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ABSTRACT OF THE DISSERTATION 

The Roles of Vasoactive Intestinal Polypeptide in Circadian Entrainment of 

Suprachiasmatic Nucleus 

By  

Sungwon An 

Doctor of Philosophy in Neuroscience 

Washington University in Saint Louis, 2011 

Professor Erik D. Herzog, Chairperson 

 

In mammalian hypothalamus, the suprachiasmatic nucleus (SCN) generates daily 

behavioral and physiological rhythms as a circadian pacemaker. The 20,000 SCN 

neurons synchronize to each other and to the ambient cues to generate coherent daily 

rhythms. Vasoactive intestinal polypeptide (VIP), a neuropeptide produced by SCN 

neurons, plays a major role in synchronizing SCN neurons to each other. Whether VIP 

mediates synchrony to environmental cues and how synchrony within the SCN is 

achieved has not been examined extensively. We recorded PERIOD::LUCIFERASE 

(PER2::LUC) expression from SCN explant cultures over multiple days following VIP 

application at different circadian time points to generate a phase response curve which 

reliably predicted the phase relationship between the SCN and daily increases in VIP. 

VIP shifted PER2::LUC rhythms in time- and dose-dependent manner. VIP rapidly 

increased intracellular cAMP in most SCN neurons and simultaneous antagonism of 

adenylate cyclase (AC) and phospholipase C (PLC) was required to block the VIP-
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induced phase shifts of SCN PER2 rhythms. We conclude that VIP entrains circadian 

timing among SCN neurons through rapid and parallel changes in AC and PLC activities.   

 

While performing the experiments mentioned above, we found that a single VIP pulse 

reliably reduced the PER2::LUC rhythm amplitude in the SCN explants. The amplitude 

reduction was dose-dependent, but not circadian. We found that the amplitude reduction 

was primarily explained by reduced synchrony among SCN neurons, with little effect on 

the amplitude of individual neurons. To test if VIP modulates the amplitude of circadian 

rhythm in vivo, we compared the effects of light on locomotor rhythms in wild-type and 

VIP-deficient mice. We found that constant light reduced the amplitude of behavioral 

rhythms in wild type, but not in Vip-/-, mice. Because, theoretically, reduced synchrony 

among oscillators can facilitate their entrainment to periodic signals, we tested if VIP 

accelerates entrainment of animals to an 8-h advanced light-cycle or SCN explants to a 

10-h advanced temperature cycle. We found that VIP doubled the speed of circadian 

entrainment both in vivo and in vitro. We conclude that reduced synchrony by VIP 

accelerates entrainment.    

 

Finally, we characterized the spatiotemporal expression of one of the three major VIP 

receptors, VPAC2R, in various brain areas and SCN. We characterized the specificity of 

a new antibody and found moderate to weak levels of VPAC2R in cortex, hippocampus, 

olfactory bulb, cerebellum, arcuate nucleus in hypothalamus, amygdala and ventrolateral 

thalamus and high levels in the SCN. VPAC2R expression was observed from rostral to 

caudal SCN with stronger expression in dorsomedial area. SCN neurons expressing VIP 
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or vasopressin all expressed VPAC2R. We found intracellular VPAC2 expression mainly 

along cell bodies and dendrites, but not along their axons. We found that VPAC2R levels 

in the SCN do not oscillate in light-dark cycles or in constant conditions. We conclude 

that VPAC2R presents broadly in the SCN throughout the day to mediate circadian 

synchrony in the SCN.   

  

Taken together, these experiments suggest that VIP signaling mediate entrainment to the 

daily light cycle and an altered schedule by jet lag or day night shift work through wide 

expression of VPAC2R in the SCN.  



 v

Acknowledgments 
 
About six years ago, I decided to join the neuroscience program in Washington 
University due to the excellent academic program and social atmosphere. Whenever I 
recall the past, I feel that the active interactions with academic members, and challenges 
in the classroom and in the lab have become a fundamental ground to build my solid 
career.   
 
The works in this thesis owe huge debts to many people at different places. Based on 
their support, this thesis could improve a lot. First of all, I sincerely appreciate my thesis 
committee members for providing me sincere advice about academic career and life.  
 
I may not be able to express my full gratitude with words to Erik, my thesis advisor. He 
has been a great mentor for academy as well as for life, and a good friend. I learned from 
him how to think, how to develop the thinking, and how to teach others. He is a good 
listener and makes the lab life fun and exciting, which could have been monotonous and 
tiring. I believe that what I learned from him would be a great asset in science as well as 
in other areas throughout my life.   
 
Also, I want to say thank you to Connie Tsai, a brilliant and enthusiastic undergraduate 
student working with me. She is an independent researcher, who is able to think and 
make the next step for herself. I should admit that I learned a lot from her while I discuss 
our data with her. She proudly starts her next academic career at Stanford, and I am sure 
that her diligence and love for research would shed a bright light in front of her future.   
 
And members of the Herzog nation! They are good colleagues, instructors, and friends 
for scientific discussion, technical support, and everyday life. I owe a lot of technical 
support to Daniel Granados-Fuentes, Christian Beaulé, Luciano Marpegan, and Ute 
Abraham, who are current or former postdocs. I also thank former and current graduate 
students, Alexis Webb, Sara Aton, and Mark Freeman for their camaraderie and 
academic support; our lovely technician, Tatiana Simont for helping our works and 
keeping the lab organized; our new members, Jae-Eun Kang-Miller, Amily Slat, and 
Jordan McCall for giving me insightful ideas. Lastly, I thank to all the former and current 
undergraduate and high school students, who provided liveliness in the lab everyday.   
 
I also say thank you to my dear friends at Washington University, Saint Louis community, 
and different countries. Thanks to you, I could keep running and finish this marathon. 
 
To my family, I can’t say enough to show my thanks for their love, encouragement, and 
support. I appreciate my parents, who I miss everyday, and my sister, who has been a real 
supporter for me and studied together in the United States.   
 
 
 
This work was supported by the Imaging Sciences Pathway (T90 DA022871) at 
Washington University.  



 vi

Table of Contents 
 
 
Abstract of the Dissertation       ii 
 
 
Acknowledgements        v 
 
 
Table of Contents         vi  
 
 
List of Figures          x 
 
 
Abbreviations         xii 
 
 
Chapter 1. Introduction        1 
 

 Properties of circadian rhythms      2 

 The suprachismatic nucleus (SCN) as a master circadian pacemaker 3 

 An intracellular clock mechanism      4 

 Intercellular communication in the SCN     6 

 Light effects of circadian rhythms      7 

 VIP signaling and its roles       9  

  VIP gene and biochemical properties     9 

  VIP receptors and their biochemical properties   9 

  Functions and signaling in CNS and PNS    10 

Expression profiles in the SCN     12 

  Roles in the SCN       13  



 vii

 References         16 

 

Chapter 2. VIP entrains circadian oscillators     39 

 Abstract         40 

 Introduction         41 

 Materials and Methods       42 

 Results          47 

  VIP shifts of PER2::LUC rhythms depended on phase and dose 47 

  Blockade of both AC and PLC activities was required to suppress  51 

VIP-induced phase shifts 

  VIP elevated cAMP in most SCN neurons    55 

  VIP entrained the PER2::LUC rhythms to a predicted phase angle 56 

 Discussion         60 

 References         65 

 

 

Chapter 3. VIP accelerates entrainment of the SCN    78  

to an environmental cycle       

 Abstract         79 

 Introduction         80 

 Materials and Methods       82 

 Results          85 

  VIP reduces the amplitude of PER2::LUC rhythm   85 



 viii

in the whole SCN 

  VIP reduces the synchrony of SCN populations   86 

  VIP modulates circadian amplitude in vivo    89 

  VIP speeds up the entrainment of animals to changes  95  

in light schedule 

  VIP speeds up the entrainment of the SCN to changes  95  

in temperature schedule 

 Discussion         96 

 References         107 

 

 

Chapter 4. Spatiotemporal distribution of VIP receptor,   112  

VPAC2R in the SCN 

 Abstract         113 

 Introduction         114 

 Materials and Methods       117 

 Results          120 

  Specificity of the VPAC2R antibody     120 

  VPAC2R levels were highly abundant in the SCN   121 

  VPAC2R was detected in VIP and AVP neurons   121 

  VPAC2R was expressed primarily in dendrites and cell bodies 126 

  VPAC2R was detected throughout the day    126 

 Discussion         131 



 ix

 References         138  

 



 x

List of Figures  

Chapter 2. 

Figure 1.  VIP added to the medium halved in concentration after 2 hours. 48 

Figure 2.  VIP phase shifted PER2::LUC rhythms in the SCN.   49 

Figure 3.  VIP treatment during the late subjective night induced  52 

transient shifts of PER2::LUC rhythms.                                       

Figure 4.  VIP pulses rapidly changed the phase, but not the period   53 

of SCN cultures. 

Figure 5.  Blockade of cAMP and PLC signaling was required   54 

to reduce VIP-induced phase shifts. 

Figure 6.  VIP increased cAMP in SCN neurons.    57 

Figure 7.  VIP entrained PER2::LUC rhythms.     58 

 

Chapter 3.            

Figure 1.  VIP reduced the amplitude of circadian rhythms in the SCN. 87 

Figure 2.  The amplitude reduction by VIP was transient.   90 

Figure 3. Damping or desynchrony may explain the amplitude reduction  91 

of circadian rhythms in the whole SCN.       

Figure 4. VIP reduced the synchrony among SCN cells.   93 

Figure 5. VIP did not reduce the amplitude of PER2 rhythm    97 

in individual SCN cells. 

Figure 6. VIP mediated the amplitude reduction of locomotor rhythms  98 

in LL.   



 xi

Figure 7. VIP accelerated the entrainment to phase-advancing   101 

entraining schedule in vivo.  

Figure 8. VIP accelerated the entrainment to phase-advancing   103 

entraining schedule in vitro. 

 

Chapter 4.  

Figure 1. VPAC2R expression existed in various brain areas    122  

with the strongest expression in the SCN.      

Figure 2. VPAC2R expression broadly existed in the SCN.   124 

Figure 3. VPAC2R colocalized with VIP, AVP in the SCN.   128 

Figure 4. VPAC2R colocalized with dendritic markers but not   129  

 with axonal markers in the SCN. 

Figure 5. VPAC2R expression did not vary temporarily in either   130 

12 h/ 12 h LD or constant darkness.   

 

 



 xii

Abbreviations 

AC   adenylate cyclase 

AVP   arginine-vasopressin 

CCD   charge-coupled device 

CMV   cytomegalovirus 

DD   constant darkness 

Edelfosine (7R)-4-Hydroxy-7-methoxy-N,N,N-trimethyl-3,5,9-trioxa-4-

phosphaheptacosan-1-aminium-4-oxide   

ELISA   enzyme-linked immunosorbent assay 

GRP   gastrin releasing peptide 

FRET   Förster resonance energy transfer 

IBMX   3-isobutyl-1-methylxanthine 

LD   light:dark 

LL   constant light 

luc   luciferase gene 

MAP2   Microtubule-associated protein 2 

MDL   MDL-12,330a 

PACAP  pituitary adenylate cyclase-activating peptide 

PDF   pigment dispersing factor 

PDFR   pigment dispersing factor receptor 

PER2   PERIOD2 protein 

PER2::LUC  PERIOD2::Luciferase fusion protein 

PLC   phospholipase C 



 xiii

PMT   photomultiplier tube 

PRC   phase response curve 

r   length of a mean vector in the Raleigh plot  

SI   synchronizing index 

SCN   suprachiasmatic nucleus 

THFA   9-(Tetrahydro-2-furyl)-adenine 

U73122 1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-

1H-pyrrole-2,5-dione 

VIP   vasoactive intestinal polyepeptide 

Vipr2   gene encoding VPAC2 

VPAC2R  Vasoactive intestinal polypeptide receptor 2 

 



   

 1

Chapter 1. 

Introduction 
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Properties of circadian rhythms 

The day night cycle on Earth generates a temporal niche to all of its organisms. They 

need to decide when to sleep, eat and avoid their predators. Circadian (from the Latin 

circa – “about”, and dies – “day”) rhythms function to drive behavioral and physiological 

oscillations following the 24-hour light dark cycle. These rhythms are innate in most of 

organisms, persistent even in constant conditions with a period close to 24 hours, and 

resistant to change their periods over a range of temperatures. Though circadian rhythms 

persist with a period close to 24 hours even in the absence of timing cues, they 

synchronize to cyclic timing cues via periodic adjustments (entrainment) (Pittendrigh & 

Daan 1976b). The proper adjustments are vital to organisms’  health and survival 

(DeCoursey et al. 1997). This applies to humans too, as shown in adverse effects of jet 

lag and day night shift works on physical and mental dysfunctions (Cho 2001; Davidson 

et al. 2006; Sahar & Sassone-Corsi 2007). This thesis addresses mechanisms regarding 

the entrainment of the circadian system.   

 

Circadian rhythms have been reported and described in multiple specifies ranging from 

prokaryotes such as cyano- and proto-bacteria to eukaryotes including fungi, plants, and 

animals (Sweeney & Hastings 1960; Pittendrigh 1967; Pittendrigh & Daan 1976b; 

Czeisler et al. 1981; Kondo et al. 1993; Dunlap 1999). The existence of circadian 

rhythms in diverse phylogenic trees, along with evolution, indicates beneficial aspects of 

the coordination between biological timing processes and environmental fluctuations. In 

the animal kingdom, for instance, circadian clocks play a role in optimizing animals’ 

adaptation to an ambient light dark cycle for their survival (Paranjpe et al. 2005), or 
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guiding migrations of birds or butterflies by positioning the Sun’s location in the sky 

(Froy et al. 2003). In human society, circadian rhythms affect well being of everyday life. 

Modern affairs disrupting our circadian rhythms such as trans-meridian travels, day night 

shift work, and day light savings are shown to cause lower efficiencies at work, cognitive 

deficits, or even a variety of illnesses (Davidson et al. 2006; Czeisler & Gooley 2007). In 

clinics, doctors are trying to find optimal time points of drug treatment based on our 

circadian clocks (i.e. chronotherapy) (Yamamoto et al. 1997). It is still not clear how 

circadian systems re-synchronize to advancing or delaying entrainment cycles.   

 

The suprachismatic nucleus (SCN) as a master circadian pacemaker 

 In mammals, suprachiasmatic nucleus (SCN), one of the nuclei located in the ventral 

hypothalamus, generates rhythms in physiology and behavior including sleep and waking, 

feeding, excretion, blood pressure regulation, body temperature, locomotor activity, and 

hormonal release (Moore et al. 1991). The bilateral nuclei are composed of about 20,000 

neurons, located just above the optic chiasm and separated by the third ventricle.  

 

Lesions of the SCN (Moore & Eichler 1972; Stephan & Zucker 1972; Ibuka et al. 1977; 

Eastman et al. 1984; Schwartz & Zimmerman 1991) or electrical silencing in vivo 

(Schwartz et al. 1987; Schwartz 1991) cause loss of rhythmicity in behavior and 

physiology. SCN allografts to lesioned animals successfully restore rhythmicity in 

behavioral rhythms with the period of donor SCN (Ralph et al. 1990). The restoration of 

the rhythmicity may depend on direct neuronal connections and diffusible signals 

(Lehman et al. 1987; Silver et al. 1990; Ralph & Lehman 1991). Therefore, the SCN is 
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necessary and sufficient to generate circadian rhythms. The nature of these output signals 

needs further examination, but several candidate molecules have been suggested 

(Kalsbeek & Buijs 1992; Kramer et al. 2001; Cheng et al. 2002; Kraves & Weitz 2006). 

 

The SCN shows daily rhythms in 2-deoxyglucose uptake (Schwartz & Gainer 1977), 

cAMP and Ca2+ content (Murakami & Takahashi 1983; Ikeda et al. 2003), CREB-

mediated gene expression (Obrietan et al. 1999), electrical activity (Inouye & Kawamura 

1979), neurotransmitter release (Schwartz & Reppert 1985) in vivo, and electrical activity 

(Groos & Hendriks 1982; Shibata & Moore 1988; Herzog et al. 1996), neuropeptide 

release (Shinohara et al. 1995; Watanabe et al. 2000), gene expression (Yamazaki et al. 

2000) in vitro. These rhythms in various transcription factors, messenger molecules and 

firing rate rhythms indicate the diverse, but orchestrated actions of the SCN to output 

pathways as a master circadian pacemaker.  

 

An intracellular clock mechanism 

The advent of ‘clock genes’ arose in a relatively recent period from various species 

including cyanobacteria, fungi, fruit flies, and mammals by genetic screens and discovery 

of spontaneous mutations (Konopka & Benzer 1971; King et al. 1997; Ishiura et al. 1998; 

Dunlap 1999; Emery & Reppert 2004). Though different species have different genetic 

components, homologous mechanisms generate daily oscillations across species. 

Fundamentally, the circadian clocks are composed of interlocking positive and negative 

feedback loops, where a lag in transcription and translation generates near 24-hour 

oscillations (Reppert & Weaver 2002; Emery & Reppert 2004). In mammals, a negative 
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feedback loop inhibits the expression Period (Per1, 2 and 3) and Cryptochrome (Cry1 

and 2) genes by their own protein products, PER and CRY. Per and Cry transcriptions 

are activated by the binding of CLOCK and BMAL1 (Mop3) heterodimer complex on 

their regulatory element, E-box (Gekakis et al. 1998). The accumulated PER and CRY 

products, in turn, translocate into the nucleus, and repress the activity of CLOCK and 

BMAL1. Subsequently, the reduction of PER and CRY level disinhibits CLOCK and 

BMAL1 activity to increase Per and Cry transcription. Another negative feedback loop 

inhibits Bmal1 transcription through the binding of REV-ERB to ROR-element (RORE) 

of Bmal1 promoter (Ueda et al. 2002). A positive feedback loop activates Ror gene 

through CLOCK and BMAL1, resulting in the increase of Bmal1 transcription by binding 

of ROR to its RORE (Sato et al. 2004).  

 

Genetic screens and findings of spontaneous mutations revealed the roles of clock genes 

in the quality and speed of the rhythms. Single knockout of each gene except knocking 

out Bmal1 does not abolish the rhythms completely, and animals show arrhythmicity in 

constant darkness only when they lack Bmal1 or both Per1 and 2 or Cry1 and 2 (Kume et 

al. 1999; Bae et al. 2001; Debruyne et al. 2006; Debruyne et al. 2007). Interestingly, the 

knockout of Bmal1 leads to the decreased Bmal2 expression, which may mimic the effect 

of knocking out the both genes (Shi et al. 2010). The phosphorylation of PER proteins by 

a variety of kinases including casein kinase I epsilon facilitates degradation of PER, thus 

it regulates the speed of the oscillations. Therefore, mutations in the kinase or 

phosphorylation sites of PER lead to the lengthening or shortening of period in gene 

expression and behavioral rhythms in flies (Lin et al. 2005), rodents (Lowrey et al. 2000; 
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Meng et al. 2008), and human (Toh et al. 2001; Xu et al. 2005). Interestingly, a mutation 

reducing the activity of an F-box protein, FBXL3 (Afterhours or Overtime) is shown to 

lengthen the behavioral period through the stabilization of CRY proteins (Godinho et al. 

2007; Siepka et al. 2007). The redundancy of gene components may improve the 

precision of cellular rhythms or their stability against perturbations (Stelling et al. 2004).           

 

Intercellular communication in the SCN 

When SCN neurons lose intercellular communication, they fail to reliably generate 

coherent gene expression or firing rate rhythms (Aton & Herzog 2005). If individual SCN 

neurons contain the intracellular clock, why do they require the intercellular 

communication? The research investigating roles of the intercellular communication 

started recently since the development of two techniques: transgenic animals express 

LUCIFERASE proteins driven by Period and the usage of cooled charged device camera 

(Yamazaki et al. 2000; Yoo et al. 2004; Welsh et al. 2005). The imaging of the SCN 

neurons from these transgenic animals using techniques for low-light imaging enabled to 

visualize the roles of the communication. A chronic blockade of voltage gated sodium 

channel by tetrodotoxin (TTX) treatment desynchronizes SCN neurons, leading to the 

amplitude dampening of gene expression rhythms (Yamaguchi et al. 2003). Similarly, 

SCN neurons plated in very low density show sloppy oscillations with a broad period 

distribution (Webb et al. 2009). In a study using different circadian mutant SCN, the 

coupling of SCN neurons is shown to overcome the genetic defects. The circadian gene 

expression rhythms are intact in Per1-/- or Cry1-/- or Cry2-/- SCN explants, but their 

SCN neurons lose rhythmicity (Per1-/- or Cry1-/-) or synchrony (Cry2-/-) when they are 
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dissociated (Liu et al. 2007). Therefore, coupling or synchrony among SCN neurons 

endows robustness to individual SCN neurons against perturbations. Indeed, the gene 

expression rhythms in SCN slice cultures failed to entrain to a 6-hour temperature pulse, 

or 20 hour- or 28 hour cycles initially, but entrained after the chronic treatment of TTX  

(Abraham et al. 2010; Buhr et al. 2010). However, these results also suggest that the 

reduced synchrony among the SCN neurons might be beneficial to entrainment to an 

ambient cycle. This thesis investigates this possibility. Chapter 3 examines whether the 

SCN or animals with reduced synchrony entrains more quickly to a largely advanced 

light- or temperature cycle than synchronized ones.    

 

Light effects of circadian rhythms 

Periodic timing stimuli (i.e. light) entrain circadian rhythms within the range of 

entrainment capacity (Pittendrigh & Daan 1976b). By entraining to the daily onset of 

light, circadian pacemakers synchronize their period to the light cycle with a stable phase 

relationship. Entrainment is achieved when the period of internal clocks (τ) is equal to the 

period of the entraining stimulus (T; 24 hours in case of light), which requires daily phase 

adjustments of circadian clock (ΔΦ: phase shifts) (Pittendrigh & Daan 1976b). Their 

relation is as follows: 

     τ – T = ΔΦ 

The direction and size of phase shifts by light depends on when the stimulus hit the 

circadian clcoks, which is summarized in phase response curve (PRC). Assuming that the 

light rapidly shifts the circadian rhythms (non-parametric entrainment), the PRC predicts: 

1) what time the light stimulus need to be given for entrainment, 2) how many cycles the 
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circadian clocks take to entrain, 3) a period range of the light stimulus to which a certain 

period of circadian clocks is able to entrain and 4) phase angle of the entrainment 

(Johnson et al. 2003). Indeed, evidence for non-parametric entrainment was demonstrated 

in the eclosion rhythm of flies (Zimmerman et al. 1968), locomotor rhythm of nocturnal 

rodents (Pittendrigh & Daan 1976b), in vitro oscillation of genes in cyanobacteria 

(Yoshida et al. 2009). Although the SCN rapididly shifts in response to stimuli (Best et al. 

1999), non-parametric entrainment has not been shown yet. Another goal of this thesis is 

to demonstrate whether the SCN entrains to a repeated stimulus via rapid adjustments of 

its phase. In chapter 2, we demonstrate the non-parametric entrainment of the PER2 

expression rhythms in the SCN to repeated pulses of VIP, a neuropeptide expressed in the 

SCN (An et al. 2011).  

 

On the other hand, constant light or irregular light pulses (i.e. critical light pulse) appear 

to affect the synchrony among circadian cells. Locomotor activity of hamsters or mice in 

constant light for more than a month showed rhythms with a longer period or 

arrhythmicity or two bouts of activity in a cycle (i.e. split) (Pittendrigh & Daan 1976a; 

Ohta et al. 2005). Importantly, the SCN neurons from arrhythmic mice were 

desynchronized, but the neurons from rhythmic ones remained synchronous (Ohta et al. 

2005). A critical light pulse generates two desynchronized rhythms of gene expression in 

rat SCN (Ukai et al. 2007), and arrhythmicity or rhythms with no amplitude in body 

temperature, plasma cortisol in human (Jewett et al. 1991). It is not known what mediates 

the light effects on split or arrhythmic behaviors or desynchrony among the SCN neurons. 

In chapter 3, we find VIP reduces the synchrony among the SCN neurons, resulting in 
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the amplitude reduction in their output rhythm, the behavioral rhythm (equal to the split 

or arrhythmic behaviors) in constant light.  

 

VIP signaling and its roles 

VIP gene and biochemical properties. The Vip gene, encoding a 28-amino acid peptide, 

is located on human chromosome 6p21-6qter (Gozes et al. 1987) and mouse chromosome 

10 A1 (Lamperti et al. 1991). VIP belongs to the VIP peptide family with other 

neuropeptides including the peptide with N-terminal histidine and C-terminal isoleucine 

(PHI), pituitary adenylate cyclase activating polypeptide (PACAP), GH-releasing 

hormone (GHRH), secretin, gastric inhibitory polypeptide (GIP), glucagon, and 

glucagon-like polypeptide I (GLP-I) (Usdin et al. 1994). VIP and PHI are encoded by 

two neighboring exons, and share the same precursor protein, but are processed by tissue-

specific alternative splicing as shown in bird hypothalamus (Talbot et al. 1995). The 

vicinity of its transcription start site contains cAMP-response element (CRE), raising the 

possibility of its regulation by CREB (Fink et al. 1991). The Vip gene expression is 

regulated by various factors including retinoic acid (Georg et al. 1994) and estrogen 

(Kasper et al. 1992). The trigger mechanisms of the VIP release are not well-studied 

except the NO-mediated release in enteric nervous system (Kim et al. 2003), or light- or 

circadian release in the SCN (Shinohara et al. 1993; Shinohara et al. 1995).   

 

VIP receptors and their biochemical properties. So far, the known VIP-binding 

receptors are vasoactive intestinal polypeptide receptor 1 (VPAC1R, ~70 kDa), 

vasoactive intestinal polypeptide receptor 2 (VPAC2R, ~60 kDa), and pituitary adenylate 
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cyclase-activating polypeptide receptor 1 (PAC1R, ~50 kDa), which are encoded by 

Vipr1 (~22kb), Vipr2 (30 kb), and Adcyap1r1 genes, respectively. They belong to 

secretin family (class B) of Gs-protein coupled receptors (GPCR) with seven-

transmembrane helices (Langer & Robberecht 2007). GPCR is known to change its 

conformation to interact with heterotrimetric G-proteins, and facilitate the exchange of 

GDP to GTP on the Gα subunit upon its ligand binging. Generally, adenylate cyclase is a 

known downstream pathway of these receptors through the Gαs, but couplings to 

phospholipase C (PLC) and the calcium/InsP3 pathway through Gαq or Gαi is also 

reported (Langer & Robberecht 2007). After binding to their ligands, VIP or PACAP, 

VPAC1R and VPAC2R are rapidly phosphorylated (Langer et al. 2005), which promotes 

the internalization through β-arrestin (Reiter & Lefkowitz 2006). The receptor regulation 

may control the delivery and amplification of the signal from the ligand. VPAC1R 

appears to be more sensitive to VIP and PACAP than VPAC2R (Usdin et al. 1994). 

VPAC2R binds equally to VIP and PACAP, while PAC1R poorly interacts with VIP, 

binding to PACAP preferentially (Christophe 1993; Lutz et al. 1993).   

 

Functions and signaling in CNS and PNS. VIP modulates behavioral and physiological 

functions acting through various brain areas. Its roles in circadian rhythms are covered in 

detail below. It modulates neuronal firing in various brain areas such as the cortex 

(Sessler et al. 1991), SCN (Reed et al. 2002), hippocampus (Yang et al. 2009), spinal 

cord (Phillis et al. 1978), midbrain (Haskins et al. 1982), and locus coeruleus (Wang & 

Aghajanian 1990). Also, it increases the  communication of glia with neurons by 

promoting secretion of cytokines and growth factors (Schettini et al. 1994). VIP is 
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involved in neurotrophic actions during the brain development (Gozes & Brenneman 

1989) and after an injury in spinal cord, cerebellum, hippocampal and cerebral cortical 

cultures (Brenneman et al. 1995; Cavallaro et al. 1996; Kim et al. 2005). In behavior, it 

regulates sleep, and learning and memory. VIP, at least in part, is shown to increase REM 

sleep by the involvement of prolactin release (el Kafi et al. 1995).VIP effects on learning 

and memory differ (improve or deteriorate) with different locations, concentrations and 

duration of the injection, thus its role is still in debate (Gozes et al. 1993; Yamaguchi & 

Kobayashi 1994). Recently, humans with a microduplication in the Vipr2 gene show 

higher chances of having schizophrenia (Vacic et al. 2011), indicating the relation of VIP 

with psychological disorders.  

 

The downstream components delivering VIP signaling are heterogeneous in different 

brain areas. To modulate firing rates, VIP requires protein kinase A (PKA)-mediated 

cAMP signaling in noradrenergic neurons of the locus coeruleus (Wang & Aghajanian 

1990), but does not require it to depolarize retinal horizontal neurons (Lasater et al. 1983). 

To promote the survival of neurons, VIP requires cAMP signaling in developing 

sympathetic neuroblasts (Pincus et al. 1994), but requires protein kinase C not PKA in 

postnatal mouse brains (Rangon et al. 2005). In the SCN, phase shift of neuronal firing 

rate rhythms by VIP required PKA (Meyer-Spasche & Piggins 2004), while induction of 

Period by VIP required PLC (Nielsen et al. 2002). Therefore, VIP uses different 

downstream components at various brain areas depending on its functions, and if a novel 

VIP action is known in a particular brain area, its downstream components may not be 

the same with the already known ones. Chapter 2 identifies the downstream components 
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of VIP-induced phase shifts in PER2 expression rhythms in the SCN. We found that only 

simultaneous blockade of adenylate cyclase (AC) and PLC activities suppresses the VIP-

mediated phase shifts of gene expression rhythms. We conclude that VIP shifts circadian 

rhythms in the SCN through parallel changes in AC and PLC activities in the SCN. 

The roles of VIP in the PNS were not extensively studied, but some research suggests its 

involvements in pain sensation (Payan & Goetzl 1988) or in pathogenesis in systemic 

sclerosis (Matucci-Cerinic et al. 2001). 

 

Expression profiles in the SCN. VIP-immunoreactivity is broadly observed in the SCN 

(Romijn et al. 1997; Abrahamson & Moore 2001; Kalamatianos et al. 2004). VIP-ergic 

neurons in ventrolateral SCN project their dense fibers throughout the SCN, mainly to the 

dorsomedial SCN, where vasopressin-expressing (AVP-ergic) cells are located 

(Abrahamson & Moore 2001). In the SCN, VIP-ergic neurons and AVP-ergic neurons 

contribute to about 15 % and 20 % of total population respectively. The SCN shows a 

strong Vipr2 mRNA signal, no, little if any, Vipr1 mRNA signal, and modest Adcyap1r1 

mRNA signal (Usdin et al. 1994; Cagampang et al. 1998b; Kalamatianos et al. 2004).  

With the slight difference between species, it is expected that approximately 30 % of VIP 

neurons and about 60 % of AVP-ergic neurons express VPAC2R respectively 

(Kalamatianos et al. 2004; Kallo et al. 2004). Since previous research detected the 

VPAC2R expression with its mRNA probe or β-galactosidase driven by human Vipr2 

promoter, it is not known the VPAC2R expression along neuronal projections, its 

intracellular localization, and percentage of VPAC2R-positive neurons. These data will 

identify the role of VPAC2 in synaptic transmission, and the number of neurons directly 
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responsive to VIP. VIP-immunoreactivity in the SCN is not rhythmic in constant 

condition, but rhythmic in diurnal condition, showing a decrease in the presence of light 

(Shinohara et al. 1993). Whether and how VPAC2R is rhythmically expressed in the 

SCN is not clear because of inconsistencies between research on its temporal mRNA 

profiles (Cagampang et al. 1998c; Shinohara et al. 1999). Chapter 4 characterizes the 

spatiotemporal expression of VPAC2R with a specific antibody against VPAC2R. We 

found that VPAC2R is present in all SCN neurons throughout the day, overlaps with the 

VIP and AVP expression, and functions in receiving synaptic information along dendrites 

and cell bodies. We conclude that VPAC2R exists broadly in the SCN throughout the day 

to mediate circadian synchrony in the SCN.   

 

Roles in the SCN. VIP mediates circadian synchrony in the SCN. VIP is released from 

retinorecipient VIP-ergic neurons by a photic stimulus, and conveys the photic 

information to the SCN (Abrahamson & Moore 2001). Supporting this idea, behavioral 

rhythms of animals lacking VIP (Vip-/-) or VPAC2R (Vipr2-/-) have aberrant phase angle, 

different phase shifts and entrainment rates with light pulses or light dark schedules 

(Harmar et al. 2002; Colwell et al. 2003). Animals lacking PAC1R do not have 

significant deficits in their light responses, indicating that PAC1R is not essential in the 

SCN (Hannibal et al. 2001). As the light transiently induces PER proteins (Field et al. 

2000), VIP application induces Period gene transcription in SCN explant cultures 

(Nielsen et al. 2002). Vipr2-/- mice failed to induce the Period genes after the photic 

stimulation (Harmar et al. 2002). As an entraining agent like light, VIP application also 

shifts behavioral (Piggins et al. 1995), firing rate (Reed et al. 2001), and AVP-release 
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rhythms (Watanabe et al. 2000). However, this research has not identified whether VIP 

entrains the SCN rhythms. In chapter 2, we generate a complete VIP PRC of PER2 

expression rhythm, and entrain the PER2 rhythms by applying VIP daily as predicted by 

our PRC. The resulting PRC is not identical to the light PRC (An et al. 2011). 

Interestingly, the application of pigment dispersing factor, a functional homolog of VIP 

in insects, generates a similar PRC about behavioral rhythms in cockroach to the VIP 

PRC of PER2 expression rhythms, but not like light PRC (Petri & Stengl 1997). Since the 

light regulates the levels of various neuropeptides and second messengers (Gillette & 

Mitchell 2002), which applications also induce phase shifts of the SCN rhythms, we 

conclude that VIP modulates the light-mediated phase shifts of PER expression rhythms 

in an orchestration with diverse agents.  

 

Another role of VIP is to generate and sustain synchrony among the SCN neurons. VIP 

release is rhythmic even in constant conditions. Vip-/- mice were arrhythmic (60 % of the 

total) or weakly rhythmic with multiple components in constant darkness or with daily 

light pulses in 24 hour cycle (skeletal photoperiod) (Colwell et al. 2003; Aton et al. 2005). 

Vipr2-/- mice showed similar behavioral defects in the same conditions (Harmar et al. 

2002; Aton et al. 2005). In cellular level, the neurons from these mutants are arrhythmic, 

or desynchronized each other if they are rhythmic (Aton et al. 2005; Maywood et al. 

2006). Importantly, daily VPAC2R agonist treatments restore the rhythms and synchrony 

among the Vip-/- SCN neurons (Aton et al. 2005). Therefore, VIP is necessary and 

sufficient to generate rhythms of the SCN neurons and synchrony among them. 

Surprisingly, we found that VIP application reduces the synchrony among the SCN, and 
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investigateed the desynchronizing effect of VIP on the SCN in chapter 3. VIP 

application reduces synchrony among the SCN neurons throughout the day in dose-

dependent manner, resulting in a decrease in amplitude of ensemble rhythms. This result 

and previous research suggest that VIP switch its role from a synchronizing agent to a 

desynchronizing agent depending on different doses (high dose: desynchronizing, low 

dose: synchronizing) or situations (applied in coupled system: desynchronizing, applied 

in uncoupled system: synchronizing). We conclude that VIP acts as a versatile agent, 

which regulates synchrony in the SCN in different contexts.   
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Abstract 

Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional 

repression by the Period (PER) 1 and 2 proteins within single cells and on vasoactive 

intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN 

neurons in a circadian pattern and following photic stimulation, it has been suggested to 

play a role in synchronization to environmental light cycles. It is not known, however, if 

or how VIP entrains circadian gene expression or behavior.  Here, we tested candidate 

signaling pathways required for VIP-mediated entrainment of SCN rhythms. We found 

that single applications of VIP reset PER2 rhythms in a time- and dose-dependent manner 

that differed from light. Unlike VIP-mediated signaling in other cell types, simultaneous 

antagonism of adenylate cyclase (AC) and phospholipase C (PLC) activities was required 

to block the VIP-induced phase shifts of SCN rhythms. Consistent with this, VIP rapidly 

increased intracellular cAMP in most SCN neurons. Critically, daily VIP treatment 

entrained PER2 rhythms to a predicted phase angle within several days, depending on the 

concentration of VIP and the interval between VIP applications. We conclude that VIP 

entrains circadian timing among SCN neurons through rapid and parallel changes in AC 

and PLC activities. 
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Introduction 

Coordinated rhythms across populations of neurons are believed critical to many 

behavioral and cognitive functions (Buzsáki 2006). The mechanisms that synchronize the 

periods of neural oscillators can include gap junctions which produce in-phase 

rhythms(Schneider et al. 2006; Mancilla et al. 2007), reciprocal inhibition producing 

either in-phase or anti-phase cycling(Wang & Rinzel 1992) and fast, weighted, excitatory 

synapses producing a range of phase relationships(Smarandache et al. 2009). Daily, or 

circadian, rhythms in behavior and physiology, however, depend on the neuropeptide, 

vasoactive intestinal polypeptide (VIP).  The mechanisms by which VIP synchronizes 

circadian rhythms among cells are unknown. 

 

The daily resetting of circadian timing establishes a stable phase relationship (i.e. the 

phase angle of entrainment) between behavioral and physiological rhythms and 

environmental cues. VIP is well-positioned to reset circadian oscillators in the brain to 

each other and to exogenous timing cues. Vip and its receptors, Vipr1 and Vipr2, are 

expressed in the central and peripheral nervous systems (Dietl et al. 1990; Mohney & 

Zigmond 1998; Chaudhury et al. 2008) including in the suprachiasmatic nucleus (SCN), 

a master circadian pacemaker (Cagampang et al. 1998c; Shinohara et al. 1999).  VIP 

applied to SCN explants in the late subjective night induces the transcription of Period 

(Per) 1 and 2, two genes implicated in rhythm generation and entrainment (Nielsen et al. 

2002). VIP can shift the daily rhythms in locomotion (Piggins et al. 1995) and in 

electrical discharge (Reed et al. 2001) and vasopressin release (Watanabe et al. 2000) of 

SCN explants. These actions of VIP in the SCN have been shown to depend on the 



   

 42

activities of phospholipase C (PLC)  (Nielsen et al. 2002), adenylate cyclase (AC) or 

protein kinase A (PKA) (Meyer-Spasche & Piggins 2004), but the signaling underlying 

entrainment by VIP has not been studied.   

 

A phase response curve (PRC) plots the steady state shift in a rhythm as a function of the 

time of stimulation. The PRC can be used to predict features of entrainment including the 

phase angle of entrainment, the range of periods to which the oscillator can entrain, and 

how long it will take to entrain (Pittendrigh 1960). Importantly, existing PRCs have not 

been tested for their ability to predict these features of SCN entrainment. This study 

aimed to generate a PRC to VIP that would predict features of entrainment and could be 

used to test the underlying molecular mechanisms and kinetics. We combined 

pharmacology with recordings of bioluminescence from a reporter of PERIOD2 levels 

and of Förster resonance energy transfer (FRET) from a reporter of cAMP levels. We 

found that VIP directly entrains the PER2 rhythms of SCN neurons through rapid, 

parallel changes in AC and PLC signaling.  

 

Materials and Methods 

ANIMALS. PERIOD2::LUCIFERASE (PER2::LUC) knock-in mice (Yoo et al. 2004) 

(founders generously provided by J. S. Takahashi, Univ. of Texas Southwestern Medical 

Center, Dallas, TX) were housed in a 12 h/12 h light/dark cycle and bred as homozygous 

pairs in the Danforth Animal Facility at Washington University. All procedures were 

approved by the Animal Care and Use Committee of Washington University or Oregon 

Health Sciences University and followed National Institutes of Health guidelines. 
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DRUGS. VIP was purchased from Bachem (King of Prussia, PA) or Tocris (Ellisville, 

MO). MDL-12,330a (MDL), 9-(Tetrahydro-2-furyl)-adenine (THFA), 1-[6-[[(17b)-3-

methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U73122), 

forskolin and 3-isobutyl-1-methylxanthine (IBMX) were purchased from Sigma (Saint 

Louis, MO). (7R)-4-Hydroxy-7-methoxy-N,N,N-trimethyl-3,5,9-trioxa-4-

phosphaheptacosan-1-aminium-4-oxide (Edelfosine) was from Tocris (Ellisville, MO). 

Drugs were dissolved in DMSO or de-ionized water as stock solutions, stored at -20 °C 

and diluted with culture medium so that the final DMSO concentration was below 0.4 % 

of the total volume. Culture media consisted of DMEM (Sigma, Saint Louis, MO) 

supplemented with 2% B27 (Invitrogen, Carlsbad, CA), 10 mM HEPES (Sigma, Saint 

Louis, MO) and 2.2 mg/ml NaHCO3 (Invitrogen, Carlsbad, CA). VIP was dissolved in 

culture medium and vehicle controls consisted of an equal volume of culture medium.  

 

BIOLUMINESCENCE RECORDING. We recorded bioluminescence rhythms from 300 

µm, coronal SCN slices from PER2::LUC mice (age 8-20 days) using a photomultiplier 

tube (PMT) (HC135-11 MOD, Hamamatsu Corp., Shizuoka, Japan) as described (Abe et 

al. 2002). SCN explants were cultured on 0.4 mm membrane inserts (Millipore, Billerica, 

MA) in sealed 35-mm culture dishes (BD Biosciences, San Jose, CA) with 1 ml pre-

warmed air-buffered medium supplemented with 10% newborn calf serum (NCS) 

(Invitrogen, Carlsbad, CA) and 100 μM beetle luciferin (Promega, Madison, WI) as a 

final concentration at 34°C. Bioluminescence counts were integrated and stored at 1-min 

intervals for up to 15 days of recording.  
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During drug applications, 500 μl of the culture medium was mixed with the VIP, 

antagonists or vehicle (culture medium, 5-50 μl) and added back to the culture dish. For 

the phase shift experiments, circadian times were calculated in hours from the peak of the 

PER2::LUC rhythm (CT 12) (Yoo et al. 2004). To minimize artifacts, treatments were 

added without subsequent removal.  

 

To measure the phase shift, Bioluminescence data were detrended by subtracting a 24-h 

running average (Abe et al. 2002) and the daily peak of expression was determined using 

an acrophase fitting function with Clocklab software (Actimetrics, Wilmette, IL). Phase 

shifts were measured as the time difference between linear regressions of the acrophases 

on the days prior to a treatment and the 4 to 5 days after treatment. In some cases, the 

shift was measured after one to three cycles of transient shifts.  Period of the PER2::LUC 

rhythm was measured as the average time between acrophases from at least four days of 

recording. The induction of PER2 expression was measured by averaging raw 

bioluminescence signal of the cycle with the VIP or vehicle treatment. All statistics were 

performed with Origin 7.0 software (Origin, Northampton, MA).  

 

ELISA. We measured VIP concentrations to determine the profile of the neuropeptide 

from 8 mouse SCN explants treated with either 1 µM VIP (n = 4) or vehicle (n = 4). We 

collected 40 μl of medium from each culture 0, 10, 30, 60, 120 min, and 24 h after 

treatment, froze at -35°C immediately and stored at -80°C. A competitive enzyme-linked 

immunosorbent assay (ELISA) was performed according to the manufacturer’s protocol 

(Peninsula Laboratories, San Carlos, CA). Absorbance was read at 450nm with a 
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microplate spectrophotometer (Molecular devices, Menlo Park, CA). A standard curve 

was generated with serially diluted standards ranging from 0 to 10 ng / ml and IC50 was 

0.24 ng / ml.   

 

cAMP MEASUREMENT. SCN cultures were prepared from neonatal Sprague-Dawley 

rats and transfected with a cAMP reporter using the biolistic method as previously 

described (Ikeda et al. 2003). Briefly, neonatal rat pups (3 - 7 days old) were decapitated, 

the brains removed, and 200-300 µm thick coronal slices cut with a vibrating-blade 

microtome (Camden Instr., Lafayette, IN). The slices were placed on Millicell-CM 

membranes (30-mm diameter, 0.4 µm, Millipore, Billerica, MA) and maintained in an 

incubator at 37 °C with 5% CO2. The organotypic cultures were grown in culture media 

consisting of: DMEM/High without L-glutamine and with sodium pyruvate (Hyclone, 

Thermo Scientific, Waltham, MA), 2% B27 supplement (GIBCO, Carlsbad, CA), 10 mM 

HEPES (GIBCO, Carlsbad, CA), and 1X GlutaMax (GIBCO, Carlsbad, CA).   

  

cAMP activity was measured using a fusion protein consisting of cyan fluorescent protein 

(CFP), a truncated Epac1 expressing a cAMP binding site and yellow fluorescent protein 

(YFP)  (DiPilato et al. 2004a; Dunn et al. 2006a). The cDNA for ICUE2 was kindly 

provided by Dr. Jin Zhang and Dr. Marla B. Feller (DiPilato et al. 2004a; Dunn et al. 

2006a; Violin et al. 2008). A Helios Gene Gun (Bio-Rad Laboratories) was used 

according to the manufacturer’s instructions to transfect the ICUE2 cDNA driven by a 

CMV promoter, into 2- to 20-day-old cultures.  Individual neurons were imaged between 

2 and 7 days after transfection.  Slice cultures were transferred to a recording chamber 
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(35°C) with a laminar flow (6-8 ml/min) of an ACSF solution consisting of (in mM): 

NaCl, 124; KCl, 2.5; NaH2PO4, 1.2; MgCl2, 1.2; CaCl2, 2.4; glucose, 10; NaHCO3, 24; 

adjusted to 300 mOsm and bubbled with 5% CO2 and 95% O2.  The recording chamber 

was located on the stage of an inverted microscope (Nikon TE2000E, Toyko, Japan) and 

illuminated using a xenon-arc lamp, passed through a 436/20 nm filter (Chroma, Tech. 

Corp, Bellows Fall, VT) within a Lambda 10-3 filterwheel (Sutter Instruments, Novata, 

CA) and with light reflected by a 455dcxru dichroic filter (Chroma, Tech. Corp, Bellows 

Fall, VT).  Images were visualized using an ORCA ER CCD camera (Hamamatsu 

Photonics, Hamamatsu, Japan) after passing through a Dual-View  beam splitter at 

505dcxr (Optical Insights, Tucson, AZ), with 535/40 and 480/30 nm emission filters.  

Data acquisition was controlled by Metafluor software (Molecular Devices, Sunnyvale, 

CA) with binning and light exposure optimized to minimize photobleaching.  The FRET 

ratio, fluorescence at 535nm/480nm after background subtraction at each wavelength, 

was normalized using the ratio before application of VIP.  Neurons were identified by 

morphological appearance. At the end of each experiment neurons were treated with 

forskolin (20 µM) and 3-isobutyl-1-methylxanthine (IBMX, 75 µM).  Cells that did not 

respond were excluded.  

 

STATISTICS. Comparison between two different groups with one variable was 

performed using one-way ANOVA with a Scheffé post hoc test and comparison between 

two different groups with two variables using two-way ANOVA with a Tukey post hoc 

test. Values were considered significant if p < 0.05. All statistics and curve fits were 

performed with Origin 7.0 (OriginLab, Northampton, MA).  
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Results 

VIP shifts of PER2::LUC rhythms depended on phase and dose. 

We monitored the effects of 10 nM to 100 μM VIP on PER2-driven luciferase activity in 

SCN explants. The half-life of VIP applied to SCN cultures was about 2 h based on 

ELISA measurements (Fig. 1). VIP application near the peak of PER2 expression (CT12) 

reduced the subsequent amplitude and delayed the peak of subsequent cycles compared to 

vehicle-treated cultures (Fig. 2A). This manuscript focuses on the phase-shifting effects 

of VIP, leaving cause and relevance of the amplitude effects for a subsequent analysis. 

The steady-state phase shift after four days (Fig. 2B) was measured as a function of VIP 

concentration (Fig. 2C). When applied at CT12, VIP induced a dose-dependent delay in 

the peak of PER2 expression with a threshold around 100 nM (p<0.05 compared to 

vehicle treated, One-way ANOVA, Scheffé post hoc, F1,15, =11.15), an EC50 near 500 nM 

and saturation around 10 μM. VIP also induced a transient increase in PER2 expression 

with a similar dose-dependence (Fig 2E). The threshold for VIP-mediated PER2 

induction was around 100 nM, similar to the threshold for phase shifting (p<0.05 

compared to vehicle treated, One way ANOVA, Scheffé post hoc, F1,6 =7.85; EC50 near 

100 nM and saturation around 5 μM). Thus, a 10-fold increase in VIP concentration 

approximately doubled the steady-state phase delay of SCN rhythmicity (r2 = 0.98, n = 

30 SCN explants). 

 

To measure whether VIP has phase-dependent effects on SCN rhythms, either 100 nM or 

10 μM VIP was applied at various circadian time points. The resulting VIP phase 

response curves (PRCs) had a large delay zone from early subjective day to early  
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Figure 1. VIP added to the medium halved in concentration after 2 hours. The 
percentage (black line) and concentration (grey line) of the remaining VIP in the culture 
medium was measured using ELISA. After 2 hours, about half of the VIP remained and 
only 20 % of VIP remained after 1 day.   
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Figure 2. VIP phase shifted PER2::LUC rhythms in the SCN. (A) Representative 
PER2::LUC traces with 10 μM VIP (black) or vehicle (gray) treatment at CT12 (arrow). 
Each PER2::LUC rhythm was normalized to the peak prior to treatment. (B) Double-
plotted actograms of the bioluminescence traces from Fig. 1A where each line shows 48 
h of data beginning with the last 24 h of bioluminescence from the line above. The 
acrophase (black circle) of PER2::LUC expression was the daily peak of a sine function 
fit to each cycle’s bioluminescence trace (Herzog et al. 2004). Phase shifts were 
measured as the time difference between linear fits to the acrophases before and after the 
treatment. (C) The dose-dependent phase delays induced by VIP applied at CT 12. Above 
100 nM VIP and below 10 μM VIP, the delay of the PER2::LUC rhythm increased 
linearly with logarithmic increases in VIP concentration. Data were fitted with a logistic 
function (black line). (D) Phase response curves for 10 µM (square) or 100 nM (triangle) 
VIP (n = 63 and n=33, respectively) as a function of circadian time of VIP application. 
Phase delays and advances are displayed as negative and positive values respectively.  
The PRC for 10 µM VIP was fitted with a fast Fourier transform, adjacent-point average 
(line). Note that the PRC is dominated by delays and unlike the PRC to light. (E) 
Concentration-response curve for the transient induction of PER2 by VIP. Data were 
fitted with a logistic function (black line). 
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subjective night (CT3-18) and a small advance zone from late subjective night to early 

subjective day (CT19-1) with significant differences between the times of advances and 

delays (p<0.01, F1,115 =7.11 , n =63, Two-way ANOVA, Tukey post hoc; Fig. 2D). VIP 

(10 µM) treatments at CT11-12 induced a phase delay which was similar in magnitude at 

one, two and three days following treatment (p=0.77, One-way ANOVA, F1,18=0.09). In 

contrast, the same VIP treatment at CT19-23 induced advances which were larger when 

measured the day after treatment than on subsequent days (p=0.02, One-way ANOVA, 

F1,16=6.17;  Fig. 3). VIP (10 µM) induced larger delays than 100 nM VIP at most of the 

time points tested except the early subjective day. Vehicle treatment induced no or little 

shift (p<0.05, Two-way ANOVA, Tukey post hoc, compared with 10 μM VIP, n= 41). 

Therefore, adjustment of daily PER2 rhythms depended on the time of administration and 

concentration of VIP.  

 

Blockade of both AC and PLC activities was required to suppress VIP-induced 

phase shifts.  

Previous findings indicate that in the SCN, VIP may signal through cAMP- or Ca2+-

mediated pathways. We examined the effects of two inhibitors of AC and two inhibitors 

of PLC on VIP-induced phase shifts. At the time of VIP administration , we included 

MDL-12,330a (MDL), an irreversible, competitive inhibitor of AC (Lippe & Ardizzone 

1991), 9-(Tetrahydro-2-furyl)-adenine (THFA), a noncompetitive inhibitor of AC 

(O'Neill et al. 2008), U73122, an inhibitor of PLC (Smith et al. 1990), or (7R)-4-

Hydroxy-7-methoxy-N,N,N-trimethyl-3,5,9-trioxa-4-phosphaheptacosan-1-aminium-4-

oxide (edelfosine), a specific inhibitor of PLC (Powis et al. 1992). The VIP-induced  
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Figure 3. VIP treatment during the late subjective night induced transient shifts of 
PER2::LUC rhythms. (A) Representative actogram of PER2::LUC expression shows 
that on the day after VIP application, the SCN rhythm was advanced by several hours (*) 
and on subsequent days established a smaller steady-state phase shift (black line). (B) 
Transient phase shifts were significantly larger than steady-state shifts following VIP 
application around CT 20 (mean ± SEM; p<0.05, One-way ANOVA, F1,16=6.17), but not 
at other times.  
                                                     



   

 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. VIP pulses rapidly changed the phase, but not the period of SCN cultures. 
The period before and after 10 μM VIP treatment differed by less than 1 hour in most 
SCN cultures (n=116 of 126). This is further evidence that VIP can entrain the SCN 
through rapid shifts in the circadian oscillator.                        
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Figure 5. Blockade of cAMP and PLC signaling was required to reduce VIP-
induced phase shifts. (A, B and C) Representative actograms of PER2::LUC rhythms 
with treatment of 1 μM VIP alone, VIP with 2 µM MDL (inhibitor of AC) + 10 μM 
U73122 (inhibitor of PLC), VIP with 100 µM THFA (inhibitor of AC) + 10 μM U73122 
respectively. The inhibitor cocktails were applied 1 hour prior to the VIP application at 
CT12. (D) The phase shift (mean ± SEM) of PER2::LUC rhythms by VIP applied at 
CT12 was significantly attenuated by the combination of the AC and PLC inhibitors (* 
p<0.05 and ** p<0.01, One-way ANOVA with Scheffé post hoc test). (E) In the absence 
of VIP, the inhibitors induced little to no phase shifts (n = 25, when compared with 
vehicle-treated cultures, p> 0.05). The number of cultures recorded is indicated for each 
treatment. 
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phase shifts of the PER2::LUC rhythms at CT12 were significantly reduced by the 

combined application of MDL (2 μM) or THFA (100 μM) with U73122 (10 μM) or 

edelfosine (10 μM) 1-h prior to VIP application (* p<0.05, F1,15 =8.47 for 

MDL+U73122; ** p<0.01, F1,12=10.6 for THFA+U73122; ** p<0.01, F1,15 = 15.89 for 

MDL+edelfosine, One-way ANOVA, Scheffé post hoc; Figs. 5A-D). None of the 

inhibitors alone reduced the VIP-induced phase shift compared with VIP (p>0.05; Fig. 

5D) or induced a significant shift compared with vehicle (p>0.05, One-way ANOVA, 

Scheffé post hoc; Fig. 5E). The inhibitors alone or in combination also did not reduce the 

amplitude of PER2 rhythms compared with vehicle. These results indicate that VIP 

signals in parallel through AC and PLC to phase shift SCN rhythms. 

 

VIP elevated cAMP in most SCN neurons.  

To measure the responsiveness of individual SCN neurons to VIP, the cAMP reporter, 

ICUE2, was transfected into individual SCN neurons (Fig. 6A). The ICUE2 and other 

Epac-based FRET reporters detect increases in cAMP as a decrease in the YFP/CFP ratio 

reliably in fly brain (Shafer et al. 2008), cultured retina (Dunn et al. 2006b), 

hippocampus (Nikolaev et al. 2004), dorsal root ganglion (Murray et al. 2009), and 

mammalian cell lines (DiPilato et al. 2004b; Nikolaev et al. 2004; Ponsioen et al. 2004). 

To confirm the reliability of the ICUE2 in the SCN, we applied a combination of 

forskolin (20 µM), an activator of most ACs and 3-isobutyl-1-methylxanthine (IBMX, 75 

µM), an inhibitor of cAMP phosphodiesterase (PDE) to the ICUE2-expressing SCN 

neurons at the end of each experiment. This treatment reduced the normalized FRET ratio 

(Fig. 6A) within 4 min by 0.14 ± 0.02 ratio units in 21 neurons from 10 slice cultures. 
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Application of VIP (1 μM) for 1 min reduced the FRET ratio in 10 SCN neurons in 4 

slice cultures, consistent with a second messenger process (Fig. 6B and D). The duration 

of the FRET response varied with some neurons returning to near baseline within 10 min 

while others persisted longer than 20 min or as long as we recorded. Addition of THFA 

(100 µM) to the bath 2 min prior to and during VIP application significantly reduced the 

response of SCN neurons (measured 3 min after VIP, t13 = 3.88, p≤ 0.005 unpaired two-

tailed t-test, n = 11, 6 slice cultures, Figs. 6C, D) suggesting that intracellular VIP 

signaling acts, at least in part, through the cAMP signaling.  

 

VIP entrained the PER2::LUC rhythms to a predicted phase angle. 

We investigated if and how the SCN circadian pacemaker might entrain to daily VIP 

stimulation. Our VIP PRC predicted that daily VIP treatment should fall around CT2 to 

entrain the SCN, approximately 10 h before the peak of PER2::LUC bioluminescence 

(CT12). VIP (10 nM or 25 nM) or vehicle was applied to SCN cultures for 5 consecutive 

days starting on the fifth day of the bioluminescence recording. The period of SCN 

cultures was not altered by the vehicle treatment (before: 24.5 ± 0.3 h vs. during: 24.5 ± 

0.2 h; n = 7 cultures, p = 0.97, One-way ANOVA; Figs. 7A, D). In contrast, the circadian 

period was shortened by daily, 25 nM VIP with the bioluminescence peak occurring 10.1 

± 0.4 h after VIP on the last day of application (period before: 24.7 ± 0.2 h vs. days 2-5 of 

the treatment: 24.4 ± 0.2 h, n = 7 cultures; Figs. 7C, D). Notably, the phases of cultures 

treated with 25 nM VIP  were more synchronized (Rayleigh test, p < 0.05, r = 0.97) than 

those of vehicle-treated cultures (p>0.1, r = 0.52; Fig. 7E). A lower dose of VIP (10 nM) 

had a smaller effect on the period (before: 25.0 ± 0.3 h vs. during: 24.7 ± 0.2 h) and a less  
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Figure 6. VIP increased cAMP in SCN neurons.  (A) A representative SCN neuron 
expressing the ICUE2 reporter (inset image) showed a reduced FRET ratio 
(535nm/480nm) after treatment with forskolin (20 µM) and IBMX (75µM), indicative of 
increased intracellular cAMP.  The data were normalized to the ratio at the initiation of 
treatment. (B) Treatment with VIP (1 µM) reduced the FRET ratio in SCN neurons. Each 
line represents a different neuron. (C) Pretreatment (2 min) with THFA (100 µM) 
attenuated the VIP (1 µM)-induced reduction in the FRET ratio. (D) Plot of the mean ± 
SEM responses to VIP (black, n = 10, Fig. 3B) and THFA + VIP (gray, n = 11, Fig. 3C) 
showing that THFA treatment significantly reduced cAMP induction by VIP (unpaired 
two-tailed t-test, * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.005). 
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Figure 7. VIP entrained PER2::LUC rhythms. (A, B and C) Representative actograms 
of SCN PER2::LUC rhythms during five consecutive days of treatment (triangles) with 
either vehicle, 10 nM VIP or 25 nM VIP. Note that the daily peak of PER2::LUC 
rhythms shifted to follow the daily VIP pulse by approximately 10 h and free-ran from 
that phase after the last VIP treatment.  (D) The daily peak of PER2::LUC rhythms (mean 
± SEM) of SCN cultures treated with VIP or vehicle (triangles) indicated that VIP 
entrained circadian rhythms in the cultured SCN (vehicle, n=2; 10 nM VIP, n=3; 25 nM 
VIP, n =3). Similar results were found in two additional replications of this experiment. 
(E) Representative Rayleigh plots showing the phase angle of the PER2::LUC expression 
(triangles) from cultures treated with vehicle (n = 7), 10 nM (n = 6) or 25 nM (n =7) VIP 
on the fifth day of treatment. The time between the peak phase of the SCN cultures and 
the time of treatment is the phase angle of entrainment. Note that cultures treated with 
VIP had similar times of peak PER2::LUC bioluminescence whereas vehicle treated 
cultures did not tend to peak at similar times. (F) The daily peak of PER2::LUC rhythms 
(mean ± SEM) over 10 days showed that SCN cultures (open triangles) synchronized 
their phase and period to 25 nM VIP applied every 25 h (filled triangles) for 5 
consecutive days  and free-ran (open circles) when treated with vehicle.  
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reliable effect on the phase angle of entrainment (10.0 ± 1.1 h; n = 6 cultures; Figs. 7B, 

D). Application of 25 nM VIP on a 25-h cycle also entrained the period of SCN cultures 

(24.4 ± 0.1 h before and 25.0 ± 0.2 h during the application; n = 4 cultures) to the 

predicted phase so that the VIP application fell 7.6 ± 0.7 h before the peak of 

bioluminescence (Fig. 7F). In contrast, vehicle treatments every 25-h failed to change the 

period (24.4 ± 0.2 h before versus 24.6 ± 0.1 h during; n = 2 cultures). Therefore, daily 

VIP applications entrained PER2::LUC rhythms to the predicted phase angles.    

 

Discussion 

The mechanisms by which circadian rhythms synchronize to daily timing cues have been 

formally described as a result of rapid changes in either phase or period of the 

endogenous oscillator (Comas et al. 2006).  Rapid phase adjustment, or non-parametric 

entrainment, has been shown in the eclosion rhythm of flies (Zimmerman et al. 1968), 

locomotor activity of nocturnal rodents (Pittendrigh & Daan 1976b), and in vitro 

oscillation of cyanobacterial genes (Yoshida et al. 2009) and predicted for the SCN (Best 

et al. 1999). Our results implicate VIP in rapid phase adjustment of the SCN on a daily 

basis. Single pulses of VIP shifted the phase, rather than the period, of the SCN (Fig. 4) 

and repeated pulses entrained SCN rhythms. Importantly, VIP doses near the threshold 

for phase shifts, when applied daily, entrained circadian rhythms of PER2. VIP similarly 

entrains circadian rhythms in cortical astrocytes (Marpegan et al. 2009). Thus, we 

postulate that VIP shifts the oscillations of SCN cells through rapid changes in their clock 

gene expression. In the SCN, VIP release is both circadian (Shinohara et al. 1995) and 

increased by light (Shinohara et al. 1993; Shinohara et al. 1995).  Based on the PRC 
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measured here, we make two predictions: 1) increases in VIP release due to light during 

the day delay SCN rhythms and, 2) in the absence of light, circadian release of VIP 

peaking around midday delays free-running SCN rhythms. These predictions are 

consistent with the advanced phase angle of entrainment in a light cycle and shortened 

free-running period in constant darkness reported in VIP-deficient mice (Colwell et al. 

2003).   

 

The PRC to VIP described here is the first based on shifts in PER2 expression in the SCN, 

differs in shape and amplitude from a PRC to light and also differs in some respects from 

published responses to VIP.  The PRCs for VIP-induced shifts in vasopressin and 

multiunit firing rate rhythms were previously described as light-like with advances three 

to eight times larger than the shifts reported here (Watanabe et al. 2000; Reed et al. 2001). 

We found that advances were larger when measured on the day after VIP treatment (as 

was done in previous studies) compared to the steady-state shift (Fig. 3). This illustrates 

that the isolated SCN can exhibit large, transient adjustments in phase similar to what has 

been described for behavioral shifts to light during the late night. Importantly, PRCs 

based on the first day or two after a treatment can differ substantially from the steady 

state PRC. By measuring the steady-state PRC to VIP applied at many different circadian 

times from long-term recordings of SCN, we conclude the VIP PRC differs from the 

effects of light in vivo or glutamate in vitro on SCN rhythms. The VIP PRC is dominated 

by a large delay zone. Although this could be unique to PER2, it is consistent with the 

period lengthening effects of chronic VIP infusion on locomotor activity (Pantazopoulos 

et al. 2010). 
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Interestingly, the PRC to VIP in the SCN shares a similar shape and amplitude as the 

PRC to the neuropeptide, pigment dispersing peptide (PDF), in the cockroach (Petri & 

Stengl 1997). PDF in flies appears to play roles similar to mammalian VIP in entrainment 

and synchrony among circadian oscillators (Lin et al. 2004). Thus, the steady-state PRC 

with a large delay zone and low amplitude, narrow advance zone may have features 

which facilitate coordinated rhythmicity in populations of circadian cells. 

 

The rate of entrainment and the phase angle of entrainment both depended on the 

concentration of VIP and whether VIP was applied on a 24-h or a 25-h cycle. Thus, aging, 

light intensity and other events which change VIP levels or time of release would be 

expected to impact circadian behaviors.  This is consistent with, for example, the 

evidence that age-related changes in VIP timing and levels are intimately associated with 

the menopause in rats (Krajnak et al. 1998; Gerhold et al. 2005).  It is clear, however, 

that VIP is not the sole entraining agent of the SCN since, for example, mice lacking VIP 

or its receptor can still entrain to light cycles. Photic entrainment likely depends on 

neuropeptides and transmitters including VIP (Piggins et al. 1995; Watanabe et al. 2000; 

Reed et al. 2001), pituitary adenylate cyclase-activating polypeptide (Hannibal et al. 

1997; Harrington et al. 1999), gastrin releasing peptide (Albers et al. 1995; Piggins et al. 

1995; McArthur et al. 2000; Kallingal & Mintz 2006), glutamate (Meijer et al. 1988; 

Ding et al. 1994; Asai et al. 2001) and NO (Ding et al. 1994) and intracellular signals 

including cAMP (Prosser & Gillette 1989) and cGMP (Prosser et al. 1989; Liu et al. 

1997).  
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Although the exact sites of action for VIP-induced entrainment in the SCN are unknown, 

we found VIP increased intracellular cAMP in individual SCN neurons (Fig. 6B). The 

VPAC2 receptor, encoded by the Vipr2 gene, is presumed to be the primary mediator of 

VIP activity since the loss of the receptor produces a phenotype similar to loss of VIP 

(Harmar et al. 2002; Colwell et al. 2003). Consistent with our findings, Vipr2 mRNA 

(Cagampang et al. 1998c; Shinohara et al. 1999) and a transgenic reporter using the 

human Vipr2 promoter (Kallo et al. 2004) have been shown to be widely expressed in the 

SCN.     

 

We found convergence of VIP signaling to both the cAMP and Ca2+ signaling pathways 

in the SCN. Previous reports have shown that prolonged blockade of cAMP production or 

Ca+2 in the rodent SCN or snail retina stop the progression of circadian rhythms (Ralph et 

al. 1992; Khalsa et al. 1993; Lundkvist et al. 2005; O'Neill et al. 2008). Here, low doses 

of antagonists against cAMP and Ca+2 signaling suppressed VIP-induced shifts while 

blockade of a single pathway had little effect on shifts. This implicates Gs in VIP-

mediated responses and also raises the possibility for the involvement of Gq or Gi/o 

activities (Trimble et al. 1987; Van Rampelbergh et al. 1997; Gillette & Mitchell 2002; 

Hains et al. 2004; Aton et al. 2006; Stewart et al. 2007) and suggests that at least two, 

and possibly interconnecting, pathways are involved. Furthermore, the antagonists had 

little effect on PER2 rhythms over 5-6 days, suggesting that the mechanisms mediating 

shifts are more sensitive to cAMP and Ca+2 levels than the mechanisms involved in 

rhythm generation. It is important to note that a subjective day (Prosser & Gillette 1989), 

unlike our VIP PRC.  
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Taken together, the findings presented here implicate VIP in the synchronization of SCN 

neurons to each other and environmental cycles via increases in AC and PLC signaling to 

rapidly shift clock gene rhythms. 
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Abstract 

Shift work or travel across time zones can result in desynchronization of the body's 

circadian rhythms from the local light-dark cycle. To date, there is no prevention or cure 

for jet lag. In mammals, the suprachiasmatic nucleus (SCN) generates and sustains 

circadian rhythms. In the SCN, about 20,000 neurons are coupled, and oscillate in 

synchrony, generating high-amplitude rhythms.  SCN cells depend on vasoactive 

intestinal polypeptide (VIP) to synchronize to each other and to generate coordinated 

circadian rhythms in physiology and behavior. We serendipitously found that VIP 

reduced the amplitude of the PERIOD2 (PER2) ensemble rhythms in the SCN and 

synchrony among SCN neurons in a dose-dependent manner. Consistent with our 

findings in vitro, light-suppression of circadian rhythms in locomotor activity was 

reduced in mice deficient for VIP. Based on properties of weakly coupled oscillators, we 

hypothesized that reducing synchrony among SCN cells could facilitate synchronization 

to environmental cues. We found that in vivo or in vitro delivery of VIP to the SCN 

approximately halved the time required to entrain to an 8-10-h advance in the light or 

temperature cycle. We conclude that treatments which reduce synchrony among the SCN 

neurons can alleviate jet lag.  
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Introduction 

Circadian rhythms synchronize (entrain) to daily environmental cues such as light and 

dark. In modern life, circadian oscillators in suprachiasmatic nucleus (SCN), a master 

circadian pacemaker, entrain slowly following trans-meridian time travel or during shift 

work. The long term misalignment between the internal timing and altered light dark 

cycles can even induce physiological and psychological abnormalities including 

depression, the risk of cancer, heart problems and obesity, and increased mortality (Cho 

2001; Davidson et al. 2006). .  

The neurons in the SCN synchronize to each other and to ambient oscillations of light. To 

generate reliable oscillations in output rhythms and convey timing information 

throughout the body, they require vasoactive intestinal polypeptide (VIP) signaling 

(Harmar et al. 2002; Aton et al. 2005; Maywood et al. 2006). VIP is released in the SCN 

as a function of circadian time and light intensity (Shinohara et al. 1994; Shinohara et al. 

1995; Honma et al. 1998). In the absence of VIP (Vip-/-) or its receptor, VPAC2R 

(Vipr2-/-), animals become arrhythmic with fragmented activity, and their SCN neurons 

are arrhythmic or desynchronized each other (Harmar et al. 2002; Colwell et al. 2003; 

Aton et al. 2005; Maywood et al. 2006). VIP application to the SCN explant cultures 

induces Period (Per) 1 and 2 (Nielsen et al. 2002), two genes implicated in light-induced 

resetting (Akiyama et al. 1999; Tischkau et al. 2000; Tischkau et al. 2003), and shifts 

rhythms in behavior and SCN physiology (Piggins et al. 1995; Watanabe et al. 2000; 

Reed et al. 2001; Meyer-Spasche & Piggins 2004; An et al. 2011). Notably, daily VIP or 

VPAC2R agonist pulses entrain rhythms in SCN explants or Vip-/- SCN neurons (Aton et 
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al. 2005; An et al. 2011). VIP has therefore been described as a synchronizer or coupling 

factor in the mammalian circadian system. 

Recent research suggests that desynchrony among or damping of individual oscillators 

can promote entrainment. In entrainment experiments using temperature cycles or pulses, 

the desynchronizing agents such as chronic tetrodotoxin treatment, a blocker of voltage-

gated sodium channels, or MDL-12,330a, a blocker of adenylate cyclase activity, 

augment the entrainment of SCN slices (Abraham et al. 2010; Buhr et al. 2010). Since 

the SCN is composed of about 20,000 circadian cells, the desynchrony leads to the 

amplitude reduction of circadian rhythms in the whole SCN (Yamaguchi et al. 2003; 

Abraham et al. 2010).  This amplitude reduction in the whole SCN is, therefore, different 

from the amplitude reduction due to the damping of individual neurons. Damped or weak 

oscillators are predicted to be readily entrainable in a computer simulation and one 

experimental result using Clock/+ heterozygote SCN (Vitaterna et al. 2006; Abraham et 

al. 2010; Komin et al. 2011). However,it has not been examined, whether the 

desynchrony or damping facilitates the entrainment to an entraining cue in vivo, and 

whether a transient desynchrony among the SCN cells also promotes the entrainment.      

Here, we report that VIP administration reduced the amplitude of ensemble PER2 

rhythms and synchrony among SCN cells. The amplitude reduction of behavioral 

rhythms by constant light depended, in part, on VIP.  In addition, we found that VIP 

administration in the early subjective day sped entrainment of circadian rhythms to an 

advanced light- or temperatureschedule both in vivo and in vitro. These data suggest that 



   

 82

treatments which reduce the synchrony among the circadian oscillators will ameliorate 

the negative consequences of jet lag or day night shift works.   

Materials and Methods 

ANIMALS. Mice were housed in a 12 h/12 h light/dark cycle in the Danforth Animal 

Facility at Washington University. PER2::LUC knock-in mice (Yoo et al., 2004) 

(founders generously provided by J. S. Takahashi, Univ. of Texas Southwestern Medical 

Center, Dallas, TX) and Vip-/- (generous gift from C. S. Colwell, University of California, 

Los Angeles, Los Angeles, CA) mice were backcrossed with C57BL/6 (purchased from 

Charles River Laboratories), and bred as homozygous pairs. All procedures were 

approved by the Animal Care and Use Committee of Washington University and 

followed National Institutes of Health guidelines. 

 

CULTURES. For recording of population rhythms, 300 μm coronal SCN slices from 8- 

to 20-day-old PER2::LUC pups were obtained and immediately located under the 

photomultiplier tube (PMT) (HC135-11 MOD, Hamamatsu Corp., Shizuoka, Japan). 

Maintenance, recording of and VIP treatment of cultures were performed as described 

previously (An et al. 2011).    

 

For recording of single cell rhythms from slices, the coronal SCN slices were maintained 

for 2-5 days on the 0.4 mm membrane inserts (Millipore, Billerica, MA) with 1 ml CO2-

buffered medium (CO2 DMEM) supplemented with 10 % new born calf serum (NCS) 

(Invitrogen, Carlsbad, CA). Slices were then inverted onto poly-D-lysine (PDL) and 
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laminin-coated glass coverslips and maintained for 6-8 days with 250-400 µl of the CO2 

DMEM with the 10 % NCS until the recording. 

 

DRUGS. VIP was purchased from Bachem (King of Prussia, PA). Culture media 

consisted of DMEM (Sigma) supplemented with 2% B27 (Invitrogen), 10 mM HEPES 

(Sigma) and 2.2 mg/ml NaHCO3 (Invitrogen). For in vitro recording, VIP was dissolved 

in culture medium and vehicle controls consisted of an equal volume of culture 

medium.  For in vivo injection, artificial cerebrospinal fluid (aCSF) was used to dissolve 

VIP. 

 

BIOLUMINESCENCE RECORDING. We recorded bioluminescence rhythms from 300 

µm, coronal SCN slices from PER2::LUC mice (age 8-20 days) using a photomultiplier 

tube (PMT) (HC135-11 MOD, Hamamatsu Corp., Shizuoka, Japan) as described 

previously (An et al., 2010). SCN explants were cultured on 0.4 mm membrane inserts 

(Millipore, Billerica, MA) in sealed 35-mm culture dishes (BD Biosciences, San Jose, 

CA) with 1 ml pre-warmed air-buffered medium supplemented with 10% newborn calf 

serum (NCS) (Invitrogen) and beetle luciferin (Promega, Madison, WI) at 34°C. 

Bioluminescence counts were integrated and stored at 1 min intervals for up to 15 days of 

recording. To analyze the amplitude changes after VIP application, the recordings were 

detrended as described previously (An et al. 2011). Then, the detrended traces were 

divided by the peak prior to the application and top-to-bottom values of the each half 

cycle were measured. To reduce the initial culture-to-culture variations, we divided each 

value with an average of 2-3 cycles before the treatment. The display of bioluminescence 
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traces and statistics were done using Origin 7.0 software (Origin, Northampton, MA) 

unless mentioned otherwise.    

 

SINGLE-CELL BIOLUMINESCENCE RECORDING. We recorded the 

bioluminescence rhythm for single cells from slice cultures with an inverted microscope 

(TI-S/L100, Nikon) and Andor iXon EMCCD (12 x 512 pixels, 16um pixel size) cooled 

charged device camera (Andor technology) at -80 °C in 1 ml air-buffered medium with 

luciferin and 10% NCS. Cultures were maintained in custom-built incubator (In Vivo 

Scientific) at 34 °C.At the forth or fifth cycle, we applied 150 nM VIP or vehicle into the 

culture medium and continued the recording for 4-5 days. Photon counts were integrated 

over 1 minute or 10 minutes with Micro-Manager and processed with ImageJ (both 

National Institute of Health). Cells clearly distinguishable from surrounding cells were 

analyzed. To generate a raster plot using ImageJ, normalized data of the bioluminescence 

traces was made by dividing with the peak prior to the application using detrending 

macro (kindly provided by Dr. Marpegan). For the better contrast, these processed data 

were subtracted by their trough value prior to the application so that the peak-to-trough 

values are 1-0. Rayleigh statistics were done using Oriana (Kovach Computing Services, 

UK). 

 

MICROINJECTION. For stereotaxic surgery, mice were anesthetized with isofluorane 

(Butler Animal Health Supply, Dublin, OH) mixed with continuous oxygen flow. Brain 

was positioned flat along the Bregma to Lambda. A stainless steel guide cannula (4.0 mm, 

26 gauge; Plastics One, Roanoke, VA) was inserted perpendicular to the skull, fixed with 
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mixture of dental cement (CO-ORAL-ITE Dental MFG, Diamond Springs, CA) and 

methyl methacrylate (Sigma, Saint Louis, MO).  The coordinate for the SCN was from 

Bregma:  +0.5 mm posterior, +0.2 mm lateral, and +4.1 mm depth from the brain. 30 or 

300 pmole of VIP (1.5 mM) or vehicle (aCSF) was injected with 200 nl volume in a 

polyethylene tubing connected to 20 μl Hamilton syringe. The VIP or vehicle was 

delivered using a microinjection pump (Model KDS 310, Analytical West Inc.) with the 

flow rate of 50 nl / min. 

 

BEHAVIORAL RECORDING. Adult male mice were housed in individual cages 

established with running wheels and maintained in light-tight chambers with fluorescent 

bulbs (General Electric). Locomotor activity was measured in 6 min-bin using Clocklab 

(Actimetrics, Wilmette, IL). For measuring the light-induced VIP effect, the C57BL/6 (n 

= 18) and Vip-/- (n = 15) mice were kept in constant light for about 40 days followed by 

constant darkness for 10-11 days.  For measuring the effect of VIP injection, 26 C57BL/6 

mice were kept for 7 d in 12 h/12 h light/dark cycles, cannulated and recovered for 

another 7 d followed by VIP (n = 14) or vehicle injection (n = 12). After the injection, 

recording was resumed followed by light off. Recording was maintained for 13 days with 

a light onset being advanced for 8 h. For better display purpose, a moving average with 4-

h time window was done in time series data of locomotor activity.  

 

Results 

VIP reduces the amplitude of PER2::LUC rhythm.    
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As part of an analysis of VIP-induced phase shifts of the SCN (An et al., 2011), we 

recorded PER2-driven bioluminescence from SCN explants treated with 10 nM to 100 

µM VIP. We noted a highly reproducible and sustained reduction in SCN rhythmicity 

following VIP (Fig. 1A). We measured the peak-to-trough amplitude 48 h after VIP 

application and found a dose-dependent amplitude reduction in PER2 rhythms with an 

EC50 near 150 nM and saturation above 10 µM (Fig. 1B). Within this range, a 10-fold 

increase in VIP concentration caused a 50 % decrease in the PER2 amplitude (r2 = 0.99, n 

= 31 explants). Following 1 μM VIP, the peak-to-trough amplitude was rapidly reduced 

and then slowly recovered over approximately 9 days (Fig. 2).  The amplitude reduction 

was similar regardless of the time of VIP application (p > 0.05, F2,59 = 22.76, n = 74, 

Two-way ANOVA; Fig. 1C). 

 

VIP reduces the synchrony of SCN populations.  

The amplitude reduction recorded from the population of SCN cells could reflect reduced 

synchrony among SCN cells or reduced amplitude of individual cells (Fig. 3). To 

distinguish between these possibilities, we monitored VIP effects on the PER2::LUC 

rhythms in individual SCN neurons from a slice using an ultra-sensitive CCD camera. 

Vehicle-treated SCN cells maintained their synchrony throughout the recording 

(Rayleigh test, before vehicle: p < 0.05, r = 0.87, after vehicle: r = 0.84; Fig. 4A, B).150 

nM or 10 µM VIP administration reduced the synchrony in individual neurons (Rayleigh 

test, 150 nM VIP, before VIP: p < 0.05, r = 0.92 after VIP: r = 0.51; 10 µM VIP, before  

VIP: p < 0.05, r = 0.74, after VIP: r = 0.37; Fig. 4C-F). The maintenance of synchrony in 
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Figure 1. VIP reduced the amplitude of circadian rhythms in the SCN. (A) 
Representative bioluminescence traces from SCN explants treated with 10 μM VIP 
(black) or vehicle (gray) near the peak of PER2-driven bioluminescence (CT12, arrow). 
Each PER2::LUC rhythm was normalized to the peak prior to treatment. (B) The dose-
dependent amplitude reduction (mean ± SEM; n = 3-5 cultures at each dose) by VIP 
application at CT 12. Above 150 nM VIP and below 10 μM VIP, the amplitude reduction 
of the PER2::LUC rhythm increased linearly with logarithmic increases in VIP 
concentration. Data were fitted with a logistic function (black line). Amplitude was 
measured as the trough-to-peak magnitude on the rising phase 48 h after VIP application. 
(C) VIP application reduced the amplitude of SCN rhythms similarly at all circadian 
phases.    The amplitude reduction of PER2::LUC rhythm (mean ± SEM) was higher 
following 10 µM VIP (squares) than 150 nM VIP (triangles; n = 20 and n = 16 
respectively) at all times, but did not vary with the time of VIP application (p > 0.05, 
F2,59 = 22.76, n = 74, Two-way ANOVA ). Vehicle (open circles) did not reduce the 
amplitude of ensemble PER2 rhythm at any time.   
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vehicle-treated culture and reduction of synchrony in VIP-treated culture was consistent 

in multiple cultures (r value before vehicle: 0.93 ± 0.01, after vehicle: 0.91 ± 0.07, n = 2; 

before 150 nM VIP: 0.84 ± 0.03, after 150 nM VIP: 0.51 ± 0.07, n = 5; before 10 µM 

VIP: 0.77 ± 0.03, after 10 µM VIP: 0.25 ± 0.12, n = 2). Fold change in top-to-bottom 

amplitude of individual cells with VIP administration was not significantly different from 

that with vehicle application (p > 0.05, F1,750 = 3.2, One-way ANOVA, Scheffé post hoc;  

Fig. 5). Therefore, ensemble PER2 rhythm by VIP can be explained by the reduced 

synchrony among the SCN population.  

 

VIP modulates circadian amplitude in vivo. 

These in vitro results led us to test if VIP plays a role in modulating circadian amplitude 

in vivo.  Because prolonged constant light (LL) has been reported to desynchronize 

rhythms among SCN cells and produce arrhythmic locomotor behavior (Ohta et al. 2005), 

we recorded wheel running from wild-type (C57BL/6, n = 18) and VIP-deficient (Vip-/-, 

n = 15) mice maintained in constant light (LL) for about 40 days . Time-series plots of 

wild type mice showed a marked reduction of peak-to-trough amplitude in LL compared 

to in DD (LL / DD ratio: 0.2 ± 0.04; Fig. 6A, C and E), while Vip-/- mice did not (LL / 

DD ratio: 0.94 ± 0.17, ***: p < 0.0005, comparison of fold change in amplitude between 

wild type and Vip-/- mice, One way ANOVA; Fig. 6B, D and E). Notably, 40 % of Vip-/- 

mice even improved their circadian amplitude in LL, compared to in DD (6 out of 15). 

Therefore, VIP plays a critical role in reducing the amplitude of locomotor activity 

rhythms in response to light. 
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Figure 2. The amplitude reduction by VIP was transient. The top-to-bottom 
amplitude of PER2::LUC rhythm initially reduced by 1 µM VIP application at CT12 
(black arrow), but gradually recovered back. Note that the amplitude of VIP- and vehicle-
treated rhythms is almost identical after 6 days (240 hours from the start of the recording) 
from the VIP application.    
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Figure 3. Damping or desynchrony may explain the amplitude reduction of 
circadian rhythms in the whole SCN. Schematics assume that the whole SCN is 
composed of three cells. (A) The amplitude of the rhythm in the whole SCN (a hot pink 
line) is high because the three cells oscillate with high amplitude and in synchrony (gray, 
pale pink, and sky blue line respectively). (B and C) The amplitude of rhythm in the 
whole SCN reduces when the three cells are damping (B) or desynchronized (C).  
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Figure 4. VIP reduced the synchrony among SCN cells. (A) PER2::LUC traces of 5 
randomly selected cells with vehicle application (blue arrow) remained rhythmic and 
synchronized so that the ensemble PER2::LUC rhythm of the slice (pink line) did not 
change amplitude during the recording. (B) A raster plot shows the daily increase (green) 
and decrease (black) in PER2 expression from 20 representative cells in the same SCN 
slice treated with vehicle (yellow bar). Two Rayleigh plots show distribution of phases 
among cells (n = 140) in this SCN on a day before and a day after vehicle administration, 
respectively. Each dot represents the time of daily peak PER2 expression for one cell. 
Note that the length of the mean vector (r) did not change following the treatment 
indicating that the cells remained synchronized. (C) PER2::LUC traces of 5 randomly 
selected cells with 150 nM VIP application at CT12 (blue arrow) remained rhythmic, but 
their synchrony was reduced. Note that the gene expression rhythm amplitude of 
individual cells was not reduced after VIP application. (D) A raster plot shows clear 
reduction of synchrony of PER2 expression rhythm from 20 representative cells in the 
same SCN slice with 150 nM VIP application at CT12 (yellow bar). Two Rayleigh plots 
show that the length of the r was reduced after VIP application indicating cells are less 
synchronized (n = 82). (E) PER2::LUC traces of 5 randomly selected cells with 10 µM 
VIP application at CT2 (blue arrow) was not synchronized but their rhythm amplitude 
was not. (F) A raster plot of 20 representative PER2::LUC traces and two Rayleigh plots 
(n = 30) show clear reduction of synchrony after VIP application. 
 

                                                                                                                                                          

 

 

 

 

 

 

 

 

 

 



   

 95

VIP speeds up the entrainment of animals to changes in light schedule.  

 Our simulation results predict that VIP-induced reduction of synchrony could help the 

animal to entrain faster to changes in light schedule. To test this possibility directly, we 

implanted cannula (C57BL/6, n = 26) aimed at the SCN. After a week in a 12 h/12 h 

light/dark schedule (light on from 7:00 am to 7:00 pm), mice received 20 or 200 pmole 

VIP or vehicle (aCSF) at their Zeitgeber time (ZT) 3-4 (10:00-11:00 am). Light was off  

briefly after that and on again at 11:00 pm corresponding to an 8 hr-advanced onset (light 

on from 11:00 pm to 11:00 am). We chose to deliver VIP at ZT 3 as a time when it had 

been shown to produce minimal shifts (Piggins et al. 1995; An et al. 2011). The animals 

injected with VIP shifted rapidly their onset of activity and required fewer days to entrain 

than the vehicle-injected animals (mean of VIP-injected animals: 2.93 ± 0.37 days, n = 

14; vehicle-injected animals: 5.75 ± 0.83 days, n = 12, ***: p < 0.005, two sample 

independent T-test; Fig. 7). These results suggest that VIP reduced the circadian 

amplitude of the behavioral rhythm and sped entrainment following a large advance in 

the light schedule.       

 

VIP speeds up the entrainment of the SCN to changes in temperature schedule.  

Next, we wanted to determine whether VIP also accelerates entrainment to the changes in 

cycles of temperature cycle in the SCN level. To do this, we located SCN cultures in 12 

h/ 12 h temperature cycle (at 6:00 am warm to 36.5 °C, at 6:00 pm cool to 35 °C) for 8 

days. At the 8th cycles, we applied 10 μM VIP or vehicle at circadian time (CT) 3 (4:00 

pm) to minimize the phase shift by VIP (An et al. 2011). 2 hours after lowering the 

temperature at 6:00 pm, we raised the temperature at 8:00 pm to advance the cycle by 10 
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hours (at  8:00 pm warm, at 8:00 am cool). The temperature oscillated with the schedule 

for 9 days and stayed at 36.5 °C for 4 days. We assumed that an SCN culture entrains if 

the peak PER2 expression has a stable phase relation for 48 h with the temperature cycle 

and continued it until the end of the temperature cycle. SCN cultures with vehicle 

treatment, took longer days to entrain to the 10h advanced temperature cycle than 

cultures with VIP treatment (n = 5 each; Fig. 8). Notably, the phase of the peak PER2 

expression in VIP-treated cultures were more clustered (mean phase: 17.23 ± 0.5, 

Rayleigh test, p < 0.005, r = 0.8, n = 5) than vehicle-treated ones (mean phase: 12.57 ± 

1.74, p >0.05, r = 0.25, n = 5) at the end of the new temperature cycle (day 18th). On 

average, VIP-treated cultures entrained to the new temperature cycle after 4.2 ± 0.37 days 

from the beginning of the advanced schedule while vehicle-treated cultures entrained 

after 9.6 ±2.09 days (*: p < 0.05, two sample independent T-test, Figure 5F). Therefore, 

together with the behavioral data these data suggest that VIP double the speed of the 

entrainment to a new environmental cycle.       

Discussion 

We found that VIP accelerated the entrainment of behavioral rhythms of the animal and 

PER2 gene expression rhythms of SCN explants (Fig. 7 and 8).This acceleration may be 

explained by a phase advancing effect of VIP (Piggins et al. 1995; Watanabe et al. 2000; 

Reed et al. 2001; An et al. 2011). VIP is known to shift PER2 gene expression rhythms in 

the SCN and behavioral rhythms minimally in early subjective day (ZT or CT3-4) 

(Piggins et al. 1995; An et al. 2011), when we applied VIP to the SCN cultures or 
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Figure 5. VIP did not reduce the amplitude of PER2 rhythm in individual SCN cells. 
A histogram shows the distribution of SCN cells according to their top-to-bottom 
amplitude change. The amplitude was measured two cycles after the vehicle (gray) or 
VIP (black) was divided with the amplitude before the treatment. If the fold change in 
amplitude is smaller than 1, it means that the amplitude of a cell’s PER2 rhythm was 
reduced after the treatment. Note that the distribution of the VIP-received cell 
populations (n = 520 cells from 5 SCN slices) is similar to that of vehicle-received cells 
(n = 232 cells from 2 SCN slices).  
 
 



   

 98

 

                                                                                                                                                                        

 

 



   

 99

Figure 6. VIP mediated the amplitude reduction of locomotor rhythms in LL. (A and 
B) Representative actograms of wild type and VIP knockout (Vip-/-) mice kept in LL for 
about 40 days (darkness shown as gray). Note that the wild-type mouse expressed 
multiple daily peaks of activity compared to the more consolidated activity of the Vip-/- 
mouse. Cage changes were done in days 32, 39, and 45. (C and D) Time series plots of 
the same actograms reveal that the wild-type mouse showed low-amplitude rhythms in 
LL and high amplitude rhythms in DD compared to the weak circadian rhythms in LL 
and DD of the Vip-/- mouse. The bar at the bottom of each plot shows the times of lights 
on (white) and off (gray). (E) The fold change in the peak-to-trough amplitude of daily 
locomotion in wild-type animals was reduced dramatically in LL compared to DD, but 
did not change in Vip-/- mice (mean ± SEM, n indicates the number of mice, ***: p < 
0.0005, two sample independent T-test ). 
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 animals. Also, VIP reduced both the synchrony among the SCN and the amplitude of 

ensemble gene expression rhythm throughout the day (Fig. 1), whereas VIP-induced 

shifts showed large delays from mid-subjective day to late-subjective night and small 

advances from late subjective night to early subjective day (An et al. 2011). Based on 

these data, therefore, we conclude two things: 1) the faster entrainment by VIP is due to 

the reduction of synchrony among the SCN population and 2) this acceleration can occur 

throughout the day. Therefore, VIP effects, shown here, differ from the phase-dependent 

acceleration of entrainment by sildenafil (Agostino et al. 2007) or long-term suppression 

of aderenal corticosterone (Kiessling et al. 2010). The both treatments promoted the 

entrainment in a phase advancing light schedule, but had no or worsening effect in a 

phase delaying schedule.    

 

VIP application reduced the synchrony among the SCN population and the amplitude of 

gene expression rhythms in the whole SCN. In uncoupled cells such as astrocytes 

(Marpegan et al. 2009) or Vip-/- SCN neurons (Aton et al. 2005), VIP augmented the 

amplitude of ensemble PER2 rhythms and the synchrony among them. Therefore, 

different coupling states may determine whether VIP application increases or decreases 

synchrony. The intracellular action of VIP including PER induction (Nielsen et al. 2002; 

Marpegan et al. 2009; An et al. 2011) or receptor internalization(Schulz et al. 2004; 

Langer & Robberecht 2007) , may be possibly involved in this mechanism. Alternatively, 

VIP action may depend on its concentrations. Wild type SCN cultures express and release 

VIP into their medium, whereas astrocyte cultures or Vip-/- SCN neuronal cultures do not. 

VIP may act as a synchronizing agent when there is little or noVIP whereas it may act as 
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Figure 7. VIP accelerated the entrainment to phase-advancing entraining schedule 
in vivo. (A and B) Representative actograms of vehicle- or VIP-injected mice followed 
by an 8h-advance in light schedule. Animals were in 12 h/12 h light schedule for a week, 
where light was on from 7 am. After an injection at ZT3-4 (arrow), the light onset was 
advanced by 8 h (11 pm). Phase shift of behavioral rhythm and PER2 expression induced 
by VIP at early subjective day is known to be minimal. Note that the vehicle-injected 
mouse took longer days to entrain (the first entrained day: day 36th, asterisk, 8 days from 
the injection day) while the VIP-injected mouse quickly entrained to the new light 
schedule (the first entrained day: day 31th, asterisk, 3 days from the injection day). (C) A 
group summary of daily activity onset of vehicle- or VIP-injected animals (mean ± SEM). 
After the injection (arrow), the activity onset of VIP-injected animals (n = 14) shifted 
more quickly following the 8 h advance in light schedule than that of vehicle-injected 
animals (n = 12). Inset shows a group summary of days required to entrain to an 8h-
advanced light schedule. VIP-injected group significantly entrained faster than vehicle-
injected group (mean ± SEM, ***: p < 0.005, two sample independent T-test, VIP-
injected group: 2.93 ± 0.37 days, n =14; vehicle-injected group: 5.75 ± 0.83 days, n = 12). 
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Figure 8. VIP accelerated the entrainment to phase-advancing entraining schedule 
in vitro. (A and B) Actograms of daily peak PER2 expression of SCN cultures with 
vehicle- or 10 µM VIP application followed by a 10 h-advanced temperature cycle. 
Initially, cultures were entrained to 12 h/12 h temperature fluctuations for 8 days (gray: 
35 °C, white: 36.5 °C). At day 8, vehicle or 10 µM VIP was applied at CT3 (4:00 pm). 
After becoming cool at 6 pm, temperature became warm at 8 pm to advance the 
temperature cycle by 10 hours. The culture was assumed to entrain to the new cycle when 
the phase for consecutive 4 days had a stable phase angle with temperature cycle. Note 
that the vehicle-treated bioluminescence trace required 9 days to entrain to the new 
temperature cycle (the first entrained day: day 17th, asterisk) while VIP-treated trace 
quickly entrained (the first entrained day: day 13th, asterisk). The vertical line represents 
days when these cultures had a stable phase relation with the temperature cycle. (C) A 
group summary of daily peak phase of PER2 rhythm (mean ± SEM). White and gray 
areas represent warm (36.5 °C) and cool (35 °C) temperature respectively. After the 
treatment (arrow), all VIP-treated cultures (n = 5) drastically altered their phase, quickly 
entrained to the new temperature cycle than vehicle-treated cultures (n = 5). Note the 
bigger error bars in vehicle-treated case, indicative of poor synchrony among cultures. 
Inset shows the days required to entrain in the vehicle- and VIP-applied groups. VIP-
applied cultures entrained significantly faster than vehicle-treated ones (mean ± SEM, *: 
p < 0.05, two sample independent T-test, VIP-injected group: 4.2 ± 0.37 days, n =5; 
vehicle-injected group: 9.6 ± 2.09 days, n = 5).  
 

                                                                                                                                                           



   

 105

 a desynchronizing agent with the large amount of VIP. This idea is also supported by the 

dose-dependency of synchrony reduction (Fig. 4) and the increased amplitude of 

ensemble gene expression rhythm with 10-50 nM VIP application (Fig. 1B).  

 

We also found that VIP modulates the reduction of behavioral rhythm amplitude in LL. 

Top-to-bottom amplitude of behavioral rhythm of wild type animals dramatically reduced 

at the end of LL but that of Vip-/- did not (Fig. 6). Since the reduced synchrony among 

the SCN neurons caused the amplitude reduction of circadian rhythms in the whole SCN, 

and the SCN generates output rhythms, the amplitude reduction in behavioral rhythms 

might be caused by the reduced synchrony in the SCN. Notably, LL appears to have the 

similar effects with VIP. In LL, some of mice become arrhythmic, and their SCN neurons 

are desynchronized (Ohta et al. 2005). In addition, mice in LL for only one day show a 

big shift in behavioral rhythms by 15 hours, which may facilitate to entrain to an altered 

entraining cycle (Chen et al. 2008). Therefore, we expect that illumination by a strong 

light before a travel would be an alternative way to alleviate jet lag.  

 

Interestingly, 40 % of our Vip-/- mice became rhythmic at the end of LL protocol (Fig. 5). 

We assumed that a secondary synchronizing agent may act to drive rhythmicity only in 

LL without VIP. Notably, it was shown that elevated K+ concentration or gastrin 

releasing peptide (GRP) temporarily restored the PER2 gene expression rhythms from 

Vipr2-/- SCN explants (Maywood et al. 2006). Thus, it is intriguing to test whether 

potassium chloride (KCl) or GRP injection temporarily recovers the synchrony in Vip-/- 

or Vipr2-/- animals, and the synchrony among the SCN neurons is actually improved in 
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these rhythmic animals. Alternatively, external or internal noises such as routine cage 

changes or little fluctuations in light intensity or gene expression might have induced 

spontaneous behavioral rhythms in Vip-/- animals at the end of LL. One simulation 

predicts the emergence of synchrony from arrhythmic population with noise in light 

illuminations(Ullner et al. 2009).  Also, noise in gene expression is suggested to drive the 

irregular circadian rhythms of PER2 expression in Bmal1-/- SCN explants, which is 

thought be arrhythmic (Ko et al. 2010). Like the simulation showing the role of the noise 

in Bmal-/- SCN, simulations reconstructing the emergence of rhythmicity in behavior of 

Vip-/- animals would provide valuable information to the circadian researchers.  

 

Taken together, we revealed that VIP addition leads to faster entrainment via reduction in 

synchrony among SCN population and in theamplitude of ensemble gene expression in 

the SCN. Future works will focus on categorizing the SCN cells depending on their 

response to VIP to understand the VIP actions in detail. We conclude that VIP facilitates 

the entrainment by reducing synchrony among the circadian oscillators in the SCN, and it 

can be used as a potential therapy for jet lag and day night shift works.   
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Chapter 4. 

Spatiotemporal distribution of VIP receptor, VPAC2R in the SCN 
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Abstract 

The suprachiasmatic nucleus (SCN) in the hypothalamus is a master circadian pacemaker 

in mammals. The SCN neurons must synchronize each other and to the ambient 

entraining cues to coordinate daily rhythms in physiology and behavior. Vasoactive 

intestinal polypeptide (VIP) and its major receptor in the SCN, vasoactive intestinal 

polypeptide receptor type 2 (VPAC2R) play a role in maintaining circadian synchrony as 

coupling factors. It is unknown where and when VPAC2R expression exists in the SCN. 

It has been predicted based on mRNA and transgene expression that VPAC2R may be 

expressed rhythmically and in a subset of SCN cells. Here, we examined VPAC2R 

abundance using a specific antibody. VPAC2R was expressed broadly in the brain and 

most highly in the SCN with stronger expression in dorsomedial area of the rostral and 

medial SCN. VPAC2R immunoreactivity heavily overlapped with AVP and VIP cells in 

the SCN and was mainly observed along dendrites and cell bodies, but not along axons. 

This regional localization and signal intensity did not change with time of day in a12 h/12 

h light/ dark or in constant darkness. These results suggest that VPAC2R mediates 

circadian synchrony throughout the day via broad, constitutive expression in the SCN.    
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Introduction 

The suprachiasmatic nucleus (SCN) acts as a master circadian pacemaker generating 

various physiological rhythms in mammals. Though individual SCN neurons harbor cell-

autonomous feedback machinery, they depend on neuropeptides to reliably express the 

clock genes (Yamaguchi et al. 2003; Aton et al. 2005; Maywood et al. 2006). 

Neuropeptides and their efferent projections play a major role in synchrony among SCN 

neurons, conveying photic information and coordination of SCN with the rest of the body 

(Vosko et al. 2007).  

 

Previous research suggests the roles of VIP-VPAC2R in circadian synchrony by 

conveying timing information. VIP is released rhythmically in constant conditions, and 

its release is stimulated by light (Shinohara et al. 1993; Shinohara et al. 1995). Animals 

lacking VIP (Vip-/-) or VPAC2R (Vipr2-/-) have defects in rhythm generation. They 

show fragmented locomotor activity in constant conditions (Harmar et al. 2002; Colwell 

et al. 2003; Aton et al. 2005) and arrhythmic body temperature, hormonal release, and 

heart rate (Loh et al. 2008; Schroeder et al. 2011). In the SCN, neurons are arrhythmic or 

lost synchrony among them in firing rate and gene expression rhythms (Aton et al. 2005; 

Maywood et al. 2006). These results suggest that the VIP-induced rhythm generation of 

and synchrony among the SCN neurons is critical to generation of rhythmic behaviors. 

Loss of VIP signaling also impairs the delivery of light information in the SCN. Vip-/- or 

Vipr2-/- mice have aberrant responses to light including the smaller phase shift and 

altered phase relation with light (Harmar et al. 2002; Colwell et al. 2003). Vipr2-/- mice 

fail to induce gene expressions following light stimulus, for instance, Period (Per), c-
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FOS, and phosphorylated extracellular signal-regulated kinases 1/2 (Harmar et al. 2002; 

Hughes et al. 2004). Importantly, VIP entrains in vitro and phase shifts the PER2 gene 

expression and firing rate rhythms (Reed et al. 2001; An et al. 2011). Therefore, VIP may 

mediate circadian communication and synchrony by the rhythmic release into the SCN, 

ability to entrain the SCN, and requirement for the rhythmic behaviors. It is not known 

how and when VIP acts to synchronize SCN neurons.  

 

Vasoactive intestinal polypeptide (VIP), a 28-amino acid neuropeptide is a candidate 

synchronizing factor. In the SCN, cells in the ventrolateral area generate VIP and project 

mainly to the dorsomedial SCN, where arginine vasopressin (AVP) cells are located. The 

wide distribution of VIP projection in the SCN suggests their direct communication with 

all SCN cells. VIP binds to secretin receptor family (class B) of G-protein coupled 

receptor (GPCR), which includes vasoactive intestinal polypeptide 1 (VPAC1R), 

vasoactive intestinal polypeptide 2 (VPAC2R), and pituitary adenylate cyclase-activating 

polypeptide type 1 receptor (PAC1R). mRNA signal of all three receptors are widely 

expressed throughout the brains (Usdin et al. 1994). In the SCN, however, a strong 

VPAC2R mRNA signal, moderate PAC1R mRNA signal, and no VPAC1R signal is 

present (Usdin et al. 1994; Cagampang et al. 1998c; Kalamatianos et al. 2004). 

Biochemical studies reveal that PAC1R preferentially binds to pituitary adenylate 

cyclase-activating polypeptide to VIP (Vosko et al. 2007). Therefore, VPAC2R appears 

to mainly mediate VIP signaling in the SCN.     
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VIP peptide and VPAC2R mRNA expression exhibit a juxtaposed pattern in the SCN. 

VIP-ergic neurons are mainly located in ventrolateral area, which receives photic inputs 

directly from intrinsically photosensitive retinal ganglion cells (Kalamatianos et al. 2004; 

Hattar et al. 2006). VIP-ergic neurons project their dense fibers throughout the SCN, 

especially the dorsomedial area, where vasopressin-expressing (AVP-ergic) neurons are 

located (Abrahamson & Moore 2001). mRNA profile of VPAC2R (Kalamatianos et al. 

2004), binding assay with a VPAC2R-specific agonist (Harmar et al. 2002) and 

exogenous expression of β-gal driven by human VPAC2R promoter (Kallo et al. 2004) 

implicate its main expression in the dorsomedial SCN. The β-gal expression overlaps 

with ~50 % AVP-ergic cells and ~30 % VIP-ergic cells (Kallo et al. 2004). Though the 

mRNA and transgene results raise interesting insights about VPAC2R, they have not 

identified critical information yet. For instance, it is not known whether VIP acts as a 

paracrine signal by crossing synapses or an endocrine signal to travel large distances.  

 

Since VIP signaling generates rhythmic behaviors, it is intriguing whether VPAC2R 

oscillates in the SCN in a circadian day. Previous results of the temporal Vipr2 

expression show, at least, diurnal oscillations, but are not consistent each other. In light-

dark (LD) cycle, VPAC2R mRNA peaks at the late subjective night only (Shinohara et al. 

1999) or at the late subjective day and night (Cagampang et al. 1998c). In constant 

darkness (DD), the expression may show no rhythm (Shinohara et al. 1999) or peaks at 

late subjective day and night (Cagampang et al. 1998a). Although we assume that 

VPAC2R is rhythmically expressed in the SCN following the mRNA profile, the 

temporal profile of VPAC2R can be different from that of Vipr2. For instance, the PER2 



   

 117

gene expression rhythm is about 6 hour delayed than its mRNA rhythm (Field et al. 

2000). A recent VIP PRC of PER2 expression rhythm exhibits that the SCN responds to 

VIP differently at different time of the day, suggesting the circadian regulation of amount, 

or, at least, properties of VPAC2R such as intracellular localization, affinity to the VIP.  

 

Here, we characterized expression profile of VPAC2R in the SCN with a specific 

antibody (Schulz et al. 2004). We found moderate to weak VPAC2R expression in 

various brain areas and strong expression in the SCN. We found VPAC2R expression 

from rostral to caudal axis with more intensive expression in dorsomedial area. 

Consistent to this finding, an intense overlap of VPAC2R expression with AVP-ergic 

cells and VIP-immunoreactive cells or projections was observed. Intracellular expression 

of VPAC2R was mainly along cell bodies and dendrites not along axons. We found that 

VPAC2R expression does not oscillate in circadian or diurnal manner. We conclude that 

VPAC2R presents broadly in the SCN throughout a day to mediate circadian synchrony 

in the SCN.   

 

Materials and Methods 

ANIMALS. Male C57BL/6 mice, VPAC2R knockout mice (Vipr2-/-), 

PERIOD2::LUCIFERASE knockin (PER2::LUC) mice were housed individually in 12 

h/12 h light/ dark cycle. For the experiments in DD, animals were transferred to light-

tight, ventilated chamber for 2 days. All procedures were approved by the Animal Care 

and Use Committee at Washington University and conformed to National Institutes of 

Health (NIH) guidelines. 
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TISSUE PREPARATION. For the circadian measurement, 40 Animals were housed in 

12 h/12 h LD or DD before perfusion at 6 different zeitgeber time (ZT) or circadian time 

(CT) respectively. After anesthesia with 2.5 % avertin, animals were perfused 

intracardially with 0.9 % saline followed by 4 % paraformaldehyde (PFA) solution. 

During the period without a light (ZT12-24 and CT), anesthesia and perfusion were done 

in the dim red light. Brains were kept in the PFA solution for 24 hours, then transferred to 

30 % sucrose phosphate buffered (PBS) solution for 3 days until the brains sunk. Brains 

were quickly frozen with 2-methylbutane maintained at -35 °C and stored at -80 °C for 

further usage. 6 series of coronal sections were obtained with a cryostat (CM1850; Leica, 

Maryland Heights, MO) and stored in Watson’s cryoprotectant solution, pH 7.2, at -20 °C 

at least for 48 hrs before proceeding immunohistochemistry. For the analysis of 

intracellular localization, dissociated SCN neuronal cultures were used. SCN punches 

were taken from coronal hypothalamic slices of C57BL/6 pups (p1-5) and cells were 

digested with papain at 37 °C for 40 minutes. After brief centrifugation, papain solution 

was replaced with media and cells were triturated by gentle pipetting. Cells were plated 

on a poly-D-lysine (Sigma, Saint Louis, MO) and laminin (Sigma, Saint Louis, MO)-

covered glass coverslip with a density of 3,000 cells / mm2. After a week from the 

surgery, cells were fixed with chilled 4 % PFA solution for 15 minutes.  

 

IMMUNOSTAINING.  

1. Co-staining of VPAC2R with VIP/ AVP or axonal/dendritic marker 

Series of free-floating sections or cell cultures were rinsed with PBS three times followed 

by incubation with 3 % Triton X for 30 minutes at 37 °C. After wash with PBS, samples 
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were incubated with blocking solution (10 % non-fat milk, 10 % BSA, 0.015 % Tween-

20) for 1 h at room temperature followed by addition of 1: 1,000 rabbit anti-VPAC2 

antibody (AbCam). Then, samples were incubated with 1:200 donkey anti-rabbit Cy2 for 

2 h at room temperature. For double-staining with VPAC2R antibody, samples were co-

incubated with 1:50 mouse anti-AVP antibody (a gift from Dr. H. Gainer) or 1: 2,000 

chicken anti-MAP2 antibody (dendritic marker, AbCam) or 1: 2,000 mouse anti-Tau1 

antibody (axonal marker, Millipore) overnight at 4 °C. In case of a double-staining using 

antibodies raised from the same species, two separate immunostainings were performed 

to prevent cross talk. Samples were sequentially incubated with VPAC2R antibody, 

1:200 donkey anti-rabbit Cy2, and then incubated with 1: 2,000 rabbit anti-VIP antibody 

(Immunostar), 1:200 goat anti-rabbit Cy3. At the end of the staining, every sample was 

incubation with 4',6-diamidino-2-phenylindole (DAPI) for 10 minutes to distinguish the 

boundary of the SCN. Sections were mounted on slides (12-550-14; Fisher Scientific), 

dried overnight, and coverslipped with Permount (SP15-500; Fisher Scientific). In each 

experiment, SCN-containing sections from VPAC2 knockout mice and sections without 

the incubation of primary antibody were used as negative controls.     

 

2. Staining for VPAC2R as a function of time of day 

After permeablization with Triton X and washes, series of sections collected at different 

ZTs or CTs were incubated with 10% H2O2 in PBS at 4 °C for 30 minutes. Sections were 

washed with PBS, blocked for 1 h and incubated with 1:15,000 anti-VPAC2R antibody at 

4 °C for 2 days with agitation. Following 3 time wash in PBS, sections were incubated 

with 1:200 biotinylated goat anti-rabbit antibody (Standard ELITE ABC kit, Vectastatin, 



   

 120

Vector labs, Burlingame, CA) at 4 °C for 1 h. Then, sections were incubated with an 

avidin-biotin complex (Vector Labs). Sections were rinsed 3 times with PBS, rinsed with 

50 mM Tris-HCl, and then incubated for 10 minutes with 0.05 % 3,3’-diaminobenzidine, 

0.01 % H2O2, 0.03 % NiCl2 in 50 mM Tris-HCl. Sections were rinsed with PBS 

overnight, and wet mounted onto glass Superfrost slides (Fisher) the next day. The 

mounted sections were dehydrated in series of ethanol and xylene solutions.  

 

IMAGE PROCESSING. Digitized images were taken using an epifluorescent microscope 

(Retiga 1350EX; QImaging, Burnaby, British Columbia, Canada), or a confocal 

microscope (Nikon A1, Imaging core, Department of Biology), or slide scanner 

(Nanozoomer Digital Pathology, Hamamatsu, Alafi NeuroImaging Laboratory, 

Department of Neurology) under the fluorescent or bright light illumination. For 

brightness and contrast, the images were processed with ImageJ (NIH, Bethesda, MD). 

To quantify the circadian intensity of VPAC2R expression, pixel intensity of VPAC2R 

immunoreactivity was averaged in the bilateral SCN area after being subtracted from the 

background (brain areas outside of the SCN).       

 

DATA ANALYSIS. Day and night difference of VPAC2R expression was assessed by 

one-way ANOVA with a Schéffe post hoc (Origin 7.0, OriginLab, Northampton).   

 

Results 

Specificity of the VPAC2R antibody 
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We tested the specificity of three antibodies against VPAC2R: rabbit anti-VPAC2R 

(antibody generated using C-terminus of VPAC2R, AbCam), goat anti-VPAC2R 

(SantaCruz), mouse anti-VPAC2R (antibody generated using N-terminus of VPAC2R, 

AbCam) by a comparison between wild type and Vipr2-/- brain sections. The rabbit anti-

VPAC2R showed an intense staining on the wild type SCN but not on the Vipr2-/- SCN 

above the background staining (Fig. 1). The other two antibodies had almost equal 

intensity of staining in both wild type and Vipr2-/- SCN (data not shown). We concluded 

that only the rabbit anti-VPAC2R specifically recognizes the VPAC2R among them and 

used it for further study. 

 

VPAC2R levels were highly abundant in the SCN. 

We found a strong VPAC2R expression in the SCN along the rostral to caudal axis (Fig. 

2). In middle to rostral sections, VPAC2R immunoreactivity was higher in dorsomedial 

area. We also detected moderate to weak VPAC2 expression in various brain areas 

including hippocampus, indusium gresium, olfactory bulb, and arcuate nucleus (Fig. 1) of 

hypothalamus, bed nucleus of the stria terminalis (BNST) in the amygdala, ventrolateral 

thalamus, and cerebellum. Thus, VPAC2R was expression throughout the brain with the 

highest intensity in the SCN.  

 

VPAC2R was detected in VIP and AVP neurons. 

We examined if VPAC2R expression overlaps with the expression of two neuropeptides, 

VIP and AVP. Sections stained with VPAC2R and AVP or VIP showed a clear overlap 

with these two neuropeptides (Fig. 3). Notably, VPAC2R expression overlapped strongly  
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Figure 1. VPAC2R expression existed in various brain areas with the strongest 
expression in the SCN. (A and D) Vipr2-/- brain section shows little or no VPAC2R 
immunoreactivity when it is stained it with the rabbit anti-VPAC2R antibody. (B, C, and 
E) Brain sections of wild type mice exhibit a modest to strong signal of VPAC2R 
expression. Note that the intense staining in the SCN (B, E), moderate to weak staining in 
the cortex (B, C), indisium griseum (B), hippocampus (C), and arcuate nucleus (C). All 
the sections were illuminated in the same intensity using a bright field microscope and 
the slide scanner.   
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Figure 2. VPAC2R expression broadly existed in the SCN. VPAC2R 
immunoreactivity was present throughout the rostral to caudal axis of the SCN. Note that 
stronger dorsomedial expression of VPAC2R than ventrolateral one in the medial SCN 
(the second to the forth images from the left).  



   

 126

with AVP cell bodies and VIP projections in the dorsomedial area. On the other hand, the 

overlap between VPAC2R expression and VIP cell bodies in the ventrolateral area was 

relatively weak. We also detected VPAC2R labeling in other areas that did not express 

VIP or AVP in the SCN slice and in most of cells in dispersed SCN neuronal cultures. 

Therefore, we concluded that VPAC2R is expressed in most, if not all, SCN cells.  

 

VPAC2R was expressed primarily in dendrites and cell bodies. 

To identify the role of VPAC2R in synaptic transmission, we examined the intracellular 

localization of VPAC2R by staining dispersed SCN cultures in low density with VPAC2 

antibody and either dendritic (MAP2) or axonal (Tau-1) antibody. VPAC2R mainly 

overlapped with the dendritic marker on somata and dendrites of neurons, while it barely 

overlapped with the axonal marker (Fig. 4). We confirmed a strong VPAC2R expression 

in soma and dendrites, which receive synaptic transmission. 

 

VPAC2R was detected throughout the day. 

To examine whether VPAC2R expression is rhythmic, we collected the 2-3 brains from 

mice housed in 12 h/12 h light/dark cycle (LD) or in constant darkness (DD) at 6 

different time points over a circadian day and measured the SCN VPAC2R expression 

level. The average pixel intensity of the VPAC2R staining in medial, bilateral SCN was 

determined after subtracting the staining intensity of the brain area outside of the SCN. 

The VPAC2R expression was not significantly different at day and night in LD (day: 

ZT1-10, night: ZT12-22; p > 0.05, F1,15 = 0.64, One-way ANOVA, Schéffe post hoc) 
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and DD (day: CT1-11, night: CT12-22; p > 0.05, F1,16 = 0.22, One-way ANOVA, 

Schéffe post hoc; Fig. 5). We conclude that the SCN expresses VPAC2R constitutively. 
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Figure 3. VPAC2R colocalized with VIP and AVP in the SCN. Repesentative images 
of SCN stained for VPAC2R (A-D), and VIP (B) or AVP (E). The composite images 
show the extensive overlap (yellow) between VPAC2R (green) and VIP (red), and AVP 
(red) expression (C and F).   
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Figure 4. VPAC2R colocalized with dendritic markers but not with axonal markers 
in the SCN. Representative images of dissociated SCN neurons stained for VPAC2R (A 
and D) and MAP2, a dendritic marker protein (B), or Tau-1, an axonal marker protein (E). 
Note that VPAC2R (green) staining colocalizes with MAP2 (red) along cell body and 
projections (C) but does not overlap with Tau-1 (red) staining (F).  
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Figure 5. VPAC2R expression did not vary temporarily in either (A) 12h/ 12h LD or 
(B) constant darkness. The average intensity of VPAC2R expression in bilateral SCN 
was measured in medial SCN. Data points represent the mean ± SEM of 3 brains per 
each time point. The result suggests that VPAC2R expression be not fluctuating between 
day and night in LD (p > 0.05, F1,15 = 0.64, One way ANOVA, Scheffé post hoc) or in 
DD (p > 0.05, F1,16 = 0.22, One way ANOVA, Scheffé post hoc).  
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Discussion 
 
VPAC2R delivers VIP-mediated signaling in various mouse brain areas.  

Using a specific antibody against VPAC2R, we found weak to moderate staining 

throughout the brain, and intensive staining in the SCN in wild type mice. We confirmed 

the specificity with no staining of VPAC2R in the Vipr2-/- mice brains. The strongest 

signal of the SCN is consistent to the previous results of intense Vipr2 mRNA throughout 

the SCN (Usdin et al. 1994; Kalamatianos et al. 2004) and transgene expression of 

VPAC2R (Kallo et al. 2004). Notably, the VPAC2R expression in the SCN heavily 

overlaps with the immunoreactivity of VIP neurons and their projections.   

 

In addition to the SCN, we also found the proximity of VPAC2R expression to the areas 

of VIP expression. For instance, VIP cell bodies have been found in the retina, olfactory 

bulb, and cerebral cortex (Staun-Olsen et al. 1985; Gall et al. 1986; Okamoto et al. 1992). 

VIP projections have been observed in the lateral geniculate nucleus, hippocampus, 

amygdala, and throughout the medial hypothalamus to paraventricular nucleus of the 

thalamus (Abrahamson & Moore 2001; Heintz 2004). We confirmed the VPAC2R 

expression in or near some of these areas. Also, we found VPAC2R expression in the 

indusium griseum, hippocampus, midbrain, and cerebellum. The VIP application to these 

areas is shown to have effects including the modulation of firing rates (Yang et al. 2009), 

learning and memory (Gozes et al. 1993; Yamaguchi & Kobayashi 1994), and 

neurotrophic action (Cavallaro et al. 1996), supporting our findings. We observed a fairly 

intense expression in the arcuate nucleus, which confirms the role of VIP in 

neuroendocrine and lactation (Harney et al. 1996; Smith et al. 2000; Gerhold et al. 2001). 
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VPAC2R expression outside the SCN suggests the VIP-VPAC2R signaling in non-

circadian functions or the influence of VIP projections from these areas.   

 

Notably, some brain areas with high VIP-immunoreactivity expressed VPAC2R only 

weakly. For instance, we saw low expression of VPAC2R in the BNST in spite of its 

strong VIP immunoreactivity. This result indicates that some of the VIP signaling outside 

of the SCN is received by other receptors including VPAC1R. Also, VPAC2R 

immunoreactivity of the hypothalamus or thalamus was not as strong as the Vipr2 mRNA 

signal (Usdin et al. 1994; Kalamatianos et al. 2004), which suggests post-translational 

modification of VPAC2R expression. We did not observe any brain areas showing low 

VIP and high VPAC2R staining, indicating the regionally restricted expression of 

VPAC2R compared with VIP expression. These data suggest that VIP may use any 

individual receptor or combination of different ones in the VIP/PACAP receptor family 

outside of the SCN. 

 

VPAC2R generates coupling among SCN cells. 

We found VPAC2R expression in all SCN cells, including VIP-ergic and AVP-ergic 

neurons. Since both VIP and AVP genes have CRE (Hahm et al. 1999; Kim et al. 2001), 

and VIP signaling increases intracellular cAMP (Rea 1990; An et al. 2011), VPAC2R-

mediated cAMP increase would facilitate the upregulation of both neuropeptides. 

VPAC2R expression and VIP projections on AVP cells suggest the dorsomedial SCN 

receives inputs from the ventrolateral SCN through VIP-VPAC2R signaling. Notably, the 

dorsomedial SCN loses synchrony when it is separated from the ventrolateral SCN 
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(Yamaguchi et al. 2003; Buhr et al. 2010). Therefore, VPAC2R may mediate coupling 

among and autoregulation of the SCN neurons.  

 

VPAC2R is similar to Drosophila PDFR. 

These results share similarities with the studies of a synchronizing neuropeptide, pigment 

dispersing factor and its receptor, Though VIP and PDF do not have a sequence 

homology in their genes, they function similarly. Both neuropeptides are released to 

generate robust rhythms and synchronize clock cells. PDF- or PDFR-null flies are 

arrhythmic in constant conditions with desynchronized clock neurons (Renn et al. 1999; 

Lin et al. 2004), which parallels in Vip-/- or Vipr2-/- animals (Harmar et al. 2002; 

Colwell et al. 2003; Aton et al. 2005; Maywood et al. 2006). Both VPAC2R and PDFR 

belong to the class B GPCR family, increasing intracellular cAMP level with the binding 

to its ligand (Shafer et al. 2008; An et al. 2011). Like the VPAC2R expression in all SCN 

neurons, PDFR is expressed in most of clock neurons including PDF-positive neurons in 

the Drosophila brain (Shafer et al. 2008; Im & Taghert 2010). We conclude that both 

VIP and PDF contribute the robustness of the oscillator by regulating and autoregulating 

the output of clock cells.   

 

VPAC2R integrates circadian timing inputs. 

VPAC2R staining is present mainly along the cell body and dendrites. Therefore, a 

VPAC2R-expressing cell would integrate inputs from multiple VIP cells and determine 

the dominant circadian rhythms. As a class B of GPCR, VPAC2R activates adenylate 

cyclase, protein kinase A, or phospholipase C and D, and in turn, increases cAMP and 
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Ca2+ (Nielsen et al. 2002; Meyer-Spasche & Piggins 2004; Langer & Robberecht 2007; 

An et al. 2011).  These second messenger molecules would upregulate the activity of 

various transcription factors (Ding et al. 1997), leading to the modulation of circadian 

firing rates (Reed et al. 2002; Aton & Herzog 2005), inhibitory synaptic transmission (Itri 

& Colwell 2003; Itri et al. 2004), and gene expression in the SCN (An et al. 2011). 

Interestingly, Vipr2-/- animals lose circadian gene expression rhythms of c-FOS and p-

ERK in the SCN. Based on these data, we conclude that VPAC2R functions to integrate 

circadian timing information from VIP-ergic neurons for cyclic gene expression and 

firing rates. 

 

VPAC2R is expressed throughout the circadian day. 

VIP entrains PER2 expression rhythm in SCN explant cultures with a stable phase 

relation as predicted from the phase response curve (An et al. 2011). This raises the 

possibility that cyclic VPAC2R abundance induces the differential response to VIP over 

the circadian day. Diurnal variation of VPAC2R mRNA levels also supports this 

possibility (Cagampang et al. 1998c; Shinohara et al. 1999). In contrast to the previous 

results, we found that VPAC2R immunoreactivity does not oscillate in the SCN. This 

result may be due to the post-translational modification of VPAC2R or too low amplitude 

of VPAC2R rhythms. Alternatively, the receptor affinity to VIP or receptor regulation 

such as phosphorylation could be rhythmic. Perhaps, oscillations in VPAC2R may not 

need to be rhythmic. Rather, the rhythms in release of a synchronizing factor or 

expression of downstream molecules may be sufficient to regulate the SCN functions.  
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The constitutive expression of VPAC2R is somewhat consistent to our VIP PRC since 

VIP shift PER2 gene expression rhythms throughout the day. The continuous expression 

of VPAC2R would be beneficial based on our recent data, showing the constitutive 

receptivity to VIP helps the SCN to recover from jet lag by VIP administration at any 

time point. Taken together, we conclude that constitutive VPAC2R expression in all SCN 

neurons mediates circadian synchrony among the SCN neurons. 

 

Future directions 

We found that various cell types in the SCN express VPAC2R throughout the circadian 

day. Since our immunolabeling data disagreed with the mRNA data, we will find possible 

mechanisms, which regulate properties of VPAC2R rhythmically. For instance, we will 

measure VIP-induced VPAC2R internalization of dissociated SCN neurons plated in a 

low density. Since surface VPAC2R levels may be regulated by the phosphorylation 

(Langer & Robberecht 2007), we can measure the phosphorylation of VPAC2R using 

Western blots at different time of the day, instead. Rhythmic variation in internalization 

or phosphorylation of VPAC2R would indicate the circadian positioning of VPAC2R to 

the membrane, which may be one of the underlying mechanisms of the time-dependent 

phase shifts by VIP.    

 

In addition, we found the strong VPAC2R staining in the dorsomedial SCN, and the 

relatively weak staining in ventrolateral SCN. In the medial SCN, it was notable that the 

moderate staining at the center was surrounded by a circle of strong VPAC2R 

immunostaining. Interestingly, neurons in the center of the SCN exclusively express a 
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neuropeptide, calbindin in hamster (Antle & Silver 2005), and it is possible that 

calbindin-expressing neurons have weak VPAC2R expression. Also, we have not 

quantified how much AVP-ergic and VIP-ergic neurons contribute to the VPAC2R 

expressing populations. Since different neuropeptides have various functions inside and 

of the output of the SCN (Antle & Silver 2005), it is worthwhile to characterize the 

VPAC2R expression in different neuropeptidergic cells. We will count the cells 

expressing different neuropeptides including AVP and VIP, besides, monitoring their 

VPAC2R expression in dispersed SCN cultures.  

 

Finally, we will identify the light-mediated regulations of VPAC2R. Since VIP release is 

induced by the light in the SCN (Shinohara et al. 1993), VPAC2R expression may be 

also regulated by light. Recently, it was shown that constant light causes arrhythmic 

behavior and desynchrony among the SCN (Ohta et al. 2005), and now we have evidence 

that VIP modulates these events. These results suggest that VIP or VPAC2R may be 

depleted in constant light, phenocopying Vip-/- or Vipr2-/- mice. To test this possibility, 

we will house mice in light tight chamber, collect their brains after two different light 

protocols, a light pulse in constant darkness or the constant light, and measure their VIP- 

or VPAC2R immunoreactivity in the SCN.   

 

In summary, we screened several antibodies against VPAC2R, and discovered an 

antibody specific to VPAC2R. Due to the lack of a specific antibody, the anatomical 

characterization of VPAC2R has not been extensively studied. Using the antibody, we 
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identified spatiotemporal expression of VPAC2R in SCN tissues and individual neurons, 

and hope to examine the three possibilities near future.   
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