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ABSTRACT OF THE DISSERTATION 

 

Calcium-Stimulated Adenylyl Cyclases are Critical Modulators of Fear Learning and 

Experience-Dependent Plasticity 

by 

Lindsay Ann Wieczorek 

Doctor of Philosophy in Biology and Biomedical Sciences  

(Neurosciences) 

Washington University in St. Louis, 2012 

Professors Louis J. Muglia and Timothy E. Holy, Chairpersons 

 

Stress can exacerbate psychiatric disease, often resulting in cognitive deficits.  

Consequently, a better understanding of what modulates stress-facilitated memory 

processing will help identify new targets for possible therapeutic intervention.  Recent 

evidence suggests a role of the Ca2+-stimulated adenylyl cyclases (AC), AC1 and AC8, in 

modulating fear memory.  Ca2+-stimulated AC activity couples neuronal activity and 

intracellular Ca2+ increases to the production of cAMP, and therefore, can very tightly 

regulate signal transduction after learning; yet, the details by which this occurs are not 

well understood.  In this dissertation, I first investigated the temporal and regional 

importance of Ca2+-stimulated AC activity during different stages of memory processing 

using the tetracycline-off system, which allowed me to produce AC8 Rescue mice with 

forebrain-specific inducible expression of AC8 on an AC1 and AC8 double knockout 

(DKO) background.  The results showed that forebrain Ca2+-stimulated AC activity was 
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necessary to modulate long-term memory on several learning paradigms, and more 

specifically, that it was necessary during memory consolidation and retention.  This 

finding is further supported by an overall decrease in transcriptional changes in DKO 

mice across several time points after conditioned fear (CF) learning, but most strikingly, 

at periods when memory consolidation and retention should be occurring.  Since 

transcriptional changes are often dictated by synaptic activity and AC1 and AC8 are both 

localized at the synapse, I examined synaptic activity in DKO mice.  Initial analysis of 

synaptic protein abundance in hippocampal cell cultures revealed decreased SV2 levels in 

DKO mice, but this can be rescued by infection with an AC8 lentivirus.  Moreover, DKO 

mice also display synaptic deficits after learning as measured by p-synapsin.  The CA1 

LTP results coincide with the above data as DKO mice, but not AC8 Rescue mice, show 

impaired LTP.  Finally, WT mice show changes in CF memory strength that is dependent 

on prior environmental exposure, but DKO mice do not, suggesting that Ca2+-stimulated 

AC activity modulates plasticity at the behavioral level as well.  From these studies, I 

have observed a critical role for Ca2+-stimulated AC activity in modulating the 

consolidation and retention of fear memory and experience-dependent plasticity. 
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Adaptation in the presence of physical or psychological stress determines the ability of 

one to cope effectively with a stress challenge.  The inability to adapt appropriately to 

stress often precipitates psychiatric diseases or medical conditions (1, 2).  Associated 

with many of these diseases are cognitive deficits (3-6).  Therefore, understanding the 

molecular mechanisms that are involved in the response to stress and precipitate these 

cognitive deficits is essential for the design of effective therapeutic agents.   

Many mediators of cognitive deficits have been implicated in mouse models, 

including the Ca2+-stimulated adenylyl cyclase (AC) pathway being one.  There are two 

Ca2+-stimulated ACs: AC1 and AC8, which are both highly conserved making them 

likely modulators of cognitive deficits in humans as they are in mouse.  Bipolar disorder 

is often associated with cognitive impairments.  The human genome region, 8q24, has 

been linked to bipolar disorder (7), which is homologous to mouse chromosome 15, 

where AC8 is located (8).  Moreover, avoidance behavior, a characteristic trait of mood 

disorders, was genetically mapped to mouse chromosome 15 through quantitative trait 

loci analysis.  This behavior was significantly reduced by chronic infusion of the human 

mood stabilizer, carbamazepine, which acts via AC activity (9).  Additionally, 

Alzheimer’s disease, whose hallmark symptom is cognitive decline, has been linked with 

significant decreases in AC1 activity and a trend for a decrease in AC8 activity (10, 11).  

The human research above suggests a possible role for Ca2+-stimulated AC activity in 

modulating cognitive impairment.      

Ca2+-stimulated AC signaling 

 There are 10 mammalian isoforms of AC, which have been cloned, with nine 

membrane bound forms and one soluble form (12).  Of the 10 isoforms, two are Ca2+-
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stimulated, AC1 and AC8.  Structurally, they both have similar membrane topology, 

which consists of two six-transmembrane domains (M1 and M2) and two cytoplasmic 

domains (C1 and C2) with the total size ranging from 120 to 140 kD (13) (Figure 1).   

Activation of AC1 and AC8 via Ca2+ occurs through Ca2+ binding to calmodulin (14, 15) 

(CaM).  The Ca2+/CaM complex activation of the ACs catalyzes the conversion of ATP 

to cyclic adenosine monophosphate (cAMP).   Both AC1 and AC8 are also positively 

regulated by Gsα receptors in vitro in membrane preps.  In vivo, however, Gsα only 

activates AC1, not AC8, and this occurs only when AC1 is already stimulated by Ca2+ to 

create a synergistic effect (16, 17).  Moreover, Giα inhibits AC1 with no affect on AC8 

(17).  This process allows the Ca2+-stimulated ACs to tightly couple neuronal activity and 

intracellular Ca2+ increases to the production of cAMP, which can modulate a multitude 

of diverse processes, such as, neurogenesis, synaptic plasticity, and memory.  

 

Figure 1.  Schematic of Ca2+-stimulated adenylyl cyclase signaling.  The influx of Ca2+binds to 
CaM, activating AC1 or AC8, which in turn catalyzes the conversion of ATP to cAMP.  cAMP is 
a second messenger that activates a variety of signaling cascades.  AC1 can also by 
synergistically activated by G protein-coupled receptors.  Figure adapted from Ferguson & Storm, 
2004, Physiology; AC = adenylyl cyclase, cAMP = cyclic adenosine monophosphate, CaM = 
calmodulin, M1 & M2 = transmembrane domains, C1 & C2 = cytoplasmic domains 
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Although AC1 and AC8 are structurally fairly similar, they differ in their spatial 

distribution and functional characteristics, suggesting Ca2+-stimulated ACs possess 

diverse roles.  In the adult brain, expression of AC1 is found in the cerebellum, olfactory 

bulb, cortex, dentate gyrus of the hippocampus, pineal gland and thalamus (18-22), while 

expression of AC8 mRNA is found in the cerebellum, olfactory bulb, cortex, thalamus, 

CA1 of the hippocampus, amygdala, and hypothalamus (14, 21, 23-25).  The localization 

of AC8 to the hypothalamus suggests that it may play a key role in neuroendocrine 

processing, such as the processing of stress (24, 25).  Moreover, both AC1 and AC8 

mRNA are found in the amygdala of neonatal brains, supporting a developmental role of 

the ACs in the stress response (21).  Synaptosome fraction analysis reveals further 

distinctions in the cellular localization.  Both AC1 and AC8 expression is found in the 

extrasynaptic fraction, while only AC1 is found in the postsynaptic density and AC8 in 

the presynaptic active zone (22).   Furthermore, AC1 and AC8 express different 

sensitivities to Ca2+ with AC1 traditionally thought to be approximately 5 times more 

sensitive; although, more recent in vivo findings are suggesting that these differences may 

not be so large (19, 26, 27).   Collectively, the regional and functional characteristics of 

AC1 and AC8 suggest that they are likely activated by synaptic activity, and therefore, 

may in turn modulate synaptic function, such as the processing of memories.  

Ca2+-stimulated AC signaling: Long-term potentiation and long-term depression 

 Genetic mouse models with deletions of AC1 and/or AC8 have begun to help 

elucidate the functional roles these enzymes may play at the synapse.  Long-term 

potentiation (LTP) and long-term depression (LTD) are activity-dependent changes in 

synaptic efficacy that reflect long-term molecular changes that occur at the synapse.  LTP 
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and LTD are often viewed as a loose physiological correlates to learning and memory due 

to shared cellular and molecular events.  Ca2+-stimulated AC single knockout mice, 

AC1KO or AC8KO, show impairments in a variety of different types of LTP; however, 

they also display some intact physiological measures of LTP, which suggests that there 

may be some functional redundancy between the two ACs or the different types of LTP 

measured are not solely Ca2+-stimulated AC-dependent.  Both AC1KO and AC8KO mice 

demonstrate comparable levels of LTP at the Schaeffer collateral-CA1 synapse relative to 

WT mice; however, AC8KO mice show a slight reduction over time relative to AC1KO 

mice (27).  This is not surprising considering AC8 expression is localized specifically to 

the CA1 of the hippocampus.  Moreover, genetic deletion of both AC1 and AC8 (DKO) 

leads to a significantly dampened LTP response (27), while overexpression of AC1 (AC1 

OE) enhances CA1 LTP (28).   

Both AC1KO (29) and AC8KO (30) mice show impaired LTP in mossy fibers, 

which connects the dentate gyrus to the CA3 of the hippocampus.  Again, this correlates 

well with the localization of the ACs as AC1 is localized to the dentate gyrus.  AC8, 

while not abundant in the mossy fiber tract, is found specifically localized to the 

presynaptic zone.  Mossy fiber LTP has been shown to be dependent on presynaptic Ca2+ 

and cAMP-dependent protein kinase (PKA) activity, and this may allow AC8 to 

influence mossy fiber LTP more readily despite its low expression in this region (31).  

Forskolin treatment to AC1KO (29) or DKO (27) mice rescued both mossy fiber LTP and 

CA1 LTP, respectively, suggesting no deficits in downstream signaling arise from 

knocking out one or both Ca2+-stimulated ACs.   
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 Finally, LTD in the CA1 of the hippocampus is impaired in AC8KO mice (25), 

and consequently, DKO mice as well (32).  LTD is often measured after stress exposure 

as it is consistently enhanced with exposure to a physical or psychological stressor (33, 

34).  The impairment in LTD of AC8KO mice again supports the theory that specifically 

AC8 may play a role in modulating stress-induced changes, particularly stress-induced 

learning changes.   

Ca2+-stimulated AC signaling: Learning and memory 

 LTP and LTD are electrophysiological models for long-lasting changes that occur 

at the synapse.  Consequently, the above studies provide insights into the molecular and 

cellular events contributing to the learning and memory changes seen in Ca2+-stimulated 

AC genetic models to be discussed below.  The original Ca2+-stimulated AC genetic 

models were Drosophila mutants—all of which demonstrate some form of memory-like 

deficit: Dunce, encodes a cAMP phosphodiesterase (35); DCO, encodes a cAMP-

dependent protein kinase (36); amnesiac, encodes a putative AC-activating peptide (37); 

and rutabaga, encodes a Ca2+-stimulated AC (38).   More recently, murine transgenic 

models have been generated that highlight the importance of Ca2+-stimulated AC activity 

in modulating learning and memory.  DKO mice demonstrate memory impairments on 

stress-facilitated learning, such as the conditioned fear (CF) and passive avoidance 

paradigms, but AC1KO or AC8KO mice show intact memory (27).  The results suggest 

some functional redundancy of AC1 and AC8.  Despite the ability of AC1 or AC8 to 

compensate for the absence of the other on the CF or passive avoidance tasks, Ca2+-

stimulated AC single knockout mice show contrasting memory results on the Morris 

water maze, suggesting that each AC isoform also has a unique role.  For example, 
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AC1KO mice display impairment in reference memory on the Morris water maze (39), 

while AC8KO mice show intact memory (40).   

 Ca2+-stimulated AC single and double knockout mice show memory impairments 

on a variety of other learning paradigm, displaying their diverse and necessary role in 

modulating memory processing.  AC8KO mice demonstrate memory deficits on a novel 

objection recognition task (40), and as expected, so do DKO mice (28).  Moreover, DKO 

mice display an impairment on the Morris water maze, but the impairment could be 

attenuated by overtraining and a shorter intertrial interval (32).  Moreover, if mice are 

then asked to suppress their old memory and acquire a new memory using a reversal task 

on the Morris water maze, both AC8KO (40) and DKO (32) mice now show 

impairments.  Conversely, overexpression of Ca2+-stimulated AC activity can enhance 

memory. AC1 OE mice have both enhanced novel object (28) and social recognition 

memory (41).  Over time, though, overexpression of Ca2+-stimulated AC activity appears 

to be deleterious as aged AC1 OE mice display impairment in consolidation of spatial 

memory as measured by the Barnes maze memory test (41).  Thus, the above data 

support the ability of Ca2+-stimulated AC activity to tightly regulate memory processing, 

and subtle changes in activity levels, can impair or enhance memory. 

Although the Ca2+-stimulated ACs have been clearly implicated in modulating 

memory processing, it should be noted that AC8 appears to play a role in modulating 

anxiety, which could contribute to the memory results found above.  AC8KO mice show 

normal levels of anxiety as measured on the open field and elevated plus maze; however, 

AC8KO mice show reduced anxiety when subjected to repeated stress (25, 42).  This 

reduced response to stress may contribute to the CF or passive avoidance deficits seen in 
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DKO mice as they may process the stress of a shock differently than WT mice.  Pain 

could be another potent contributor to memory differences seen in WT and DKO mice on 

these task as the shock may be differentially perceived by both lines.  Both AC1 and AC8 

are found in the anterior cingulate cortex, an area known to mediate the emotional 

component of pain.  While DKO mice show normal levels of acute pain, they show 

reduced responses to formalin and complete Freund’s adjuvant; although, this seems to 

be largely mediated by AC1, and not AC8, based on single knockout results (43).  The 

pain differences, however, are most likely not contributing to changes in memory as the 

application of a shock is more similar to an acute pain response than an inflammatory 

stimulus response.  Collectively, the memory results detailed above cannot be interpreted 

without considering the effect Ca2+-stimulated AC activity has on anxiety and pain.   

Ca2+-stimulated AC signaling: Downstream targets after learning 

Although Ca2+-stimulated AC activity has been implicated in modulating memory 

processing, the downstream mechanism by which this occurs has still not been well 

elucidated.  The most well classified cAMP effector is PKA.  The holoenzyme is 

composed of four subunits: two regulatory subunits and two catalytic subunits.  PKA 

remains in an inactive state until cAMP binds to the PKA regulatory subunits, which 

results in the dissociation of the PKA catalytic subunits, resulting in subsequent 

phosphorylation of PKA substrates (44).  In response to learning, PKA has been 

implicated in readily phosphorylating the mitogen-activate protein kinase/extracellular 

signal-regulate kinase (MAPK/ERK) pathway, which in turn, causes the translocation of 

MAPK into the nucleus and subsequent activation of the cAMP response element binding 

protein (CREB).  More recently, phosphorylated (p) levels of ERK were shown to 
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increase 30 min after CF training in WT, but not DKO, mice.  Moreover, PKA, MAPK 

and CREB were all found to coactivate in a subset of hippocampal CA1 pyramidal 

neurons after CF training, and this was significantly impaired in DKO mice (45).  As a 

preliminary analysis, I sought to recapitulate this finding in the hippocampus of DKO 

mice as well as look at a novel region, the amygdala, because both regions are known to 

be critical for modulating CF learning (46) (Figure 2).  I found no significant differences 

in protein levels between WT and DKO mice in either brain region.  It should be noted 

that I looked at 1 h and not 30 min, because an initial study we conducted in WT mice 

showed the largest rise in pERK occurred 1 h after CF training, which coincides with 

previous studies (47, 48).  Although the previous data and my results may both be valid 

due to variations in protocols, it appears that activation of the MAPK/ERK pathway may 

not be the most significant downstream mediator differentially influenced after CF 

memory by the absence of Ca2+-stimulated AC activity.   

Additional data suggests that epigenetic changes, which can have profound long-

lasting influences on memory, occur in the dentate gyrus granule neurons through 

NMDA receptor activation after training on a forced swim learning paradigm or exposure 

to a novel environment (49, 50).  DKO mice show impairments on the forced swim 

learning paradigm (discussed in Chapter 2) as well as variations in response to stress 

exposure as described above.  Moreover, the data highly suggest that AC1 and AC8 are 

activated by the influx of Ca2+ through NMDA receptors.  Therefore, the Ca2+-stimulated 

ACs may be downstream targets that regulate the epigenetic changes seen after learning 

or stress exposure.  The specific epigenetic mechanism found to increase is the  
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Figure 2.  DKO mice show no differences in pPKA or pERK after CF training.  DKO protein 
levels of A) pPKA and B) pERK are not significantly different than WT protein levels 1 h after 
CF training in the hippocampus or amygdala as detected by Western blot analysis in nuclear 
preps. Each lane represents 10 pooled samples.  WT = wildtype, DKO = AC1/8 double knockout, 
B = baseline, CF = conditioned fear  
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Figure 3.  DKO mice display no differences in phospho-acetylation of histone H3 expression 
after CF or forced swim learning. The number of positive p(Ser10)-Ac(Lys14)-H3 neurons in 
the dentate gyrus is similar between WT and DKO mice after A) CF and B) forced swim training. 
* p < 0.05 relative to respective control, # p < 0.06 relative to respective control; Con = context, 
Shock = context + shock, FS = forced swim; data gathered in collaboration with H.J.M. Reul 
 
 

 
 
Figure 4. DKO mice display no differences in c-fos expression after CF or forced swim 
learning. The number of positive c-fos neurons in the CA3 and dentate gyrus is similar between 
WT and DKO mice after A) CF and B) forced swim training. * p < 0.05 relative to respective 
control, $ p < 0.05 relative to respective Con group; Con = context, Shock = context + shock, FS 
= forced swim; data gathered in collaboration with H.J.M. Reul 

A) 

B) 
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phosphorylation (at Serine-10) and phospho-acetylation (at Serine-10/Lysine-14) of 

histone H3 (p(Ser10)-Ac(Lys14)-H3).  Additionally, c-fos, an immediate early gene, was 

shown to be upregulated and colocalize with p(Ser10)-Ac(Lys14)-H3 positive neurons.  

Therefore, I looked at p(Ser10)-Ac(Lys14)-H3 and c-fos levels after both exposure to a 

novel context (con) as well as a novel context plus a shock (shock) in an effort to 

simulate the CF training procedure (Figure 3A and 4A).  I also looked at p(Ser10)-

Ac(Lys14)-H3 and c-fos after forced swim training (Figure 3B and 4B).  The results 

demonstrate that WT and DKO mice show a similar number of positive p(Ser10)-

Ac(Lys14)-H3 and c-fos neurons.  This first suggests that epigenetic changes, or at least 

specific changes in p(Ser10)-Ac(Lys14)-H3, are likely not being targeted downstream of  

the Ca2+-stimulated ACs to regulate the differences in learning between WT and DKO 

mice.  Moreover, the lack of difference in c-fos, which is an immediate-early gene known 

to increase rapidly and transiently in response to numerous stimuli, suggests that there 

may be other compensatory mechanisms that are able to initially compensate for the lack 

of Ca2+-stimulated AC activity. 

 Herein, I dissect the importance of Ca2+-stimulated AC activity on learning and 

memory.  Through use of a tetracycline-inducible transgenic mouse model, I am able to 

turn AC8 on or off in the forebrain of mice on a DKO background (AC8 Rescue mice).  

It should be noted that the AC8 transgene used in the AC8 Rescue mice is not the full 

length (refer to Chapter 2, Figure 1B), but rather, a normally occurring splice variant.  

There are three isoforms of the mouse AC8 gene with exons 8 and 11 corresponding to 

the regions deleted in the previously characterized splice variants C and B, respectively, 
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in the rat (14, 24).  The AC8 Rescue mice are missing exon 11, which contains a 

glycosylation site.  RT-PCR analysis of isolated mouse brain regions demonstrate that all 

three isoforms are distributed similarly (24) and that the EC50 for activation of splice 

variant C by Ca2+/CaM is similar to the full length AC8 gene (14);  therefore, it appears 

as if the splice variant present in AC8 Rescue mice functions similarly to the full length 

AC8 gene.  

 Using DKO and AC8 Rescue mice, DKO and AC8 Rescue mice, I examined the 

importance of Ca2+-stimulated AC activity on memory processing, particularly focusing 

on fear learning using the CF paradigm.  I was able to analyze the necessity of this 

activity at different time points after learning, coinciding with different stages of memory 

processing (Chapter 2).  Moreover, I looked at one mechanism by which Ca2+-stimulated 

AC activity may influence more long-term memory changes by analyzing global gene 

expression via microarray analysis (Chapter 3).  Because transcription is a necessary 

process for long-term synaptic plasticity changes, we also examined Ca2+-stimulated AC 

activity’s role on synaptic plasticity.  Finally, we analyzed whether Ca2+-stimulated AC 

activity contributes to synaptic plasticity changes at the behavioral level by looking at 

experience-dependent fear memory (Chapter 4).  The work in these chapters presents an 

important analysis of the Ca2+-stimulated AC pathway and how it modulates learning and 

memory.    
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CHAPTER 2 

 

The regional and temporal role of Ca2+-stimulated adenylyl 

cyclase activity during learning and memory 

(as partially published in Wieczorek et al. PLoS One. 2010 Oct 14; 5(10):e13385) 
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INTRODUCTION 

 Ca2+-stimulated adenylyl cyclases (AC), AC1 and AC8, link activity-dependent 

increases in intracellular Ca2+ to the production of cAMP, which allows them to play a 

critical role in long-term memory.  Seminal research in invertebrate models has shown a 

role of Ca2+-stimulated AC activity in modulating learning and memory.  Drosophila 

mutants having mutations in this signaling pathway all show some form of memory-like 

deficit: Dunce, encodes a cAMP phosphodiesterase (1); DCO, encodes a cAMP-

dependent protein kinase (2); amnesiac, encodes a putative AC-activating peptide (3); 

and rutabaga, encodes a Ca2+-stimulated AC (4).  Additionally, cAMP-dependent protein 

kinase (PKA) contributes to short- and long-term synaptic changes in mechanosensory 

neurons of Aplysia (5).  

More recently, research has shown a role for Ca2+-stimulated AC activity specifically 

in stress-facilitated learning and memory.  The generation of transgenic mouse models 

that have alterations in Ca2+-stimulated AC activity was pivotal to this finding (6, 7).  

Double knockout (DKO) mice, which lack both AC1 and AC8, show behavioral deficits 

on a variety of stress-facilitated learning paradigms, such as passive avoidance and 

conditioned fear (CF) (6).  However, AC1 (AC1KO) and AC8 (AC8KO) single knockout 

mice show intact learning on passive avoidance and CF (6), which implies that loss of 

just one Ca2+-stimulated AC in these paradigms is not sufficient for memory loss.  

Conversely, memory can be enhanced by overexpressing Ca2+-stimulated AC activity as 

mice overexpressing AC1 in the forebrain show slower rates of extinction for contextual 

CF (8).  Additionally, previous literature has shown that AC8KO mice show reduced 

stress-facilitated anxiety (7, 9).  The data implies that AC1 and AC8 may both have 



  24 

converging and distinct roles regulating neuronal activity.  Therefore, we propose to look 

at Ca2+-stimulated AC activity by modulating overall expression levels, but have to note 

that modulation of one particular Ca2+-stimulated AC activity may not necessarily reflect 

all Ca2+-stimulated AC activity as AC8 may differentially modulate stress-facilitated 

memory as compared to AC1.  

We examine the temporal and regional importance of Ca2+-stimulated AC activity on 

learning and memory, particularly stress-facilitated memory.  We have generated a 

unique line of mice that uses a tetracycline-inducible system to rescue forebrain AC8 

expression in mice on a DKO background (AC8 Rescue mice).  This allows us to assess 

forebrain-specific Ca2+-stimulated AC activity.  Additionally, the ability to turn AC8 on 

or off allows us to establish its role at different stages of memory.  The results show that 

forebrain Ca2+-stimulated AC activity is necessary during stress-facilitated memory 

consolidation and retention.   
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MATERIALS AND METHODS 

Animals. All mouse protocols were in accordance with National Institutes of Health 

guidelines and were approved by the Animal Care and Use Committees of Washington 

University School of Medicine (St. Louis, MO) (protocol approval #20080030).  Mice 

were housed on a 12 h/12 h light/dark cycle with ad libitum access to rodent chow and 

water. For control of the inducible tetracycline-off system, mice were either fed 

doxycycline chow (200 mg doxycycline/1 kg; Research Diets) to repress transgene 

expression or fed normal rodent chow to permit transgene expression. 

DKO (10, 11), AC1KO (11) and AC8KO (7) mice were generated as previously 

described.  To produce forebrain-specific, inducible AC8 expression mice (AC8 Rescue) 

on a DKO background, a tetracycline-off system was used to allow for temporal control 

over AC8 cDNA expression.  The tetracycline-off system is based on the interaction of a 

tetracycline transactivator (tTA) with a tetracycline-responsive element (tetop) (12-14).  

In the presence of tetracycline or doxycycline, tTA loses its ability to bind tetop and 

expression is turned off.  In our system, we have inserted AC8 cDNA under the control of 

a tetracycline-responsive CMV minimal promoter, generating tetop-AC8 mice.  The 

linearized sequence was microinjected in C57Bl/6 oocytes and founder lines were 

identified.  To confirm that the founder lines were capable of inducible AC8 cDNA 

expression, they were mated with tTAluc mice (15), which express tTA in many tissues 

with no detectable endogenous AC8 expression, allowing us to establish that the 

transgene was expressed (data not shown).  Once inducible expression of the AC8 cDNA 

was established, mice were mated with CaMKII-tTA mice (CaMKII-tTA mice from 

Jackson Laboratories) (16), which have tTA under control of the CaMKII forebrain-
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specific promoter.   CaMKII-tTA and tetop-AC8 mice were then mated to DKO mice to 

generate AC8 Rescue mice.  Each separate line was maintained on an inbred C57BL/6 

background.  All AC8 Rescue matings were on doxycycline and pups were kept on 

doxycycline until weaned at 21 days to keep AC8 off during development, which allows 

us to truly assess the learning changes that result from acutely replacing Ca2+-stimulated 

AC activity in the forebrain of developed DKO mice.  DKO mice used in the present 

studies were mice positive for the tetop-AC8 transgene or CaMKII-tTA transgene alone 

or wild-type littermates of the AC8 Rescue mice.  C57Bl/6 were used as non-littermate 

control mice (WT). 

Immunohistochemistry.  Tissue slices were stained for AC8 as described previously 

(17).  Briefly, mice were anesthetized and transcardially perfused with 4% 

paraformaldehyde.  Frozen tissue was cut at 30 µm and sections were incubated in goat 

anti-AC8 antibody (1:400, Santa Cruz Biotechnology) overnight at 4°C.  Sections were 

then incubated with a biotinylated rabbit anti-goat secondary antibody (Vector Labs) at 

1:800 for 1 hr. Biotin was detected with diaminobenzidine and sections were slide 

mounted with DAPI, a nuclear stain. All images were obtained using matched settings 

between genotypes on an Olympus BX60 fluorescent microscope equipped with 

Axiovision software.  Images were prepared using Adobe Photoshop. 

Western blot analysis.  AC8 protein levels were assessed in mice at various time points 

after doxycycline treatment as described previously (17).  Briefly, mice were killed by 

CO2 inhalation and the brains rapidly removed. Subregions were dissected on ice, snap 

frozen in liquid nitrogen and stored at −80°C.  Frozen tissues were homogenized with a 

lysis buffer containing a protease inhibitor and phosphatase cocktail and protein 



  27 

concentration was determined by the BCA assay (Pierce Biotechnology).  For AC8 

detection, 20µg of membrane extract from each region was separated by 4–12% SDS-

PAGE, transferred to nitrocellulose membrane and immunoblotted with goat anti-AC8 

antibody (1:500, Santa Cruz Biotechnology) overnight at 4°C.  Equal protein loading 

conditions were verified by immunodetection for mouse anti-binding protein (BiP) in all 

samples.  Signals were detected using an anti-goat HRP-conjugated secondary antibody, 

and visualized using chemiluminescence (SuperSignal WestDura; Pierce Biotechnology). 

Adenylyl cyclase assay.  Brain regions were excised from WT, DKO, and AC8 Rescue 

mice and assayed for AC activity as previously described (18).  Free Ca2+ concentrations 

were calculated using the Bound and Determined computer algorithm (19).  AC activity 

levels are the means of triplicate samples.  Protein concentration in the cell membranes 

was determined as previously described (20). 

Behavioral analysis.  An observer blinded to genotype performed all behavioral 

analysis.  Behavioral experiments were conducted 2-5 hr after lights on.  Male mice ages 

2-4 mo were used for all behavioral experiments, except for the first CF experiment, 

where male and female mice ages 2-8 mo were used.  All mice were on a C57Bl/6 inbred 

background. 

 Conditioned Fear.  Cognitive skills were evaluated using a test of Pavlovian fear 

conditioning.  The CF chamber was a standard grid box (20.3 x 15.9 x 10.0 cm; Med 

Associates) with a small vial of coconut oil, which served as an olfactory cue.  During CF 

training, mice were put in the chamber for 2 min to assess basal (pretraining) freezing 

levels, followed by 28 sec of white noise and a 2 sec 0.7 mA foot shock (white noise was 

used for cued CF but data is not shown). Subsequently, postshock (posttraining) 
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exploration was monitored for an additional 2 min.  Freezing was monitored in 5 sec 

bins.  Graphs express the percent freezing over the course of a testing period.  1 wk, 1 mo 

and 1.5 mo after training, mice were put back in the original training chamber to assess 

contextual CF memory. Freezing was monitored as before for 5 min.  Doxycycline was 

given or removed for at least 2 wk, in most cases a month, in between testing to allow for 

AC8 expression to be turned on or off effectively. 

 2 Day Forced Swim.  Forced swim was used as a test of stress-facilitated learning 

as described previously (21, 22).  Briefly, mice were placed in a 2 L beaker filled 1.5 L 

high with room temperature (25°C) water for 10 min (Day 1).  24 h later (Day 2), mice 

were placed in a beaker with the same conditions for 5 min.  Testing sessions were video 

recorded and immobility behavior was scored by assessing the time during which the 

animal is floating in a relatively immobile position with no limb movement apart from an 

occasional leg movement to maintain the head above the water.  Behavior was scored 

during the first 5 min of testing on Day 1 and Day 2.            

 Elevated Plus Maze.  Similar procedures as previously described (7) were followed 

to measure anxiety on the elevated plus maze (EPM), but briefly, mice were placed in a 

dimly lit room (12 lux) and allowed to roam freely on the EPM for 5 min/day for 3 days.  

The Anymaze capture system (Stoelting) was used to record and analyze the performance 

of mice.  The percent time spent in the open arm was measured as open arm time/(open 

arm time + closed arm time).      

 Open Field.  Anxiety and locomotion was assessed using an open field apparatus.  

The open field apparatus consisted of a Plexiglass box (75 x 75 x 30 cm).  Each mouse 

was placed in the corner of an open field.  Each trial lasted for 5 min with 1 trial per 
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mouse.  The maze was rinsed with 70% ethanol between sessions.  Anxiety was assessed 

by the time spent in the center squares (15 x 15 cm/square) versus the peripheral squares.  

Locomotion was assessed by the total number of grid crossings within the 5 min trial 

period.  

 Pain Threshold.  Mice were placed in a CF chamber (as detailed above).  An 

ascending series of mild foot shocks was delivered through the grid floor of the CF 

chamber.  The shocks were 1 sec in duration and intensities as follows: 0.08, 0.1, 0.2, 

0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, and 0.7 mA.  There was an interstimulus 

interval of 30 sec and the intensities at which the mouse a) flinched, b) ran/jumped, and 

c) vocalized were recorded.  The session was terminated immediately following the first 

vocalization.     

 Novel Object Recognition.  The mice were habituated to the testing chamber for 4 

hr before training.  Following habituation, two different shaped blocks were presented 

during a 10 min training session.  Testing occurred 90 min later with mice being 

presented with one familiar object from training and one novel object for 5 min.  Memory 

was assessed by measuring object preference using the discrimination ratio (novel object 

interaction/total object interaction).  A mouse was classified as interacting with an object 

if it approached or sniffed the object. Trials were videotaped (Sony mini-DV camera) and 

scored off-line. 

Data analysis. Results are expressed as the mean ± SEM.  Student's t-test was used to 

compare pairs of means.  In cases with multiple conditions, a two-way ANOVA was used 

followed by Bonferroni post hoc tests when appropriate.  A one-way ANOVA was used 

for single condition analysis followed by Tukey’s Multiple Comparison post hoc tests 
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when appropriate.  For forced swim and novel object recognition, a one sample t-test was 

run to assess whether the percent immobility difference from Day 1 to Day 2 was 

different from 0 and whether the percent interaction with an object was different from 

chance (50%), respectively.  A p-value of ≤ 0.05 was considered statistically significant.  

All statistical comparisons were done with Prism 4 software (GraphPad). 
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RESULTS 

Generation of AC8 Rescue mice 

To functionally test the temporal role of AC activity during CF learning, we 

restored Ca2+-stimulated AC function at different time points during behavioral testing 

with a transgenic model of AC8 expression.  We generated a system where AC8 is 

expressed in the forebrain of mice on a DKO background (AC8 Rescue mice).   We used 

a doxycycline-regulated system (e.g. tetracycline-off system) to restore AC8 expression 

in a temporally regulated fashion.  Figure 1A shows the protein distribution of AC8 

within WT and DKO mice.  Consistent with previous reports, AC8 is localized to the 

cortex, thalamus, hippocampus, and cerebellum (7).  AC8 Rescue mice display AC8 

expression within forebrain specific regions, but not within the thalamus or hindbrain.   

We find that AC8 expression begins to turn on two weeks after taking mice off 

doxycycline, and conversely, AC8 expression is turned off completely after 2 wk on 

doxycycline (Figure 1B).  We measured Ca2+-stimulated AC activity in the cortex (Figure 

1C) and hippocampus (Figure 1D) to determine the magnitude of physiological 

replacement in AC8 Rescue mice.  Although expression of AC8 protein in the AC8 

Rescue mice appears higher than what is present endogenously within the WT mice 

(Figure 1A), we found that that overall Ca2+-stimulated AC activity was recovered to 

approximately 50% and 30% of WT levels in the cortex (Figure 1C) and hippocampus 

(Figure 1D), respectively.  As shown previously (10), DKO mice have no measurable  

Ca2+-stimulated AC activity.  Importantly, AC8 Rescue mice on doxycycline show no 

Ca2+-stimulated AC activity, confirming that doxycycline efficiently represses AC8 

transgene expression. 
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Figure 1. Generation of inducible forebrain-specific AC8 mice on a DKO background.                    
(A) Immunohistochemistry results confirm complete absence of AC8 protein levels in DKO mice, while 
AC8 Rescue mice have AC8 replaced within forebrain-specific regions but not in the hindbrain or 
thalamus.  (B) Using doxycycline to manipulate AC8 expression within the forebrain, we observed AC8 
expression after 2 wk off doxycycline.  In contrast, expression begins to rapidly turn off within one week 
off doxycycline treatment and is undetectable by 2wk.  Hindbrain results reveal no AC8 expression with or 
without doxycycline treatment.  Bip is used as a loading control.  The adenylyl cyclase assays in the (C) 
cortex (n = 3/genotype) and (D) hippocampus (n = 3/genotype) reveal no Ca2+-stimulated activity in DKO 
mice or AC8 Rescue mice on doxycycline, while activity is rescued to approximately 50% (C) and 30% 
(D) of WT levels in AC8 Rescue mice off doxycycline. 
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Ca2+-stimulated AC activity role in memory processing 

After confirming that our AC8 Rescue system was able to restore AC8 expression 

and activity to the forebrain, we turned AC8 activity on and off at different time points 

throughout CF testing.  We found that acutely restoring AC8 continuously during CF 

training and testing was sufficient to rescue memory deficits seen in DKO mice (Figure 

2B).  However, when the AC8 transgene was repressed during training only, memory is 

impaired (Figure 2C), suggesting that Ca2+-stimulated AC activity is necessary during 

memory consolidation.  Additionally, when AC8 was kept on during training but turned 

off during the retention period, memory was again impaired at 1 mo (Figure 2D). 

To investigate if Ca2+-stimulated AC activity was needed just for retrieval, rather 

than retention, we turned AC8 expression on again and tested mice two weeks later (1.5 

mo after training).   Suggesting that Ca2+-stimulated AC activity is necessary during 

memory retention, we found that AC8 expression for 2 wks after the 1 mo testing session 

was unable to rescue CF memory at 1.5 mo (Figure 2D). 

To assess whether these stress-facilitated learning deficits in DKO mice on the CF 

paradigm can be seen on other stress-facilitated learning paradigms, we assessed 

immobility on a two day forced swim learning paradigm.  Traditionally, the forced swim 

paradigm is a one day test used to assess despair with immobility directly correlating with 

despair.  As Figure 3A and 3B indicate, there are no differences in latency to immobility 

or immobility between WT, DKO and AC8 Rescue mice on Day 1, which suggests 

similar levels of despair.  However, when the test is turned into a two day paradigm, it is 

postulated that the re-test on Day 2 is a measure of a learned, adaptive behavior as the 

mouse learns the situation is inescapable, and therefore, conserves its energy by  
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Figure 2.  Ca2+-stimulated AC activity is necessary for memory consolidation and retention. 
Memory changes are assessed by the overall freezing percentage.  (A) There are no baseline freezing 
changes between the genotypes (no differences in baseline freezing levels between graphs B, C, or D, so 
subjects were combined; p > 0.05).  (B) DKO mice show memory deficits at 1 wk and 1 mo compared to 
WT mice.  AC8 Rescue mice reveal that replacing AC8 expression within the forebrain of DKO mice 
throughout training, retention and testing is sufficient to rescue CF memory deficits (n = 9-11/genotype, *p 
≤ 0.05 AC8 vs DKO).  Turning AC8 off during (C) CF training (n = 8-10, *p ≤ 0.05, AC8 and DKO vs 
WT) or (D) during the retention period (n = 9-11, *p ≤ 0.01, AC8 and DKO vs WT) prevents restoration of 
the memory deficits.  Furthermore, AC8 Rescue mice still show memory deficits after turning AC8 back on 
for 2 wks after having it off since training (n = 9-11, *p ≤ 0.05, AC8 and DKO vs WT).  AC8 on = 
doxycycline off; Symbols: Tr, training; Wk, week; Mo, month 
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Figure 3.  Forebrain expression of AC8 activity is not sufficient to rescue forced swim memory 
deficits in DKO mice. (A) WT mice display a faster latency to immobility on Day 2.  (B) There is a 
significant main effect of genotype and day with WT mice showing a trend towards increased immobility 
relative to DKO and AC8 Rescue mice on Day 2.  (C) Furthermore, the percent difference in immobility 
between Day 2 and Day 1 is significant for WT mice; whereas, DKO and AC8 Rescue mice show no 
significant difference between days (n = 9/genotype, *1-sample t-test immobility percentage is greater than 
0). *p ≤ 0.05 
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remaining immobile (22, 23).  The view that this re-test measures a learned behavior is 

further supported by an increase in phospho-acteylation of histone H3 in the dentate 

gyrus, which is known to regulate transcriptional changes (21).  The data suggests that 

DKO mice fail to learn as exemplified by the lack of difference in immobility between 

Day 1 and Day 2; whereas, WT mice show a significant decrease in latency to immobility 

on Day 2 (Figure 3A) and a significant difference in immobility between Day 1 and Day 

2 (Figure 3C).  Although, the DKO mice once again show deficits in stress-facilitated 

learning as measured on the forced swim learning paradigm, acutely restoring forebrain 

AC8 is not sufficient to restore these deficits as indicated by AC8 Rescue mice showing 

similar results as the DKO mice.   

Although acute forebrain AC8 expression was unable to restore memory deficits 

on the forced swim learning paradigm, we were able to restore memory deficits on a 

relatively unaversive learning paradigm, novel object recognition.  Consistent with 

previous reports (8), DKO mice show no bias for the novel object during the testing trial 

(90 min after training) (Figure 4).  Restoration of AC8 expression in the forebrain of 

DKO mice elicits a response comparable to WT mice. 
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Figure 4.  Ca2+-stimulated AC activity is necessary for intact novel object recognition. The hash mark 
labels the 50% mark, which represents no preference for an object (object preference = novel object 
interaction/total object interaction).  DKO mice show no preference for the novel object when tested 90 min 
after training (object preference is not significantly different than 50%, p > 0.05); however, replacing AC8 
in the forebrain of DKO mice is sufficient to maintain memory. n = 9-10/genotype, *1-sample t-test object 
preference is greater than 50%, p ≤ 0.05 
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Ca2+-stimulated AC activity’s effect on anxiety, locomotion and pain 

To evaluate possible variables that could contribute to the learning results, we 

measured anxiety, locomotor activity and pain between the genotypes.  The first basic 

measurement, which looks at baseline freezing in the CF paradigm, shows no difference 

in freezing between genotypes (Figure 2A).  Next, we measured anxiety on a 3 d EPM 

paradigm between WT and DKO mice (Figure 5) as previous results show that AC8KO 

mice have a decrease in anxiety over time (7).  The present results follow a similar 

pattern as seen in the aforementioned study with DKO mice showing decreased anxiety.  

However, DKO mice show decreased anxiety on Day 1 with no differences on Day 2 or 

3, while the converse is true with AC8KO mice.  We further evaluated anxiety on an 

open-field paradigm (Figure 6A).  Indices of anxiety-like behavior, such as time spent in 

the center vs periphery of the open field, were similar between all three groups, WT (65% 

periphery vs 35% center ± 9.0), DKO (75% periphery vs 25% center ± 2.8) and AC8 

Rescue (75% periphery vs 25% center ± 4.5) mice.  We used the open-field paradigm to 

test locomotion as well.  Locomotion measures were increased (Figure 6B; p = 0.02), as 

assessed by the total number of grid crossings in 5 min, in both the DKO (165 grid 

crossings) and AC8 Rescue mice (166 grid crossings) relative to WT mice (83 grid 

crossings).  However, since AC8 Rescue and DKO mice show different learning 

phenotypes, it is unlikely that the increased locomotion alters interpretation of the 

memory findings.  Basal pain sensation has also been previously studied with no major 

differences seen between WT and DKO mice (24).  We further support this finding by 

showing no differences in qualitative responses to increasing shock intensities (Figure 

6C). 
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Figure 5.  Absence of Ca2+-stimulated AC activity decreases anxiety on the EPM.  DKO mice display 
increased time spent in the open arm on Day 1 relative to WT, which indicates a decrease in anxiety.  This 
difference in anxiety is absent by day 2 and 3. n = 7-8/genotype, *p ≤ 0.05 
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Figure 6.  Assessment of anxiety, locomotion and pain threshold in DKO and AC8 Rescue mice.  (A) 
Indices of anxiety-like behavior, such as time spent in the center vs periphery of the open field, were 
similar between all three groups,. (B) Locomotion measures were increased (*p = 0.02) as assessed by the 
total number of grid crossings in 5 min, in both the DKO and AC8 Rescue mice relative to WT mice. (C) 
DKO mice reacted in a qualitatively similar manner as WT mice to increasing shock intensities.   
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DISCUSSION 

We were able to successfully generate a mouse line that allows temporal 

restoration of forebrain AC8 in mice on a DKO background.  This provides a useful tool 

for beginning to delineate the temporal and regional importance of Ca2+-stimulated AC 

activity on learning and memory.  Past literature supports the theory that Ca2+-stimulated 

AC activity plays a pertinent role in learning and memory.  Although disrupting just one 

of the two Ca2+-stimulated ACs can cause memory impairments (25), data show that AC 

single knockout mice show intact CF behavior while DKO mice show alterations in CF 

behavior (10).  Testing in the CF paradigm reveals that DKO mice have intact memory at 

24 h, but impaired memory at 1 wk.  Moreover, when tested on a novel object recognition 

paradigm, DKO mice have impaired object recognition at 1 h, but not 5 min (8).  Overall, 

these data suggest Ca2+-stimulated AC activity is not necessary for acquisition of a task, 

but necessary for long-term consolidation of a memory and that a single AC (AC1 or 

AC8) can compensate for loss of the other AC.  Our data support these findings as AC8 

Rescue mice that have AC8 turned off during the consolidation CF training period show 

memory impairment, while AC8 transgene expression throughout training and testing 

restores long-term conditioned responses.  Additionally, we recapitulate the novel object 

recognition data with DKO mice showing impairments, but also provide evidence that 

memory can be restored if AC8 expression is turned on in the forebrain before training.  

Overall, the above data suggests that Ca2+-stimulated AC activity is necessary for the 

consolidation of memory elicited by both an aversive and non-aversive stimulus.  

The forced swim learning paradigm used in this study demonstrates that acute 

restoration of forebrain AC8 is not sufficient to rescue memory deficits in DKO mice on 
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all stress-facilitated learning paradigms.  AC8 Rescue mice showed the same deficits as 

DKO mice.  The literature supports the concept that differential circuitry is involved in 

the processing of different stressors (26), and therefore, the forced swim and CF learning 

paradigms may be processed differentially based on the stress response elicited.  This 

suggests that Ca2+-stimulated AC activity during development may be necessary for 

intact forced swim memory, or the results may highlight the differential role or regional 

localization of AC1 and AC8.   

Not only is memory consolidation impaired in DKO mice, but memory retention 

is as well.  This is evident when Ca2+-stimulated AC activity is turned off in AC8 Rescue 

mice after CF training.  These mice fail to show a normal conditioned response when 

tested 1 wk after training.  These data are in apparent conflict with analysis of passive 

avoidance behavior in DKO mice.  DKO mice exhibit impaired passive avoidance 

behavior that can be restored with a single administration of forskolin into the 

hippocampus of DKO mice 15 min prior to training, even when memory testing occurs as 

long as 8 d after training (10).  This would imply that Ca2+-stimulated AC activity is only 

necessary for consolidation of a memory as the memory was retained 8 d after initial 

cAMP activation.  However, passive avoidance is a less complex task than CF learning; 

therefore, a one time injection of forskolin may be sufficient to rescue memory deficits in 

passive avoidance, but for CF learning, a more sustained activation of biological 

pathways might be necessary to maintain the memory.  This theory is supported by 

transcriptional data discussed in Chapter 3.   

Finally, we assessed general anxiety, locomotor activity and pain to see if these 

factors are differentially regulated and may confound the learning and memory 
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interpretations.  Open field results reveal no differences in anxiety, but the EPM suggests 

a decrease in anxiety.  Previous studies found no baseline anxiety differences in AC8KO, 

but a decrease in anxiety after exposure to a stressor (7, 9).  Although no thorough 

examination has been conducted to assess whether the anxiety-like behavior measured in 

the open field test is similar to the EPM, our data suggest that there may be subtle 

differences, and possibly, the EPM could elicit a greater stress response, which brings to 

light the anxiety differences in WT versus DKO mice.  Moreover, locomotor was 

similarly increased in DKO and AC8 Rescue mice.  Previous literature shows that 

AC8KO mice display an increase in locomotor activity (9), which would suggest that 

DKO mice might show similar results.  Our findings suggest again that Ca2+-stimulated 

AC activity is necessary during development to elicit WT levels of locomotor activity, or 

perhaps, the difference in genetic background is altering locomotor activity.  Regardless, 

both genotypes show increased locomotor activity, but different memory results, 

suggesting that this measure is not significantly altering the memory results.  Finally, a 

qualitative assessment of pain shows no differences in DKO mice as previously shown 

(24).   

These results highlight a pertinent role of Ca2+-stimulated AC activity in 

modulating multiple forms of memory.  Moreover, it displays the importance of this 

activity during memory consolidation and retention.  Although some subtle differences 

are seen with anxiety and locomotor activity, the results fully support the conclusion that 

deficits in memory processing result from a lack of Ca2+-stimulated AC activity and that 

acute restoration of forebrain AC8 is able to rescue many of these memory deficits.  The 
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subsequent chapters will analyze and discuss in detail the possible mechanisms by which 

this is occurring. 
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CHAPTER 3 
 
 

Ca2+-stimulated adenylyl cyclase activity is critical for 

transcriptional regulation during fear learning  

(as partially published in Wieczorek et al. PLoS One. 2010 Oct 14; 5(10):e13385) 
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INTRODUCTION 

The cAMP signal transduction pathway has been repeatedly implicated in 

learning and memory using both invertebrate and vertebrate models.  More specifically, 

the Ca2+-stimulated adenylyl cyclase (AC) pathway, which couples neuronal activity and 

intracellular Ca2+ increases to the production of cAMP, is crucial for normal memory 

processes (1).  This essential role is evident by memory impairments seen in the rutabaga 

Drosophila mutant, which shows a lack of Ca2+-stimulated AC activity (2).  Of the ten 

AC isoforms in mammals, AC1 and AC8 are the only two that are primarily stimulated 

by Ca2+/calmodulin (3-5).  Murine models have demonstrated the importance of these 

isoforms in memory processing.  For example, both AC1 knockout (AC1KO) and AC8 

knockout (AC8KO) mice display learning impairments in the Morris water maze (6, 7).  

Moreover, there appears to be functional redundancy in these two isoforms as passive 

avoidance and conditioned fear (CF) memory are intact in AC1KO or AC8KO mice but 

are impaired in AC1 and AC8 double knockout (DKO) mice (5).  Interestingly, DKO 

mice show normal CF memory at 24 hr, but not 1 wk, suggesting that Ca2+-stimulated 

activity is necessary for long-term memory changes. 

AC1 and AC8 are both localized to brain regions known to play essential roles in 

memory processing, such as the cortex, cerebellum, and hippocampus (8-10).  At the 

cellular level, AC1 and AC8 are localized to the synapse, specifically the postsynaptic 

region for AC1 and presynaptic region for AC8 (11).  The regional and subcellular 

location of these two isoforms clearly has physiological implications as AC1KO and 

AC8KO mice show impairments in mossy fiber long-term potentiation (LTP) (12). 

Although Ca2+-stimulated AC activity has been implicated in modulating 
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behavior, the mechanism by which this occurs has still not been thoroughly defined.  

There is evidence highlighting deficits in acute, short-term activation of the MAPK/ERK 

pathway 30 min after CF training (13).  However, since long-term memory and LTP are 

both dependent on transcription and are disrupted in AC knockout models, we 

hypothesize that the primary effect of Ca2+-stimulated AC activity during CF is to 

modulate gene expression (14-16).  We assessed the effect of Ca2+-stimulated AC activity 

on global gene expression via microarray analysis.  Moreover, we assessed gene 

expression changes at several time points across learning.  The contextual CF paradigm, 

which relies on the structural integrity of the hippocampus and amygdala (17), was used 

as our paradigm to define the network changes that result during memory processing in 

the context of disruption of AC expression with a knockout mouse model.  We 

demonstrate that there is an overall attenuation of transcriptional changes in mice lacking 

both Ca2+-stimulated AC isoforms, which may contribute to the memory impairments 

seen in DKO mice after CF learning. 
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MATERIALS AND METHODS 

Animals. All mouse protocols were in accordance with National Institutes of Health 

guidelines and were approved by the Animal Care and Use Committees of Washington 

University School of Medicine (St. Louis, MO) (protocol approval #20080030) and 

Vanderbilt University (Nashville, TN) (protocol approval #M08617).  Mice were housed 

on a 12 hr/12 hr light/dark cycle with ad libitum access to rodent chow and water.  

DKO (5, 6), AC1KO (6) and AC8KO (18) mice were generated as previously 

described.  AC8 rescue mice were generated as described in Chapter 2.  C57Bl/6 were 

used as non-littermate control mice (WT). 

Tissue collection and RNA extraction.  We collected hippocampal and amygdala 

samples from WT and DKO mice at baseline and four different time points after a 5 min 

CF training trial.  The four time points (and the respective memory stages each time point 

corresponded to) were as follows:  0 hr (acquisition), 1 hr (consolidation), 48 hr 

(retention), and 1 wk after CF training (retrieval).  For the 1 wk after CF training time 

point, mice were tested in a 5 min CF testing trial prior to killing.   Micropunches using a 

1 mm diameter capillary tube were used to extract bilateral hippocampal and amygdala 

punches approximately 2 mm thick.  Tissue was quickly preserved using RNA later 

(Qiagen) at 4°C and moved to -80°C 24 hr later until RNA preparation.  The Qiagen 

miRNAeasy Mini Kit was used to extract RNA, which uses a two-step process, both 

Trizol and column extraction, to isolate purified, intact RNA. 

Microarray analysis.  RNA samples from 5-10 mice were pooled per array with one 

array per genotype/brain region/time point for a total of 20 arrays.  Prior to processing the 

tissue for microarray analysis, RNA quality was verified for each sample by an Agilent 
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2100 Bioanalyzer and only samples with a RIN value greater than 8.0 were used.  mRNA 

was then reverse transcribed, labeled, and hybridized to Affymetrix Mouse Gene ST 1.0 

Arrays (~29,000 transcripts) by the Vanderbilt Functional Genomics shared resource core 

using standard procedures.  The Affymetrix Gene Chip Command Console was used for 

all instrument control and data acquisition, while the Expression Console (Affymetrix) 

was used for normalization (RMA) and primary data analysis.  All microarray data is 

MIAME compliant and the raw data has been deposited in Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/) (GEO accession number: GSE23008), while fold 

change (fc) values relative to baseline can be found in Tables S1-4 of previously 

published work (19).  Genes that were further characterized and thought to be of interest 

were categorized into two lists.  One list represents genes that did not change over time 

despite exposure to CF testing, but remained consistently different between genotypes 

(Table 1).  These genes were classified as developmental gene changes that resulted from 

knocking out AC1 and AC8 from birth.  Statistical analysis here pooled across the time 

points and considered each time point to be an n of 1 per genotype (total of 5 

arrays/genotype/brain region).  We used Qvalue (20) to assess statistically significant 

gene changes across the arrays comparing DKO and WT mice, which takes a list of p-

values resulting from the simultaneous testing of many hypotheses and estimates their q-

values in order to determine the false discovery rate.  A q-value of ≤ 0.1 was considered 

significant.  The other list represents genes that changed acutely as a result of learning 

changes and these genes displayed at least a ±1.5 fc relative to baseline at one or more 

time points (Table S5 and S6 (19)).  These genes could not be assessed statistically as 

only one array was run per condition. 
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Real time RT-PCR.  The same individual RNA samples used on the microarrays were 

also used for the microarray RT-PCR validation experiments.  To prepare the cDNA, 

500ng of total RNA was reversed transcribed in a 20uL reaction using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems).  Real time RT-PCR was 

performed with SYBR Green Master Mix (Sigma Aldrich) in an Applied Biosystems 

7900HT Fast Real-time PCR System at Vanderbilt University’s DNA Resource Core.  

Each sample was run in duplicate and dissociation curves were used to assess the 

specificity of each primer pair.  GAPDH was used as the standard control.  Primers used 

for amplification are listed in Table S7 of previously published work (19).  For RT-PCR 

validation of microarray results, a random selection of genes was evaluated in WT and 

DKO mice across all time points in the amygdala and hippocampus to confirm that 

microarray results correlated with RT-PCR results across all arrays (Fig S1). 

Functional analysis.  To assess the most represented functional annotations among the 

genes that showed a ±1.5 fc relative to baseline, the GO Slimmer program from Gene 

Ontology (www.geneontology.org) was used.  The number of genes falling into each 

functional annotation was determined to assess the most represented functional 

annotations per condition.  A minimum parameter of 3 was used.  Any GO category 

whose level in the GO hierarchy is below this parameter was not included in the GO 

analysis in order to eliminate functional categories that are too broad.  The category, 

Biological Process, is defined to be at level 1 in the hierarchy.  The level of any other 

term is the length of the longest path to level 1 in terms of the number of categories on 

the path. 
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Gene cluster analysis.  The software program Short Time-Series Expression Miner 

(STEM) (21) was used to cluster and analyze the gene expression data from the 

microarray experiments.  Genes were filtered so that only genes with a ±1.5 fc at one or 

more time points were assigned to a cluster.  The STEM program calculates the 

significance of a cluster based on the ratio of the number of assigned genes versus the 

number of expected genes to a profile.  The program has the ability to implement a novel 

method for clustering short time series expression data that can differentiate between real 

and random patterns as previously described (22). 

Transcription factor analysis.  We used Whole Genome rVISTA 

(http://genome.lbl.gov/vista) to identify transcription factor binding sites that are 

conserved between mice and humans and overrepresented in the 2.5Kbp upstream region 

of genes that were regulated similarly during the CF paradigm. 

Behavioral analysis.  Behavioral experiments were conducted 2-5 hr after lights on.  

Male mice ages 2-4 mo were used for all behavioral experiments.  All mice were on a 

C57Bl/6 inbred background. 

 Cognitive skills were evaluated using a test of Pavlovian fear conditioning.  The CF 

chamber was a standard grid box (20.3X15.9 X10.0cm; Med Associates) with a small 

vial of coconut oil, which served as an olfactory cue.  During CF training, mice were put 

in the chamber for 2 min to assess basal (pretraining) freezing levels, followed by a 2 sec 

0.7mA foot shock.  Subsequently, postshock (posttraining) exploration was monitored for 

an additional 2 min.  Mice were left undisturbed until tissue was extracted for RNA 

analysis.   
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Data analysis. Results are expressed as the mean ± SEM.  Student's t-test was used to 

compare pairs of means.  In cases with multiple conditions, a two-way ANOVA was used 

followed by Bonferroni post hoc tests when appropriate.  A one-way ANOVA was used 

for single condition analysis followed by Tukey’s Multiple Comparison post hoc tests 

when appropriate.  Chi-square analysis was used to determine the significance of gene 

expression changes between WT and DKO mice across time.  A p-value of ≤ 0.05 was 

considered statistically significant.  All statistical comparisons were done with Prism 4 

software (GraphPad) unless otherwise stated. 
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RESULTS 

DKO mice show consistent long-term, but not short-term, CF memory deficits 

(5).  Impaired gene expression changes within the hippocampus have been correlated 

with impairments in long-term memory consolidation (23).  Therefore, to assess whether 

learning deficits resulting from a lack of Ca2+-stimulated AC activity are imparted by 

impaired gene expression, we obtained amygdala and hippocampal tissue samples from 

WT and DKO mice at different time points after CF learning.  Samples were extracted at 

baseline (-5 min before training), 0 hr, 1 hr, or 48 hr after a 5 min CF training trial, or at 1 

wk after a 5 min CF testing trial, and subjected to microarray analysis and validated with 

RT-PCR (Fig S1).  The different time points reflect when the different stages of memory 

processing are thought to occur (24). 

To provide context for gene expression changes found during CF in the DKO 

mice, we measured basal gene expression differences that were consistent before testing 

and across all time points after training.  As expected, AC8 mRNA was significantly 

decreased in both the amygdala (-2.76 fc) and hippocampus (-4.06 fc) of DKO mice 

compared to those of WT mice; however, AC1 only met the FDR threshold in the 

hippocampus (-2.97 fc), reflecting the low abundance of AC1 in WT amygdala (-1.48 fc, 

p = 3.6E-04) (Table 1).  Decreased expression of a few other genes was observed using 

microarray in both the amygdala and hippocampus of DKO mice compared to those of 

WT mice (Table 1; Fig 1A,C).  Confirming our microarray data, we found using RT-PCR 

that Slc11a2 and Lynx1 are significantly decreased in DKO mice compared to expression 

levels in WT mice  (Fig 1B, D).   Additional RT-PCR analysis of these genes with single  
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Table 1. Genes that are modulated during development 

Amygdala 

Accession ID Gene symbol Mean fold change P-value 

NM_008732 Slc11a2 -1.32 2.8E-08 

NM_009623 Adcy8 -2.76 3.8E-07 

NM_025931 Rabl4 -1.38 9.9E-07 

NM_146014 Ccm2 -1.37 1.2E-05 

NM_146776 Olfr821 1.17 2.9E-05 

NM_029787 Cyb5r3 -1.64 3.9E-05 

Hippocampus 

Accession ID Gene symbol Mean fold change P-value 

NM_009622 Adcy1 -2.97 6.2E-08 

NM_009623 Adcy8 -4.06 4.8E-07 

NM_011838 Lynx1 -1.40 2.1E-06 

NM_011124 Ccl21a -1.64 3.1E-06 

NM_023052 Ccl21c -1.64 3.1E-06 

NM_011335 Ccl21b -1.64 3.1E-06 

NM_175408 Tmem139 -1.22 1.9E-05 

NM_009342 Dynlt1 1.26 6.0E-05 

NM_029787 Cyb5r3 -1.47 7.3E-05 

NM_026681 Ccdc88c -1.18 7.7E-05 
 
The genes, with their respective fold change (from WT level) and p-value, are listed in 
order of significance.  Only genes that met a q-value of ≤ 0.1 were listed. 
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Figure 1.  Developmental changes in DKO mice.  Two genes identified with microarray analysis and 
showing the most significant change between WT and DKO mice, (A)  Slc11a2 (n = 5, *p ≤ 0.0001), with a 
-1.3 fold change, and (B) Lynx1 (n = 5, *p ≤ 0.0001), with -1.4 fold change, were confirmed via RT-PCR.  
(C-D)  Both RT-PCR results confirmed a significant decrease in Slc11a2 (n = 4-5, $ vs # p ≤ 0.001; $ vs + 
p ≤ 0.05; # vs +, p ≤ 0.001) and Lynx1 (n = 4-5,*p ≤ 0.05).  RT-PCR results also reveal that these gene 
changes are not rescued in AC8 rescue mice, and therefore, do not modulate the CF learning changes, but 
rather, probably contribute to baseline changes.  No differences in gene expression between AC1KO and 
AC8KO mice suggest that these genes are not targeted by one specific Ca2+-stimulated AC. 
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knockout animals (AC1KO, AC8KO) suggests that these genes are not targeted by one 

specific Ca2+-stimulated AC as both single knockouts show similar reduction in 

expression levels.   

Microarray analysis of gene expression changes after CF learning 

Amygdala:   We find that the aggregate pattern of gene expression changes in the 

amygdala occurring after CF learning is similar between WT and DKO mice, but the 

relative number of genes differs between the two genotypes. Chi-square analysis reveals 

that WT mice have significantly more upregulated genes than DKO mice at 48 hr (94 vs 

6; p ≤ 0.05) and 1 wk (145 vs 66; p ≤ 0.05) (Fig 2B), while DKO mice have more 

upregulated genes at 1 hr than WT mice (28 vs 6; p ≤ 0.05).  Additionally, WT mice have 

significantly more downregulated genes than DKO mice at every time point in the 

amygdala (Fig 2D).  

Using the STEM software, we clustered individual genes into groups based on 

their changes across time and according to whether they showed up or downregulated 

gene expression (Fig 3; Tables S8 and S9 (19)).  Within the amygdala, DKO mice show a 

predominance of clusters with downregulated expression over time, but 4 out of 9 

clusters are similar between WT and DKO mice.  Further analysis of these clusters (Table 

S8 (19)) reveals that there is minimal overlap in the specific genes that fall within the 

same cluster between WT and DKO mice.  Therefore, we conducted a heat map analysis 

on the most significant WT cluster in the amygdala (Fig 4) to determine how the same set 

of genes changed between the WT and DKO mice.  The WT heat map represents the 

expression changes of the genes falling into this cluster.  The DKO heat map represents  
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Figure 2.  Microarray analysis setup and gene expression changes.  (A) Amygdala and hippocampal 
micropunches were taken at baseline and four time points across CF learning (0 hr, 1 hr, 48 hr, 1 wk) in 
WT and DKO mice (1 array per genotype/brain region/time point).  The number of genes showing a ±1.5 
fold change from baseline is graphed.  (B, D)  WT mice show the largest change in gene expression at the 
48 hr and 1 wk time points in the amygdala and (C, E) at the 1 hr and 48 hr time points in the 
hippocampus.  Overall, DKO mice show a suppression in gene expression changes, except at 1 hr in the 
amygdala when DKO mice show more gene changes that WT mice (* Chi-square, WT vs DKO p ≤ 0.05). 
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Figure 3.  Cluster analysis reveals the most represented expression pattern changes occuring over 
time after CF learning.  Amygdala results reveal a balance between up and downregulated gene changes 
in WT mice.  DKO mice reveal an overall decrease in gene expression within the amygdala over time.  
Four similar clusters are found between both the WT and DKO mice in the amygdala.  WT mice show a 
consistent upregulation in gene expression over time within the hippocampus; whereas, DKO mice genes 
tend to be downregulated over time except for two clusters.  No two clusters are alike between WT and 
DKO mice.  The number in the upper left corner represents the number of genes in the cluster and the 
number in the upper right reveals the p-value. 
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Figure 4.  Heat map analysis reveals divergent gene expression changes.  A heat map was generated for 
the most significant cluster in each brain region of WT mice.  The gene changes are mapped in the WT 
mice, and the respective changes in expression of the same genes are mapped in the DKO mice.  (A) The 
amygdala results reveal not only a suppression, but opposing regulation in gene expression in DKO mice.  
(B) The hippocampal results reveal an overall suppression in gene changes within DKO mice. 
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expression levels of those same genes and depicts how they are differentially modulated 

relative to WT mice.  Virtually all of these genes show the opposite regulation within the 

amygdala between WT and DKO mice.  This observation is further supported when 

comparing the ±1.5 fc gene lists between WT and DKO mice within the amygdala (Table 

S5 (19)).  

We also determined whether the genes that changed after CF learning in DKO 

mice were functionally related to the genes that change in WT mice (Table 2).  We 

defined the top 5 functional categories represented by genes changed after CF learning in 

WT mice and compared the number of genes that changed in DKO mice within the same 

5 functional categories.  Within the top 5 functional categories, DKO mice show 

considerably fewer genes relative to WT mice across all time points, except for genes 

upregulated at 1 hr where DKO mice show a greater number of gene changes, which is 

consistent with the gene expression pattern changes seen in Figure 2.  Functional analysis 

reveals that the decrease in transcriptional changes may be largely due to the lack of 

changes in genes that modulate cellular transcription (GO: 0006350).  Moreover, DKO 

mice have deficits in cell signaling as they show a decrease in number of genes that fall 

into the cell communication (GO: 0007154) and signal transduction (GO: 0007165) 

functional categories.  

Hippocampus:  WT mice have significantly more upregulated genes than DKO 

mice in the hippocampus at 1 hr (70 vs 9; p ≤ 0.05) and 48 hr (81 vs 4; p ≤ 0.05)(Fig 2C).  

However, the converse is true for downregulated genes, of which DKO mice have 

significantly more than WT mice at 1 hr (28 vs 10; p ≤ 0.05), 48 hr (52 vs 13; p ≤ 0.05), 

and 1 wk (53 vs 17; p ≤ 0.05) (Fig 2E).   
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Table 2. Top 5 functions represented by each respective gene list 
 Number of genes (compared to baseline) 

BIOLOGICAL PROCESS 0 hr 1 hr 48 hr 1 wk 

Amygdala, Upregulated WT DKO WT DKO WT DKO WT DKO 
Cellular nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process (GO:0006139) 

5 3 1 11 21 0 34 13 

Cell communication (GO:0007154 ) 2 7 2 6 17 0 34 14 

Cell differentiation (GO:0030154) 2 3 2 8 21 0 30 7 

Cellular transcription 
(GO:0006350) 4 2 1 8 19 0 26 7 

Signal transduction (GO:0007165) 1 7 1 4 15 0 29 14 

Amygdala, Downregulated 

Cell communication (GO:0007154 ) 11 4 5 2 30 18 25 7 

Cellular nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process (GO:0006139) 

4 1 2 1 31 16 28 4 

Signal transduction (GO:0007165) 9 4 5 2 27 13 23 7 

Protein metabolic process 
(GO:0019538) 6 4 1 3 26 16 22 4 

Transport (GO:0006810) 10 6 7 2 21 16 17 1 

Hippocampus, Upregulated 

Cellular nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process (GO:0006139) 

6 0 20 2 21 0 5 4 

Cellular transcription 
(GO:0006350) 5 0 10 2 15 0 5 0 

Cell communication (GO:0007154 ) 3 1 12 1 15 1 4 0 

Protein metabolic process 
(GO:0019538) 2 0 15 2 10 1 2 2 

Signal transduction (GO:0007165) 2 1 8 1 13 1 2 0 

Hippocampus, Downregulated 

Cell communication (GO:0007154 ) 0 1 3 5 4 12 5 8 

Signal transduction (GO:0007165) 0 1 2 5 4 12 5 8 

Transport (GO:0006810) 0 0 2 8 3 11 4 9 

Cell differentiation (GO:0030154) 0 0 2 3 3 6 2 9 
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Cluster analysis of individual gene changes in the hippocampus reveals that there 

are no similar cluster patterns between the WT and DKO mice (Fig 3; Tables S8 and S9 

(19)).  Only clusters upregulated over time are statistically significant in WT mice with 

the 1 hr and 48 hr time points showing the largest increases in gene number.  DKO mice, 

however, show a predominance of clusters with downregulated expression over time in 

the hippocampus.  Heat map assessment of the most significant WT cluster in the 

hippocampus reveals that gene expression changes are attenuated in DKO mice, but the 

patterns appear in similar directions (Fig 4).  The functional categories of the top clusters 

in WT hippocampus are similar to those of the amygdala with DKO mice showing a 

decrease in the number of genes falling within the cellular transcription (GO: 0006350), 

cell communication (GO: 0007154), and signal transduction (GO: 0007165) categories.  

 

Normal CF learning displays over-representation of specific transcription factor 

binding sites in regulated genes 

To further elucidate possible mechanisms for the network of gene expression 

changes associated with CF learning, we assessed the transcription-factor binding sites 

that were overrepresented in genes either upregulated or downregulated within the 

amygdala and hippocampus of WT and DKO mice at 48 hr (Top 10 listed in Table 3; full 

list in Table S10 (19)).  The DKO mice show no overrepresented transcription factor 

binding sites in the amydala or hippocampus of upregulated genes at 48 hr; however, this 

may largely be due to only a small number of genes being upregulated at this time point 

in DKO mice.  Downregulated genes, in contrast, appear to be regulated by a shared 

group of transcription factors.  Nearly all the transcription factor binding sites (9 out of 
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10) that are overrepresented in the downregulated genes within the hippocampus of DKO 

mice are found in genes upregulated in the hippocampus of WT mice.  This observation 

is consistent with the shift from predominantly upregulated to downregulated gene 

expression seen in the DKO mice. 
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Table 3. Top 10 TF binding sites overrepresented in genes regulated at 48 hr 
WT DKO 

Hippocampus Amygdala Hippocampus Amygdala 

TF binding 
site P-value TF binding 

site P-value TF binding 
site P-value TF binding 

site P-value 

Upregulated 

Pou6f1 2.3E-11 Areb6 7.4E-04 N/A  N/A  

Pou1f1 2.5E-11 Lfa1 1.3E-03     

Tef 4.4E-11 E12 3.5E-03     

Crebatf 4.5E-09 Gata2 3.8E-03     

Gata3 1.9E-08 Hoxa7 5.1E-03     

Dr3 1.5E-07 Pbx1 5.4E-03     

Amef2 1.7E-07 Foxp3 5.8E-03     

Hp1sitefactor 6.0E-07       

Hfh3 7.3E-07       

Atf 1.0E-06       

Downregulated 

Pads 1.6E-04 Lhx3 8.9E-10 TfIIa* 1.3E-07 E47 3.6E-05 

Meis1 2.5E-04 Cart1 2.4E-08 Foxo1* 9.4E-07 Areb6 8.2E-04 

TfIIa 3.8E-04 Pou6f1 3.4E-08 Gata3 1.9E-05 Cmyb 2.3E-03 

Hp1sitefactor 1.3E-03 Sox5 9.6E-08 Foxo4* 3.9E-05 Crebp1cjun 5.0E-03 

Gata1 2.7E-03 Sox9 5.2E-07 Lef1tcf1 4.8E-05 Nmyc 5.1E-03 

Areb6 3.1E-03 Hif1 6.7E-07 Dr3 9.3E-05   

  Nkx61 1.0E-06 Hp1sitefactor 1.6E-04   

  Hp1sitefactor 2.2E-06 Foxp3* 2.8E-04   

  Vbp 2.8E-06 Hfh4* 4.3E-04   

  Gata3 2.9E-06 Lhx3* 7.2E-04   

The 2.5kbp region upstream region of genes modulated during CF learning was assessed for common 
transcription factor (TF) binding sites.  The significance value takes into consideration the total number of 
sites in the genes analyzed versus the total number of sites in the whole genome.  Bold genes represent TF 
binding sites in DKO mice that are significantly upregulated within each respective WT brain region,while 
* indicates TF binding sites that are significantly upregulated in WT mice, but do not make the top ten list. 
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DISCUSSION 

Here, we report that disruption of both Ca2+-stimulated ACs (AC1 and AC8) 

causes an overall decrease in long-term transcriptional changes after CF learning.  While 

changes between WT and DKO mice are evident at all time points, the most robust 

disparity occurs at the 1 hr and 48 hr time points, periods when memory consolidation 

and retention are thought to occur. 

Initially, we assessed changes in baseline gene expression to eliminate the 

possibility that baseline gene expression differences are contributing to the CF deficits in 

DKO mice. The most notable changes are a decrease in Slc11a2 in the amygdala and 

Lynx1 in the hippocampus of DKO mice.  Both of these proteins may play a role in 

learning and memory.  Slc11a2, a divalent metal ion transporter, causes memory 

impairments on the Morris water task when disrupted within the forebrain (25), and 

Lynx1, which enhances nicotinic acetylcholine receptor function, causes memory 

enhancements on CF when globally disrupted (26).   However, our data show that 

expression of these genes in AC8 rescue mice is not recovered to WT levels, and since 

AC8 rescue mice have intact memory, this suggests that these proteins do not cause the 

CF learning deficits seen in DKO mice. 

Past literature supports the theory that Ca2+-stimulated AC activity plays a 

pertinent role in learning and memory.  Although disrupting just one of the two Ca2+-

stimulated ACs can cause memory impairments (6), data show that AC single knockout 

mice show intact CF behavior while DKO mice show alterations in CF behavior (5).  The 

observation that Ca2+-stimulated AC activity is important for learning and memory is 

supported by the microarray data.  Transcriptional changes within hours after exposure to 



  70 

a learning paradigm is required for the consolidation of long-term memory (14-16).  

Moreover, recent evidence shows that an age-related decline in memory is correlated 

with decreased hippocampal transcriptional changes (23).  Together, these data suggest 

that the lack of long-term transcriptional changes displayed by DKO mice throughout the 

CF learning process contribute to the learning deficits seen at 1 wk post CF training.  

Furthermore, the residual transcriptional changes that do occur in DKO mice are mainly 

suppression of expression.  This is evident in Figure 2 as upregulated gene expression is 

overall dampened over time in both the amygdala and hippocampus of DKO mice. 

DKO mice display an impairment in transcriptional changes at 1 hr, a period 

when memory consolidation is occurring; therefore, the overall suppression in 

transcriptional changes may be contributing to the inability of these mice to form a strong 

enough memory in order to retain it for longer than 24 hr.  DKO mice show an increased 

number of genes changing relative to WT mice at 1 hr in the amygdala.  This data 

suggests that the amygdala in DKO mice may be sufficiently activated to form a stress 

response to the aversive shock administered during CF training. Therefore, the activation 

of the amygdala may be sufficient to retain the CF memory for short periods, such as 

seen at 24 hr (5), but the overall lack of hippocampal activation may lead to impairments 

in the overall strength of the memory formed.  

DKO mice also display an impairment at 48 hr, a period when retention of the 

memory is occurring.  The present data suggest that maintenance of positive gene 

regulation is necessary as DKO mice show an overall lack of upregulated gene changes, 

but downregulated gene changes are maintained in the hippocampus.  This is further seen 

by the overall lack of common transcription factor binding sites found in the genes 
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upregulated within the amygdala or hippocampus of DKO mice at 48 hr.  Moreover, 

many of the transcription factors that modulate positive gene expression are found 

overrepresented in the genes that modulate negative gene expression within the 

hippocampus of DKO mice.  Finally, the gene cluster analysis in DKO mice reveals that 

gene expression is decreased in most of the significant clusters at 48 hr, and functionally, 

there is at most only 1 gene found within the top 5 functions represented by genes 

modulated in WT mice.  The lack of transcriptional changes at the period when memory 

is supposed to be maintained supports the behavioral observations that Ca2+-stimulated 

AC activity is needed for memory retention. 

Finally, the present functional analysis data suggests that the lack of 

transcriptional changes may be contributing to deficits in communication occurring at the 

level of the synapse.  WT mice show a large number of transcriptional changes that 

functionally contribute to cell communication and signal transduction; whereas, DKO 

mice show a minimal number of transcriptional changes related to these functions.  While 

this is merely correlative, the presence of both Ca2+-stimulated ACs at the level of the 

synapse [11] supports this finding.   

Overall, we demonstrate that Ca2+-stimulated AC activity is necessary for the 

expression and pattern of long-term transcriptional changes that are associated with CF 

memory processing.  The network of changes that we define should serve as a valuable 

resource for studies of learning and memory in other genetically altered systems allowing 

fundamental common mechanisms to emerge. 
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Supplementary Figure 1.  RT-PCR validation of microarray results.  The graph shows a 
strong correlation of RT-PCR values with microarray values.   
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CHAPTER 4 

 

Absence of Ca2+-stimulated adenylyl cyclases leads to reduced 

synaptic plasticity and impaired experience-dependent fear 

memory 
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INTRODUCTION 

The Ca2+-stimulated adenylyl cyclase (AC) pathway couples neuronal activity and 

intracellular Ca2+ increases to the production of cAMP.  Through this activity-dependent 

increase in cAMP, the Ca2+-stimulated ACs, AC1 and AC8, are able to significantly 

modulate processes that are defined by marked changes in synaptic plasticity, memory 

and long-term potentiation (LTP).  This is evident on a variety of learning paradigms 

where AC1/AC8 double knockout (DKO) mice showed memory impairments, such as 

passive avoidance (1), conditioned fear (CF) (1, 2), and novel object recognition (2, 3).  

Moreover, Schaeffer collateral-CA1 LTP is impaired in DKO mice (1, 4), while mossy 

fiber LTP is impaired in AC1 (5) or AC8 (6) single knockout mice.  AC1 and AC8 are 

both localized to the synapse as evident by a synaptosome fractions study (7) and 

colocalization of AC8 with synapsin and synatophysin (6), and therefore, it is not 

surprising that they modulate both memory processing and LTP. 

Not only do genetic variations influence memory processing, but also the 

environmental context.  A recent study looking at the effects of environmental 

enrichment on CF memory and LTP showed that an enriched environment enhanced CF 

memory as well as LTP in a PKA-dependent manner (8).  PKA is activated by Ca2+-

stimulated AC-mediated binding of cAMP (9), and therefore, initial activation of Ca2+-

stimulated ACs may be necessary for environmental-dependent changes in fear memory.  

Synaptic plasticity is one of two major processes shown to modulate experience-

dependent changes in memory (10).  For example, environmental enrichment increases 

the expression of synaptic proteins, such as synaptophysin and postsynaptic density-95 

(11, 12) as well as overall synaptic strength as evident by increases in LTP (8, 13-15).  
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Neurogenesis, the other major process shown to mediate experience-dependent changes 

in memory, is increased after environmental enrichment (16-18).   

Consequently, we first evaluate Ca2+-stimulated AC activity’s roles on mediating 

synaptic plasticity and neurogenesis using both genetic and gene therapy techniques.  

More specifically, we focus on the role of AC8, using forebrain inducible AC8 mice and 

an AC8 lentivirus.  We then evaluate a possible novel gene-environment interaction by 

looking at whether an absence of Ca2+-stimulated AC activity affects experience-

dependent changes in CF memory.  Our data demonstrates that Ca2+-stimulated ACs are 

necessary modulators of synaptic plasticity, neurogenesis, and experience-dependent fear 

memory.   
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MATERIALS AND METHODS 

Animals. All mouse protocols were in accordance with National Institutes of 

Health guidelines and were approved by the Animal Care and Use Committees of 

Washington University School of Medicine (St. Louis, MO) (protocol approval 

#20080030) and Vanderbilt University (Nashville, TN) (protocol approval #M08617).  

Mice were housed on a 12 h/12 h light/dark cycle with ad libitum access to rodent chow 

and water.  DKO (19, 20) and AC8 Rescue mice (2) were generated as previously 

described and were backcrossed >10 generations to C57Bl/6 strain.  Briefly, DKO mice 

have both AC1 and AC8 knocked out, while AC8 Rescue mice have AC8 replaced in the 

forebrain of mice on a DKO background.  Through use of a tetracycline-inducible 

system, AC8 can be turned on or off by administration of doxycycline (200 mg 

doxycycline/1 kg; Research Diets).  AC8 is not turned on until mice are weaned at 21 d.  

C57Bl/6 were used as control mice (WT).    

Electrophysiology.  LTP in the Schaffer collateral afferent fibers of the 

hippocampal CA1 region was induced as previously described (1) with minor 

modifications to the slice preparation as detailed below.  Naïve mice were transported 

from the animal colony to the laboratory and placed in sound-attenuated cubicles for 1 h 

prior to slicing. They were then decapitated under isoflurane anesthesia. The brains were 

quickly removed and placed in ice-cold sucrose artificial cerebrospinal fluid (ACSF): (in 

mM) 194 sucrose, 20 NaCl, 4.4 KCl, 2 CaCl2, 1 MgCl2, 1.2 NaH2PO4, 10.0 glucose, and 

26.0 NaHCO3 saturated with 95% O2/5% CO2.  Transverse hippocampal slices (300 mm 

thick) were prepared using a Tissue Slicer (Leica).  After dissection, slices were 

transferred to an interface recording chamber where they were perfused with heated 
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(~29°C), oxygenated (95% O2/5% CO2) ACSF at a rate of about 2 mL/min.  Field 

potential recordings were measured as previously described (1).   

Lentivirus production.  The full length mouse cDNA AC8 sequence was cloned 

into a lentivirus by Applied Biological Materials, Inc. (ABM). The cloning of mAC8 was 

performed in three steps.  First, the first 944 bp mAC8 was PCR amplified from the 

plasmid, pUHC-13-3- AC8 (pUHC-13-3) (21); AC8 cDNA, a gift from Dr. Richard 

Premont at Duke University), digested with XbaI and EcoR, and cloned into pLenti-III-

EF1α (ABM) linearized by NheI and EcoRI.  Next, the last 380 bp of mAC8 was PCR 

amplified from pUHC-13-3-AC8, digested with BamHI and XbaI, and cloned to the same 

pLenti-III-EF1α using BamHI and XbaI.  Lastly, the middle portion of mAC8 was cut out 

of pUHC-13-3-AC8 with NheI and BamHI, and cloned to the pLenti-III-EF1α with the 

same enzymes.  The newly generated lentivirus, LV-Adcy8, was sequenced to ensure 

proper insertion.  Viral packaging and in vitro titering were completed at The Hope 

Center Viral Vector Core (Washington University in St. Louis).   

Figure 2 outlines the lentivirus construct as well as displays in vivo expression of AC8 

after infection of LV-Adcy8 into the hippocampus.   

Cell culture and infection.  Hippocampal low-density cultures were prepared as 

previously described (22, 23).  Slight modifications were made to adjust for mouse 

neurons.  Cells were extracted from P0 or P1 mice and fixed at DIV10 or 9, respectively.  

Hippocampal tissue was dissociated using a final concentration of 0.25% EDTA-free 

trypsin.  Cells were plated at 500 000 cells/60mm dish containing 5 poly-L-lysine coated 

coverslips.  Cells were kept in culture media containing Neurobasal Media, 2% B27, 1% 

L-glutamine, and 0.1% Insulin-Transferrin-Selenium (Invitrogen).  Heat inactivated FBS 
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was added to the media at the following concentrations to help promote cell survival: 

DIV1 2%, DIV3 1%, and DIV5 0.5%.  Ara-C was added on DIV3 as previously 

described to minimize glia growth and subsequently added on DIV5 at half the 

concentration if glia overgrowth was occurring.  Several DKO cultures were infected for 

48 h on DIV1 with 2 uL of LV-Adcy8 (titer 3.1 x 108 IFU/ml) per 3 ml media/60mm dish 

and fixed at DIV 9 or 10 as described above.   

   Immunohistochemistry.  Neurons were fixed with 4% paraformaldehyde/4% 

sucrose in phosphate-buffered saline (PBS) for 20 min.  Cells were permeabilized with 

0.2% Triton X-100 for 5 min followed by a 1 h block with 20% goat serum in PBS.  

Antibodies were diluted in 5% normal goat serum (NGS) in PBS.  Primary antibodies 

used were SV2 (1:500 for 1 h, Developmental Studies Hybridoma Bank) and β3-tubulin 

(1:500 overnight at 4°C, Abcam).  Secondary antibodies used were Alexa Fluor 555 

(1:1000 for 1 h, Invitrogen) and Alexa Fluor 488 (1:500 for 1 h, Invitrogen).  All washes 

were done with PBS for at least 5 min X3.  Coverslips were mounted with Vectashield 

mounting medium with DAPI (Vector Labs).   

SV2 clusters were quantified from four different WT and DKO cultures.  From 

each culture, at least 45 dendrites from approximately 15-20 neurons were analyzed.  For 

the DKO +LV-Adcy8 cultures, the same analysis occurred, except plates from two 

different cultures were analyzed and results verified with another round of plates from the 

same cultures.  Images were taken on a Zeiss Axio Imager M2 microscope with a 63X oil 

objective.  Image J was used to quantify SV2 clusters.  Quantification was done by an 

experimenter blinded to genotype.    
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Brains used for KI-67 staining were perfused with 4% paraformaldehyde, 

cryoprotected with 20% sucrose, frozen, and cut at 35 uM.  Slices were quenched of 

endogenous peroxidases with 0.3% H2O2/0.55% Triton X-100 for 1 h, washed with 1X 

PBS, and blocked in 3% NGS in PBS for 1 h.  Sections were then incubated with a rabbit 

monoclonal KI-67 antibody (1:300, Vector Labs, VP-RM04) in 1% NGS overnight at 

4°C.  Signal was detected with a biotinylated goat anti-rabbit antibody (1:400, Vector 

Labs, BA-1000) and visualized by incubation with diaminobenzidine tetrahydrochlorid 

(DAB) for 5 min.  Slices were counterstained with methyl green and positive cells were 

counted per area within the dentate gyrus.  Quantification was done by an experimenter 

blinded to genotype.   AC8 staining was conducted as previously described (7). 

Western blot analysis.  Tissue extraction and protein analysis was conducted as 

previously described (2).  For phospho-synapsin, synapsin, and SV2 detection, 20 µg of 

whole cell extract from the hippocampus was isolated and probed with an anti-rabbit 

phospho-synapsin I/II (1:1000, Cell Signaling, 2311), synapsin (1:1000, Cell Signaling, 

2312), or SV2A (1:1000, Abcam, ab32942) antibody overnight at 4°C.  Signal was 

detected using an anti-rabbit HRP-conjugated secondary antibody (GE Healthcare, 

NA934) and visualized using chemiluminescence (SuperSignal West Pico or Dura, Pierce 

Biotechnology).  Image J was used to quantify protein concentrations.  Equal protein 

loading conditions were verified by immunodetection for mouse anti-actin protein.   

Environmental enrichment.  Male mice ages 2-5 mo were used for all 

behavioral experiments.  All mice were on a C57Bl/6 inbred background and housed 2-5 

mice/cage.  Behavior was conducted on WT and DKO mice reared in two different 

colonies at the same university.  Mice were reared in one of two housing conditions: 1) 
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corn-corn bedding with paper inserts that mice were able to tear up for added bedding, or 

a slightly more natural environment, 2) carefresh-CareFRESH® Natural bedding.  Mice 

were born and kept in their reared environment until 2 wks prior to CF testing at which 

point mice were subjected to one of two experimental environments: 1) minimal- corn 

bedding only or 2) enriched- carefresh bedding, nestlet, and enrichment hut. 

Mice were split into two experiments based on their initial housing conditions.  

Experiment 1 is mice reared on corn bedding and experiment 2 is mice reared on 

carefresh bedding.  Both experiments have 4 groups for a total of 8 groups all together: 

Wt-minimal, WT-enriched, DKO-minimal, DKO-enriched.  .  Refer to Figure 6A for a 

schematic.     

Conditioned Fear. Contextual CF training began 2 wks after exposure to the 

experimental environment.  CF training and analysis occurred as previously described 

(2).  Mice were tested 1 wk after training.  

 Data analysis. Results are expressed as the mean ± SEM.  Student's t-test was used 

to compare pairs of means.  In cases with multiple conditions, a two-way ANOVA was 

used followed by Bonferroni post hoc tests when appropriate.  A one-way ANOVA was 

used for single condition analysis followed by Tukey’s Multiple Comparison post hoc 

tests when appropriate.   A p-value of ≤ 0.05 was considered statistically significant.  All 

statistical comparisons were done with Prism 4 software (GraphPad). 
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RESULTS 

AC8 activity modulates the synaptic vesicle protein SV2 but not neurogenesis 

 The expression of synaptic vesicle protein 2, SV2 is modulated by changes in 

synaptic activity (24). To examine if Ca2+-stimulated AC activity modulates the 

expression of SV2, we first measured the number of SV2 clusters as well as the average 

SV2 cluster size in vitro, in hippocampal cultures from WT and DKO mice. These 

experiments revealed a significant decrease in the number of SV2 clusters in DKO, 

relative to WT, neurons (Figure 1A and 1B, t-test, p = 0.01).  Additionally, the average 

size of the SV2 clusters was significantly decreased in DKO, relative to WT, neurons 

(Figure 1A and 1C, t-test, p = 0.01).   

 To assess whether Ca2+-stimulated AC activity is sufficient to modulate the changes 

in SV2 levels, we reintroduced AC8 into DKO hippocampal cultures.  To do this, we first 

generated a lentivirus containing the full length mouse AC8 cDNA (LV-Adcy8; Figure 

2A).  The currently available AC8 antibody does not allow for specific staining in vitro, 

so in order to show the effectiveness of the lentivirus, we did in vivo injections of LV-

Adcy8 into the hippocampus of several DKO mice and looked at AC8 distribution 

between 1 and 2 wk after injection (Figure 2B and 2C).  Figure 2 shows abundant AC8 

distribution, and specifically, Figure 2C shows AC8 within the cell body as well as along 

axons and dendrites.  Analyses of the number of SV2 clusters and SV2 cluster size after 

the infection of DKO neurons with LV-Adcy8 revealed that SV2 protein levels are 

similar in WT and DKO with LV-Adcy8  as shown in Figure 1A and quantified in Figure 

1B (DKO vs DKO +LV-Adcy8, p < 0.05) and Figure 1C (DKO vs DKO +LV-Adcy8, p 

<0.001).  
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Figure 1.  SV2 levels are reduced in hippocampal cultures, but not adult, hippocampal whole cell 
preps.  (A) Representative images of SV2 distribution in DIV9-10 hippocampal neurons.  SV2 is labeled 
with Alexa Fluor 555. β3-tubulin, a neuronal marker, is labeled with Alexa Fluor 488.  Dapi is used to 
visualize nuclei.  SV2 is reduced in DKO cultures, but not DKO cultures infected with LV-Adcy8 as 
measured by (B) the number of clusters and (C) the average size of a cluster.  (D) SV2 levels in DKO mice 
are restored to WT levels in adult, hippocampal micropunches and AC8 Rescue mice show a trend towards 
an increase (n = 4/group). * WT vs AC8 Rescue p < 0.05, # DKO vs AC8 Rescue p = 0.1 
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SV2 protein levels were then measured using hippocampal micropunches (Figure 1D).  A 

one-way ANOVA showed a main effect of genotype (p = 0.05).  AC8 Rescue mice 

showed a significant increase in SV2 protein levels compared to WT mice (t-test, p < 

0.05), while a trend persists for an increase compared to DKO mice (t-test, p = 0.1).  This 

finding implies that acute forebrain AC8 activity after development can modulate SV2 

abundance, providing in vivo evidence for the direct modulation of a synaptic marker by 

Ca2+-stimulated AC activity.  

 

 

Figure 2.  AC8 lentivirus expression.  (A) A schematic of the major components of the LV-Adcy8 
plasmid. A hippocampal image of LV-Adcy8 infection at (B) 2.5X and (C) 10X. LTR = long terminal 
repeat, EF1α = elongation factor, AC8= adenylyl cyclase 8, SV40 = Simian virus 40, Puror = puromycin 
resistant, Kanr = kanamycin resistant 
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Alterations in neurogenesis in the adult dentate gyrus have been implicated in memory 

processing, with memory deficits often reflective of a decrease or total absence of 

neurogenesis (25-28).  Because of the localization of Ca2+-stimulated AC activity to the 

dentate gyrus (29) and the CF memory deficits in DKO mice (1, 2), we hypothesized that 

neurogenesis would be impaired in these mice.  DKO mice displayed a small, but 

significant, decrease in neurogenesis compared to WT mice as measured by KI-67 

staining (p < 0.01; Figure 3A and 3B).  This decrease, however, was not rescued in AC8 

Rescue mice (AC8 Rescue vs DKO p > 0.05), which have intact CF memory (2), 

suggesting that reductions in neurogenesis do not underlie the memory impairments seen 

in DKO mice. 
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Figure 3.  Neurogenesis is impaired in DKO mice, but not restored in AC8 Rescue mice.  (A) 
Representative 10X images of KI-67 staining in the dentate gyrus. (B) KI-67 staining is decreased in DKO 
mice and not rescued by replacing forebrain AC8 in AC8 Rescue mice. * p < 0.05; WT n =5, 10 bilateral 
sections; DKO n = 6, 12 bilateral sections; AC8 Rescue n = 4, 8 bilateral sections 
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Forebrain AC8 activity is sufficient to rescue CA1 LTP deficits in DKO mice 

 The above data, which shows the ability of AC8 activity to modulate SV2 levels, 

suggest that synaptic activity may be modulated by AC8 as well.  Previous studies have 

found that DKO mice have deficits in LTP within the CA1 region of the hippocampus, 

but these deficits can be rescued by unilateral acute administration of forskolin to the 

CA1 (1).  These results imply that acutely increasing intracellular levels of cAMP 

through non Ca2+-stimulated AC activation in the CA1 of DKO mice is sufficient to 

restore CA1 LTP.  We assessed whether acute restoration of forebrain AC8 is sufficient 

to restore LTP deficits as AC1 and AC8 single knockout mice show initially similar 

levels of CA1 LTP relative to WT mice (1).  We found that activation of a single Ca2+-

stimulated AC in the adult forebrain is sufficient to rescue CA1 LTP as measured in the 

AC8 Rescue mice (Figure 4A and 4B).  Our results showed that DKO mice fail to show 

strong potentiation after HFS as measured by the % field EPSP slope (DKO 128% vs WT 

224% at 1 min post-HFS, p < 0.05); however, activation of AC8 activity in the adult 

DKO forebrain was sufficient to rescue this lack of potentiation (AC8 Rescue 246% vs 

DKO at 1 min post-HFS, p < 0.01; AC8 Rescue vs WT, p > 0.05).  Furthermore, the data 

show that LTP in AC8 Rescue mice shows a slightly faster rate of decay over time.  The 

field EPSP slope by 80 min post-HFS is still significantly different between WT and 

DKO mice (WT 159% vs DKO 127%, p < 0.01), but no longer significant between AC8 

Rescue and WT or DKO mice (AC8 144%, p > 0.05).  
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Figure 4.  Forebrain AC8 is sufficient for intact CA1 LTP.  (A) Averaged representative traces of pre-
tetanus (black) and 80 min post-tetanus (grey). (B) LTP is impaired in DKO mice (open circles, n = 7) 
relative to WT mice (closed circles, n = 7), but replacing AC8 within the forebrain, AC8 Rescue mice (grey 
circles, n= 7), is sufficient to restore initial LTP deficits. Scale bar 2 mV, 10 ms 
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AC8 activity modulates synapsin I phosphorylation after conditioned fear learning 

 Phosphorylation of the presynaptic proteins, synapsin I and II, controls the 

availability of synaptic vesicles for release and thereby controls the efficiency of 

neurotransmitter release, which is crucial for the modulation of synaptic plasticity (30, 

31).  Previous data have shown an increase in hippocampal phosphorylation of synapsin I 

after CF (32).  Therefore, we investigated whether the impairments in fear memory (1, 2) 

and LTP (Figure 4) (1) seen in DKO mice are correlated with CF-induced changes in the 

phosphorylation of synapsin.  Hippocampal micropunches were taken from mice at 

baseline and 1 h after CF training; phosphorylated synapsin (p-synapsin) I and II were 

quantified. Consistent with previous reports (32), WT mice showed a significant increase 

in p-synapsin I after CF learning (p = 0.001; Figure 5A).  Although baseline p-synapsin I 

levels were indistinguishable in WT and DKO mice (Figure 5A and 5C), DKO mice did 

not show statistically significant increases in p-synapsin levels after CF learning (p = 

0.06; Figure 5C).  Replacing AC8 in the adult forebrain of DKO mice rescued this 

alteration as AC8 Rescue mice showed a significant increase in p-synapsin I after CF 

learning (p < 0.05; Figure 5E). However, CF-induced increases in p-synapsin I in AC8 

rescue mice were significantly less than those in WT mice (p < 0.05; Figure 5E).  These 

data suggest that CF-induced increases in p-synapsin I are also regulated by mechanisms 

independent of AC8, probably AC1.  p-Synapsin II was increased after CF training in all 

genotypes (WT p < 0.01, DKO p = 0.01, AC8 Rescue p = 0.01; Figure 5B, 5D, and 5F), 

and the magnitude of change was similar between genotypes, suggesting that AC1 and 

AC8 do not regulate CF-induced increases in p-synapsin II.  
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Figure 5.  DKO mice show a reduction in p-synapsin 1 1 h after CF training.  (A, C, E) p-Synapsin I 
levels measured at baseline and 1 h after CF training.  WT and AC8 Rescue mice show an 8-fold and 5-fold 
increase after CF training, respectively.  DKO mice fail to show an increase.  (B, D, F)  p-Synapsin II 
levels measured at baseline and 1 h after CF training.  All genotypes show a similar increase. * p < 0.05; 
WT n = 4/condition, DKO n = 4/condition, AC8 Rescue n = 3/condition 
 

Fear memory in DKO mice is unaffected by environmental changes 

 The above data show the genetic influence of Ca2+-stimulated AC activity on 

synaptic plasticity.  Environmental context has also been linked to alterations in fear 

memory (8, 33, 34) and synaptic plasticity (10).  Moreover, gene-environment 

interactions have been widely implicated in influencing memory in a variety of 

paradigms (10, 35, 36).  Therefore, we investigated the gene-environment influence on 

fear memory in DKO mice.   

 Freezing levels were assessed to analyze whether environmental exposure affected 

CF memory.  Freezing behavior pre-shock and immediately post-shock was not 

significantly different regardless of genotype or environment (data not shown).  For 
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experiment 1, WT mice showed an increase in freezing behavior relative to DKO mice, 

which supports previous findings; moreover, this occurs regardless of the experimental 

environment (WT-minimal vs DKO-minimal p < 0.001, WT-enriched vs DKO-enriched 

p < 0.05; Figure 6B).  Interestingly, an experiment conducted in WT mice housed under 

different conditions (experiment 2) revealed dramatic differences in freezing levels based 

on the experimental environment.  Only WT mice exposed to the enriched environment 

displayed a significant increase from DKO mice (Figure 6C).  This was true for WT-

enriched vs DKO-minimal (p < 0.002) or WT-enriched vs DKO-enriched (p < 0.01).   In 

both experiments, DKO mice showed consistent freezing levels regardless of 

environmental exposure.  

 For Figure 6D and 6E, we combined both the WT (Figure 6D) and DKO (Figure 

6E) results from experiment 1 and 2 to see if there are any interactions between the reared 

and experimental environments.  Figure 6D shows a strong statistical interaction between 

reared environment and experimental environment on the memory of WT mice (as 

measured by freezing behavior, p < 0.0001), but this interaction is absent in DKO mice 

(Figure 6E, p = 0.97).  Collectively, the data demonstrate that fear memory is highly 

influenced by the environment in WT mice, while DKO mice show a lack of this 

behavioral plasticity, regardless of environmental exposure. 
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Figure 6.  Experience-dependent fear memory is unaltered in DKO mice.  (A) Mice reared in two 
different housing conditions were experimentally exposed to a minimal or enriched environment for 2 wks 
prior to CF training as shown in the schematic.  (B) Experiment 1: WT mice (reared in corn bedding) show 
enhanced freezing compared to DKO mice no matter the experimental exposure.  (C) Experiment 2: WT 
mice (reared in carefresh bedding) show decreased freezing when exposed to a minimal environment, WT-
minimal, compared to WT mice exposed to an enriched environment, WT-enriched.  The interaction 
between the reared and experimental environment significantly influences freezing behavior in (D) WT 
mice, but not (E) DKO mice. * p < 0.05 from respective DKO group (Figure B and C) or respective 
carefresh group (Figure D), # p < 0.001 WT-minimal vs WT-enriched; Experiment 1: WT-minimal n = 13, 
DKO-minimal n = 11, WT-enriched n = 13, DKO-enriched n = 11; Experiment 2: WT-minimal n = 7, 
DKO-minimal n = 16, WT-enriched n = 9, DKO-enriched n = 13 
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DISCUSSION 

Overall, the present study examines how Ca2+-stimulated AC activity affects 

markers of synaptic activity as measured at the molecular, physiological, and behavioral 

levels. We not only demonstrate that Ca2+-stimulated ACs modulate synaptic plasticity 

and neurogenesis, but we also highlight a novel gene-environment interaction as an 

absence of the Ca2+-stimulated ACs leads to an impairment in experience-dependent fear 

memory.  The first evidence we provide for Ca2+-stimulated AC activity’s influence on 

synaptic activity was measured by the abundance of the synaptic marker SV2.  Due to the 

regional localization of the Ca2+-stimulated ACs to the synapses (7), it is not surprising 

that Ca2+-stimulated AC activity can directly affect SV2 levels.  It should be noted that 

the DKO hippocampal cell culture SV2 levels are significantly reduced, while DKO adult 

hippocampal SV2 levels are not reduced.  This may be a result of different sample 

preparations or techniques used to quantify protein levels, or it could suggest the ability 

of adult DKO mice to compensate for the loss of Ca2+-stimulated AC activity through 

other mechanisms.  Regardless, adult DKO mice continue to show deficits in learning, 

such as induction of LTP or contextual recall of an aversive stimulus, where a larger 

recruitment of synaptic activity is needed.  DKO mice show deficits in potentiation after 

HFS in accord with previous studies (1, 4), and rescuing AC8 within the adult forebrain 

is sufficient to restore these deficits, which is consistent with AC single knockout studies 

(1).  The results also suggest that no irreversible downstream deficits result from a loss of 

Ca2+-stimulated AC activity during development.  AC8 Rescue mice show a slightly 

faster rate of LTP decay as they are no longer show a significant difference from DKO 

mice at 80 min post-HFS.  This is not surprising as previous results showed a small, but 
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subtle, decrease in LTP over time in ACKO mice (1).  This finding may reflect that AC8 

is over five times less sensitive to Ca2+ than AC1 (2) and hippocampal Ca2+-stimulated 

AC activity in AC8 Rescue mice is 50% of WT mice (37). 

 Along with the induction of LTP comes an increase in a variety of synaptic 

markers, such as p-synapsin I (38).  The regional localization of synapsin I, along with 

AC8, to the presynaptic terminal (39, 40) suggests that synapsin activity is downstream 

of AC8.  Therefore, to further assess Ca2+-stimulated AC activity’s function in learning-

induced plasticity, we assessed whether p-synapsin levels after CF learning were 

differentially regulated in DKO and AC8 rescue mice.  DKO mice were unable to 

significantly increase p-synapsin I 1 h after CF learning as seen in WT mice; however, 

AC8 rescue mice showed a significant, but not as robust, increase, providing more 

evidence for the role of Ca2+-stimulated AC activity in modulating learning-induced 

changes in synaptic activity.   

 Not only do our results show that Ca2+-stimulated AC activity modulates synaptic 

activity, but we also show that Ca2+-stimulated AC activity modulates neurogenesis as 

DKO mice show a small, but significant, reduction in neurogenesis.  However, this 

reduction is not attenuated in AC8 Rescue mice despite intact fear learning in the AC8 

Rescue mice.  Neurogenesis has been implicated in modulating CF learning (25, 26), but 

more recent evidence that uses a diphtheria toxin-based strategy to selectively remove 

new neurons before or after CF learning suggests that memory is impaired only when 

new neurons are removed after CF training (41).  Therefore, AC8 Rescue mice are likely 

able to compensate for the lack of neurogenesis through activation of other mature 

dentate granule cells during CF training.  Moreover, endogenous AC1 is expressed 
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significantly more in the dentate gyrus than AC8 (29), which would suggest Ca2+-

stimulated AC activity’s modulation of neurogenesis is predominately controlled by 

AC1.       

 Overall, the changes in synaptic marker abundance and LTP impairments in DKO 

mice suggest a crucial role for the ACs in modulating synaptic plasticity.  To evaluate 

whether the ACs contribute to synaptic plasticity at the behavioral level, DKO mice were 

exposed to minimal or enriched conditions.  These experiments revealed that, consistent 

with previous reports, DKO mice have impaired CF memory (1, 2).  Moreover, exposure 

to an enriched environment did not alter freezing levels in DKO mice independent of the 

original housing conditions.  Housing conditions, however, did significantly affect 

memory in WT mice.  This coincides with a previous experiment showing variable 

behavioral results among several inbred mouse strains when tested at multiple 

universities despite standardization of testing protocols (42).  The genetic similarities, but 

environmental differences, suggested that these mice display a very plastic behavioral 

phenotype that is modulated by environmental influences.  Our results support this 

finding as we demonstrate that memory in WT mice is very plastic and highly influenced 

by experience, and in addition, we show the novel finding that an absence of Ca2+-

stimulated AC activity prevents this behavioral plasticity.   

 Collectively, Ca2+-stimulated AC activity modulates synaptic activity under 

baseline and learning conditions.  Moreover, the lack of experience-dependent fear 

memory in DKO mice suggests an inability to adapt to changes in the environment 

without the presence of Ca2+-stimulated AC activity.  Overall, the data suggest that 

experience-dependent fear memory may be driven by Ca2+-stimulated AC-induced 
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changes in synaptic plasticity.  Ca2+-stimulated ACs have been implicated in the 

pathology of several psychiatric diseases associated with cognitive decline, such as, 

Alzheimer’s disease, which shows a marked decrease in Ca2+-stimulated AC activity (43, 

44), and bipolar disorder (45, 46), where genetic linkage of AC8 has been associated with 

the disease.  Moreover, environmental enrichment techniques have been proven to 

increase cognition in Alzheimer patients, but not to the extent that it does in healthy 

individuals (47, 48).  Thus, this provides an interesting follow-up study to try to 

understand if targeting Ca2+-stimulated AC activity can further enhance environmental 

enrichment memory changes in psychiatric patients.  If so, targeting Ca2+-stimulated ACs 

combined with environmental enrichment therapy could provide a very powerful 

therapeutic treatment for psychiatric patients with cognitive deficits.   
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SUMMARY AND CONCLUSIONS 

 The studies in this thesis examined the role of Ca2+-stimulated AC activity in 

learning and memory, particularly fear memory.  I analyzed the regional and temporal 

importance of Ca2+-stimulated AC activity during learning.  Using the CF paradigm as a 

model for fear learning, I also examined possible downstream targets being influenced by 

Ca2+-stimulated AC activity during fear memory.     

 Throughout the studies described herein, I used a novel transgenic mouse model 

to investigate learning and memory.  Chapter 2 describes the development and 

characterization of these mice, AC8 Rescue mice.  Under the control of a tetracycline-

inducible system, I am able to acutely turn on or off forebrain-specific AC8.  These mice 

are on a Ca2+-stimulated AC-deficient background.  This background is important as the 

absence of both Ca2+-stimulated ACs leads to a variety of memory impairments, while 

the absence of only a single Ca2+-stimulated AC activity often does not.  Therefore, I was 

able to examine whether forebrain AC8 is sufficient to rescue the memory impairments 

seen in DKO mice.  Furthermore, this also allowed me to examine the necessity of Ca2+-

stimulated AC activity at different stages of memory by acutely turning on AC8 at 

different points throughout learning.  We recapitulated previous results, showing that 

DKO mice have CF and novel object recognition memory deficits (1, 2); however, we 

also showed that they had memory deficits on the forced swim learning paradigm.  When 

forebrain AC8 is turned on acutely after development, memory deficits were rescued on 

the CF and novel object recognition paradigms, but not the forced swim learning 

paradigm.  Furthermore, if AC8 is turned off during periods coinciding with memory 

consolidation or retention, AC8 Rescue mice no longer show intact memory on the CF 
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paradigm.  When examining differences in anxiety, locomotion, or pain, as these factors 

may contribute to learning results, DKO mice showed a significant decrease in anxiety on 

the EPM, but not the open field test.  Moreover, both AC8 Rescue and DKO mice 

showed increased locomotion in the open field test.  No differences in pain were seen.   

Overall, these results suggest a broad role of Ca2+-stimulated ACs in modulating 

learning on a variety of paradigms.  Ca2+-stimulated AC activity appears to be necessary 

particularly during memory consolidation and retention.  Although acute restoration of 

forebrain AC8 is sufficient to rescue most memory deficits, the AC8 Rescue memory 

deficits on the forced swim paradigm suggest that AC1 and AC8 are not interchangeable 

and the presence of one may not make up for the absence of the other.  This is evident in 

single AC knockout studies, which show memory impairments.  For example, AC1KO 

mice display impairments on the Morris water maze (39), while AC8KO mice 

demonstrate memory deficits on a novel objection recognition task (40).  However, 

additional studies need to be done to prove that AC1 and AC8 possess unique functions 

as the current findings may just be a result of those tasks requiring more Ca2+-stimulated 

AC activity than a single AC can produce.  Another possible explanation is that Ca2+-

stimulated AC activity is necessary during development for subsequent learning in 

adulthood.  This could be further evaluated by maintaining the AC8 Rescue matings and 

newly born litters off doxycycline (ie normal rodent chow), which would turn AC8 on 

during development.  Finally, the subtle differences in anxiety seen on the EPM further 

supports previous data that shows the Ca2+-stimulated ACs may play a role in mediating 

the stress response.  
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 To define the mechanism by which Ca2+-stimulated ACs act, we conducted a 

genome-wide study of gene expression changes that occur after CF learning.  We 

analyzed both WT and DKO mice after CF learning to identify Ca2+-stimulated AC-

dependent gene regulatory changes that occur across different stages of memory in the 

amygdala and hippocampus.  We found that overall the number of genes upregulated 

after CF learning in the hippocampus or amygdala was significantly decreased in DKO 

mice.  However, the largest influence occurs in the hippocampus, which coincides with 

previous data showing greater levels of Ca2+-stimulated AC expression in the 

hippocampus (5, 6).  Moreover, the largest increase in transcription changes occurred at 1 

h and 48 h after CF learning, which coincides theoretically with when memory 

consolidation and retention, respectively, are occurring.  This data supports the 

behavioral results above that reveal Ca2+-stimulated AC activity is necessary during these 

two stages of memory.  Although transcriptional changes do not appear to be as largely 

influenced in the amygdala, heat map analysis interestingly reveals divergent gene 

expression changes in the amygdala.  A cluster of genes significantly upregulated in WT 

mice were analyzed and the results revealed that DKO mice show opposing regulation.  

Additionally, many of the transcription factors within the hippocampus that modulate 

enhanced gene expression in WT mice are found overrepresented in the genes that 

display reduced gene expression in DKO mice at 48 h.  Both results support that an 

absence of Ca2+-stimulated AC activity may reverse the pattern of gene expression 

changes or simply cause an overall decrease in transcriptional changes.  Finally, the 

functional analysis data reveals the lack of transcriptional changes may be contributing to 

deficits in communication occurring at the level of the synapse as WT mice show a large 
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number of transcriptional changes that functionally contribute to cell communication and 

signal transduction, whereas, DKO mice do not.  While this is merely correlative, the 

results highlighted below from Chapter 4 will further support this finding.    

 Chapter 4 provides data that the Ca2+-stimulated ACs play a necessary role in 

mediating synaptic activity.  Initial analysis of the synaptic protein, SV2, in hippocampal 

cultures revealed decreased levels in DKO mice, which could be rescued through 

infection with an AC8 lentivirus.  Furthermore, I went on to show that Ca2+-stimulated 

AC activity could directly affect synaptic activity as acutely turning on forebrain AC8 

can rescue CA1 LTP deficits known to persist in DKO mice (1, 7).  As LTP is often 

correlated with learning, we looked at whether there were any differences in activation of 

synaptic protein markers after CF learning.  Results revealed that DKO mice failed to 

increase p-synapsin I levels after CF learning unlike WT and AC8 Rescue mice.  Finally, 

we assessed whether the lack of molecular plasticity in DKO mice impacted function at 

the behavioral level. To this end, we exposed mice to an experience-dependent CF 

learning paradigm.  Memory in WT mice was readily influenced by the environment as 

WT mice showed varying levels of freezing based on their initial housing conditions and 

experimental environment, enriched or minimal.  However, DKO mice consistently 

showed the same freezing levels despite the different environmental exposures.  Thus, the 

data demonstrates that DKO mice show a lack of experience-dependent plasticity.  The 

results, overall, reveal the importance of forebrain Ca2+-stimulated AC activity on 

modulating fear memory.  Additionally, the data also provides evidence for a novel gene-

environment interaction, which could help with future therapeutic interventions as 
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dysfunction of Ca2+-stimulated ACs have been implicated in several psychiatric diseases, 

such as mood disorder (8), bipolar disorder (9), and Alzheimer’s disease (10, 11). 

FUTURE DIRECTIONS 

 This research has identified a necessary role of the Ca2+-stimulated ACs on fear 

memory, specifically dissecting the temporal and regional importance of these two 

isoforms.  Moreover, downstream analysis of Ca2+-stimulated AC targets has 

demonstrated a role of these isoforms in modulating synaptic activity.  Although the LTP 

results suggest that Ca2+-stimulated AC activity modulates synaptic activity to cause 

changes in learning and memory, the two are not always directly correlated, and 

therefore, further research has to be conducted in order to understand the link between 

Ca2+-stimulated AC activation and synaptic activity.  For example, disruption of Giα1 and 

overexpression of AC1 both increase Ca2+-stimulated AC activity.  However, AC1 

overexpression leads to both increased CA1 LTP and memory (2), while conversely, 

disruption of Giα1 leads to increased CA1 LTP but severe memory loss (12).  These 

results, along with LTP results discussed previously, suggest that synaptic activity is 

tightly regulated, and an imbalance in this regulation can lead to impairments.  Moreover, 

there may be synapse-specific plasticity that is required for new memory, and increasing 

sensitivity to stimulation beyond a threshold can reduce this synapse-specific plasticity.  

Therefore, through a combination of pharmacological and genetic techniques targeting 

the Ca2+-stimulated ACs in conjunction with other targets along the pathway, like G 

protein-coupled receptors or cAMP, the Ca2+-stimulated AC pathway’s role in mediating 

changes in memory through modulation of synaptic activity can be further evaluated.  

Using AC8 Rescue mice to further this research is ideal as Ca2+-stimulated AC activity is 
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only 50% of WT levels, and therefore, can be easily be up or downregulated to 

understand the balance between Ca2+-stimulated AC activity and synaptic activity.  

Furthermore, using the tetracycline-inducible system, Ca2+-stimulated AC activity can be 

acutely turned on or off, which allows a within subject control.   

 Synaptic plasticity was not only found to be altered by Ca2+-stimulated AC 

activity at the molecular and physiological levels, but also at the behavioral level.  The 

experience-dependent CF results suggest a novel gene-environment interaction.  The 

inability of environmental changes to influence memory in DKO mice demonstrates the 

need for Ca2+-stimulated AC activity to integrate information from the environment.  

Although the data suggest the lack of experience-dependent plasticity may be a result of 

changes in synaptic plasticity, no direct causal link has been revealed.  Therefore, the 

next step in research would be to directly show that the Ca2+-stimulated ACs’ modulation 

of synaptic activity is responsible for the experience-dependent changes in fear memory. 

This effect could be analyzed by determining how different environmental contexts affect 

LTP in both WT and DKO mice.  Furthermore, measuring the effects of environment on 

the behavior and physiology of AC8 Rescue mice would also be informative.  The ability 

to turn Ca2+-stimulated AC activity on or off would help begin to elucidate whether acute 

activation is sufficient for modulation of experience-dependent memory, or whether 

Ca2+-stimulated AC activity is necessary developmentally, such that it is needed to cause 

more long-term changes like alterations in dendritic morphology.  If this is the case, 

assessing dendritic morphology in DKO and AC8 Rescue mice would also be informative 

as current research supports the theory that dendritic spines provide structural support for 

the processing of new memories (13).     
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 Finally, finding a more direct link between Ca2+-stimulated AC activity and 

cognitive changes in the human population would be beneficial.  Previous data has 

already linked AC8 with psychiatric disorders, specifically bipolar disorder (14, 15) and 

mood disorder (8).  Moreover, AC1 has been linked to Alzheimer’s disease (10, 11).  

However, whether the Ca2+-stimulated ACs are responsible for cognitive changes in these 

psychiatric diseases is still unknown.  As research in murine models further examines 

Ca2+-stimulated AC activity’s role during learning, this will provide more insight by 

which humans may be aversely affected by alterations in Ca2+-stimulated AC activity.  
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