. This simplified approach can be used to draw conclusions on the general conditions that 

lead to SEI layer growth. 

Each charge cycle is simulated from an initial state of charge in the anode of 10% and 

continues until the state of charge (SOC) reaches 90%. At each time step, an event is chosen 
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based on the state of the system corresponding to the physical phenomena described in Table 

4-2. Should a lithium intercalation event occur, the SOC is updated by the equation: 

 
1

bulkN
θ θ= +  (4.12) 

Where θ is the SOC and bulkN  is the total number of lithium “sites” in the active material which 

are to be considered as a surrogate for the total concentration. The value of bulkN  is chosen based 

on the size of the domain being simulated, the radius of the active material particles, and to allow 

for reasonable computational time. The simulation is allowed to continue until the cutoff SOC is 

reached. A single charging cycle of a 5x5 site surface can consist of millions of individual 

transition events.  

 
Figure 4-11: Charging profiles calculated from the 2+1D KMC model for Cycle 1 (solid line), Cycle 10 (long 
dash), and Cycle 19 (short dash) 

At the end of the charge cycle, the profile of the SEI layer is saved and the cell undergoes 

discharge, which is not directly simulated and it is assumed that SEI growth is minimal during 

discharge. The SOC is reset to the initial condition and another charge cycle is performed. This 

can be repeated indefinitely. However, the increasing SEI thickness also increases size of the 
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domain which is simulated. Thus, the real time of simulation increases with cycle number, 

limiting the number of cycles which can realistically be modeled.  

Figure 4-11 shows the charging results using the only the 2+1D KMC model described in 

this section for the first, middle and last cycle considered. For this example a 5x5 site 

representative surface was used to establish the domain and the applied overpotential was held 

constant at 0.1V. Although the potential difference between the electrolyte and solid material 

was held constant in this model, the equilibrium potential of the anode was calculated based on 

the fractional coverage of lithium in the active particle. The change in the equilibrium potential 

throughout charging causes the rate of charging to be maximal at the beginning of charge and 

taper off near the end. Figure 4-11 also shows that the time required to reach a fully charged state 

increases at later cycles. This is expected as the thicker SEI layer which exists at later cycles 

requires that any lithium which is to be intercalated must diffuse a greater distance to react with 

the active material. 

The growth of the SEI layer over the cycles simulated is depicted in Figure 4-12. Figure 

4-12 shows the maximum, minimum, and mean height of the SEI layer on a 5x5 grid for two 

different random number seed values. There is good agreement between simulations run 

identically, except for different pseudorandom numbers being generated. The mean height of the 

SEI layer follows a fairly smooth progression throughout life, as the effects of the random nature 

of the system get averaged out over the course of simulation.  

 



 

131 
 

 
Figure 4-12: Maximum (∆), minimum (○), and mean (□) SEI thicknesses over 20 cycles of simulation. The 
different line styles represent solutions from using different seed values for the pseudorandom numbers. 

Conversely, the maximum and minimum values show a more apparent stepwise 

progression, because the minimum and maximum values do not change as frequently, and 

change by a full integer unit when they do. The general trend for all metrics of measuring the 

SEI thickness is the same: the rate of SEI growth continuously decreases with increased cycle 

time. The decrease in the observed reaction rate is due to the same reasons that the charging time 

increases: the diffusion length is greater. There is a rapid growth of SEI layer for the first couple 

of cycles which greatly slows after this initial formation phase. As diffusion of the solvent in the 

SEI is orders of magnitude slower than the diffusion of lithium ions, the rate of side reaction is 

slowed at a more pronounced rate than the main reaction. While Figure 4-12 analyzes the 

aggregate data of the SEI layer growth, Figure 4-13 shows the heterogeneous profiles of the SEI 

layer at the end of three charging cycle. This gives a more visual depiction of the growth of the 

SEI layer from cycle to cycle. 
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Figure 4-13: SEI thickness on a 5x5 grid at (a) Cycle 1, (b) Cycle 10, and (c) Cycle 20 

The thicker SEI layer also increases the simulation time when using the KMC model. 

This is partially due to the greater diffusion length, which means more steps are required for a 

lithium ion to transport through the SEI layer from the electrolyte to the active material. Recall 

that in this model, there is no directional preference for diffusion; diffusing from the electrolyte 

to the active material is done in a strictly random walk fashion. Thus, the average number of 

steps for a lithium ion to successfully intercalate can increase much more than one would expect 

from considering a direct path. The thicker SEI layer also increases the domain which must be 

simulated and accounted for. As more lithium and solvent molecules are considered, the number 

of possible events increase, causing a decrease in the time step at each transition. Thus, more 

KMC transitions are required. This is shown in Figure 4-14 which depicts the simulation time for 

each cycle for both a 5x5 grid and a 10x10 grid. The much higher computation cost associated 

with a larger grid demonstrates why the analysis in the work is primarily limited to a 5x5 grid.  
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Figure 4-14: Simulation time of the 2+1D KMC model for a 5x5 grid (○) and a 10x10 grid (□) 

It is important to note that although quantitative analysis is not appropriate due to the 

limitations of the model and knowledge of the parameters, some qualitative analysis can be 

readily performed. Using a 2+1D KMC model is computationally very expensive and is not 

viable to be used in studies which require numerous simulations to be run. This work serves as a 

demonstration of the detail that can be achieved by using KMC simulations, but is limited to 

merely 20 cycles due to the high computational cost. We also limited our analysis to a 5x5 

surface grid. Using a larger grid does not have a major effect on the conclusions which are drawn 

from the data and gives similar results for the average thicknesses and charging profiles. 

However, a larger grid does show higher maximum and lower minimum thicknesses of the SEI 

layer as would be expected by virtue of having a larger population being drawn from. A more 

informative statistic would be the standard deviation of the SEI thicknesses over the surface of 

interest, but that further increases the computational cost. 
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4.2.2 KMC P2D Coupled Model 

 
Figure 4-15: Flowchart showing the more intimate coupling used between the 2+1D KMC and P2D models 
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In order to improve the meaningfulness of the KMC results and to study variation of the 

SEI layer across the electrode, the KMC model was coupled with the reformulated P2D model. 

This was done more intimately than the work describe in Section 4.1.2. Rather than running the 

full P2D charging simulation prior to performing the KMC analysis, the P2D model was 

simulated as the KMC model was run. This was accomplished using the lowest order 

reformulated model described in Chapter 2 with the SEI layer growth as described in Section 3.3.  

The reformulated equations were developed using Maple with (1,1,1) Chebyshev 

collocation. The resulting system of differential algebraic equations and its analytical Jacobian 

were translated into MATLAB to allow for incorporation of the reformulated P2D model with 

the KMC model. At each KMC step the P2D DAE system was advanced by the time step 

calculated from the KMC analysis using an Euler forward approach. In this work the time steps 

are small enough that the potential instabilities of the Euler forward (or other explicit scheme for 

integration) were not considered a problem. Higher-order integration schemes were considered 

unnecessary because of the very short t∆ ’s involved in the KMC simulation (on the order of 

milliseconds). 

The very short times involved ensure that high accuracy can be retained and it may not be 

necessary to perform a Newton-Raphson iteration at each time step. This is very desirable as 

inverting the Jacobian of the system of equations is computationally expensive and should be 

avoided if at all possible. To reduce the need for Newton-Raphson iteration, an initial guess for 

the algebraic equations at the current time step is extrapolated from the previous two time steps 

using linear extrapolation. If these guesses satisfy the residual equations within a specified 

tolerance, Newton-Raphson is not performed at that time step. The short times in this simulation 

combined with the intelligent (and cheaply obtained) initial guesses greatly reduce the number of 
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matrix inversions which are required, as even when Newton-Raphson is required, a single 

iteration is often sufficient to achieve convergence. An overview of using Euler approaches with 

Newton-Raphson methods is given in 5.2Appendix D. 

 
Figure 4-16: Charge-discharge cycles used in the P2D/2+1D KMC coupled model. 

Coupling of the P2D model with the KMC simulation allows for the SEI layer to be 

modeled across the thickness of the electrode. This can provide valuable insight as an SEI 

thickness which is not uniform across the anode thickness can exacerbate capacity and power 

fade. However, this requires that the KMC be run at multiple planes simultaneously. This further 

increases the computational costs of the coupled simulation. If two planes are considered, the 

number of domain sites is doubled, resulting an increase in the number of simulation events that 

must be accounted for at each KMC time step. As a consequence, the length of each time step is 

reduced proportionally. Thus, many more time steps are performed during simulation, as well as 

a similar increase in the number of Newton-Raphson steps that are required. Due to the large 
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number of events that occur during a charge cycle, considerations must be made to conserve 

memory. Importantly, it is not necessary that all the states be recorded at each time step.  

A preliminary study was performed for coupling the P2D model with the KMC 

algorithm. This was made very challenging due to the high computational cost of simulation, 

which made debugging a slow procedure, as running the first cycle took over a day, and 

subsequent cycles often took longer. Here we discuss the results of four consecutive charge-

discharge cycles simulated using the algorithm described in Figure 4-15. For simplicity, only 

constant current charging and discharging at a 1C rate was considered, as shown in Figure 4-16.  

 
Figure 4-17: Maximum (∆), minimum (○), and mean (□) SEI thicknesses over 4 cycles of simulation for 1st 
collocation point (long dash) and 2nd collocation points. 

The minimum, maximum, and average thicknesses of the SEI layer at the two collocation 

points are given in Figure 4-17. For these, the majority of the SEI layer growth occurs during the 

first cycle. Note that both charge and discharge conditions are represented on this graph. As the 

electrochemical conditions during discharge are not conducive for SEI layer growth (and was 

neglected in the KMC model), there is no increase in SEI thickness during those times. Note that 
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there is also little variation in the SEI profiles at the two different collocation points studied here. 

This is consistent for diffusion limited cases as was shown in the continuum model in Section 

3.3. The SEI profiles at the end of the 1st ,3rd, and 4th cycles are shown in Figure 4-18 for the two 

collocation points.  

 

 
Figure 4-18: SEI profiles using 2+1D KMC coupled with the P2D model for the 1st collocation point (a, b, & c) 
and the 2nd colloaction point (d, e, & f) at the end of the 1st cycle (a & d), 3rd cycle (b & e), and 4th cycle (c & f) 

 

The coupled model presented here is primarily a one-way coupling and should be 

considered as a preliminary work for a two-way coupled model to be developed. The P2D model 

calculates the overpotentials and other variables which are used to determine the rate constants of 

the KMC model, but the events that occur in the KMC model are not fed directly back to the 

P2D model. Specifically, events which are determined to occur from the KMC model can be 

used to change the continuum variables. For example, if lithium-ion diffusion from the 
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electrolyte to the SEI layer occurs in the KMC model, the lithium-ion concentration in the 

continuum model can be reduced. This would replace the generation term in the P2D model. 

Thus, the continuum model would be limited to simulating phenomena which do not explicitly 

occur in the KMC model. Thus, the KMC model would provide the linkage between the 

electrolyte and solid phase in the continuum model, and allow for the pseudorandom nature to 

propagate into the P2D model.  
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Chapter 5 

Conclusions and Future Directions 

5.1 The Reformulated Porous Electrode Model 

5.1.1 Improving Computational Efficiency 

The reformulation of the porous electrode pseudo two dimensional model presented in 

Chapter 2 was successful in substantially reducing the computational cost of simulation and may 

have a significant continuing impact in battery modeling efforts. Although this dissertation 

largely focused on the parameters and chemistry given by Doyle, et al.,14 it must be stated that 

this model has been used for other applications with different chemistries. The reduction in 

computational costs has enabled other members of the MAPLE lab to use the physics based P2D 

model in applications that were considered to computationally expensive to use such a detailed 

model. De, et al.3 used the reformulated to perform model based optimal design studies to 

maximize energy densities of the lithium-ion cell by simultaneously considering up to four 

design parameters. Such optimization requires the P2D model to be run thousands of times to 

find an optimal solution. Thus a computationally efficient and accurate model is highly desirable 

and allows for more parameters to be considered and optimized in a reasonable time. 

Suthar, et al.33 used the reformulated model to perform optimal control and state 

estimation. Like design optimization, this requires fast and efficient simulation. However, unlike 

design optimization, state estimation and control require real-time simulation. Thus, while the 

reformulated model was a significant convenience in the optimal design study, for control the 

reformulated model is essential if a detailed model is desired. Furthermore, in cases in which 
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simulation is to be performed on-line in resource limited conditions (e.g. microcontrollers), a 

simulation strategy which requires fewer equations enables the use of high-level models to be 

used. Ultimately, the DOE’s ARPA-E AMPED program has provided significant funding to the 

MAPLE lab to develop a battery management system using model predictive control based on 

the reformulated model described in this work. The hope of that project is to improve the usable 

energy density and safety of lithium-ion batteries in electric vehicles.  

Both collocation using trigonometric function and Chebyshev polynomials were 

considered as trial functions in Chapter 2. It was found that for a low number of node points, 

both approaches were similar. However, as more node points were used, trigonometric functions 

led to large oscillations and reduced accuracy, while oscillations died out and accuracy 

continuously improved when using Chebyshev polynomials. This is especially critical at high 

rates, which are more difficult to accurately simulate due to the large gradients that exist in the 

cell. A higher order collocation approach was also applied to the solid phase, which is necessary 

when simulating higher rates or when short time behavior is critical, as the parabolic profile can 

lead to profiles which are not physically meaningful at high rates. Ultimately, the final base 

reformulation code developed in this thesis allows for a variable number of collocation terms 

across the cell thickness and across the particle radius, though mass conservation in the particles 

is forced in the same manner as done with the parabolic profile approximation.  

Although the work presented in this thesis represents a major improvement over standard 

numerical techniques, it would be naive to believe that further improvements will not be 

continued to be made. Work continues in the MAPLE group to reformulate the solid phase to 

retain accuracy and conserve mass while reducing the number of equations which can be 

incorporated into the P2D model. Higher order schemes are being examined as an alternative to 
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collocation. Furthermore, improvements in the integration of the resulting differential algebraic 

equations in time will have a direct impact on simulation efficiency. As hardware and software 

improves, numerical techniques must evolve to fully utilize the available resources. Nearly the 

entirety of the work presented here would not be possible without a well developed computer 

algebra system to perform the symbolic math necessary to perform orthogonal collocation with 

more than a few terms, especially considering the highly nonlinear and coupled nature of the 

battery models. Furthermore, developing solving techniques which can parallelize the simulation 

steps will fully utilize the processing power available, as even the cheapest computing platforms 

have multiple cores, which can be further improved using hyperthreading.  

The price of computational power has dropped over the years following Moore’s law, 

creating an attitude the computational limitations do not exists. For many simple models that 

engineers use on a regular basis this may be true. Thus, researchers and engineers tend to be 

somewhat unconcerned with the computational requirements of simulation, as an inefficient (but 

easily applied) method can be used to arise at a seemingly satisfactory solution. However, the 

computational resources available for a given application are always finite. There is always a 

tradeoff between the detail of the model (e.g. the physical phenomena considered), the accuracy 

of simulation (e.g. from the number of terms or fineness of a simulation mesh), and time required 

to perform a simulation. Improved computational resources allow for improvements in all three 

areas, and thus the ever-increasing availability of computational power should be seen as a very 

exciting prospect for the future of simulation. However, this is not the only way in which the 

trade-off can be improved. The underlying mathematical techniques can also improve simulation 

time and accuracy, as shown in Chapter 2, and allows for more detail to be incorporated into the 
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model, as shown in Chapter 3. Thus, any researcher or engineer should strive to use an accurate 

and efficient simulation whenever performing modeling studies. 

5.1.2 Extending the Reformulated Model 

Chapter 3 focused on the inclusion of additional physical phenomena into the 

reformulated model developed in Chapter 2, allowing for more comprehensive studies to be 

performed. Thermal analysis is essential to ensure that safe limits are maintained. This is 

particually important in large format cell in which thermal gradients can develop, possibly 

leading to localized hotspots which cannot be detected using surface temperature measurements.  

Although simulation of an 8-cell stack was performed in Section 3.1, commercially made 

cells can have upwards of 150 cells connected in series and parallel. The reformulated model 

increases the feasibility of performing a fully coupled simulation of a large stack, but further 

work needs to be done to address the high memory requirements of such a configuration, 

especially if more collocation terms are to be used to improve accuracy at high rates. It is 

important to realize that only voltage (for cells connected in parallel) or current (for cells 

connected in series) and temperature are coupled between cells in a stack. Thus, simulation 

efficiency could likely be improved by decoupling the cells at each time step and iterating to find 

a converged solution. This approach would also facilitate the use of multiple processing cores if 

parallel processing is used.  

The two dimensional model developed in Section 3.2 showed that temperature variations 

which are significant in the direction parallel to the electrode can lead to major variations in the 

local electrochemical behavior. The amount at which a variation exists in the y-direction is 

highly dependent on the specific application considered and the surrounding environment. As the 

computation costs of simulating a thermal-electrochemical model in two dimensions is large, the 
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number of collocation points that could be achieved was limited. This challenge could be at least 

partially alleviated by translating the system of DAEs to FORTRAN or C for improved 

efficiency. Furthermore, the effect of current flow within the current collectors should also be 

considered in a future work.  

A one-dimensional model was also developed which provided the framework for 

inclusion of SEI layer growth into the P2D model. As the kinetics which govern the growth of 

the SEI layer are not well understood, three different mechanisms from the literature13,22,83 were 

used. Thus, the model developed here can be easily modified as understanding of the SEI layer 

improves. 

As the diffusion of solvent through the SEI layer is necessary for additional growth to 

occur, operating the cell at a higher temperature will likely increase the rate of capacity fade by 

reducing the diffusion resistance. Thus, a comprehensive model which includes thermal effects 

and SEI layer growth (with temperature varying parameters) can provide the opportunity to 

perform life analysis and develop optimal strategies which ultimately minimize fade. A 

preliminary effort has been performed by the author as a proof of concept, but the model 

stiffness made simulating more than a couple thousand cycles difficult, and time constraints 

prevented a thorough analysis to be performed.  

As other mechanisms of capacity fade are better understood, they should be incorporated 

into the reformulated model. The MAPLE group has done some work analyzing the stress and 

strain effects in a single particle model,12 and it is expected that the reformulated model could be 

used to study the variation of the stress across the electrode thickness. A stress-strain model 

should be combined with the SEI layer growth model as fracture of the SEI layer can expose the 

active material and accelerate capacity fade. A more ambitious work would involve considering 
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the particle size distribution within the electrodes, and performing a population balance analysis 

to track the changes with cycle number. This can have a significant impact in long term battery 

performance and will be a significant challenge to accurately model. 

5.2 Kinetic Monte Carlo Simulations 

The kinetic Monte Carlo simulation described in Chapter 4 was a much more 

fundamental work which examined the heterogeneous growth of the SEI layer. The 2D model in 

Section 4.1 greatly simplified the mechanics of the solid electrolyte interface layer by ignoring 

the effects of SEI thickness and just assuming complete passivation of the electrode surface. 

However, useful analysis was able to be performed, especially when coupled with the P2D 

model. This allowed the SEI layer to vary across the thickness of the electrode, and showed that 

regions nearest the separator interface tended to be most passivated due to the lower 

overpotentials applied in that region. 

The 2+1D KMC model improved the accuracy of the model by including the SEI layer 

thickness in the simulation, which is more in line with SEI behavior. The sheer number of 

possible events in a three dimensional domain encourages the development of efficient 

simulation techniques. Much of the work in developing the 2+1D KMC model focused on the 

reducing the cost of each time step and optimizing performance. Ultimately the growth of the 

SEI layer was successfully simulated using this approach, and a three dimensional profile was 

developed. A one-way P2D coupling was performed in which the porous electrode model was 

solved at each time step. This considerably increased the computational costs, especially as the 

domain increased due to the SEI layer growth. Further work will be needed to improve the 

coupling between the P2D model and KMC simulation to give a true two-way coupling. Such a 
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work will not be trivial, but the framework developed with the one-way coupling will provide a 

good starting point. Additionally, determination of physically meaningful parameters will be 

necessary to fully complete the model. 
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Appendix A 

The Numerical Method of Lines 

A.1 Background and Motivation 

The method of lines is an efficient routine in which the spatial dimensions are discretized 

using any of a number of techniques, such as finite difference, finite element, finite volume, or 

collocation methods.26,86-95 This converts the partial differential equation (PDE) to an initial 

value problem (IVP) system of ordinary differential equations (ODE) or differential algebraic 

equations (DAEs), which allows for either explicit or implicit time stepping algorithms to be 

used. Software packages have been developed to specifically solve problems using the method of 

lines.86 Alternatively, the resulting DAEs can be solved using standard efficient time 

integrators,96 including FORTRAN solvers such as DASKR or DASSL or in a computer algebra 

system such as Matlab97 (dsolve), Maple49(dsolve), Mathematica98 (ndsolve), etc. The versatility 

and simplicity of the method of lines has led to its use in a wide range of engineering 

applications, including fracture problems,99 heat transfer,100 solving Navier-Stokes equations,101 

and electromagnetic.95,102  Furthermore, Pregla and Cietzorreck used the method of lines in 

conjunction with the source method to handle inhomogeneous boundary conditions and 

discontinuities in microstrip lines and antennas.102  

A.2 Mathematical Example 

Consider a simple reaction diffusion process modeled by the following application of 

Fick’s law with a first order reaction as a second order partial differential equation: 
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Using a finite difference scheme, the second derivative term can be discretized as 
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 Equation (A.2) can be applied to Equation (A.1) to yield the following system of ordinary 

differential equations: 
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The system of ODEs given by Equation (A.3) can be solved using a choice of implicit or explicit 

IVP solver, including Eular’s forward and backward methods, the Crank-Nicolson method, or a 

Runge-Kutta approach, for example.  

The method of lines eliminates the need to directly solve the partial differential equation. 

The method described in Equations (A.1) to (A.3) can be extended to higher dimensional 

problems, for example for diffusion in two dimensions. More importantly for the work presented 

in this thesis, the method of lines can be applied to algebraic equations, i.e. those without a time 

derivative. This results in a system of differential algebraic equations (DAEs) that must be 

solved via efficient time-stepping algorithms.  

Although a finite difference discretization is provided here, other methods can be used to 

eliminate the spatial derivatives to enable the method of lines approach. The model reformulation 

discussed in Chapter 2 uses the orthogonal collocation method described in Appendix B. 
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Appendix B 

Method of Weighted Residuals and Orthogonal Collocation 

This appendix contains excerpts from the following journal article reproduced here with permission from 
The Electrochemical Society: 
P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, “Coordinate Transformation, 
Orthogonal Collocation and Model Reformulation for Simulating Electrochemical-Thermal Behavior of 
Lithium-ion Battery Stacks,” Journal of the Electrochemical Society, 158(12), A1461-A1477 (2011). 

B.1 Motivation 

Although finite differences can be easily applied to discretize differential equations, 

many node points are required to achieve high accuracy. Alternatively, spectral methods can be 

used for discretization by approximating the dependent variables as a series solution of trial 

functions: 

 ( , ) ( ) ( )ap x kpro ku tBx t Z x=∑  (B.1) 

Where ( )iZ x  are pre-chosen trial functions, and the coefficients, ( )iB t  are to be determined 

numerically. This represents all dependent variables as continuous functions of x, rather than at 

discrete node points. Also, orthogonal collocation converges to a solution with an error on the 

order of h2N, where N is the number of collocation points and h is the node spacing.32 The finite 

difference solution that is typically used has error on the order of h2.  Although the resulting 

equations are more complicated when using orthogonal collocation, fewer terms are required for 

a meaningful solution, resulting in fewer DAEs that must be solved and a net reduction in 

computation time.32  

The boundary conditions can be satisfied by including the necessary number of additional 

functions to Equation (B.1). These may be additional trial functions of the same form of ( )kZ x , 

or they may be of different forms, for example, by using polynomials to solve for the boundary 
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conditions and trigonometric functions for the main solution, as done in Section 2.3. In either 

case, it is possible to determine the coefficients of the additional terms directly by application of 

the boundary conditions to Equation (B.1). This generally holds true for any type of boundary 

condition (i.e. Direclet, Neumann, or Robin), provided one does not try something terribly silly 

like use a constant term to satisfy flux conditions.  

B.2 The Method of Weighted Residuals 

B.2.1 Development of Equations 

The coefficients, ( )iB t , of the series approximation from equation (B.1) are determined 

by using the method of weighted residuals (MWR) which aims to find the coefficients which 

minimize the error.47 Consider a general differential equation of the form: 

 [ ]( ) 0D u x =  (B.2) 

Define the residual of an approximate solution  

 ( ) ( )approxR x D xu =    (B.3) 

If the residual, ( )R x , is identically zero for all x, the approximate solution is the exact solution, 

but this is not generally the case in numerical solutions. The MWR aims to minimize the residual 

across the domain in some average way:  

( )( ), ( ) 0k jR x WB xt dx=∫  0...j N=  (B.4) 

Where 1N + weight functions, ( )jW x , are used to generate enough equations to solve for the 

unknown coefficients. Some options for the weight functions are given in Table B-1. 
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Table B-1: Choices of weight functions 

Method 
Weight Function,  

( )jW x  Notes 

Moments jx  Conceptually simple, but better options 

Galerkin ( )jZ x  
Same as trial function; minimizes sum of 
squared error 

Subdomain 
11      

0     otherwise
j jx x x− < < 

 
 

  

Collocation ( )jx xδ −  
Dirac delta function; choice of points affect 
accuracy; eliminates need to perform 
integration 

   
In the case of highly non-linear governing equations, as those found in battery models, 

the integration in Equation (B.4) must be done numerically with significant computational cost. 

For collocation, the Dirac delta function is used as the weight function, ( ) ( )j jx xW xδ= − , to 

eliminate the need to perform the integration and  reduces to 

( )( ), 0jkB tR x x= =  0...j N=  (B.5) 

Importantly, the error is minimized when the collocation points are chosen specifically as zeros 

of orthogonal polynomials. This is referred to as orthogonal collocation.46  

B.2.2 Choosing Collocation Points 

In this work, the zeros of Jacobi polynomials are used when trigonometric trial functions 

are used, and Chebyshev-Gauss-Lobatto (CGL) points are used when Chebyshev polynomials 

are used as trial functions. 

In Section 2.3 the collocation points are determined using the zeros of a specific class of 

orthogonal polynomials called the Jacobi polynomials when using trigonometric functions. The 

Jacobi polynomials are given by the relation:  
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( ) ( ) ( ),

0

1
N

N k k
N k

k

P x xα β γ
−

=

= −∑         (B.6) 

Where 0 1γ =  and iγ  is given by the recurrence relation: 

1

1
k k

N k N k

k k

α β
γ γ

β −

− + + + +
=

+
       (B.7) 

For a Jacobi polynomial of order M, there are M zeros in the interval [0,1]. Since there are 1rN +  

coefficients for each variable in each region, a Jacobi polynomial of order 1rN +  must be used to 

develop enough collocation equations. &α β  are characteristic parameters of the Jacobi 

polynomial. A trial and error approach found that 0α β= = minimized the error of the discharge 

curve relative to the finite difference approach for most simulations. However, at high rates of 

charge and high node points, oscillations were observed as a result of numerical instabilities. 

This instability was eliminated by using 1α β= = for a 5C discharge and 2α β= = for a 10C 

discharge. 

When Chebyshev polynomial trial functions are used, as in Section 2.4, Chebyshev-Gauss-

Lobatto (CGL) points are used.48 When N  trial functions are used, the kth zero is given as  

 
( )

,

1
1 12cos
2 1 2k N

k

N
X

π +
 = − +
 +
 

 (B.8) 

These are the N  zeros of the 1thN +  Chebyshev polynomial rescaled to the [0,1] domain.48 

Both choices of collocation points place more collocation points near the boundaries and 

fewer near the center. This is favored as spectral methods inherently have a lower order of 

accuracy near the edge of the domain than near the center so that an equal spacing scheme results 

in better accuracy far from the edge.48 Unequal node spacing addresses this issue. Additionally, 
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in many engineering systems modeled using transport equations, the region near the boundaries 

display a steep change in the dependent variables in relatively small region. Thus, accuracy in 

the boundary layer is critical for overall accurate simulation. 

B.2.3 Collocation in two dimensions 

The application of orthogonal collocation to higher dimensions is a fairly straightforward 

extension of the one-dimensional case. The series approximation must consist of a double 

summation which can generally be given as 

 ,( , , ) ( ) ( ) ( )j kappr jx
j k

o kx y t t Z y Z xu B= ∑∑  (B.9) 

The coefficients, , ( )j kB t , are solved in the same way as in the 1D problem: the residual is set to 

be zero at specified collocation points. The points are chosen as zeros of orthogonal polynomials 

as described in Equations (B.6) or (B.8) for both x and y . Furthermore, the boundary 

conditions can be applied a priori as with the one-dimensional case. However, this requires 

many more terms. For example, if N  collocation points are considered in the x-direction, the 

boundary conditions at 0y =  and 1y =  require N  functions to satisfy the constraints. In other 

words, the collocation point must be considered on boundaries in addition to the interior. This 

essentially applies orthogonal collocation to the boundary conditions in the same way that 

orthogonal collocation is applied to the governing differential equations. This is required as the 

boundaries in a two-dimensional domain are lines, rather than points. Thus, in general, it is not 

possible to satisfy the boundary conditions at all points using a series solution consisting of a 

finite number of terms. The method of weighted residuals is therefore applied at the boundary to 

develop enough equations to find a solution. 
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B.3 Incorporating Orthogonal Collocation 

To maximize computational efficiency, it is important to note that it is most efficient to solve 

for the values of the dependent variables at the collocation points, rather than directly solving for 

the coefficients. The advantage of such an approach is best shown by the following example. 

Consider the reaction-diffusion problem example from Appendix A: 

 
2

2
A A

A A A

c c
D k

t
c

x

∂ ∂
= −

∂ ∂
 (B.10) 

Approximate the concentration of A by a series solution  

 ,
0

( , ) ( ) ( )
N

A app
i

i irox Bc x t t Z x
=

=∑  (B.11) 

Note that here we are neglecting the inclusion of boundary conditions, but those can be satisfied 

by adding two additional equations to Equation (B.11). The collocation points, kx , can be 

applied to the series approximation, Equation (B.11) to develop 1N +  equations: 

 ( ) ( ) ( )
0

( , )
N

i iA k k k
i

c x t C t B t Z x
=

= = ∑           0...k N=  (B.12) 

Where ( )kC t  is the value of the concentration at the thk  collocation point. Solving the 

linear system of equations in Equation (B.12) (noting that ( )kiT x  are calculable numerical 

values) for ( )iB t  in terms of ( )kC t  results in a modified series solution:  

 ( ) ( )
0

*( , )
N

i
i

A ic x t C t Z x
=

= ∑  (B.13) 
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( )*
iZ x   is the  linear combination of the trial functions which satisfies the system of equations in 

(B.12) so that the variable values at the collocation can be considered as coefficients. Applying 

Equation (B.13) to the governing equation results in a computational advantage over using 

Equation (B.11). Applying Equation (B.11) directly to Equation (B.10) results in the following 

convoluted system of equations  

0
2

0

2

0

( ) ( )
( ) ( ) ( )| ( )

j

N N N

j A x A j
i i i

i i
i i i i

t Z x
Z x t t Z

B
D B k B

t x
x

= = =

∂ ∂
= −

∂ ∂∑ ∑ ∑  0...j N=  (B.14) 

However, if equation (B.13) is used, the discretized system of equations simply become 

*

,
,

,
0

2

2

( )
( )

( )
| ( )

j

N
A j

A x A A
i

A j
i

i

C t
D C k C t

Z

t x

x
t

=

∂ ∂
= −

∂ ∂∑    0...j N=  (B.15) 

Equation (B.15) is simpler and is easier to solve as each equation only has a single time 

derivative and single forcing term. The form of equation (B.15) also reduces the numerical 

coupling of the system of equations and reduces the size of the system of equations. Using this 

approach, only spatial derivatives must be replaced as a series summation, as the non-derivative 

terms can be directly replaced by the ( ),A jC t term. Note that the numerical complexity of the 

derivative approximations are unaffected by this approach. The advantage is especially 

pronounced in the more complicated nonlinear governing equations which are seen in the battery 

model, and as more series terms are used. Furthermore this approach increases the overall 

sparsity of the resulting system of equations reducing the computational demands of simulation.  
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Appendix C 

Kinetic Monte Carlo 

This appendix contains excerpts from the following journal article reproduced with permission from The 
Electrochemical Society: 
R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, “Kinetic Monte Carlo 
Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-ion Batteries: Passive Layer 
Formation,” Journal of the Electrochemical Society, 158(4), A363-A370 (2011). 

 

Kinetic Monte Carlo (KMC) is a stochastic approach which considers discrete events to 

occur in a step-by-step manner in a microscale system. At each time step, an event is randomly 

chosen to be executed and the states of the system updated. The probability of each specific 

event occurring in a given time step is determined from the rates of each phenomena being 

simulated. Thus, those events which have faster rates are more likely to occur at any given time 

step. Mathematically, this is given as 

 j
j

i
i

r
P

r
=
∑

  (C.1) 

Where the reaction rates are given in 1s− . A uniform random number, 1χ  , is then chosen 

on the domain [0,1] to choose the specific event, jr  such that  

 

1

0 0

0 0

1

j j

i i
N N

i i

i i

i i

r r

r r
χ

−

= =

= =

<≤
∑ ∑

∑ ∑
  (C.2) 

Note that the rates are given for each specific event, rather than each class of event. For 

example, consider a simplified system with a single particle where only diffusion is considered. 

Although diffusion is the only physical phenomena being studied, there are multiple discrete 

events considered. A diffusion hop in the x+  direction must be treated as a separate event from a 
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diffusion hop in the y−  direction, for instance. Because each individual event must be 

accounted for, there can be hundreds or thousands of possible KMC moves to be chosen from, 

even though only a handful of physical phenomena may be considered. In practice, the 

computational costs of calculating the probabilities can be reduced by considering the class of 

events (e.g. diffusion of species A) as group, assuming all individual events within a class have 

the same probability. In this way, the probability of an event occurring within class c, can be 

given by 

 * c c
c M

i i
i

N r

N r
P =

∑
  (C.3) 

where cN  is the number of discrete events possible in class c and M  is the number of 

classes considered. Thus, a random number is first chosen to decide the class of event which will 

occur, analogous to equation (C.2) 

 

1

0 0
1

0 0

j j

i i
M M

i

i i

i i i
i

i i

i

N r N r

N r N r
χ

−

= =

= =

<≤
∑ ∑

∑ ∑
  (C.4) 

Once the class of event is determined, the specific event (i.e. diffusion of molecule #i  

from point ( , )x y   to point ( , )x y′ ′ ) can be randomly chosen from the subset of events within a 

chosen class using a uniform distribution. Simultaneously considering hundreds or thousands of 

events in Equation (C.2) is computationally very expensive because of the number of 

summations (up to totN ) that must be performed to determine the specific event. Equation (C.4) 

requires many fewer (up to M ) summations to be performed and sorted, providing significant 

computational cost savings. Since each specific event within a given class has equal 
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probabilities, selection of which event can be done be simply using a random number to pick an 

event out of a list, rather than using the form of Equation (C.2). 

 

Figure C-1: Flowchart depicting general kinetic Monte Carlo algorithm with the individual events subdivided 
by class. All pseudorandom variables are chosen on the domain (0,1] 
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After a specific event is determined, the simulation progresses to the next time step. The 

length of time between KMC events is also not deterministic, but also found probabilistically. 

Another uniformly distributed pseudorandom variable, 2χ , is chosen on the domain (0,1] to 

calculate the elapsed time between steps using equation103 

 3

1

ln
M

i i
i

t
N r

=

χ
∆ = −

∑
  (C.5) 

Equation (C.5) is convenient as any time step from 0 to ∞  is possible (though very long 

time steps are very, very unlikely). Furthermore, the expected value of (C.5) is equal to the 

characteristic time of the system, giving it a physically meaningful interpretation and allows the 

simulation to progress at an expected rate without forcing a specific time step.  

When an event is chosen, the system advances to the next step based on the outcome of 

that event. Thus the possible events must be updated, and the probabilities recalculated. For a 

large system, it is likely that most of the possible events are identical for the new state as for the 

old state. For example, if the chosen event involved element #i  in one area of the domain, 

events involving element # j in a spatially separate area are not affected. Thus, only the events 

involving ion #i , or events involving the either the previous or current location must be updated. 

This is much more computationally efficient than recalculating all possible events at every time 

step. 

The simulation can be continued indefinitely, or until a certain termination condition is 

met. Analysis can be performed by considering the final state of the system, or the events which 

occurred during simulation, depending on the system being studied.  
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Appendix D 

Numerically Integrating a System of DAEs Using Euler’s 

Method and Newton-Raphson 

 Wherever appropriate and possible, this thesis utilized efficient numerical simulation of 

large scale DAEs using DASKR. For clarity and to provide a simple and robust method of 

solving DAEs, this appendix is provided. Consider a system of differential algebraic equations of 

the form 

 
( , , )

0 ( , , )

d
t

dt
t

=

=

y
f y z

g y z
 (D.1) 

Where yis the vector of differential variables, z  is the vector of algebraic variables, f is 

the vector of differential equations, and g is the vector of algebraic equations. Several options 

exist for the discretization of the differential equations in Equation (D.1) to advance the system 

to the next time step. The Euler forward method, an explicit method gives 

 
1 ( , , )i i i it t+ = ∆+y y f y z  (D.2) 

Euler forward is computationally simple but can be unstable. Furthermore, the algerbraic 

equations cannot be integrated directly and must be solve simultaneously. Euler backward is an 

implicit method which is unconditionally stable: 

 
1 1 1( , , )i i i it t+ + += + ∆y y f y z  (D.3) 

Equation (D.3) is a system of equations which must be solved simultaneously to arrive at a 

solution, unlike Equation (D.2), which can be evaluated directly. Both the Euler backward and 

Euler forward methods are of order t∆  error, which is less than ideal. The Crank-Nicholson 
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method is an alternative method which is accurate to the order 2t∆ , without greatly increasing 

the computational complexity 

 ( )1 1 1( , ,
2

) ( , , )i i i i i it
t

t+ + += +
∆

+y y f y z f y z  (D.4) 

The Crank-Nicholson method is also implicit and unconditionally stable, but can experience 

spurious oscillations, making the less accurate Euler backward preferred in stiff applications. 

 Regardless of the specific discretization used in time, Equation (D.2), (D.3), or (D.4) can 

be applied to Equation (D.1) to give the following general system of strictly algebraic equations: 

 
* 1 1

1 1

0 ( , , , , )

0 ( , , )

, i i i i

i i

tt

t

+ +

+ +

∆=

=

f y y z z

g y z
 (D.5) 

As both parts of Equation (D.5) are now algebraic we can combine the two parts for simplicity 

 
1 10 ( , , , ,, )i i i itt + += ∆h y y z z  (D.6) 

Where the superscript, i , refers to the current time step, of which all values are known. Note that 

if an explicit scheme is used, the *f equation in Equations (D.5) can be solved independently, 

and h is identical to g, otherwise *f  must be included in h and a simultaneous solution is 

required. Finding a solution to Equation (D.6) can be done using the Newton-Raphson approach, 

which requires the calculation of the Jacobian. If h consists of N equations with N  unknowns, 

the Jacobian is an N N×  matrix defined as 

 ,
j

j k
k

d

d
=

h
J

x
 (D.7) 

Where x  is the union of 
1i+y  and 1i +z . The Newton-Raphson approach is an iterative procedure 

which finds the solution to Equation (D.6) using the following formula 

 
1 -1l l γ+ = +x x J h  (D.8) 
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Where 1l +x  is the refined approximation from lx  and γ is a relaxation parameter which can take 

on values from (0,1]. A smaller relaxation parameter can prevent overshooting of the solution 

(which can cause the method to fail in some cases), but may slow convergence. Equation (D.8) is 

repeated until the error (as defined as the maximum absolute value of either -1J h  or h)  is less 

than a prescribed tolerance. In general, the Newton-Raphson procedure must be used at the 

beginning of simulation to find consistent initial conditions for the algebraic variables. 

 The convergence of the Newton-Raphson approach is highly dependent on the initial 

guess provided, 0x , at each time step. A good initial guess can reduce the number of iterations 

which must be performed in Equation (D.8), while a poor initial guess may not converge at all. 

As the Jacobian calculation and matrix inversion in Equation (D.8) is computationally expensive, 

any reduction in the number of iterations which are performed is usually advantageous. For the 

algebraic variables, the converged values from the previous two time steps can be used to 

estimate the value at the current time step using linear extrapolation: 

 ( )1,0 1
1

i
i i i i

i

t

t
+ −

−
= +

∆
∆

−z z z z  (D.9) 

The differential variables can be estimated using linear extrapolation as well, or can use the Euler 

forward method to give a good initial guess: 

 
1,0 ( , , )i i i i tt+ ∆= +y y f y z  (D.10) 

A flowchart depicting the algorithm described here using the Newton-Raphson approach 

with the Euler backward method is given in Figure D-1. 

It must be noted that other numerical approaches can be incorporated into this 

framework. For example, Richardson extrapoloation solves the system using time steps of t∆  

and 
2

t∆ . Based on the difference between the two solutions, the final approximation is achieved 
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by extrapolating the error down to a time step of zero length. This improves the order of 

accuracy in time. Furthermore, it can be determined whether a smaller time step is required, or a 

larger time step can be used, allowing for adaptive schemes to be used. 

 

Figure D-1: Using Euler backward and Newton Raphson to solve a system of DAEs  
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smaller in each subsystem is much small than the full system, the inversion is much simpler. For 

systems which are largely decoupled, or have certain variables which are only weakly coupled 

with the remainder of the system, tearing algorithms can greatly improve speed. However, for 

tightly coupled systems, many iterations between the subsystems are required, negating any 

benefit of the smaller size of the Jacobian.  
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Appendix E 

A Robust False Transient Method of Lines for Elliptic 

Partial Differential Equations 

This pppendix is reproduced with permission in accordance with the author rights from the following article: 
P. W. C. Northrop, P. A. Ramachandran, W. E. Schiesser, and V. R. Subramanian, “A Robust False 
Transient Method of Lines for Elliptic Partial Diff erential Equations,”  Chemical Engineering Science, 90; 
32–39 (2013). 
Available online at http://www.sciencedirect.com/science/article/pii/S0009250912006835 

E.1 Background 

Simulation of lithium-ion battery behavior often requires solving a nonlinear system of 

differential algebraic equations (DAEs), as described in Chapter 2 and Appendix B. One 

challenge in solving this system of DAEs is the initialization problem. That is, finding initial 

conditions which satisfy the algebraic equations. If consistent initial conditions are not provided, 

many DAE solvers fail. This has led to the development of a perturbation approach to initialize 

the algebraic variables in battery models.31 Here we extend that approach to solve generic elliptic 

partial differential equations by building upon the method of false transients26,88,89,93,104,105 with a 

similar perturbation approach.  

A wide variety of partial differential equations arise when describing engineering 

systems. For examples, variations on Laplace’s equation arise frequently in problems of transport 

phenomena.106 In order to solve such a wide range of problems, several numerical methods exist 

to solve partial differential equations. The choice of method is dependent on the desired 

accuracy, as well as concerns about the stability and robustness of the system, while maintaining 

computational efficiency. Furthermore, these characteristics are dependent on the form of the 

partial differential equation to be solved, i.e. elliptic, parabolic, or hyperbolic. For parabolic 
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equations such as the heat equation, several numerical methods exist that can be used to find a 

solution.90 For example, the method of lines is one such efficient routine in which the spatial 

dimensions are discretized using any of a number of techniques, such as finite difference, finite 

element, finite volume, or collocation methods, as shown in Appendix B.26,86-95 This converts the 

partial differential equation (PDE) to an initial value problem (IVP) system of ordinary 

differential equations (ODE) or differential algebraic equations (DAEs). Software packages have 

been developed to specifically to solve problems using the method of lines.86 Alternatively, the 

resulting DAEs can be solved using standard efficient time integrators,96 including FORTRAN 

solvers such as DASKR or DASSL or in a computer algebra system such as Matlab97 (dsolve), 

Maple49(dsolve), Mathematica98 (ndsolve), etc. The versatility and simplicity of the method of 

lines has led to its use in a wide range of engineering applications, including fracture problems,99 

heat transfer,100 solving Navier-Stokes equations,101 and electromagnetic.95,102 Furthermore, 

Pregla and Cietzorreck used the method of lines in conjunction with the source method to handle 

inhomogeneous boundary conditions and discontinuities in microstrip lines and antennas.102  

The solution of elliptic partial differential equations, such as Laplace’s equation, is more 

difficult because there is not a simple way to convert the equations to an initial value problem to 

allow the use of the method of lines. A Newton-Raphson method, or another approach to solving 

a system of nonlinear equations, can be used if the system of algebraic equations resulting from 

the discretization is sufficiently well behaved and a reasonable initial guess is available. A 

semianalytical method of lines, valid for linear elliptic PDEs and certain quasilinear elliptic 

PDEs has been presented previously.107 However, a more popular choice has been the method of 

false transients, partially due to its ability to handle some nonlinear problems, and ease of 

implementation. In the false transient method the variables are discretized in the spatial or 
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boundary value independent variables (x and y), and a pseudo time derivative is arbitrarily added 

to the problem statement.26,88,89,93,104,105 The addition of this fictitious time derivative converts the 

elliptic PDE to a parabolic PDE and allows the solution to be determined by marching in pseudo 

time to a steady state condition, in a manner analogous to the standard method of lines. By doing 

this, the efficient IVP/DAE solvers can be applied in a matter analogous to the method of lines.93   

Like the method of lines, the method of false transients is used to solve a variety of 

engineering problems. For example, Xu, et al., used the false transient method to describe the 

concentration and temperature profiles of catalyst particles.108 This approach has also been used 

to numerically solve for three dimensional velocity profiles by solving the Navier-Stokes 

equation,109 as well as solving the convective diffusion equation for axial-diffusion problems in 

laminar-flow reactors.110  Other researchers have used the false transient method for analyzing 

mass transfer in porous media111 or laminar film boiling.112  

However, as shown in this section, the system of ODE/DAEs resulting from the use of 

the false transient method can be unstable and may not converge to the desired (or any) solution. 

This problem can sometimes be rectified by modifying the form of the equations or boundary 

conditions using intuition and trial and error. In other cases, the system cannot be made to 

converge, regardless of how the problem is presented. An alternative, Jacobian-based 

perturbation approach is shown here, which is robust and does not suffer from the same stability 

issues which befall the false transient method. A similar approach has been used as a superior 

method for the initialization of the algebraic variables in systems of DAEs.31 
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E.2 Generic Formulation of the False Transient Method and the 

Perturbation Method 

Consider a general PDE of the form 

 ( )( ) 0D φ =x  (E.1) 

Where ( )φ x  is the (continuous) dependent variable of interest, x  is the vector of independent 

variables, and D is a generic linear differential operator with the form: 

 
i

i
ij

jj
i

D a
x

∂
=

∂∑∑  (E.2) 

Equation (E.1) can be discretized using any of a number of techniques, such as finite difference, 

finite element, finite volume, or collocation, among others. This results in a system of algebraic 

equations of the form  

 ( ) 0=g Φ  (E.3) 

where Φ  is the vector of the discretized dependent variables. In linear systems, Equation (E.3) 

can be solved directly, though this is generally not the case in nonlinear problems. Both the 

method of false transients and the perturbation method introduce a pseudo time variable, τ, such 

that Equation (E.3) is represented as: 

 ( )( ) 0τ =g Φ  (E.4) 

When using the method of false transients, this is done by introducing a first order pseudo-time 

derivative into Equation (E.4) such that it becomes: 

 ( )( ) d

d
τ

τ
=g
Φ

Φ  (E.5) 
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This allows the use of efficient time adaptive ODE solvers to be used. In order for convergence 

to occur, the right hand side must go to zero as τgoes to infinity: 

 lim 0
d

dτ τ→∞
=

Φ  (E.6) 

This reduces Equation (E.5) to Equation (E.3) and ensures that the original problem is satisfied. 

However, the method of false transients can fail if Equation (E.6) does not hold, as can occur in 

an unstable system. Therefore, an alternative perturbation approach is shown here. A small 

perturbation parameter, ò , can be applied in time to Equation (E.4) such that 

 
0

lim ( =)) 0(τ
→

+Φg
ò

ò  (E.7) 

Equation (E.7) can be expanded using a Taylor series to give 

 ( )( ) ( )( ) ( )2 0
d

O
d

τ
τ

τ
+ + =

g
g

Φ
Φ ò ò  (E.8) 

Assuming that ò  is sufficiently small that the higher order terms can be neglected, Equation (E.8) 

reduces to  

 ( )( ) ( )( )
0

d

d

τ
τ

τ
+ =

g Φ
g Φ ò  (E.9) 

The total derivative in Equation (E.9) can be rewritten using the chain rule with partial 

derivatives  

 ( )( ) 0τ
τ τ

∂ ∂ ∂ + ∂
=

∂ 
+

∂
g Φ g

Φg
Φ

ò  (E.10) 

Noting that ∂ =
∂

g
J

Φ
, where J is the Jacobian representing the algebraic system. Also, note that 

from Equation (E.3), g is not a function of pseudo time directly; only indirectly as the dependent 
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variables, Φ , are functions of pseudo time. Therefore, 0
τ
∂

=
∂

g  above and Equation (E.10), can 

be rearranged to give 

 ( )( )τ
τ

∂
∂

= −g
Φ

Φ Jò  (E.11) 

Equation (E.11) can be considered as an application of Davidenko’s Method.89 Note that 

the choice of ò  is somewhat arbitrary, and must be chosen with consideration to the system. 

Ideally ò  must be sufficiently small that the assumption that the higher order terms in Equation 

(E.8) can be neglected is valid. Here, 310−=ò  is used throughout the remainder of this work. 

This choice is somewhat arbitrary as changing 310−=ò  by an order of magnitude in either 

direction does not affect the steady state results. Equation (E.11) is similar to Equation (E.5) 

given above for the method of false transients, and similarly allows for the use of efficient DAE 

solvers, although the right hand side consists of a linear combination of time derivatives of 

several of the dependent variables, Φ . The use of the Jacobian ensures that Equation (E.11) is 

stable and more robust than Equation (E.5). This will be shown for linear models using matrix 

algebra and considering the exponential matrix solution that Equation (E.6) is always valid and 

Equation (E.11) converges to Equation (E.3) at infinite times irrespective of the initial 

conditions. The concepts can then be extended to nonlinear models by considering the 

eigenvalues of the resulting system of equations. In contrast, the false transient method may or 

may not converge to Equation (E.3) depending on the eigenvalues of the Jacobian. This will be 

explained in more detail in a later section. 
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E.3 Implementation and Comparison of the False Transient Method 

and the Perturbation Method 

Several examples will be shown to compare the performance of the false transient 

method with the proposed Jacobian approach, as well as to note the conditions which cause 

failure of the method of false transients. The examples will be explored in 2-dimensional space 

in Cartesian coordinates, although extensions to other coordinate systems and to 3-dimensional 

space are appropriate and can be applied analogously. In this paper, the system of ODEs given in 

Equations (E.5) and (E.11) were written to a FORTRAN file and simulated using DASKR for 

computational efficiency. Furthermore, all symbolic calculations for the calculation of the 

Jacobian when using the perturbation approach were performed in Maple.49  

E.3.1 Solving Laplace’s Equation 

The simplest example to be considered is Laplace’s equation, which is given in 2 

dimensional rectangular coordinates as: 

 
2 2

2 2
0

x y

φ φ∂ ∂
+ =

∂ ∂
 (E.12)

 

Laplace’s equation is used in numerous engineering disciplines such as steady state heat/mass 

transfer or when calculating potential fields.  The following boundary conditions are considered, 

as shown in Figure E-1.  

 (0, )
0

y

x

φ∂
∂

=  (E.13) 

 
( ,0)

0
x

y

φ∂
∂

=  (E.14) 

 (1, ) 0yφ =  (E.15) 
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 ( ,1) 1xφ =  (E.16) 

 
Figure E-1: Boundary conditions used for solving Example 1 (Laplace’s equation) and Example 2 
(Helmholtz’s Equation) 

Notice that Equation (E.16) is made to be non-homogeneous in order to avoid the trivial 

solution. This problem can be solved analytically using the standard separation of variables 

technique to yield:  

 

( )0

2 1 2 1
4cos

2 2
2 1

( 1) cosh

cosh
2

2 1

n

n n

n n

n

x yπ π
φ

π π

∞

=

+ +

+

   −    
   =

 +  
 

∑  (E.17) 

Since an analytical solution can be found only for limited cases (e.g. linear problems), Equation 

(E.17) is used to benchmark the accuracy of the proposed approach. 

A numerical solution can be found by discretizing Equation (E.12) into M interior node 

points in x and N interior node points in y. This discretizes the domain into (N+2) × (M+2) node 

points when the surface points are considered. The following finite difference schemes of order 

h2 are used: 

 
( )

1
2 2

2
12( , ) n n n

m m m

x

x y

x

φ φ φφ − +− +
≈

∆

∂
∂

 (E.18) 

 
( )

1 1

2

2

2

2( , ) n n n
m m mx y

yy

φ φ φφ − +− +∂

∆
≈

∂
 (E.19) 

0φ =

1φ =

x

y

0
x

φ∂
∂

=

0
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φ∂
∂

=
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with m as the node index in the x-direction and n as the node index in the y-direction. When these 

approximations are applied to Equation (E.12), the following equation is obtained for each 

interior node point, (m,n):  

 
( ) ( )

1 1
1 1

2 2

2 2
0

n n n n n n
m m m m m m

x y

φ φ φ φ φ φ− +
− +− + − +

∆ ∆
+ =  for 1... , 1...m M n N= =  (E.20) 

A second order forward finite difference is applied for the Neumann boundary conditions 

given in Equations (E.13) and (E.14): 

 2 1 0(0, )
0

4 3

2

n n n

x x

y φ φ φφ − + −∂
≈

∆
=

∂
 for 0... 1n N= +  (E.21) 

 
2 1 0( ,0)

0
4 3

2
m mm

y y

x φ φ φφ − + −∂
≈

∆
=

∂
 for 0... 1m M= +  (E.22) 

The Dirichlet boundary conditions from Equations (E.15) and (E.16) can be expressed simply as 

 1 0n
Mφ + =  for 0... 1n N= +  (E.23) 

 
1 1N

mφ
+ =  for 0... 1m M= +  (E.24) 

Equations (E.20) to (E.24) are a system of linear algebraic equations which can be solved 

trivially using a variety of solvers. However, for nonlinear systems which cannot be solved so 

simply, other methods can be utilized to arrive at a solution, and thus this is used as a verifiable 

test problem. When the method of false transients is applied to Equations (E.20)-(E.24) the 

following ordinary differential equations (ODEs) are obtained.   

 
( ) ( )

1 1
1 1

2 2

2 2m n n n n n n
n m m m m m md

x yd

φ φ φ φ φ φ φ
τ

− +
− +− + − +

∆ ∆
= +  for 1... , 1...m M n N= =  (E.25) 

 0 2 1 04 3

2

n n n nd

d x

φ φ φ φ
τ

− + −
=

∆
 for 0... 1n N= +  (E.26) 
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0 2 1 04 3

2
m m mmd

d y

φ φ φ φ
τ

− + −
=

∆
 for 0... 1m M= +  (E.27) 

 1
1

n
nM
M

d

d

φ
φ

τ
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+= −  for 0... 1n N= +  (E.28) 

 
1

11
N

Nm
m

d

d

φ
φ

τ

+
+= −  for 0... 1m M= +  (E.29) 

Note that the formulation of Equations (E.28) and (E.29) required a rearrangement of Equations 

(E.23) and (E.24) in order to develop stable ODEs which converge to the solution. In order to 

explain why such a rearrangement is necessary, recall that the following condition must be 

satisfied for convergence to occur: 

 0lim
n
md

dτ

φ
τ→∞
=  (E.30) 

Thus, Equations (E.25)-(E.29) reduce to Equations (E.20)-(E.24) at long psuedo times. However, 

if the method of false transients were applied directly to Equation (E.23) to give: 

 1
1

n
nM
M

d

d

φ
φ

τ
+

+=  (E.31) 

The solution to the eigenfunction problem in Equation (E.31) is an exponentially 

increasing function. Therefore, the resulting system of ordinary differential equations (ODEs) is 

unstable and Equation (E.30) will not be satisfied. In this relatively simple example, the sign of 

Equation (E.31) could simply be changed to ensure stability, as it can be determined to be 

unstable a priori. However, the instability may not be so obvious for more complicated problems, 

or the stability issue may not be fixed by simply changing the sign.   
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When the perturbation approach described above in Equation (E.11) is applied to the 

system given in Equations (E.20) to (E.24) the following system of linearly coupled ODEs 

results   
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Figure E-2: Converged solution of Laplace’s Equation 

Equations (E.35) and (E.36) demonstrate the robustness of the perturbation method. Regardless 

of whether the boundary conditions are applied as Equations (E.23) & (E.24) or in the form 

required for the false transient solution, Equations (E.35) and (E.36) will converge to the 

expected solution. Considering Equations (E.32)-(E.36) in matrix form, as shown in Equation 

(E.11) above, we have 

 d

dτ
− = +

Φ
J bJΦò  (E.37) 

for a linear system of equations. Equation (E.37) can be explicitly solved for in the time 

derivatives to yield 

 1 1d

dτ
− −= − − -1I

Φ
Φ J bò ò  (E.38) 

which is unconditionally stable and will always converge to a solution.   
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Figure E-3: Convergence of the perturbation method (solid line) and false transient method (dashed line) for 
Laplace’s Equation (Inset shows the graph at very short pseudo time) 

Figure E-2 shows the converged 2-D numerical solution, as determined using 50 interior 

node points in x and y (for a total of 2704 points). Figure E-3 compares the solution found with a 

perturbation of 0.001=ò  with the traditional method of false transients by showing the value of φ 

at x=0 and y=0 as a function of the pseudo time variable used in both methods. The proposed 

approach is superior because (1) steady state is achieved at shorter values of the dummy variable 

and (2) the method is robust, and is inherently stable as shown by Equation (E.38).  

E.3.2 Solving Helmholtz’s Equation 

As a slightly more complicated example, Laplace’s equation will be expanded to 

Helmholtz’s equation by including a linear term to Equation (E.12): 

 ( )2
2 2

2 2

( , ) ( ,
, 0

)x y x
k

x

y
x y

y

φ φ
φ

∂ ∂
+ + =

∂ ∂
 (E.39) 
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In order to examine a non-trivial case, the boundary conditions used are nonhomogeneous and 

identical to Equations (E.13) to (E.16). Once again an analytical solution can be found using the 

separation of variables technique: 
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∑  (E.40) 

which reduces to Equation (E.17) when 2 0k = . Note also that for values of 
2

2 22 1

2

n
k π

+ >  
 

, a 

negative value exists under the radical in Equation (E.40), leaving an imaginary argument for the 

hyperbolic cosine terms. It can be shown using Euler’s formula that: 

 ( ) ( )cosh coszi z=  (E.41) 

Therefore, as 2k increases, the behavior of the denominator of Equation (E.40) changes 

from hyperbolic cosine to standard cosine. Thus, singularities exist in the system for certain 

values of 2k  in which no solution exists. Also, there is a sign change which occurs across these 

values. This is worth noting, as it can increase the difficulties in finding a solution when using 

numerical methods. Equation (E.39) can be discretized using a finite difference scheme given in 

Equations (E.18) and (E.19) as done previously for Laplace’s equation.   
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The resulting equation is similar to Equation (E.20) with an additional linear term included:  

 
( ) ( )

1 1
21 1

2 2

2
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2n n n n n n
nm m m m m m
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φ φ φ φ φ φ
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 for 1... , 1...m M n N= =  (E.42) 

The boundary conditions are unchanged from before and can be applied in the same manner as 

before and are identical to Equations (E.21) to (E.24). Again, this is a linear system which can be 

solved using standard solvers, but we will examine solutions obtain via the method of false 

transients and the perturbation approach.  The method of false transients results in the following 

system of ODEs to be solved: 

 
( ) ( )

1 1
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φ φ φ φ φ φ φ
φ

τ

− +
− += +

∆
+

− + − +

∆
 for 1... , 1...m M n N= =  (E.43) 

with Equations (E.26) to (E.29) still directly applicable for the boundary conditions.  In contrast, 

the perturbation method gives the following system of linearly coupled ODEs:  

 

Figure E-4: Convergence of φ  for the Helmholtz Equation with 2 1k =  using the perturbation method (solid 
line) and the false transient method (dashed line). The inset shows the convergence at very short pseudo time. 
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 (E.44) 

with Equations (E.33) to (E.36) still applicable for the boundary conditions.  For small values of 

2k , this system will converge to the analytical solution using either approach. Figure E-4 shows 

the convergence of the false transient method and the perturbation approach at the origin for a 

value of 2 1k = , while Figure E-5 shows the overall 3-D solution profile.  

 

Figure E-5: Solution profile of Helmholtz’s equation for 2 1k = . 

Notice that the perturbation method converges faster than the false transient method. However, if 

a larger value of 2k is used, the system does not converge when using the standard method of 

false transients. For example, Figure E-6 shows the value of φ in the domain for a value of 

2 6k = . Figure E-7 shows the convegence. In this case, the method of false transients does not 

converge, whereas the perturbation method does. In fact, the method of false transients does not 
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converge for any 
2

2

2
k

π
> . This is in fact, the location of the first singularity in the solution as 

can be seen from the analytical expression in Equation (E.40). 

 

Figure E-6: Convergence of φ  for the Helmholtz Equation with 2 6k =  using the perturbation method (solid 

line) and the false transient method (dashed line). The inset shows the convergence at very short pseudo time. 

This can also be analyzed by considering Equations (E.43) as developed from the false 

transient method in matrix form for linear problems: 

 

 d

dτ
= +

Φ
AΦ b  (E.45) 

Where Φ  is the variable vector, A is the coefficient matrix (which is equivalent to the Jacobian 

of the system for a linear problem), and bis a vector of nonhomogeneous terms arising from the 

boundary conditions. The solution to such a system of linear ODEs can be directly solved using 

exponential matrices and is the following form:113,114 

 exp( )τ= + pΦ A c Φ  (E.46) 
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Where c is a vector of constants chosen to satisfy the initial conditions and pΦ is the particular 

solution to Equation (E.45).  

 

Figure E-7: Solution profile of Helmholtz’s equation for 2 6k =  

The exponential matrix, exp( )τA , is analogous to the standard scalar exponential in terms of 

behavior. Importantly, the eigenvalues of A  determine whether the solution will converge to 

zero or diverge to infinity. Therefore, if all the eigenvalues are negative, the false transient 

method will converge to a meaningful solution. Conversely, if any of the eigenvalues are 

positive, the method of false transients will diverge. Since the eigenvalues are dependent on the 

parameter 2k  for the system of equations considered here, we can predict how fast the false 

transient method will converge, or if it will fail. Figure E-8 shows that all eigenvalues are 

negative for 
2

2

2
k

π
<  for this system and positive otherwise.  
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Figure E-8: Effect of 2k on the maximum eigenvalue of the false transient system, notice that the eigenvalues 

increase with increasing 2k  indicating the instability of the false transient method. 

However, compare this with the proposed perturbation method by converting Equations 

(E.44) into matrix form by using Equation (E.11) above and considering that the right hand side 

of Equations (E.43) and (E.44) are equivalent we arrive at the following equation: 

 d

dτ
− = +

Φ
J bAΦò  (E.47) 

which is similar to Equation (E.37) above for Laplace’s equation. Equation (E.47) can be 

converted to explicit form by left multiplying both sides by 1 1− −− Jò to arrive at the following 

(recognizing that =A J ): 

 1 1d

dτ
− −= − − -1IΦ bJ

Φ
ò ò  (E.48) 

where I is the identity matrix. Equation (E.48) can also be solved using exponential matrices in a 

manner analogous to Equation (E.46) to give 

 1exp( )τ−= − + pIΦ c Φò  (E.49) 
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where cis a vector of constants chosen to satisfy the initial conditions and pΦ is the particular 

solution, and are not necessarily equal to those in Equation (E.46) above. Importantly, the 

eigenvalues of 1−− Iò  are all equal to 1−−ò  and always negative regardless of the value of the 

parameter 2k under consideration. This ensures the stability of the perturbation approach and 

encourages fast convergence. 

E.3.3 Solving the Frank-Kamenetskii Equation 

 
Figure E-9: Boundary conditions used for solving Example 2 (Frank-Kamenetskii equation) 

The advantage of the proposed perturbation approach arises from its ability to handle 

nonlinearities, and to solve problems with multiple steady stats. It is worth noting that this 

method can handle nonlinear source terms as well as nonlinearities in the state additive terms. 

However for demonstration purposes, only the Frank-Kamenetskii equation is considered, which 

has an exponential source term and exhibits multiple solutions. This is given by the following 

non-dimensional equation115: 

 ( )
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φ φ
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∂ ∂
+ + =

∂ ∂
 (E.50) 

where δ is referred to as the Frank-Kamenetskii parameter.115 This represents the dimensionless 

temperature when a zeroth order exothermic reaction occurs, while implicitly assuming that the 

reactant is being continuously fed. Note that the source term in Equation (E.50) is derived from 
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zeroth order Arrhenius kinetics for a reaction with sufficiently large activation energy such that 

some terms can be neglected. A more thorough derivation can be found in the literature.115. The 

following boundary conditions are used, and also shown in Figure E-9.  

 (0, )
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=  (E.51) 

 
( ,0)
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φ∂
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=  (E.52) 

 (1, ) 0yφ =  (E.53) 

 ( ,1) 0xφ =  (E.54) 

Note that it is not necessary to apply non-homogeneous boundary conditions for this case to 

analyze a non-trivial solution due to the nonlinear source term. Still, Equation (E.50) cannot be 

solved analytically because of the nonlinearity. When the finite difference scheme used above is 

applied to this problem, the following system of non-linear algebraic equations is obtained: 
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Mφ + =  for 0... 1n N= +  (E.58) 

 
1 0N

mφ
+ =  for 0... 1m M= +  (E.59) 

Unlike the first two cases considered, this example results in a system of non-linear 

equations and cannot be solved using basic linear or non-linear solvers, such as Maple’s built-in 

fsolve command. Standard numeric based solvers can also have trouble solving this system. 
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Therefore, the method of false transients or the perturbation method is a good choice for finding 

the solution to this problem. Application of the false transient method gives the following system 

of ODEs: 

 
( ) ( )

( )
1 1

1 1
2 2

2 2
exp

m n n n n n n
mn m m m m m m
n

d

d x y

φ φ φ φ φ φ φ
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− +
− +−

+
+

∆ ∆
+

−
=

+
 for 1... , 1...m M n N= =  (E.60) 

With the boundary conditions similar to in the previous cases. Conversely, the perturbation 

method gives: 
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 for 1... , 1...m M n N= =  (E.61) 

 

Figure E-10: Converged solution for φ  located at the origin for various values of δ determined using the 
perturbation approach. 

This problem exhibits some interesting behavior. For example, for critδ δ>  , there is no 

solution, while for critδ δ< there exists two solutions. Figure E-10 shows the solution value(s) of 
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φ at the origin for various values of δ  as determined using the perturbation approach, 

demonstrating the multiple solutions of the problem. Note that the lower branch solution is a 

stable equilibrium point, while the upper branch solution is an unstable equilibrium point. When 

using the proposed approach, both stable and unstable solutions can be found depending upon 

the initial guesses used. However, it is not possible to find the upper branch solution using the 

method of false transients. If the initial guess provided is less than the upper branch solution, the 

false transient method will always converge to the stable lower branch solution. Conversely, if an 

initial guess is provided which is greater than the upper branch solution, the false transient 

method will diverge to infinity.  

 
Figure E-11: Maximum eigenvalue of the Jacobian for the equilibrium solutions of the nonlinear problem. 
This indicates the stability of the lower branch solution, and the instability of the upper branch solution. 

This instability makes it impossible to track the upper branch solution by continuing from 

small values of δ using standard solving methods. An arc length approach can be used to trace 

the solution given in Figure E-10, by integrating all unknowns and all parameters across the arc 

length of the solution curve. However, that cannot be used to directly determine the solution 

profile for a given value of the parameter δ , as the parameter is solved as a function of arc 
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length. Furthermore, such a method requires a two step predictor/corrector approach due to the 

nonlinearities, which increases complexity and computational cost.  

 

Figure E-12: Condition number of the Jacobian at various values of the parameter δ  for the upper and 

lower branch solutions. The bifurcation point as δ  approaches critδ  is particularly ill-conditioned. 

The difficulty observed in the convergence of the false transient method to the upper 

branch solution can be predicted by considering the Jacobian of the problem. For the lower 

branch solution, all the eigenvalues of the Jacobian are negative, indicating a stable equilibrium 

solution. In other words, the system of ODEs developed using the method of false transients will 

converge to the lower branch solution, even if the system is slightly perturbed from the steady 

state solution. In contrast, the upper branch solutions represent an unstable equilibrium point, as 

evidenced by the positive eigenvalues observed at those points. Graphically, this is shown in 

Figure E-11 which shows the maximum eigenvalue of the Jacobian for the various equilibrium 

points. Even though the upper branch solution does satisfy 0
d

dτ
=

Φ , any deviation from 

equilibrium will cause the solution to diverge from the upper branch. If the deviation is above the 

upper branch solution, the instability will cause the solution to diverge to infinity. However, if 
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the deviation is below the upper branch solution, the system will converge to the lower branch 

solution, a stable equilibrium point.  

 

Figure E-13: Solution profiles when 0.5δ = for (a) upper branch and (b) lower branch. Notice the 
qualitative and quantitative differences 

It is also worth noting the difficulty of finding the solution near the bifurcation point, 

when critδ δ= . At this point, the condition number of the Jacobian increases significantly at the 

solution points, indicating the system is particularly ill-conditioned as the parameter δ  

approaches its critical value. Interestingly, however, the Jacobian as computed from the upper 

branch solution is not significantly more ill-conditioned than the lower branch solution. This is 

shown graphically in Figure E-12. It is worth noting that other techniques, such as the arc-length 

tracking method can be used to better track the bifurcation of multiple steady states. 
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Figure E-14: Convergence of proposed method (solid line) and false transient (dashed line) for a value of 
δ =0.5, using (Inset shows the graph at very short pseudo time) using 0φ =  as an initial condition (top). 

Same system with initial guesses near the upper branch solution—the perturbation method converges to the 
upper branch solution while the false transient still converges to the lower branch solution (bottom left). 
Same system using 3φ =  as an initial condition (bottom right); the false transient method diverges.  

Figure E-13(a) shows the surface plot for the lower branch solution for the case that 

0.5δ = , while Figure E-13(b) shows the profile for the upper branch solution. In order to show 

the importance of providing an initial guess as well as to compare convergence, Figure E-14 

shows the value of 
0
0φ  as a function of pseudo-time for the false transient method and the 

perturbation approach when 0.5δ = . The top figure of Figure E-14 uses an initial guess of 
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0m
nφ =  for all m and n, while the bottom left figure of Figure E-14 uses the upper branch 

solution for 0.6δ = as an initial guess for 0.5δ = . This is to show that the perturbation approach 

and the method of false transients will not necessarily converge to the same solution, even when 

identical initial conditions are applied. Furthermore, the bottom right figure of Figure E-14 

shows the convergence when an initial guess of 3m
nφ =  for all m and n. In this case, the 

perturbation approach converges to the upper branch, while the false transient method fails after 

a few pseudo-seconds of simulation. This further demonstrates the advantages of the purposed 

approach.  

It also must be stated that the perturbation method will also not converge for certain 

initial conditions, such as for profiles significantly above the values in the upper branch solution. 

This is due to the presence of the exponential term which becomes unstable for large values of 

Φ . However, the proposed method is much more forgiving in that it will converge for a wider 

range of initial conditions than the false transient method. 

E.4  Conclusions 

A Jacobian-based perturbation approach was presented as an alternative to the method of 

false transients when solving elliptic PDEs. Both methods discretize the spatial variables using 

standard finite different schemes and introducing a pseudo time variable, although other 

discretization schemes, such as collocation, could be used. However, the perturbation approach is 

shown to converge to a meaningful solution for a wider range of problems and initial guesses 

than the method of false transients. Furthermore, when using the method of false transients, the 

equations must be carefully applied in such a way to ensure that the DAEs are stable and 

converge to the expected solution if possible. The proposed perturbation approach is much more 
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robust and the equations can be applied in any logically consistent manner. Also, in cases where 

multiple solutions exist, the Jacobian-based perturbation approach is more capable of finding the 

multiple solutions, specifically those which represent unstable equilibrium points. In contrast, the 

false transient method may only converge to a stable solution regardless of the initial guesses 

used. It is important to note that there are many methods to solve elliptic PDEs. The objective of 

this paper is to make the false transient method more robust. Comparing other numerical 

approaches to solve such problems is beyond the scope of this work. 

The primary difficulty of the proposed approach arises from the calculation of the 

Jacobian of the system of equations. This requires symbolic calculations that are not trivial and 

require the use of a computer algebra system. In contrast, the method of false transients can be 

applied relatively easily to any system of equations. We believe that this has contributed to the 

popularity of the method of false transients in the past, despite some of the shortcomings of the 

method, some of which have been discussed above. Additionally, the resulting system of ODEs 

is not necessarily in an explicit form (one derivative in each ODE), which may be difficult for 

standard or library solvers to handle. As DAE solvers and computer algebra systems like Maple49 

or Mathematica98 are becoming more common and more efficient, the perturbation approach is a 

viable alternative for solving elliptic PDEs in a robust manner. 
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