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Abstract

The level of dissonance in piano intervals and chords was quantified using both 

experimental and computational methods. Intervals and chords were played and recorded on both 

a Yamaha YPT-400 portable keyboard and a Steinway & Sons grand piano. The recordings were 

run through spectral analyses, and dissonance values were calculated using a dissonance 

equation. The result was a ranking of comparative dissonance levels between each chord and 

interval. Though the goal was to find a universal ranking of chords, it was instead determined 

that such a ranking cannot exist. The non-universal rankings revealed that the transition from 

least dissonant to most dissonant was gradual.



I. INTRODUCTION

The primary goal of this work is to explore the concept of intrinsic dissonance within 

music. The Oxford English Dictionary1 states the definition of dissonant as “disagreeing or 

discordant in sound, inharmonious; harsh-sounding,” and the definition of consonant as “musical 

harmony or agreement of sounds.” Musically, dissonant chords are used to give a piece tension, 

which, classically, is resolved to consonance.2 Though the musical context of a chord plays a role 

in how that chord is perceived, we consider only the inherent dissonance within the playing of an 

interval (two notes played simultaneously) or a chord (three or more notes played 

simultaneously).

The intervals we considered are within the octave range beginning at middle C (C4, 

frequency 262.6 Hz). The notes within this octave for a C major scale are shown in Figure 1 in 

piano notation.

Figure 1 − Piano notation of a C4 major scale with frequencies (Hz).

Table 1 shows the intervals with the corresponding notes on a piano along with each interval’s

Roman numeral notation.
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Table 1 − C-intervals.

We considered 17 C-chords, shown in Table 2, all within the octave beginning at middle 

C. See Appendix A for a description of the abbreviations in chords.

Interval

Unison

Semitone

Second

Minor third

Major third

Fourth

Diminished
fifth v

IV

III

iii

II

ii

I

Roman
numeral
notation

Piano notation Interval

Fifth

Minor sixth

Major sixth

Minor
seventh

Major seventh

Octave VIII

VII

Vii

VI

Vi

V

Roman
numeral
notation

Piano notation
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Table 2 -  C-chords.

Chord Piano Notation Chord Piano Notation

C major C sus 2

C minor C sus 4

C  7 C 6

C min 7 C minor 6

C min maj 7 C dim

C maj 7 C dim 7

C 7b5 C aug

C 7#5 C aug 7

C min 7b5

We answer the following questions: Can physics explain how a chord is perceived with 

respect to consonance or dissonance? Can a formula quantify the inherent dissonance within an 

interval or chord? If so, is a ranking of dissonance for chords universal? Essentially, should the 

blacks and whites of music that are consonance and dissonance be instead shades of gray?
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II. PHYSICS BACKGROUND 

Sound waves

Quantifying dissonance in musical sound requires an exploration of the principles of 

sound. Sound waves are caused by pressure variations in a given medium.3 Pressure is measured 

in Pascals (Pa), where 1 Pa = 1 N/m2. Standard atmospheric pressure in air, 1 atm, is equal to 

approximately 105 Pa. A disturbance in a medium, such as the collision of two objects in air, 

gives a sudden pressure rise or fall to the air immediately around the two objects. A rarefaction is 

the reduction of a medium’s density, which results in a lower pressure, whereas a compression is 

in an increase in density, a higher pressure. Rarefactions and compressions in a medium disperse 

from the source of the disturbance in the form a sound wave.

A sound might be perceived as a click, but when rarefactions and compressions of the air 

occur at regular time-intervals, they can be perceived as a musical tone. A sound is considered a 

musical tone if the sequence of regularly-repeated pressure changes has a frequency between 

approximately 18 and 15,000 vibrations per second. Frequencies of sound are measured in Hertz 

(Hz), which is vibrations per second. The human ear is capable of detecting frequencies between 

20 and 20,000 Hz, but the ear’s ability to perceive frequencies varies from person to person.4

A simple tone, is a musical tone for which the source of sound produces sound waves 

sinusoidally at a given fundamental frequency.3 A complex tone is produced from the addition of 

multiple simple tones. The wave form of a simple tone and a complex tone are shown in Figure

2.
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(a)

(b)

Figure 2 − Wave forms of (a) a simple tone at 261.6 Hz (Middle C or C4), and (b) a complex 

tone consisting of 6 equally-weighted simple tones: 261.6 Hz, 523.2 Hz, 784.8 Hz, 1046.4 Hz, 

1308.0 Hz, and 1569.6 Hz.

Overtones

For a stringed instrument, like a piano, overtones arise from the possible standing waves 

on the string. Each standing wave is a sinusoidal wave fit between the fixed ends of the string. 

Table 3 illustrates the fundamental frequency f  along with five of its overtones.
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Table 3 -  The overtones on a string with fixed ends.

For a fundamental frequency f , the overtones frequencies will be 2f ,3f ,4f ,5f ,… Each 

instrument has certain characteristics, such as shape and material, which determine the relative 

intensities of these overtones.

Giordano and Nakanishi5 explored the computational simulation of a piano string struck 

by a hammer using the work of Chaigne and Askenfelt.6 Michael Blatnik repeated that piano 

simulation in PHYS333 at Lynchburg College in the spring semester of 2010, and it became the 

original basis of this work. In the simulation, the hammer hits the string at a point of one-eighth

5th 6f

5f4th

3rd 4f

3f2nd

1st 2f

f
Funda-
mental

Overtone Frequency Wave



the string’s total length. Figure 3 shows the string’s transverse displacement at the hammer strike 

location.

Figure 3 -  Piano string’s transverse displacement at hammer strike location.

Because the oscillation of the string’s displacement in Figure 3 is not sinusoidal, the piano 

produces a complex tone rather than a simple tone. The Fast Fourier Transform (FFT) is 

computational method used to output what frequencies are present within a given sound sample 

(see Appendix B:3 for code). The piano string’s transverse displacement from Figure 3 was run 

through an FFT to output the power spectrum shown in Figure 4.

Figure 4 -  Power spectrum for amplitude fluctuations in Figure 3.

Figure 4 shows the presence of the fundamental frequency and the first four overtones. The 

fundamental frequency lies just above 250 Hz, whereas the first harmonic lies around 500 Hz,
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where a decibel (dB) is a logarithmic unit for sound. The reference sound pressure level pref =

2 x 10-5 Pa corresponds to the faintest perceivable sound. The root-mean-square pressure prms is

(2)

where p(t) represents a pressure wave with period T. When prms = pref, SPL = 0 dB; when

prms = 20 Pa, SPL = 120 dB.

Using equation (1), the difference in the sound pressure levels between two simple tones 

with respective root-mean-square pressures p1 and p2, is

(3)

(1)

the third around 750 Hz, the fourth around 1000 Hz, and so forth. These arbitrary amplitudes 

represent amplitudes of the fluctuations of air pressure surrounding the string.

Measuring sound

Pressure differences help quantify sound.7 Pressure fluctuations associated with sound are 

small compared to atmospheric pressure. The faintest perceivable sound has a gauge pressure

around 2 x 10-5 Pa; the so-called threshold of pain, the limit of useful hearing sensation, has a 

gauge pressure around 20 Pa. Though extremely loud sounds are five orders of magnitude less 

than atmospheric pressure, the pain threshold is over six orders of magnitude higher than the 

pressure of the faintest perceivable sound. To cover such a broad range of sound, a logarithmic 

scale for the sound pressure is used. The sound pressure level (SPL) is found using the equation

SPL = 20 ∙ log10 dB,
Pr e f
Prms

prms
1
T 0

T
p2(t)d t ,

SPL1 − SPL2 = 20 ∙ log10 dB.p1
p 2

=



(5)
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For multiple simple tones where the arbitrary ith tone has prms = pi, and the tone with the 

highest root-mean-square pressure has prms = pmax, SPLi is

(4)

The ratio of pressures helps determine the sound pressure level, but the sound pressure level does 

not correspond linearly to how loud a tone is perceived.

Humans’ perception of loudness is subjective. Fletcher and Munson8 generated “curves 

of equal loudness” by playing a reference simple tone of 1000 Hz, playing another tone, and 

having their subjects adjust the second tone’s intensity until it had roughly the same perceived 

loudness as the 1000 Hz reference tone. They discovered that the loudness perception of simple 

tones with the same SPL depends on the frequency of the tone.

The phon is the unit used to describe the loudness level LN, and is the number of decibels 

needed to raise a tone at a given frequency to make it have the same perceived loudness as a 

1000 Hz tone at a given sound pressure level. The loudness level gives a way to describe how 

loud a tone is perceived in relation to the reference tone of 1000 Hz, but loudness levels are 

nonlinear. A sound with LN = 100 phon is more than twice as loud as a sound with LN = 50 

phon. The sone, is used to measure loudness, N, in a linear way, such that a doubling of the 

number of sones results in a doubling of the perceived loudness. One sone is defined arbitrarily 

as the loudness of a 1000 Hz tone with an SPL = 40 db (40 phon at 1000 Hz). For loudness 

levels above 30 db, the relation is essentially logarithmic and is expressed with the equation

SPLi = SPLmax + 20 ∙ log10 p i
Pmax

dB.

N =  2
LN -40 phon

10 phon sone.
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Raising the loudness level by 10 phon will result in a doubling of loudness. Around 250-2000 

Hz, every 10 db increase in SPL is approximately a 10 phon increase in loudness level, and thus 

a doubling of loudness.

III. MUSIC THEORY

Musical scales

Working around 550 B.C.E. Pythagoras was the first to identify consonance in music.9 

He claimed consonance was the result of relatively small whole number ratios, such as 1:1, 2:1, 

3:2, and 4:3, between two frequencies. The unison interval corresponds to 1:1, the octave to 2:1, 

the fifth to 3:2, and the fourth to 4:3. Table 4 shows the scale Pythagoras developed based on the 

consonant ratios. The notes C, D, E, …, C’ in Tables 4 and 5 do not refer to the notes of the 

modern piano but rather to historical scales.

Table 4 − Pythagorean scale.

Note C D E F G A B C’
Ratio 1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1
Ratio

decimal 1.000 1.125 1.266 1.333 1.500 1.688 1.898 2.000

Interval Unison Second Major
third Fourth Fifth Sixth Major

seventh Octave

By the early Renaissance, music had become more harmonic, that is, notes were played 

simultaneously rather than only in succession.9 Harmonic intervals showed the apparent 

dissonance involved in the Pythagorean scale, such as the Pythagorean major third (81:64 or 

1.266 ratio), where the E-note had a higher frequency from what was found to be consonant (a 

5:4 or 1.25 ratio). To reform music, the just scale was developed (see Table 5).
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Table 5 -  Just scale.

The just scale maintains maximum perceived consonance within the scale beginning at C. 

Transposing, or shifting the scale up or down, results in a different set of ratios. With D as a bass 

note for the transposed scale, the fifth of D in relation to C has a ratio of 9:8 x 3:2 = 27:16 =

1.6875, which is close to but not equal to the C:A ratio of 1.667. Scales based on different notes 

in the just scale result in a different sound as the ratios change for each key.

By the eighteenth century, composers desired a scale that allowed for transposition from 

one key to another without changing the sound. The 12-tone equally-tempered scale thus gained 

popularity, as it kept all the ratios between adjacent semitones fixed, thus allowing for 

transposition.9 Originally conceived by Simon Stevin in the 16th century, the equally-tempered 

scale defined the semitone ratio as 21/12. The octave was divided into 12 of these semitones, and

212/12 =  2.the 2:1 ratio on the octave was maintained because The frequency ratios for any

octave are 1,  r ,  r 2,  r 3,  r 4,  r 5,  r 6,  r 7,  r 8,  r 9,  r 10,  r n ,  r 12, where r 12 represents the octave ratio, and

thus The ratio of any two adjacent semitones is equal to the ratio of any other two

adjacent semitones:

equally-tempered scale.

Table 6 compares the just scale with the

Interval Unison Second Major
third Fourth Fifth

1.5001.3331.2501.1251.000Ratio
(decimal)

Ratio
Note

1:1 9:8 5:4 4:3 3:2
GFEDC

Sixth Major
seventh Octave

2.0001.8751.667

5:3 15:8 2:1
C’BA

21/12.
r12

r11

r11

r 10r

r 2r
1

r12

= = … = =

= 1
2

= 2.
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Table 6 − Equally-tempered scale vs. just scale.

Though equal temperament keeps the octave at a 2:1 ratio, it is only a close approximation for 

the other intervals. An equally-tempered fifth, for example, is the ratio 1.498, which is 

approximately 0.11% lower than the ratio of a consonant fifth (3:2). Although the equally- 

tempered-scale did not keep the intervals at maximum perceived consonance, the equally- 

tempered scale was standardized and the piano and keyboard we tested are both tuned to this 

scale.

IV. QUANTIFYING DISSONANCE 

Helmholtz and beats

In the late 19th century, Helmholtz10 theorized that beats resulting from interference 

between fundamental and overtone frequencies were the source of dissonance within a musical 

sound. Beats occur as a result of the interference of two sound waves of slightly different 

frequencies. The difference in frequency is the number of beats per second. Figure 5 shows the 

addition of simple tones differing by 2 Hz.

Note
Equally-
tempered

ratio
Decimal

C

1 21/12

Db D

22/12 23/12

Eb E

24/12

1 1.060 1.123 1.189 1.260  1.335

25/12

F

26/12

Gb

1.414 1.498

27/12

G Ab

28/12

1.587

29/12

A Bb

210/122 211/12

B C’

2

21.682 1.782 1.888

2:115:87:45:33:24:35:4

1.250 1.333 1.500 1.667 1.750 1.875 2.000
III IV v V Vi VI Vii VII VIIIiiiIIii

9:8

1.1251.0
I

1:1Just scale 
ratio

Decimal
Interval
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Figure 5 − (a) Two simple tones at 20 Hz (blue) and 18 Hz (red), (b) Beats resulting from the 

addition of the two simple tones in (a).

Figure 5 shows the regions of large amplitude at t = 0, 0.5, and 1.0 seconds, where the sound 

waves add up most constructively. Regions of small amplitude, t = 0.25 and t = 0.75 seconds, 

are the points where the sound waves add up most destructively. Small amplitudes produce the 

least loudness; large amplitudes produce the greatest loudness. Fluctuations in loudness result in 

discernible beats, two beats per second in the case of the simple tones in Figure 5.

Helmholtz found that maximum perceived dissonance occurs when two simple tones 

differ by about 33 beats per second. He categorized the order of consonant intervals from most 

consonant to least consonant: 1) Octave, 2) Twelfth, 3) Fifth, 4) Fourth, 5) Major Sixth, 6) 

Major Third, 7) Minor Third, while the other intervals, were deemed dissonant. Figure 6 

illustrates the difference between the power spectrums of a consonant interval, the fifth, and a 

dissonant interval, the semitone.
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Figure 6 − (a) Fifth and (b) semitone power spectrums from Yamaha YPT-400 portable 

keyboard.

The fifth’s power spectrum in Figure 6 shows a dominate frequency of 392.0 Hz (G4). The C4- 

G4 combination has 130.4 beats per second. The other point of possible dissonant beats on the 

fifth is between G4 and C5, with 131.3 beats per second. Both of these beat frequencies are far 

from what Helmholtz found to be most dissonant, 33 beats per second. In comparison, the 

semitone’s significant points of dissonance occur at C5-Db5, 15.6 beats per second, and at C5- 

Db5, 31.1 beats per second. Both of these beat frequencies are close to Helmholtz’ 33 beats per 

second of maximum dissonance.

To build empirical statistics of how dissonance is perceived, Plomp and Levelt11 

conducted a series of experiments in 1965 in which 380 subjects had to judge simple tone 

intervals on scales of consonance/dissonance. The subjects listened to simple tone intervals
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picked at random to prevent interval recognition. There were 44 total intervals, picked from 

different regions of the musical range with fundamental frequencies of 125, 250, 500, 1000, and 

2000 Hz. Plomp and Levelt’s findings showed that the majority of subjects found the most 

dissonant intervals occurred around 20-40 beats per second, depending on the fundamental 

frequency, thus agreeing with Helmholtz’s 33-beats-per-second theory. The lower the 

fundamental frequency of the interval, the lower was the number of beats where maximum 

dissonance was perceived.

Sethares12 found a curve to fit to Plomp and Levelt’s dissonance statistics data. Sethares 

parameterized Plomp and Levelt’s statistics with a model of the form

where x  is the difference between the frequencies of two simple tones, and a and b are constants. 

Sethares statistically found that a = 3.5 and b = 5.75. The dissonance function, d (f 1,  f 2, l1, l2), 

for two frequencies f1 and f 2 with respective loudnesses l1 and l2, is

d (f1, f2, l1, l2) = min(l1, l2) [e−as(f2-f1) − e−bs(f2-f1)], (7)

where

s = d*/ [ s1min(f 1,  f 2) + s2], (8)

where d* = 0.24, the maximum of equation (6). From a least-square fit, Sethares could ensure 

that his model closely fit Plomp and Levelt’s statistics by altering the values of s1 and s2. The 

ideal values of s1 and s2 were found to be s1 = 0.021 and s2 = 19.

(6)d (x) = e-ax − e-bx,
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Sethares assumed that the total dissonance is the sum of its constituent parts and the total 

dissonance for any collection of frequencies is given by

(9)

A replication of Sethares’s work using equation (9) is shown in Table 7 for the Plomp

and Levelt fundamental frequencies.

( 10)

The loudness level is only approximately equal to SPL between about 250 and 2000 Hz. Sethares 

had already factored in human perception of loudness when he used the Plomp and Levelt curves 

of perceived dissonance. For this reason, and because we only considered frequencies ranging 

between about 250 and 2000 Hz, loudness is approximately defined by equation (10).

where DF is the total dissonance generated from playing the frequencies f1, f2,

respective loudnesses l1, l2,  ..., ln. The frequencies f 1, f 2,  ...,  fn could be the fundamental and 

overtone frequencies of a single note, interval, or chord. His model gives comparative dissonance 

values for any timbre, which is determined by both the number and the prominence of all 

frequencies within a musical sound.

To calculate loudnesses, Sethares made the assumption that the loudness level was equal 

to the SPL so that for a loudness l,

DF =
1
2

n n
d (fi. fj, li, lj) .

i = 1 j = 1

l  =  2
SPL- 40 dB

10 dB sones.

with…, fn
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Table 7 -  Normalized dissonance curves for simple tones as a fonction of equally-tempered 

intervals.

Fundamental
frequency (a) 125 Hz (b) 250 Hz (c) 500 Hz (d) 1000 Hz (e) 2000 Hz

Frequency with 
maximum 
dissonance

144.8 Hz 272.2 Hz 526.9 Hz 1036.4 Hz 2055.4 Hz

Beats/sec of 
maximum 
dissonance

19.8 22.2 26.9 36.4 55.4

Lower fondamental frequencies require a larger interval to remove dissonance. Because most

instruments consist of overtones and not just simple tones,13 the dissonance curves of complex 

tones will be more complicated than the curves in Table 7.

Interval
VIIIVIIViiVIViVvIVIIIiiiIIii

D
iss
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ce

(a)
(b)
(c)
(d)
(e)
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To illustrate the dissonance curve for complex tones, Sethares used a timbre where the 

first overtone had a loudness of 88% the fundamental, and each successive overtone had a 

loudness of 88% the previous overtone. Table 8 shows the dissonance curves for this timbre.

Table 8 − Dissonance for complex tones with a fundamental frequency of 261.6 Hz. Consonant 

points (green) and dissonant points (red) have been marked.

DissonanceOver-
tones

0

1

2

3

4

5

Equally-tempered interval

Consonant
ratios Just interval

Unison
Octave

1.00 − 1:1
2.00 − 2:1

Unison
Fifth

Octave

1.00 − 1:1
1.48 − 3:2
2.00 − 2:1

Unison
Fourth
Fifth

Harmonic 7th 
Octave

1.00 − 1:1
1.31 − 4:3
1.50 − 3:2
1.72 − 7:4
2.00 − 2:1

Unison 
Major 3rd 

Fourth 
Fifth

Major 6th 
Octave

1.00 − 1:1
1.23 − 5:4
1.33 − 4:3
1.50 − 3:2
1.69 − 5:3
2.00 − 2:1

Unison 
Major 3rd 

Fourth 
Fifth

Major 6th 
Octave

1.00 − 1:1
1.25 − 5:4
1.33 − 4:3
1.50 − 3:2
1.67 − 5:3
2.00 − 2:1

Unison 
Minor 3rd 
Major 3rd 

Fourth 
Fifth

Major 6th 
Octave

1.00 − 1:1
1.20 − 6:5
1.25 − 5:4
1.33 − 4:3
1.50 − 3:2
1.67 − 5:3
2.00 − 2:1VIIIVIIViiVIViVvIVIIIiiiIIiiI
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Table 8 reveals that a timbre with more overtones has more points of dissonance and 

consonance. Though the consonant points do not always align perfectly with the equally- 

tempered intervals, the consonant points are roughly around both the equally-tempered and just 

intervals. The final plot in Table 8 contains all five overtones and has points of consonance in all 

the intervals Helmholtz deemed as consonant.

V. METHODS

Sound was recorded from both a Yamaha YPT-400 portable keyboard and a Steinway & 

Sons grand piano (serial number: 194426; approximate date of construction: 1917-1918). A 

Samson Q1U-USB microphone was used for the grand piano and connected to an Acer Aspire 

5610 laptop. The keyboard output was connected directly into the microphone input of the laptop 

so that unwanted background noise would be eliminated.

The electronic keyboard was used because it produces the same sound for each key 

independent of the force with which the key was struck, thus, providing reproducible sounds.

The keyboard was set to the Portable Grand Piano feature with touch sensitivity turned off. The 

volume was set to 50%, the reverb to 0%, and the chorus to 0%. No sustain pedal was used, and 

the notes were depressed until the sound faded to inaudible.

For recording the grand piano, the microphone was placed directly underneath the piano, 

approximately centered with both the piano’s length and width. The microphone was placed on a 

small tripod stand and pointed up vertically, having an effective height of 20 cm. Because the 

sounding board is located under the piano, the sound was louder underneath the piano than above 

it. The room used for recording was 3.17 m (length) x 2.21 m (width) x 2.80 m (height) with 

padded walls to decrease acoustical reflections.
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The recording software used for both the piano and the keyboard was Audacity ® 1.3.12- 

beta (Unicode). A freely available software, Audacity allows for easy exporting of sound 

recordings as “wav” files. The microphone level for the computer input for both the piano and 

the keyboard was set to 50%. Each recording took 8 s of sound. Piano keys were held down, 

allowing the string to vibrate freely until the sound decayed to inaudible. The sustain pedal was 

not depressed so that the other strings would not resonate sympathetically. The sound took about 

8 s to fade to inaudible for the grand piano, whereas the notes tended to fade to inaudible after 

about 4 s for the keyboard. Generally, about 1 to 1.5 s were allowed to pass between beginning 

the recording and pressing the piano keys.

The intervals and chords we recorded were within one octave, all with a bass note of C4 

(middle C, 261.6 Hz). Tables 1 and 2 show the intervals and chords recorded. Three trials of 

each interval and of each chord were recorded for each instrument. The sampling frequency used 

in all instances was 22,050 Hz.

The recordings were exported as wav files, which contain uncompressed sound data.14 

Within a wav file, voltage readings from the microphone are converted to arbitrary voltage units 

between − 1 and 1 through analog-to-digital conversion. After exporting the wav files, the data 

were extracted using sox, freely available sound software for the Linux operating system. Output 

data consisted of a two-column array listing recording time and arbitrary voltage readings.

The converted sound data was then read into a FORTRAN code (Appendix B:2). The 

silence prior to the playing of the note was truncated by only considering data after the wav file 

voltages were greater than or equal to 0.05. An FFT was used (Appendix B:3) to output the 

power spectrum of the frequencies present in the sound data. The FFT requires the number of 

samples to be 2n, where n is an integer. The sampling rate and the recording time determine the
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largest n that can be used. We used n = 15, which gave 215 samples or about 1.49 s of recorded

sound. This number of samples was used to focus on the beginning of the sound sample when the

sound was loudest rather than the longer trailing decay of the sound after the keys are struck. The

higher frequencies die out quicker than the lower ones, so the overtones will be strongest during

the beginning of the sound.12

The power spectrum frequency bin is f bin = 22,050/(215) ≈ 0.673 Hz, meaning that all 

frequencies ranging from 0-0.673 Hz are labeled as having a frequency of 0.673 Hz on the power 

spectrum. This frequency resolution is more than adequate as the smallest frequency difference 

we considered is the semitone interval from C4 to Db4: 261.6 x 21/12 Hz − 261.6 Hz ≈ 15.6 Hz.

Frequencies outside of the musical range (20-20,000 Hz) were given a power spectrum 

amplitude (PSA) of 0 to eliminate noise not associated with the piano. The power spectrum 

amplitudes of all the chords and intervals were divided by the highest power spectrum amplitude 

(PSAmax) found amongst all chord and interval power spectrums. By dividing by PSAmax, the 

power spectrum amplitudes were normalized and ranged from 0 to 1. Only one power spectrum 

had a PSA = 1, the spectrum corresponding to PSAmax.

To find significant peaks in the data, a loop was run in which each frequency bin was 

inspected to see if its PSA was greater than the PSA of the adjacent frequency bins. Because the 

peaks in the power spectrum are sometimes a collection of small peaks around the highest peak, 

it was necessary to look at many bins to the left and to the right of the current bin to ensure that 

the bin the code was inspecting was a significant peak. The code searched 12.11 Hz to the left 

and to the right of each frequency bin to determine where a significant peak occurred.
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The final step to ready the recording samples for the dissonance equation was to convert 

the power spectrum to loudness. We used equation (4) to compare multiple tones’ sound pressure

levels using the ratio of pressures. The ratio of PSAi to PSAmax is

expression for finding SPLi is then

(11)

We assigned the sound pressure level of the loudest frequency present in any of our samples, to a 

comfortable listening level for music such that SPLmax = 70 dB.15 The lower limit of human 

hearing for simple tones for the musical ranges in consideration (250-2000 Hz) is around 25 dB, 

so any sound pressure levels less than 25 dB were set to 0 dB. Loudness was then found using 

equation (10) where

( 12)

Figure 7 shows the conversion process from a power spectrum with arbitrary units to a 

sound pressure level power spectrum, and then to a loudness power spectrum.

Our

l = 23+2∙log10
PSA

PSAmax sones.

SPLi = SPLmax + 20 ∙ log10 dB.PSAmax
PSAi

PSAmax Pmax
PiPSAi
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(a) Raw 
power 

spectrum 
from FFT

(b) Sound 
pressure 

level power 
spectrum

(c) Loudness 
power 

spectrum

Frequency (Hz)

Figure 7 − Converting the raw power spectrum to loudness.

The loudness spectrum in Figure 7 (c) reveals that frequencies that have low relative amplitudes 

in (a), such as the peaks around 750, 1000, and 1250 Hz hold higher relative loudness 

amplitudes. Frequencies with a sound pressure level less than 25 dB were truncated, such as the 

peaks just above 1500 Hz and above 1750 Hz.
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After Converting to loudness, the data were input into the dissonance equation, equation 

(9). Comparing the mean dissonance values provided a ranking of dissonance for chords and 

intervals.

III. RESULTS 

Intervals

The keyboard and grand piano results for mean dissonance values are shown in Figure 8.

Figure 8 − Mean dissonance value comparison between keyboard and grand piano.

The keyboard and grand piano are similar, but certain peaks of dissonance for the keyboard, such 

as the diminished fifth (v), are not dissonance peaks on the grand piano. The grand piano holds 

little distinction between dissonance values from the intervals between the diminished fifth and 

the major seventh, but the keyboard has clearly-defined differences in these intervals.

The continuous timbre dissonance curve was generated from the loudness power 

spectrum of the note C4. The dissonance timbre curve shows what the dissonance curve would 

look like if every infinitesimally small frequency from C4 to C5 had the same timbre. Figure 9 

compares the experimentally-found mean dissonance curves with the timbre dissonance curves.
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(a) Keyboard 
dissonance 

curves

(b) Grand 
piano 

dissonance 
curves

Figure 9 − Mean dissonance curve vs. timbre curve for the grand piano and keyboard.

The keyboard’s timbre curve and experimentally-found curve are similar. This shows that the 

keyboard dissonance can be approximated with the timbre dissonance curve. The grand piano 

timbre curve differs from the experimentally-found curve for intervals up to the minor sixth. The 

grand piano dissonance cannot be approximated with the timbre curve.

The quantitative ranking of dissonance values for the intervals in Figure 8 is compared 

with Helmholtz’ ranking in Table 9.
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Table 9 − Interval dissonance ranking.

% of most 
dissonant 
interval

Grand piano
% of most 
dissonant 
interval

Helmholtz
Helmholtz 

ranking agrees 
with keyboard,

100.00% 0.654 ii 100.00% - grand piano,
74.80% 0.292 iii 44.69% - ranking for the
46.78% 0.289 II 44.22% - following
45.20% 0.092 IV 14.01% - intervals:
33.18% 0.078 VII 11.97% -
25.76% 0.063 III 9.69% - Key. Piano
24.07% 0.063 Vii 9.67% iii X X
17.28% 0.046 Vi 7.09% III X
15.20% 0.045 VI 6.85% VI
14.47% 0.034 V 5.14% IV
6.25% 0.024 V 3.70% V X X
0.32% 0.001 VIII 0.08% VIII X X

There is no universal ranking between the grand piano and the keyboard, which is 

supposed to simulate a grand piano. Neither instrument holds the same ranking of consonance as 

Helmholtz’ speculated, although the keyboard differs only with the order of the fourth and the 

major sixth.

Note that the grand piano ranking in Table 9 shows its diminished fifth only slightly more 

dissonant than the fifth. As the diminished fifth is not considered a consonant interval, it is 

difficult to believe that the diminished fifth could be the third most consonant interval. To 

investigate the cause of this discrepancy, the loudness spectrum of both the fifth and the 

diminished fifth are analyzed in Table 10.

Rank Keyboard

1
2
3

1.019 ii
0.762 II

iii
VII
III

0.477
0.461
0.338

4
5
6 0.262 Vii

v
IV
Vi
VI0.147

0.155
0.176
0.2457

8
9
10
11
12

0.064
0.003 VIII

V
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(a) Fifth

(b) Diminished 
fifth

Figure 10 − Comparing the loudnesses of the fifth and the diminished fifth.

In Figure 10 (a), for the fifth interval, both the keyboard and the piano have a significant number 

of loudness peaks (six and four, respectively). The grand piano’s fundamental (C4) dominates 

whereas the fifth (G4) dominates for the keyboard. Table 9 shows that the dissonance values for 

the fifth interval in both instruments are similar and that the fifth is the second most consonant 

interval for both instruments.

The discrepancy between the grand piano’s diminished fifth and the keyboard’s 

diminished fifth are shown Table 10 (b). There are eight total frequencies present in the 

keyboard’s diminished fifth whereas the piano has only five. Of more importance than the
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number of loud frequencies is the presence of dissonant frequency combinations. Two such 

combinations for the keyboard are Gb5-G5 and C6-Db6. Both of these combinations are a 

semitone apart, the most dissonant interval. No apparent frequency combinations appear to be 

close enough to cause too much dissonance in the grand piano’s diminished fifth spectrum. The 

closest combination of loud peaks for the piano is C4-Gb4 with a beat frequency of 108.4 Hz, 

which is too large to be dissonant.

The grand piano did not produce as many overtones as the keyboard. The keyboard 

programming includes these overtones regardless of recording conditions, but the grand piano’s 

output will be different with every key strike. Recording underneath the piano as opposed to 

above the piano had an effect on the frequencies detected by the microphone. Above the piano 

the overtones were more prominent, whereas below, the fundamental frequency dominated. 

These are possible explanations as to the differences between the power spectrum of the grand 

piano and that of the electronic keyboard. The keyboard and the grand piano’s interval ranking 

differed, and this difference becomes more strongly apparent with the chords that involve more 

piano keys.

Chords

The chord dissonance ranking for the keyboard and the grand piano reveals an 

incongruity in order similar to the interval dissonance ranking. The chords’ dissonance levels are 

plotted and ordered from most consonant to most dissonant in Figure 10.
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(a)
Keyboard
dissonance

curves

(b)
Grand piano 
dissonance 

curves

Figure 11 − Chord dissonance for (a) the keyboard and (b) the grand piano.
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Figure 11 reveals a gradual transition from the most consonant to most dissonant chord for both 

the keyboard and the grand piano. Both instruments agree on the most consonant chord (C 

augmented), the second most consonant chord (C major), and the most dissonant chord (C minor 

6). Apart from these similarities, the rankings differ in most respects. Table 10 shows the 

quantitative dissonance values for the chords.

Table 10 − Chord dissonance ranking.

Value

Keyboard Grand piano

Chord % of most 
dissonant chord Value Chord % of most 

dissonant chord
1.828 C minor 6 100.00% 0.652 C minor 6 100.00%
1.818 C  7b5 99.47% 0.538 C min 7b5 82.49%
1.796 C 6 98.27% 0.528 C min 7 80.99%
1.792 C dim 7 98.03% 0.505 C min maj 7 77.45%
1.701 C min 7b5 93.04% 0.501 C dim 7 76.80%
1.636 C 7#5 89.51% 0.470 C dim 72.09%
1.548 C min 7 84.69% 0.448 C minor 68.68%
1.547 C min maj 7 84.64% 0.377 C 6 57.88%
1.511 C 7 82.65% 0.351 C sus 4 53.77%
1.423 C aug 7 77.83% 0.337 C sus 2 51.68%
1.337 C maj 7 73.14% 0.324 C 7b5 49.70%
1.233 C dim 67.47% 0.315 C 7 48.32%
0.950 C sus 2 52.00% 0.278 C 7#5 42.63%
0.845 C sus 4 46.23% 0.241 C maj 7 37.01%
0.766 C minor 41.93% 0.230 C aug 7 35.19%
0.715 C major 39.11% 0.161 C major 24.71%
0.672 C aug 36.74% 0.083 C aug 12.68%
1.360 - 74.4% 0.373 - 57.2%

Table 10 shows that there is no universal ranking for the chords. The keyboard holds a higher 

percentage mean than the grand piano, suggesting that, the keyboard’s chords are more dissonant 

than the piano’s. Each step is relatively small, which shows that the dissonance scale is a 

grayscale rather than a black and white scale.

The Sethares dissonance equation gives higher dissonance values for louder timbres. 

Figure 10 shows that the keyboard has a louder timbre than the grand piano. So is a quiet

Rank of 
Dissonance

1
2
3
4
5
6
7
8
9
10
11
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13
14
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16
17

Mean



dissonant chord such as the grand piano’s C min 7b5 (dissonance value: 0.538) more consonant

than the louder keyboard’s consonant C major (dissonance value: 0.715)? The percentages of the

most dissonant chord suggest the answer to this question is “no” because the grand piano’s C

min 7b5 (dissonance percent: 82.49%) is more than twice the percentage of the keyboard’s C

major (dissonance percent: 39.11%). The dissonance values are then, as Sethares notes,12 

arbitrary units that cannot be compared between different instruments. Because the dissonance 

percentages are normalized to the most dissonant chord, the percentages provide a means for 

comparing dissonance between two instruments.

IV. CONCUSION

To answer the questions posed in the Introduction, physics can explain sound and beats, 

but the human ear determines dissonance perception. Plomp and Levelt’s studies determined for 

simple tone intervals that the number of beats resulting in the most perceived dissonance depends 

on an interval’s fundamental frequency. This information alone is enough to determine that a 

ranking of dissonance of intervals or chords cannot be universal. Even for a single instrument the 

broad frequency range will keep a ranking of chords or intervals from being consistent 

throughout the instrument. A major third might be consonant in the upper registers of the piano, 

but when played in the lower bass notes, a major third can be the most dissonant interval. 

Dissonance rankings are then a function of timbre as well as frequency.

Interpreting dissonance data can be a speculative task because assumptions have been 

made to get the dissonance values. For starters, the Fletcher and Munson curves of equal 

loudness were not used. As was previously stated, for frequencies around 1000 Hz, the effects of 

the equal loudness curves are negligible, so this assumption does not greatly affect the results. 

Another assumption was that the frequency with the greatest amplitude out of all the power

33
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spectrums had essentially an SPL = 70 dB. Equation (12) shows that assigning SPLmax = 70 dB 

scales every loudness value by the same amount. If instead, we had assigned SPLmax = 80 dB, 

each loudness would be multiplied by 2, which would have resulted in higher dissonance values, 

but dissonance rankings stay the same regardless of loudness scaling.

The choice of a 70 dB maximum sound pressure level assignment does, however, affect 

which power spectrum peaks were truncated because sound pressure level peaks less than 25 dB 

were removed. After all spectrums were normalized to the highest peak found in all the 

spectrums, a 70 dB SPL assignment cuts off all normalized peaks under 0.56% of the highest 

peak of all the power spectrums. An 80 dB assignment cuts off peaks 0.17% of the highest peak 

of all the power spectrums. A 10 dB increase SPLmax assignment results in considering peaks of 

about a third the power spectrum amplitude of the peaks cut off without the increase. Choosing 

70 dB has the potential of cutting off frequencies that would alter the dissonance values. 

Although 70 dB is a comfortable music listening level, the sound produced by the maximum 

peak may have been louder than a comfortable music listening level.

Microphone placement influences what sounds are heard and what acoustical reflections 

are recorded. In the case of the grand piano, microphone placement explains why the overtones 

were not prominent in the power spectrum. Further tests placing the microphone above the piano 

would better represent how sound is heard since the listener hears sound above the piano rather 

than below.

Only one octave, between C4 and C5, was considered for all of these recordings, which 

leads to a limited window of available data. A more intensive and complete study could classify 

the chords and intervals based on every note on the piano, a total of 88 notes.
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An alternate method for creating the dissonance curves would be to record each note 

within an octave individually and add the wave forms or power spectrums together for a 

combination of notes. This technique may not be as accurate as recording the entire sound 

because it is unclear whether or not the resulting power spectrum would be the same for both 

processes. What this approach does provide is a means for simulation of any interval or chord. 

Average dissonance rankings from all the intervals or chords possible on the instrument could be 

found with a computer program, thus eliminating the extensive recording time.

This work was conclusive in ranking chords and intervals, but the ranking was not 

definitive. Because dissonance depends on frequency, loudness, as well as human perception, no 

universal ranking could be determined. This work does show that there are shades of gray in the 

scale from consonant to dissonant.

APPENDIX A − Chord abbreviation descriptions.

min = minor, contains a minor interval.
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maj = major, contains a major interval. 

b = flat, semitone lower.

# = sharp, semitone higher.

dim = diminished, higher note of interval is a semitone lower. 

aug = augmented, higher note of interval is a semitone higher.

sus = suspension, musical term referring to chords that are nonharmonic or unresolved. 

b5 = flat fifth, contains a diminished fifth interval.

#5 = sharp fifth, contains an augmented fifth (minor sixth) interval.

7 = seventh, contains a seventh interval.

6 = contains a sixth interval.

APPENDIX B -  FORTRAN codes used for generating figures, tables, and dissonance rankings.

1. Dissonance.f

* * * Dissonance.f



Michael Blatnik 
Senior Thesis 
4/21/11

The dissonance curves from Figure 9 and Table 8 were generated 
with this program.

Program Dissonance

implicit none

integer i,n,j,k,t,alpha,nn

parameter(t=13800) 
parameter(n=6) 
parameter(nn=12)

double precision freq(0:m),amp(0:m),g (0:m),ratio(0:t),freq2(0:t ) 
double precision d(0:t),h,s,c1,c2,a1,a2,s1,s2,li,lj,lij,ee,dstar 
double precision fdif,fmin,arg1,arg2,exp1,exp2,dnew,fund,fundamp 
double precision upper,beats,sqrttwo,Pref,big,zero,maxdissfreq 
double precision maxdissratio

fund=261.626D+00 !Used for Table 5. 
fund=125.0D+00*(2.0D+00)**(4) !Used for Figure 10.

fundamp=10.0D+00
ee=0.88D+00
h=12000.0D+00
upper=2.3D+00*h/2.0D+00
sqrttwo=dsqrt(2.0D+00)
zero=0.0D+00
big=zero

!Loudness of 10 sones for fundamental. 
!88%
!Number of divisions per octave.
!Upper limit number at ratio of 2.3. 
!Sqrt(2)
!Zero
!Used for finding maximum dissonance.

dstar=0.24D+00 
s1=0.0207D+00 
s2=18.96D+00 
a1=-3.51D+00 
a2=-5.75D+00 
Pref=20.0D-06

!d*
!s1 
!s2 
!-a 
!-b
!P_ref, reference pressure 20*10^-6 Pa

Loudness amplitudes used for adding in up to five harmonics.
Each successive harmonic has 88% the loudness of the previous.
amp(1)=fundamp
amp(2)=amp(1)*ee
amp(3)=amp(2)*ee**2
amp(4)=amp(3)*ee**3
amp(5)=amp(4)*ee**4
amp(6)=amp(5)*ee**5

Defines the frequencies of the five harmonics. 
do i=1,n ,1

freq(i )=fund*i

***

***
***

***

Constants used for dissonance equation. Used in equations 5 and 6.

***
***
***
***
***
***

*

37
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enddo

Output files.
open(unit=10,file='dissonance.dat') 
open(unit=20,file='equaltempdis.dat')

This larger loop figures out the ratio values needed for the 
independent variable of the dissonance curve as well as 
creating dissonance values for the curve. 
do alpha=0,upper,1

d(alpha)=0.0D+00 !Zeros the initial dissonance for each alpha.

ratio(alpha) defines the octave in terms of the equal-tempered 
scale. A semitone would be defined as alpha=1000, a second as 
alpha = 2000, etc...

ratio(alpha)=(2.0D+00)**(dble(alpha)/h)

Defines secondary fundamental frequency with 5 harmonics for the 
ratio value ratio(alpha).

freq2(alpha)=ratio(alpha)*fund !Secondary fundamental. 
do k=1,n,1

g(k)=freq(k)*ratio(alpha) !6 frequencies to be used. 
enddo

Runs the dissonance curve by looking at every possible combination 
of both the bass fundamental frequency at 261.626 Hz, it's 
harmonics, and the fundmental and harmonics of the secondary 
frequency being considered.

do i=l,n,1 
do j=l,n,1 

li=amp{i)
1j=amp( j) 
lij =min(li,1j) 
fmin=min(g(j),freq(i)) ! Minimum frequency.
s=dstar/(sl*fmin+s2) !s from equation 6. 
fdif=dabs(g(j)-freq(i)) !Frequency difference. 
argl=al*s*fdif 1Argument in exponent 1. 
arg2=a2*s*fdif !Argument in exponent 2. 
expl=dexp(argl) !Exponent 1 from equation 5. 
exp2=dexp(arg2) !Exponent 2 from equation 5. 
dnew=lij* (expl-exp2) !Calculation of added dissonance, 
d(alpha)=d(alpha)+dnew !Adds all dissonances together, 

enddo 
enddo 

enddo

do alpha=0,upper,1

Calculates and prints where the points of maximum consonance are. 
if (d(alpha-1).gt.d (alpha).and.d (alpha+1).gt.d (alpha))then

Print *, 'Max Consonance at ', freq2(alpha),', with ratio ' 
& ,ratio(alpha),'.'

endif

***

***
***
***
***

***
***

***
***
***

***
***
***

***

!6 frequencies to be used.g(k)=freq(k)
enddo

*ratio(alpha)

!Loudness of first frequency input. 
!Loudness of second frequency input. 
!Minimum loudness.
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2. IntervalChordDissonance.f

IntervalChordDissonance.f 
Michael Blatnik 
Senior Thesis 
4/21/11

This is the main code that uses converted wav files to create 
all the power spectrums, calculate the dissonances, and export 
the data needed to make most of the figures in the thesis.

program IntervalChordDissonance 

implicit none

integer i,j,n,k,m,l ,numpeaks,count,start

parameter(n=2**15)!Number for FFT (power of 2)

Number of input files, 42 for intervals, 51 for chords. 
parameter(m=42)

Starting number for input files (4 for intervals because of 3 trials 
of silence, 1 for chords). 
parameter(start=4)

double precision buffe r (1:2*n),freq(1:2*n,0 :m),freql,dt,blank 
double precision P(l:2*n,0:m),V (1:2*n),big,fund,limit,array(0:n)

***

***

***
***

***
***
***
***
***
***
***
***

***

***
***

Finds equal-tempered interval ratios and writes the 
ratios and dissonance values to a file, 
do alpha=0,upper,1 

do i=0,h,1
i f (ratio(alpha).eq.2**(dble(i )/nn))then 

write(20,*)ratio(alpha),' ',d (alpha)
endif 

enddo 
enddo 
end

Calculates ratio of maximum dissonance, 
if(d(alpha).gt.big)then

maxdissratio=ratio(alpha) 
big=d(alpha) 

endif 
enddo

Writes dissonance curve to file: ratio vs. dissonance, 
do alpha=0,upper,1

write(10,*) ,' ',d(alpha)ratio(alpha)
enddo
maxdissfreq=maxdissratio*fund !Frequency of maximum dissonance. 
beats=dabs(fund-maxdissfreq) !Beats between max freq and fund.

&
print * , 'Maximum dissonance at ratio ',maxdissratio, ', ',

'frequency o f ',maxdissfreq,' Hz, and ',beats,' beats.'



double precision bigfreq,cutoff,sum,onep,sig(1 :2*n,0 :m) 
double precision power(1:2*n,0 :m),beats,f1,f2,l1,l2,d (1 :m),l12 
double precision a,b,s1,s2,dstar,s,highcutoff,increase,onefive 
double precision A 1,A2,sqrttwo,Pe1,Pe2,Pref,arg1,arg2,fdif 
double precision numlines(0:n),sigfreq(1 :2*n,0 :m),peaks(0:n) 
double precision ratio(0:m),samplingfreq,SPL,loud(1:2*n,0 :m) 
double precision medbig,meanbig,dmed(0:m),davg(0:m),highestpeak 
double precision biggestpeak

character*80 info, inputfile, outputfile,time,powerfile,sigpeak 
character*80 testfile,newpower,meandissonance,mediandissonance 
character*80 newsigpeak,loudpower

Constants
samplingfreq=22050.0D+00 !Sampling frequency of 22,050 Hz. 
onep=0.01D+00 !One percent. 
onefive=0.005D+00
fund=261 .6D+00 !Fundamental Frequency 261.626Hz C4 
cutoff=0.005D+00 !One half of a percentage point 
limit=20.0D+00
sqrttwo=dsqrt(2.0D+00) !Sqrt(2) 
k=0
dt=dble(1)/samplingfreq !Time step.
Highest FFT peak found by running all four renditions of program. 
This is used to scale down all the FFTs. 
highestpeak=2699194.66D+00

Files to write.
open(unit=70,file="mediandissonanceratio.dat") 
open(unit=71,file="mediandissonance.dat") 
open(unit=75,file="meandissonanceratio.dat") 
open(unit=76,file="meandissonance.dat")

Sets up an array freq(i) of double values for the real and 
imaginary components of the FFT. Size of array: 2*n. 
do j=1,m,1

do i=1,2*n-1,2
freql=dble(i—1)/(dt*dble(n)*2.0D+00) 
if (i .lt .n+1)then 

freq(i,j)=freq1 
freq(i+1,j)=freq(i,j) 

endif
if (i .eq.n+1)then 

freq(i,j)=freq1 
freq(i+1,j)=-freq(i,j) 

endif
if (i .gt.n+1)then 

k=k+4
freq(i,j)=-freq(i-k,j) 
freq(i+1,j)=freq(i,j) 

endif 
enddo 

enddo

***
***

***

***
***

***
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Main loop that runs through each recording sample at a time.
Each converted .wav file is read and output to a cleaned up data 
files. The FFT.f program is then called and a power spectrum is 
output. The power spectrum is cleaned-up by zeroing all values 
that are less than 0.5% the value of the largest peak in each 
spectrum, all values below 99% of the fundamental frequency, and 
above 6000 Hz. 
do j=start,m,1

Creates a file for each input sound file and output file for each
j.

write(inputfile,'(a,i2.2,a)') "input_",j,".dat" 
write(outputfile,'(a,i2.2,a)') "output_",j,".dat" 
write(powerfile,'(a,i2.2,a)') "power_",j,".dat" 
open(unit=10, FILE=inputfile) 
open(unit=20, FILE=outputfile) 
open(unit=60,file=powerfile)

Reads first two lines of code which contain texts to ignore them, 
do i=1,2,1

read.(10,*) info 
enddo

Reads through the normalized sound sample file and once the sound 
sample reaches one percent sends the program to 100 to begin 
actual reading in of data. 

do i=3,n,1
read(10,*) blank,array(i) 
if (dabs(array(i)).gt.onefive)then 

goto 100 
endif 

enddo

Reads in the time and normalized voltage signal from the sound 
file.
do i=1,n,1

read(10,*) time,V(i)

Creates a buffer array size 2n for input into the FFT routine 
(size 2n), using the normalized voltages for odd entries and 0 
for even entries.

buffer(2*i-1)=V(i) 
buffer(2*i)=0.0D+00

Writes new data file with length n, time vs. normalized voltage. 
write(20,*) real(i)*dt,' ', V(i) 

enddo

Calls FFT subroutine and inputs buffer array, n, and 1. 
call FFT(buffer,n,1)

P(i) is the power spectrum array, which is derived by squaring 
the real and imaginary parts and adding together.

***
***

***

***

***
***
***

***
***
100

***
***
***

***

***

***
***
***
***
***
***
***

***



do i=l,2*n,2
P(i,j)=buffer(i)**2+buffer(i+1)**2 

enddo

Creates data file power_##.dat for the power spectrum viewing. 
do i=1,n,2

write(60,*)freq(i,j),' ',P(i,j)
enddo

Finds highest peak in the current power spectrum. 
big=0.0D+00 
do i=3,n,2

if (P (i,j).gt.big) then 
big=P(i,j) 
bigfreq=freq(i,j) 

endif 
enddo

Power spectrum clean-up. 
do i=1,n,2

if (freq(i,j).1t.1imit) then 
P (i,j)=0.0D+00 

endif

After normalizing to the highest peak of all the power spectrums, 
the power spectrums essentially become pressure power spectrums, 
measured in Pa. The highest peak of 1 has an SPL of 70 dB. 

P(i,j)=P(i,j)/highestpeak 
enddo 

enddo

do j=start+l,m,1
if (bigj(j).gt.bigj(j-1))then 

biggestpeak=bigj(j) 
endif 

enddo
print *,biggestpeak

do j=start,m,1 
do i=1,n,2

P(i,j)=P(i,j)/highestpeak 
enddo

write(sigpeak,'(a,i2.2,a)') "sigpeak_",j,".dat" 
write(newpower,'(a,i2.2,a)')"newpower_",j,".dat" 
write(loudpower,'(a,i2.2,a)')"loudpower_",j,".dat" 
write(SPLpower,'(a,i2.2,a)')"SPLpower_",j,".dat" 
open(unit=30,file=newpower) 
open(unit=40,file=SPLpower) 
open(unit=80,file=sigpeak) 
open(unit=90,file=loudpower)

numpeaks=0 
peaks(j)=0.0D+00

***

***

***

**
***
****
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Tedious method used to ensure that peaks surrounding the 
significant peaks in the pressure power spectrum were not 
considered significant. As the power spectrum array consists 
of values of 0 for even i and a power for odd values, searching 
for significant peaks had to look only at the odd values. 
Essentially, this condition will only label a peak as a 
significant peak if it is higher than all of the peaks 
12.11 Hz to the right and to the left of the current P(i). 

do i=37,n,2
if (P(i,j}.gt.P(i-2,j ).and.P (i,j).gt.P(i-4,j).and.P(i,j)

& .gt.P(i-6,j).and.P(i,j).gt.P (i-8,j).and.P(i,j)
& .gt.P(i-10,j).and.P(i,j).gt.P(i-12,j).and.P(i,j)
& .gt.P (i-14,j ).and.P(i,j}.gt.P(i-16,j).and.P(i,j)
& .gt.P(i-18,j).and.P(i,j).gt.P(i-20,j).and.P(i,j)
& .gt.P(i-22,j).and.P(i,j).gt.P(i-24,j).and.P(i,j)
& .gt.P(i-26,j).and.P(i,j).gt.P(i-28,j).and.P(i,j)
& .gt.P(i-30,j).and.P(i, j ) .gt.P(i-32,j) .and.P(i,j)
& .gt.P (i-34,j ).and.P(i,j}.gt.P(i-36,j).and.P(i,j)
&
& .gt.P(i+2,j ) .and.P(i,j) .gt.P(i+4,j ) .and.P(i,j)
& . .gt.P(i + 6,j).and.P(i,j) .gt.P (i+8,j) .and.P(i,j)
& .gt.P(i+10,j ) .and.P(i,j) .gt.P(i + 12,j) .and.P(i,j)
& . gt.P(i+14,j) .and.P (i,j} .gt.P(i + 16,j) .and.P(i,j)
& . gt.P(i+18,j).and.P(i,j) .gt.P(i+20,j) .and.P(i,j)
& .gt.P(i+22,j) .and.P(i,j) .gt.P(i+2 4,j) .and.P(i, j)
& .gt.P(i+26,j).and.P(i,j).gt.P(i+28,j).and.P(i,j)
& .gt.P(i+30,j).and.P(i,j ).gt.P(i+32,j).and.P(i,j)
& .gt.P(i+34,j).and.P(i,j).gt.P(i+36,j)
& )then

SPL=7 0.0D+00 + 2 0.0D+00*dlogl0(P(i, j))

if (SPL.ge.25.0D+00)then 
numpeaks=numpeaks+l 
peaks(j)=peaks(j)+1.0D+00
loud(numpeaks,j)=(2.0D+00)**((SPL-40.0D+00)/10.0D+00) 
sig(numpeaks,j)=P(i, j) 
sigfreq(numpeaks,j)=freq(i,j) 
write(90,*) freq(i,j),' ',loud(numpeaks,j) 
write(30,*) freq(i,j),' ',P (i,j) 
write(40,*) freq(i,j),' ',SPL 
write(80,*) freq(i,j),' ',P(i,j) 

endif
else 

P (i,j)=0.0D+00
write(30,*) freq(i,j),' ',P (i,j) 
write(40,*) freq(i,j),' ',P(i,j) 
write ( 90,*) freq(i,j),' ',P(i,j) 

endif 
enddo 

enddo

This loop runs all the loudness power spectrums through the

***
***
***
***
***
***
***
***

***
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***
***
***
***

***
***

Finds the median of dissonance data for each set of 3 samples for 
each interval/chord. For the chords code, j was set to 1. 
count=0
do j=start,m,3

if (d(j ).lt .d (j+2).and.d (j+2).lt .d (j+1))then !1 3 2 
dmed(j )= d (j+2)

elseif(d(j ).lt .d (j+1).and.d (j+1).lt .d (j+2))then !1  2  3 
d med(j )= d (j+1)

elseif(d (j+1).lt .d (j ).and.d (j ).lt .d (j+2))then !2 1  3 
dmed(j )= d (j )

elseif(d(j+2).lt .d (j ).and.d (j).lt .d (j+1))then !2 3 1 
dmed(j)=d(j )

elseif(d(j+1).lt .d (j+2).and.d(j+2).lt .d (j ))then !3 1  2 
dmed(j )= d (j+2)

dissonance equation. Essentially, this loop of the code is 
the loop contained within the Dissonance.f code when solving 
that uses the dissonance equation. Refer to Dissonance.f for 
comments of this loops. 
do j=start,m,1

write(95,*) sigfreq(i,j),' ',sigfreq(1,j )  ,' ',
loud(i,j),' ',loud(1,j )&

a=-3.51D+00 
b=-5.75D+00 
sl=0.0207D+00 
s2=18.96D+00 
dstar=0.24D+00

Pref=2.0D-05 
fl=sigfreq(i,j) 
f2=sigfreq(1,j) 
ll=loud(i,j) 
12=loud(1,j ) 
fdif=dabs(f2-fl)

112=min(11,12)
s=dstar/(sl*min(f1,f2)+s2)
argl=a*s*fdif
arg2=b*s*fdif
increase=112*(dexp(argl)-dexp(arg2))

+increased (j)=d(j)
endif

enddo
enddo
d (j )= d (j)*0.5D+00 

enddo

d (j )=0.0D+00
write(newsigpeak,'(a,i2.2,a ) ') 
open(unit=95,file=newsigpeak) 
do i=l,peaks(j ),1 

do 1=1,peaks(j ),1 
if(i.n e .1)then

"newsigpeak_",j,".dat"
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eiseif(d(j+2).It.d (j+1).and.d (j+1).It.d (j))then !3 2 1  
dmed(j)=d(j +1) 

endif

Generates the equally-tempered interval ratios. 
ratio(j)=(2.0D+00)**(dble(count)/dble(12)) 
count=count+l 

enddo

count=0

Finds the average of dissonance data for each set of 3 samples for 
each interval/chord. 
do j=l,m,3

davg(j)=(d(j)+d(j+l)+d(j+2))/(3.0D+00) 
count=count+l 

enddo
do j=start,m,3

write(70,*)ratio(j),' ',dmed(j) !Used only for intervals
write(75,*)ratio(j),' ' ,davg(j) (Used only for intervals
write(71,*)count,' ',dmed(j)

***
***
***
***
***
***
***
***
***
***
***
***
***

FFT.f
Michael Blatnik 
Senior Thesis 
4/9/11

This subroutine uses the Fast Fourier Transform. It is referred to 
in the program Power.f and IntervalChordDissonance.f. The FFT code 
comes from Numerical recipes: the art of scientific computing, and 
the program:
"Replaces [ddata] by its discrete Fourier transform, if [isign] is 
input 1; or replaces [ddate] by NN times its inverse discrete 
Fourier transform, if [isign] is input as -1. [ddata] is a complex 
array of length NN or equivalently, a real array of length 2*NN. NN

3. FFT.f

***
***

***

write (76,*)count, ' ',davg(j)
count=count+l

enddo

close(unit=10) 
close(unit=20) 
close(unit=30) 
close(unit=40) 
close(unit=60) 
close(unit=70) 
close(unit=71) 
close(unit=75) 
close(unit=76) 
close(unit=80) 
close(unit=90) 
close(unit=95) 
end
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subroutine fourl(ddata,nn,isign) 

implicit none 

integer NN,j,Nl,i,m,mmax,isign, istep

double precision wr, wi, wpr, wpi, wtemp, theta 
double precision tempr, tempi 
double precision ddata(1:2*nn),pi2

pi2=8.0D+00*datan(1.0D+00)

N1=2*NN
j=l

do i=l,Nl,2
i f (j .g t .i)then 

tempr=ddata(j ) 
tempi=ddata(j+1) 
ddata(j )=ddata(i ) 
ddata(j+1)=ddata(i+1) 
ddata(i )=tempr 
ddata(i+1)=tempi 

endif

m=Nl/2

i f ((m.ge.2).and.(j .gt.m))then 
j=j-m 
m=m/2 
goto 1 

endif 
j=j+m 

enddo

mmax=2

If (nl.gt.mmax)then 
istep=2*mmax
theta=pi2/dble(isign*mmax)
wpr=-2.0D+00*(dsin(0.5D+00*theta))**(2.0D+00) 
wpi=dsin(theta) 
wr=l.0D+00 
wi=0.0D+00

do m=l,mmax,2
do i=m,nl,istep 

j=i+mmax
tempr=dble(wr)*ddata(j )-dble(wi)*ddata(j+1) 
tempi=dble(wr)*ddata(j+1)+dble(wi)*ddata(j ) 
ddata(j)=ddata(i )-tempr 
ddata(j+1)=ddata(i+1)-tempi

2

1

*** MUST be an integer of 2 ." 16
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ddata(i)=ddata(i)+tempr 
ddata(i+1)=ddata(i+1)+tempi 

enddo

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo
mmax=istep 
goto 2 

endif 
return 
end

4. Tone.f

Tone.f
Michael Blatnik 
Senior Thesis 
4/9/11

This code was used to generate Figures 1 and 2.

Program Tone 

implicit none 

integer i,n 

parameter(n=100000)

double precision puretone(1:n),complextone(l:n),pi,ee,fund,bigpure 
double precision bigcomplex,t,P,Pc,harmonic(1:n)

pi=4.0D+00*datan(1.0D+00) !Pi
fund=261.626D+00 !Fundamental frequency (C4).
ee=0.88D+00 !88%
bigpure=0.0D+00
bigcomplex=0.0D+00
open(unit=10,file='puretone.dat')
open(unit=20,file='complextone.dat')
open(unit=30,file='purepower.dat')
open(unit=40,file='complexpower.dat')
open(unit=50,file='harmonic.dat')

do i=1,n,1
t=dble(i)/dble(n) !Divides the sine wave into n pieces.

Pure tone at the fundamental frequency (C4). 
puretone(i)=dsin(2*pi*t*fund)

Used to express the harmonics in Figure 2, this value changed from 1 

harmonic(i)=dsin(6*pi*t)

***
***
***
***
***
***

***

***
to 6.



48

Complex tone consisting of 5 harmonics at 88% the amplitude of the 
previous.

complextone(i)=dsin(2*pi*t*fund)+ee*dsin(2*pi*t*fund*2)+
& ee**2*sin(2*pi*t*fund*3)+ee**3*dsin( 2*pi*t*fund*4)
& +ee**4*dsin(2*pi*t*fund*5)+ee**5*dsin(2*pi*t*fund*6)

Normalizes to 1.
if(puretone(i).gt.bigpure)then 

bigpure=puretone(i) 
endif
if(complextone(i).gt.bigcomplex)then 

bigcomplex=complextone(i) 
endif 

enddo

do i = l, n, 1
t=dble(i)/dble(n)
write(10,*) 
write(20,*) 
write(50,*) 

enddo 
end

5. Beats.f

***
*****
*
***
***
***
***

Beats.f
Michael Blatnik 
Senior Thesis 
4/9/11

This brief program is used to create Figure 7, which shows beats 
between two sine waves of 40 and 42 Hz.

Program Beats

implicit none
integer i,n
parameter (n=10000)
double precision pi,t,s (0:n),f,j

pi=4.0D+00*datan(1.0D+00)
f=2.0D+00*pi/dble(n)
open(unit=10,file='beats.dat')
Generates the comibination of sine waves at 40 and 42 Hz. 
do i=l,n,1

s(i)=sin(40.0D+00*f*i)+sin(42.0D+00*f*i) 
j=dble(i/n)
write(10,*) i,' ',s(i)

enddo 
end

6. PianoHit.f

***
***

***

***

t,' ',puretone(i)/bigpure
t,' ',complextone(i)/bigcomplex
t,' ',harmonic(i)
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***
***
***
***
***
***
***
***
***
***
***
***

PianoHit.f 
Michael Blatnik 
Senior Thesis 
4/9/11

Code from Computational Physics, PHYS333, Spring 2010. The 
equations used come from Giordano and Nakanishi's Computational 
Physics.5
This code simulates a piano string being struck by a hammer of 
mass 3.3 grams at different initial velocities. Resulting graphs 
include the force of the hammer, and the string displacement where 
the string is struck (at L/8).

program PianoHit 

implicit none

integer i,n,imax,ihit,nmax

parameter(imax=8*30) 
parameter(nmax=2**16)

double precision L,T,f,K,mh,p
double precision dt,dx,mu,Fh(0:nmax),c,q,Lh
double precision zf,tmax,time,ah(0:nmax),r
double precision y (0:imax,0:nmax),zh(0:nmax),vh(0:nmax)
double precision yy(1:nmax),nn,ntmax,ntmax2,tmax2

Initial conditions to reproduce left figure in Figure 11.6 
L=0.62D+00 !m
T=650.0D+00 !Tension (650 N) 
p=3.0D+00
K=1.0D+11 !Stiffness constant of hammer, C4 N/m^ (l/3) 
c=330.0D+00 !Speed for C4 
mh=(3.3D-03) !of hammer, in kilograms 
ihit=int(dble(imax)/8.0D+00)
tmax=50.0D-03 !50 milliseconds (viewing window). 
tmax2=5.0D-03 !5 milliseconds. 
f=c/(2.0D+00*L)

dx=L/dble(imax) !String step.
mu=T/(c*c) !Mass per unit length of a flexible string 
Lh=L/8.0D+00 !Point of hammer strike (L/8).

dt=dx/c !Time step. 
r=c*dt/dx 
q=dt*dt/(mu*dx) 
ntmax=tmax/dt 
ntmax2=tmax2/dt

***Sets string to 0 at all points at time=0, including the end points, 
do i=0,imax,1

y(i,0)=0.0D+00

*****
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y(i,1)=0.0D+00 
enddo

zh(0)=0.0D+00
vh(0)=3.0D+00 !m/s, initial velocity of hammer
ah(0)=0.0D+00

open(unit=10,file='zh.dat')
open(unit=20,file='Fh.dat')
open(unit=30,file='yC4.dat')
open(unit=31,file='yC4transfer.dat')
open(unit=33,file='dt.dat')
open(unit=40,file='testl.dat')
open(unit=50,file='vh.dat')
open(unit=60,file='string.dat')

This loop uses the wave equation to calculate the position of the 
the string at a given time. The hammer force is determined by the 
equation given by Giordano and Nakanishi.5 
do n=1,nmax,1

zf=zh(n-1)-y(ihit,n-1)
Fh(n)=K*dabs(zf)**p

if (zf.lt.dble (0))then 
Fh(n)=0.0D+00 

endif
do i=1,imax-1,1

if (i.eq.ihit-1)then
y(i,n+1)=(2.0D+00)*(1.0D+00-r*r)*y(i,n)-y(i,n-1) 

& +r*r*(y(i+1,n)+y(i-1,n))+q*Fh(n)*0.25D+00
goto 10

endif
if (i.eq.ihit)then

y(i,n+1)=(2.0D+00)*(1.0D+00-r*r)*y(i,n)-y(i,n-1) 
& +r*r*(y(i+l,n)+y(i-l,n))+q*Fh(n)*0.5D+00

goto 10
endif
if (i.eq.ihit+1)then

y (i,n+1)=(2.0D+00)*( 1.0D+00-r*r)*y(i,n)-y(i,n-l) 
& +r*r*(y(i+l,n)+y(i-l,n))+q*Fh(n)*0.25D+00

goto 10
endif
y(i,n+l)=(2.0D+00)*(1.0D+00-r*r)*y(i,n)-y(i,n-1)

& +r*r*(y(i+1,n)+y(i-1,n))
10 enddo

ah(n)=-Fh(n-1)/mh 
zh(n)=zh(n-l)+vh(n-1)*dt 
vh(n)=vh(n-1)+ah(n-1)*dt 
yy(n)=y(ihit,n)*1000.0D+00 
nn=n*dt*1000.0D+00
write(31,*)y(ihit,n)   !Used to transfer data to other file 

enddo

***
***
***
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do n=1,int(ntmax),1 !Generates string displacement for 50 ms
nn=n*dt*1000.0D+00 
write(30,*)nn,' ',yy(n)

enddo

do i=0,imax,1
write(60,*)i,' ',y (i,int(ntmax))*1000.0D+00

enddo

do n=1,int(ntmax2),1 
nn=n*dt*1000.0D+00 
write(50,*)nn,' ',vh(n)
write(10,*)nn,' ',zh(n)*1000.0D+00
write(20,*)nn,' ',Fh(n)

enddo 
end

7. Power.f

*** Power.f
Michael Blatnik 
Senior Thesis 
4/9/11

Code from Computational Physics, PHYS333, Spring 2010.
This program's primary goal is to create the power spectrum over a 
range of frequencies to determine the effect of the harmonics. It 
uses the signal generated in the program PianoHit. It also uses the 
FFT.f subroutine to generate the power spectrum.

program Power 

integer n,i,k,j 

parameter(n=2**16)

double precision f,y (0:n-1),pi,buffer(1:2*n)
double precision freq(1:2*n),P(1:2*n),nn,dt,fmax,fstep,freq1 
double precision q (1:5),ratio(0:30),a,ii,big

pi=4.0D+00*datan(1.0D+00) !Pi
k=0

open(unit=10,file='sine.dat') 
open(unit=20,file='real.dat') 
open(unit=30,file='imaginary.dat') 
open(unit=40,file='test.dat') 
open(unit=50,file='power.dat') 
open(unit=60,file='ratio.dat')

open(unit=31,file='yC4transfer.dat') 
open(unit=32,file='newYC4.dat') 
open(unit=33,file='dt.dat')

***
***
***
***
***
***
***
***
***
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open(unit=70,file='string.dat')

do i=0,n-1,1
read(31,*)y (i) 

enddo

read(33,*)dt
fstep=dble(1)/(dt*dble(n)*2.0D+00) !Frequency step. 
fmax=1.5D+03 !Maximum frequency for viewing window of 1500 Hz. 
nfmax=fmax/fstep

do i=0,n-1,1
nn=i*dt*1000.0D+00 
write(32,*)nn,' ',y(i)

enddo

do i=0,n-1,1

buffer(2*i+1)=y(i+1) 
buffer(2*i+2)=0.0D+00

enddo 

do i=l,2*n-l,2

freql=dble(i-1)/ (dt*dble(n)*2.0D+00)

if (i .lt .n+1 )then 
freq(i )=freq1 
freq(i+l)=freq(i) 

endif

if (i .eq.n+1 )then 
freq(i )=freql 
freq(i+l)=-freq(i) 

endif

if (i .g t .n+1 )then 
k=k+4
freq(i)=-freq(i-k) 
freq(i+1 )=freq(i) 

endif
write(40,*)i,' ',freq(i) 
write (40,*)i,' ',freq(i+1) 

enddo

call FFT(buffer,n ,1 ) 

do i=l,2*n,2
write(20,*)freq(i ),' ',buffer(i) 
write(30,*)freq(i+1),' ',buffe r (i+1 )

enddo

do i=l,2*n,2
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P(i)=buffer(i)**2+buffer(i+1)**2 
enddo

big=0.0D+00

do i=l,nfmax,2
if (P (i).gt.big) then 

big=P(i) 
endif 

enddo

do i=1,nfmax,2
write(50,*)freq(i),' ',P (i)

enddo 
end
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