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ABSTRACT

In a broadband ATM network the traffic of a virtual circuit is defined at the
cell, burst and call levels. All virtual circuits sharing the resources of a switch are
statistically multiplexed at the cell level. In this paper the issue of how to control
the admission of bursts of a particular virtual circuit is analyzed. It is demonstrated
that under two optimization criteria, the optimal burst level admission control of
a virtual circuit is a window control. This result suggests that while the cells of
all virtual circuits sharing the resources of a switch should be serviced using the
statistical multiplexing technique, at the burst level, the total number of bursts of
a particular virtual circuit admitted inside the network should be monitored and
controlled in such a way that the number of bursts does not exceed 2 given upper
bound, which is the quota for that particular virtual circuit.

1. Introduction

Research concerning ATM networks is currently focused in the study of
teletraffic problems appearing in an ATM environment. Each virtual circuit in the
ATM layer results in a cell sequence (CS) that can be both analyzed and controlled
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290 BOVOPOULOS

at one or more of the following time scales: call, burst, and cell [1,10]. At each of
the time scales for which a CS control is provided, a resource allocation scheme can
be introduced and classified as corresponding to the call, burst, or cell time scale.

In order to design an integrated traffic characterization and control
infrastructure capable of guaranteeing a grade of service (GOS) and providing
that GOS at the minimum cost, the following are required: (i) the design of a
traffic control and resource allocation infrastructure capable of efficiently handling
a wide variety of traffic behaviors, (ii) given a particular traffic control and resource
allocation scheme, the determination of the GOS that can be provided to an
incoming CS, (iii) given 2 particular GOS requirement, the determination of the
traffic control and resource allocation scheme required to provide to an incoming
CS the desired GOS at the minimum cost, The work presented in this paper is part
of an ongoing effort directed towards satisfying these requirements [2].

In a broadband network cells are statistically multiplexed and are served on a
first-come first-served (FCFS) basis. For many of the services that will be supported
by a future broadband network, cell level control of an incoming CS will not be
sufficient. This is particularly true for data services, such as file or image transfer,
in which information is transferred in bursts which are potentially several Mbits
long. These services could be better supported by a network with switches capable
of reserving resources for the transmission of the whole burst.

Previous work on buist level resource allocation has been reported in {1, 10}.
In both of these references, alternative ways in which a switching system might
support burst level resource allocation have been investigated. No study has been
made, however, of the network-wide implications of burst level control. This paper
attempts to address this issue by focusing on the burst level admission control for
a network virtual circuit.

A burst is defined by its cell rate and its size, which is expressed in terms of
number of cells. For the purposes of this paper, it is assumed that the burst size of
a particular virtual circuit is exponentially distributed. In addition it is assumed
that, at any given moment, the rate at which bursts are admitted into the network
is a function of only the total number of bursts of that particular virtual circuit
that are still in the network. In practice this information can be easily obtained by
acknowledging successfully delivered bursts.

This paper is organized as follows. In Section 2, the problem formulation is
introduced. In Section 3, some properties concerning the stochastic monotenicity
of a finite birth-death process are presented and are utilized in subsequent sections.
In Sections 4 and 5, the optimal burst admission control problem is analyzed under
two distinct optimization criteria. In Section 6, a number of properties relevant to
the admission control policy are proven.

2. The Statement of the Problem

It is assumed that each of the I switches of the broadband network can serve
any number of bursts by appropriately dividing the switch’s bandwidth among the
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number of contending bursts. It is also assumed that the length of each burst is
exponentially distributed, and therefore a switch can be modelled as an exponential
server with infinite buffer size and with exponential service rate. At the cell level,
bursts are multiplexed using statistical multiplexing, which results in the cells being
served in the order in which they are accepted. The behavior of a switch serving
a number of bursts can be modelled as an exponential processor that completely
shares its resources among the queued bursts. A network which operates under
these conditions is a product-form network.

Let u; be the service rate of the i** switch, i € I. The routing parameter
of a particular connection can be defined by the (I + 1) x (I + 1) routing matrix
(0<i<I, 0<j<I). In this notation, bursts join the network at switch 7 with
probability rg;. Upon completion of service at switch i, bursts leave the network
with probability ;5 or are routed from switch i to switch j with probability r;;.

The evolution of the queueing network is described by the stochastic process

def
: = (Q%a"Qf) H

where Qi refers to the number of bursts at switch 1, 1 <1 < I. The state space of
the system is given by

g df {k = (k- k1) | 0 < ks, i=1,2,---,1}

In what follows, the states of Q} will be aggregated to form a new state space.
A new process Q; is defined by

def

Qe = Qi+ +Qf
The state space of Q; is given by
EY {4tk |0<k, i=12-.,1)

Let A refer to the burst arrival rate when there are k bursts in the network.
Let EQ be the expected number of bursts in the network, E-y the throughput, and
Er the expected delay of a burst in the network. Let ¢ represent the maximum
rate by which the virtual circuit’s controller can send bursts into the network when
the state of the network is k, for every k, k > 0, where c;, is a function of the
internals of virtual circuit’s source and the virtual circuit’s network interface and
the state of the network. Thus 0 < Mg < ¢y, for every k, k > 0.

Let the 1 x (I 4 1) matrix © wef [6 61 --- 61] be the solution of the traffic

flow equations
® = OR ,

where 6y = 1.
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The service rate of the process Q; is the conditional service rate of the network
given that there are Q; bursts in the network. For product form networks this is
given by the well known Norton equivalent [4, 9, 11). Let

o< > H ( ) (2.1)

kytkgt--tkr=kj=1

where 0 < k;, for i = 1,...,I, and for all k, k > 1. If k is the total number of bursts
in switches 1,2,.--,I, then the Norton equivalent, symbolized by vy, is given by

9k
and is a concave increasing function with respect to k, for all & > 1 [9].

Vs def Gk—1 , (2.2)

The decision concerning which virtual circuit controller policy to enforce
requires the introduction of an optimization criterion that is based on the
information available to the controller, namely the total number of bursts currently
in the network. In this paper two different criteria are utilized.

First Optimization Criterion: Maximize the throughput of the network, under
the constraint that the expected time delay of a burst in the network does not
exceed an upper bound:

Evy . (2.3)

Observe that the time delay constraint is not written in the form 7_,,,—0'- < T, since

__O,_ is not defined if A\; = 0, for all ¥ € E. Instead, using Little’s formula, the
cntenon is written in the form FQ — TEy < 0, where EQ — TE~ is a continuous
differentiable function with respect to the arrival rates.

max
BEQ—TE+<0

Second Optimization Criterion: Minimize the expected time delay of a burst
in the network, under the constraint that the expected throughput does not fall

bellow a lower bound I':

min Er . (2.4)
Ey>T

3. Stochastic Monotonicity of a Finite Birth-Death
Process

From the point of view of a particular virtual circuit, the network behaves as
a birth-death process. If the state of the network (i.e. the total number of bursts
in the network) is k, then the service rate of the birth-death process (i.e. the rate
at which bursts corresponding to the virtual circuit are serviced) is vg, and the
arrival rate is Ag. In order to further an understanding of the network performance
under different state-dependent admission control policies, a number of properties
concerning the stochastic monotonicity of a finite birth-death process are presented.
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Norton equivalent Vy,

At most N bursts can be in the network
at any given moment

Figure 3.1

Assume that at most IV bursts can be in the network at any given moment. The
dynamic behavior of such a virtual circuit is described by the network depicted in
Fig. 3.1.

Let Eyy be the throughput of this network. Let EQ% and E7§; be the expected
number of bursts and the expected time delay of the bursts, respectively, in the
virtual circuit’s controller. Similarly, let EQy and Ery be the expected number
of bursts and the expected time delay of the bursts, respectively, in the network.

Observe that
EQx _ EQ% _ N
Ery Erg; Ery + E'r.,‘ir

E’T.N =

Statements (i), (ii), and (v) of Proposition 3.2 are from [12] and are reported here in
the context of the theory of stochastic monotonicity for finite state Markov chains.

Definition [6, pp. 164] Let Py be the set of stochastic vectors in N-space, i.e.

def N—
Prx = {p = (po,p1,-.ov-1) | D5 = 1} ond let p* and p* be ele-
ments in Py. p¥ is said to be larger stochastically than p* or to dominate P,

z:fZN"l # > Zf‘r:;lp;-*, foralln,n=0,1,--- ,N — 1. One then writes p¥* > p*.

j=n P

Proposition 3.1[6, pp. 170): If p¥* > p*, and v is an increasing function
of k, then 305 vipf > SR wipy,

Proposition 3.2

(i) If vy is an increasing function of k, the expected throughput Evyy is increasing
n A, fork=0,1,--- N — 1.
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(%) The expected number of bursts EQy is increasing in A fork=0,1,--- , N —1.
(ii1) The expecied number of bursts EQS; is decreasing in M\ fork=0,1,--- N—1.

() If vi is an increasing function of k, the ezpected time delay of the bursts in the
controller E1f; is decreasing in Ay fork=0,1,--- , N — 1.

(v) If ui 15 an increasing function of k, the ezpected time delay ETy is increasing
n A fork=0,1,---,N—1.

Proof :
Let p* < (pg,---, Ply) correspond to the control A* % (A%,.--, A% _;), and let
p# def # def (43 #
(Po ace :PN) correspond to the control A¥ = (AF,---, A% _,). Assume that

Ak#z)\;; for k=0,1,---,N — 1. Then

#
o — Z-1 < Ak—l _ Pf
D1 VeV Pf_1 ,

for k=1,---,N, from Whlch it follows that p* < -p¥. Using Proposition 3.1,
Ek =1 VkDE < Ek—l Vkpk

(i) EQy = E,‘:;l kpi. The arguments of (i) hold here if & is substituted for v;.

(#45) EQ%; = N — EQpy. The statement is then true because of (i7).

(¢v) This statement holds because Er§ = ‘%—3:%
(v) BTy is a weighted average of i‘- fork=1,---, N, with weights ¢} = ﬁ'
L W

The arguments of (2) hold if ¢} is substltuted for py, and the statement follows.

In a similar way, the following proposition can be proven.

Proposition 3.3

(}) If Ak is a decreasing function of k, the expected throughput Evyy is increasing
v fork=40,1,---,N.

(i) The expected number of bursts EQS% ts tncreasing in vy for k =0,1,---, N.
W) The expected number of bursts EQy is decreasing in vy, for k=0,1,--- N.
bl

(tv) If A is a decreasing function of k, the expected time delay of the bursts in the
network BTy is decreasing in v, for k=0,1,---, N.

(v) If NT— s a decreasmg function of k, the expected time delay Er§ is increasing
muyg fork=0,1,--- N.
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4. Optimal Burst Level Admission Control under the
First Optimization Criterion

Let the probability that there are k bursts in the network (i.e. the state of
the network is k) be given by pi. Let 7 refer to the probability that an incoming
burst is allowed to enter the network, when the state of the network is k. Then

3 &f 1 - rk is the probablhty that the burst is not allowed to enter the network.
Let Ty Lf peri and yr def perl. Then Ap = cxTE, for every k.

EQpy and Evyy represent the expected number of bursts in the network and
the throughput of the network, respectively, given that at most N bursts can be in
the network at any given moment. Similarly ETy denotes the expected delay of a
burst in the network, given that at most N bursts can be in the network at any

given moment. Thus

N N
EQn = Y kpe = Y k(zp+ys) (4.1)
k=1 k=1
N N
Byw = ) pevi = 3 (me+ue)ve (4.2)
k=1 k=1

and
2 - BON _ Tilamek Yl (et ue)k
(A Sy 1 = N : (4.3)
T~ D k=1 PhVE k=1 (T + YE) vk

The global balance equations (GBEs) are given by the following equations:
Pk?”ick = DPe41Vp41

or, equivalently,
Teck = (Tet1 +Yrer1)Vet1 (4.4)

forallk, 0 <k<N—1.

Fma.lly, if the total number of bursts in the network cannot exceed N,
Zkunpk = 1. Equivalently,

N

Sk + ) = L (4.5)

k=0

Proposition 4.1  The optimal admission conirol parameters Ay, k € E, are given
by the equations:
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A .—_{Ck(;;‘fa) o +ye >0 (4.6)
0 ifzg+y =0

where (zr,yx), k € B, is the solution of the Jollowing iterative algorithm:
Step 0: L=1.

Iteration:

Step 1:  For the current value of L, solve the following linear optimization problem:

L
maz Z (zx + y2) v (4.7)
k=1
under the following constraints:
L L
Z (e +y) k < TZ (zr +ye) v (4.8)
k=1 k=1
TeCk = (Thy1r + Yks1) Uiy for 0Sk<L—1 (4.9)
k=L
S(we +w) =1, (4.10)
k=0
where
Ze20and g 20 for 0< k<L . (4.11)

Step 2:  IfByy = BEvr_q, stop; the derived admission control is optimal and is
giwen by the Equation 3.12, Else, L:= L + 1, and repeat all the steps of
the dteration, using the optimal solution of the linear program as the initial
feasible point of the next iteration.

From the solution of the above iterative algorithm one can easily recover the
parameters of interest. In particular pp = =z + o, forall k&, & > 0. Finally

for all the accessible states (i.e. for all k, such that px > 0,) 7} = - and
Ap = ck}k—”ff_ﬁa. Furthermore notice that if py, = 0, then pr, = 0, for all £ > L.
5. Optimal Burst Level Admission Control under the

Second Optimization Criterion

As mentioned above, there are cases which require the minimization of the
time delay, such that the throughput is greater than or equal to a given lower
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bound referred to as I'. In the sequel, a methodology that reduces the derivation
of the optimal burst admission control policy to a linear optimization problem is
presented.

Lemma 5.1: The optimization problem which requires the minimization of the
expected time delay ETy under the contraint that the throughput Eyy > I' can be
formulated as the following optimization problem:

N
min EIJ\;:I (zx +ye) k (5.1)
> k=1 (T +v8) vk

under the throughput constraint

N
d (mrtu)ve 2T (5.2)
k=1
the GBE consitraints
Tecr = {Tep1 + Yet1) Vg1 for0<k<N -1 (5.3)

the constraint that the sum of the probabilities equal one

N
Dlmtw) =1, (5.4)
k=0

and the constraint that the probabilities be non-negative, i.e. x, > 0, y > 0, for
allk, 0 < k <N.

Following the methodology introduced in [3, pp. 128], let
def 1 1

g = = , (5.5)
Eyy  Yoal, ve(ze + vx)
ot € gz (5-6)
and def
Yk = 9Yk (5.7)
forallk, 0 < k < N.
From (5.5) it follows that
N
St =1 . (5.8)

k=1

Equation (5.1) for the expected time delay becomes
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Ek (o +ye)k = "
ETy = = D (@+u)k . (59)
e (ke +ur) v k=1
Because 3po (zk + ¥x) =
N
9= (zi+w7)

k=0
By multiplying both sides of the throughput inequality constraint (5.2) by g, it
follows that

gEyy 2 ¢T

3

which in turn (becauuse gEvyy

= 1) can be re-written as

N
Py (et+al) <1 . (5.10)
k=0
The GBEs (5.3) become

zrer = (TXyy + Vg k1 for0< k<N -1 (5.11)
The optimization problem that requires the minimization of the

expected time delay BTy under the contraint that the throughput Eyny > T can be
formulated as the following optimization problem:

Lemma 5.2:

N
min Y (zt +y5)k
k=1

under the throughput constraint

N
T (st+ui) < 1
k=0

(5.12)
the GBE constraints
T = ($Z+1 + yz+1) Vi _fOT 0<L k <N-1 N (5.13)
the constraint that the sum of the probabilities equal one
N
D@ty =1, (5.14)
k=1

and the constraint that zf > 0, y¥ > 0, forallk, 0 < k < N.

From the solution of the linear optzmlza.tlon problem, it follows that
= Silo@t+ut), Byy =

=, T = g,yk= g,a.ndpk-_:zk-}-yk,for
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all kK, 0 <k < N. Fmally for all acce331b1e states ( i.e. for all k such that p; > 0,)

T

L P = + v and A = ¢, z; el Furthermore notice that if py = 0,

then pr = 0, for all & > L

Proposition 5.3 The optimal burst admission control parameters A\, k € E, are
given by the equations:

!E : * *
e = { % (wzwz) iz +95 >0 ) (5.15)
0 Hzf+yl = 0

where (z},y¢), k € E, is the solution of the following tterative algorithm:
Step 0: L=1.
Iteration:

Step 1:

L
mmZ(mZ + i)k (5.16)
k=1

under the following constraints:

L
S@itmm =1, (5.17)
k=1
L
D> (af +u) <1, (5.18)
k=0
zre = (They + Yip1) Yes1 for 0<E<L-—1 (5.19)
where )
zp20andyr 20 for0<k<L . (5.20)
Step 2: If the linear program has a feasible solution; stop. The derived admission
control is optimal. Else, L := L+1, and repeat all the steps of the
tteration.

In the above iterative algorithm, each time a linear program needs to be solved,
the solution of the previous step is used as the initial feasible point. This systematic
approach to optimal admission control requires less computa.tmn than any other
approach. Since the dimensionality of the problem is kept at a minimum, this
iterative algorithm is optimal for the solution of the above class of problems.
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6. Properties of the Optimal Burst Level Admission
Control Policy under the Two Optimization Criteria

In this section structural properties of the optimal solution of each of the two
linear programs presented in Sections 4 and 5 are presented.

Proposition 6.1 The optimal solution of each of the two linear programs contains
at most one random point. Hence the optimalsolution of each linear program is of
the form:

Ck ifGSkSL—landk#m
Ak={0<)\m§cm ifk=m
0 ifL<k

Proof : First, this proposition is proved for the first optimization criterion. Let §
be the set of states which are accessible under the solution of the linear program in
Step 1 of the iterative algorithm in Proposition 4.1 at a particular iteration. That

S = {k|lpe > 0}

Associated with every state k, keS, is the global balance Equation 4.9. In addition
the linear program must satisfy the independent inequality constraint 4.8, Thus
if the total mumber of accessible states is L, the total number of independent
constraints is I + 1, the total number of variables is 2, and thus, the optimal
basic solution should have L — 1 variables which are non-basic and equal to zero.
From the global balance equations 4.9, i is clear that if state k is accessible under
the optimal basic solution, z; > 0 forall I, 0 <1< k- 1. These variables represent
I of the basic variables under the optimal solution. The optimal basic feasible
solution has one additional basic variable, which must be chosen from the set of
variables {yx} for 0 <k < L. If that particular variable is ¥m, then the solution of
the iteration will be of the form

Ck if0<k<L-landk#m
;\k={0<)\m55m ifk=m
0 fL<k

Therefore the optimal solution of the iterative algorithm in Proposition 4.1 must
satisfy the same structural property. Thus under the first optimization criterion,
there exists an optimal policy with no more than one random point is the whole
state space.

Under the second optimization criterion, the proof is identical with the
proof under the first optimization criterion, with the exception of the following
substitutions. The variables {z},y}} are substituted for the variables {zr,yx}- The
GBEs Equation 5.18 is used in place of the GBE Equation 4.9, and the inequality
constraint Equation 5.17 is used in place of Equation 4.8. =
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The problem under the first optimization criterion has been studied in [7] in
the context of the optimal flow control of a Jackson network. In that paper it was
proven that the optimal flow control of a Jackson network whose Norton equivalent
Is a concave increasing function with respect to the number of bursts in it [9], is a
window flow control with the random point, if it exists, at the end of the window.
In the proof presented in [7], it was assumed that at most N bursts can be in the
network at any given moment. This assumption in turn has led many researchers
to interpret the previous cited result as meaning that the optimal flow control of a
closed network is a window flow control {11, pp. 20]. The problem analyzed in [7]
was reformulated as a linear program in [12], where the window flow control result
was proven using an important proposition appearing in this paper as Proposition
6.2. This proposition is utilized here because it gives a straightforward proof of the
form of the optimal flow control, even under the second optimization criterion.

Proposition 6.2.([12]) If v is a concave increasing function with respect to
k, the optimal flow control under the first and second optimization criteria is of a
window type with the random point, if it ezists, corresponding to the last burst of
the window. Thus, the optimal flow control is of the form '

Ck fO0<k<L-2
/\kz{{}(ALmlSCL—I ifk=L—1
0 if L<k

Proof: Let (Ao, A1--+) and (A}, A;,---) correspond to two different control policies.
It is now shown how to choose ¢, > A%, > A, Ama1 < Am41, and A = Ay for all
k, k # m and k # m + 1, such that Ey* > Ev and Et* < ET. Observe that

(®5,71,++) = (1 = 6)po, (1 = 8)p1, -+, (1 = 8)Pm—1s (1 + €)Prms (1 — 7)1, - -7)

0, €, and n are chosen such that

(=]
ZPk =1
k=0

and
EQ* = EQ

In other words,
m—1 =]
Y e+ 1 D> Pi=epm
k=0 k=m+1

and
m—1 o]

§Y kpe +n Y kpi = emp,,
k=0 k=m1
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It is easy to see that if € > 0, then § > 0 and n > 0. Letting

P fm<k ’

€Pm

{é& fo<k<m
ap =

we have ap > 0, for k # m with

Zak=1

k#m

Zkak = m

ksfm

and

By the concavity of v, with respect to &,

Z vpoy < Um

k#m
Thus,
Ev* 2 Ey
and
Er* < Bt

The last two equations prove that transformation of the arrival rate control policy
in a way that makes it of a window type with the random point, it it exists, at the
end of the window will simultaneously increase the throughput and decrease the
expected time delay. From this it is straightforward to see that the optimal flow
control under both optimization criteria is 2 window flow control with a random
point, it it exists, at the end of the window.

Because n > 0,

dopi<d p o, (6.1)

i=k =k
for all k, & > m. Similarly, because § > 0,

Sooi>> opi (6.2)

=k i=k

for all k, k < m.

It is straightforward to see how the above results simultaneously prove that
the optimal admission control of burst is of a window type under both optimization
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criteria. Therefore, if v is a concave increasing function of k, the optimal feasible
point which permits L bursts to enter the network is of the form

A = dCk for0<k<L-2
FT lo<Apa<ery fork=L—1

under the first and second optimization criteria.

For the case in which the Norton equivalent of the network is a concave increasing
function with respect to the number of bursts in the network the following simplified
iterative algorithms can be introduced.

Iterative Algorithm for the First Optimization Criterion

Step 0: L := 1. Set Xy := ¢g and A\ := 0 forallk, k > 1.If Eny < T, continue
to Step 1. Otherwise stop; no bursts can enter into the network,

Step 1: L= L41. Set A := ¢ forallk, 0 <k<L—1. If Et, <T, repeat
Step 1. Else, find the evact rate (which is between 0 and cr) with which
the last burst should be accepted and which results in EQ—TEvy=10; the
resulting admission control is the optimal admission control; thus stop.

Iterative Algorithm for the Second Optimization Criterion

Step 0: L = 0. Set A, :=_0 for all k, k2>0.

Step 1: L := L+1. Set A\ := ci, for allk, 0 <k<L—-1. IfEy.>T, goto
Step 2; else, repeat Step 1.

Step 2: If By = T, the resulting admission control is the optimal admission
control; thus stop. Else, find the value of Ay_q (which is between 0 and
cr—1) which results in By = T'; the resulting admission control is the
optimal admission control; stop.

For the case in which the Norton equivalent of the network is a concave
increasing function with respect to the number of bursts in the network, there is
a one-to-one mapping between the admission control solution given under the first
and the second optimization criteria. The optimization problems

max K-y
Er<T

and

min Ev
Ey>T
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have the same class of window admission control solutions. If the window size is
the same, it is easy to see that

I'T = EQ

7. Conclusions

In this paper the optimal admission control of bursty traffic in a broadband
network has been studied. It has been demonstrated that under two distinct
optimization criteria, the optimal admission control at the burst level is a window
flow control, which implies that a virtual circuit should not be allowed to have
_more than a given number of bursts in the network at any time. While, at the cell

level, each network switching system services cells on a FCFS basis using statistical
multiplexing, the results of this paper suggest that at the end-to-end level, the
network should monitor and control each connection with respect to the number of
bursts that the connection has in the network at any given moment.
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