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We investigate the impact of numerical representation on the power consump-

tion of digital hearing aids. A fundamental building block, a non-linear amplifier,

is implemented using traditional 16-bit linear or customized 9-bit logarithmic and

10-bit floating point numerical representations. An individual channel of a multi-

channel hearing aid is constructed, targeting both FPGA and ASIC deployment op-

tions. Using signal transition counts in the post-synthesis simulation to model power

consumption, we compare the relative power consumption of the non-linear ampli-

fiers, a full hearing aid channel, and the complete hearing aid signal processing for

these three numerical representations. Our results show that for the non-linear am-

plifier, the logarithmic and floating-point representations provide significant savings



over a traditional linear representation. However, since the total power consumption

is dominated by the FIR filters, the total power saving is on the order of the filters.
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Chapter 1

Introduction

Hearing aids are one of many modern, portable, digital systems requiring power effi-

cient design in order to prolong battery life. Hearing aids perform signal processing

functions on audio signals. With the advent of many new signal processing tech-

niques, their requirement for higher computational ability has put additional pres-

sure on power consumption. In this thesis, we are specifically interested in the impact

of numerical representation on the power consumption of digital hearing aids. We

investigate the use of a traditional linear numerical representation and customized

logarithmic and floating-point numerical representations for processing audio signals.

Through comparison, we show how the power consumption can be lowered for audio

signal processing using customized numerical representations while maintaining the

overall signal quality.

1.1 Multichannel Hearing Aid Signal Processing

The need for improved hearing aids is widely attested to by the nationally supported

research efforts worldwide. In [30], Sigfrid Soli said:
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Over 28 million Americans have hearing impairments severe enough to
cause a communications handicap. While hearing aids are the best means
of treatment for the vast majority of these people, only about 5 million of
them own hearing aids, and fewer than 2 million aids are sold annually.
Market surveys of hearing aid owners have found that only slightly more
than half (58%) of these people are satisfied with their aids.

The discussion below is based upon the introduction from [13].

The basic audiological problem existing in current hearing aid designs is the

loudness recruitment, or loss of dynamic range [33, 23]. Modern hearing aids automat-

ically compress the range of sound levels into a much smaller range, as needed. Many

people agree that the most general and potentially successful design is a multichannel

compressive hearing aid that addresses the compression needs of each band of audible

frequencies, but sharp disagreement exists whether the dynamic range compression

should be instantaneous or slowly adapting [27].

Compressive amplification with automatic gain control of linear amplifiers cur-

rently dominates advanced hearing aid design. Extensive research has been conducted

in this area [9]. The normal cochlea, a snail-sharped cavity filled with fluid, uses es-

sentially non-linear, rapidly compressive amplification under efferent control [21, 28],

whose salient characteristics have been modeled [12] and are currently being explored

for use in multichannel hearing aids [14]. Essentially, imitating the important aspects

of a healthy ear can provide guidance to the design of future hearing aids. A block

diagram of the required signal processing is shown in Figure 1.1 [13].

The input signal comes in from the left, is sampled at a rate of 32 kS/s, and is

simultaneously presented to N bandpass filters for separation into distinct channels.

The figure shows a 6-channel system, with each channel comprising an octave band,

and an overall frequency range from 125 Hz to 8 kHz. Signal amplification in each

channel is linear at low sound pressure levels and compressive (power-law) above a

threshold. This is shown via a non-linear amplifier in each channel. The output
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Figure 1.1: Block diagram of multichannel hearing aid signal processing.
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of the non-linear amplifier is again bandpass filtered to remove undesired higher-

order harmonics introduced by the non-linear amplification. The outputs from the N

channels are then summed and presented to the user.

Pilot psychoacoustic experiments with a design simulation that implemented

the system of Figure 1.1 demonstrated that both normal and impaired hearing sub-

jects comprehend speech in noise at least as well as with advanced hearing aids

[17, 16, 25].

1.2 Contributions

In a digital hearing aid, the resource limitations can be extreme, given that the entire

device (including the battery) needs to fit within the ear canal. As a result, power

consumption must be held to an absolute minimum. In this thesis, we investigate

the power savings associated with constructing the hearing aid using a numerical

representation customized to the needs of the application. Specifically, we compare

the relative power consumption of three designs, one using a traditional 16-bit linear

representation, one using a 9-bit logarithmic representation and the other using a

10-bit floating-point representation. Each design is targeted in two directions, an

FPGA implementation and an ASIC implementation. Signal transition counts in

the post-synthesis simulation are used to evaluate relative power consumption. For

the non-linear amplifier itself in the hearing aid channel, the logarithmic and floating-

point representations are shown to provide significant savings over a traditional linear

representation (32× and 14× for the FPGA target, and 38× and 8× for the ASIC

target). Since in a channel the total power consumption is dominated by the FIR

filters, the total power saving is on the order of the filters, which is over 2.5× for the
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logarithmic representation vs. the linear representation and 2× for the floating-point

representation vs the linear representation.

The author’s work in this thesis is listed as follows.

• Implementations of the non-linear amplifier using linear, logarithmic, and floating-

point numerical representations in VHDL, including implementations of several

Baugh-Wooley multipliers with different bit widths.

• An implementation of a full hearing aid channel in VHDL, with a master con-

troller synchronizing the FIR filters and the non-linear amplifier.

• pre- and post-synthesis simulations along with shell scripts to automate the

process of running all the various combinations of the non-linear amplifier, FIR

filter, and input set on FPGA and ASIC targets.

• A C++ program for verification of the exponentiation function in the non-linear

amplifier using the linear numerical representation. The program performs the

same function as the hardware. Its outputs are compared with the hardware

outputs. Noise due to errors introduced by polynomial approximation in the

hardware implementation is examined.

• C++ programs to generate parameterized Look-Up-Tables (LUTs) in the non-

linear amplifier using the floating-point representation.

• A C++ program to parse and sum signal transition counts from ModelSim

outputs.
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1.3 Related Work

Using reduced bit width or customized numerical representations has been shown to

be explored in low power application design. In [26], Okuma et al. presented a tech-

nique that reduces the redundant access energy of on-chip data memory by exploring

the active data bitwidth of data which is accessed. Their experimental results showed

a significant energy reduction compared to the monolithic memory for JPEG and

MPEG-2 applications. Junghuwan et al. studied the power minimization problem

for data dominated applications based on a novel concept called partially guarded

computation [8]. Through dynamically disabling most significant bit computation to

remove unnecessary transitions, they reported a 10% to 44% power reduction with

reasonable area and delay overhead in functional units.

In [29], Sacha and Irwin compared several techniques (fixed- and floating-point

configurations, CORDIC arithmetic, and logarithmic representations) for performing

QRDRLS adaptive filtering. The architecture-level power modeling showed that log-

arithmic arithmetic switched less capacitance and therefore consumed less energy for

a given residual error level than the other methods. In [10], Engel et al. recognized

the potential usefulness of sign/logarithm encoding in integrated circuit implementa-

tion with substantial savings in both area and power. They showed that by choosing

an appropriate logarithm base and a sufficiently large number of quantization states

the sign/logarithm encoding scheme offers performance very close to that provided by

commercial 16-bit codecs. In the paper, they also described the designs of logarithmic

digital-to-analog and analog-to digital convertors for use in a digital hearing aid. Gaf-

far et al. [11] described a method for customizing the representation of floating-point

numbers that exploits the flexibility of an FPGA. They used an iterative method to

determine the appropriate size of the mantissa and exponent for each operation in a
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design which satisfies a given error specification for the output relative to a reference

representation.

Sullivan [32] developed a method to estimate the power consumption for VLSI

DSP designs. He examined variable parts including multiplier, memory, bus, con-

troller, and interconnects, and showed that a Baugh-Wooley multiplier is more power

efficient than comparable shift and add multipliers. He also compared systems using

a linear representation with those using a logarithmic representation, showing that

the logarithmic representation uses only 30% of the power necessary for the linear

representation.

In [5, 6], Chamberlain et al. compared the power consumption of a 16-bit

linear representation with several different floating-point representations (4- to 6-bit

exponent and 4- to 6-bit mantissa) and a 9-bit logarithmic notation. For each repre-

sentation, they designed a hardware MAC unit in the VHDL language and performed

a standard-cell synthesis, layout, and place-and-route targeting the AMI Semiconduc-

tor 0.5 micron VLSI integrated circuit process. The resulting design was simulated

using the Mentor Graphics MACH-PA power analysis tool, with input vectors model-

ing a 21-tap finite impulse response band-pass filter. Their results showed a significant

power savings (greater than 5x) using both the floating-point representations and the

logarithmic representation. In their later work [7, 18], Hemmeter et al. compared

the results of their earlier investigation with a logic-level simulation that models the

system in a discrete-event fashion, showing that the signal transition counts in the

simulation have a linear relationship with the power consumption. They observed

that the increased execution speed of the logic-level simulation makes it possible to

investigate a much wider design space, with acceptable inherent inaccuracies due to

the discrete model, early in the design cycle.
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We extend the above work to include the implementation of a non-linear am-

plifier using different numerical representations. Using the same discrete model, we

investigate the relative power consumption of the non-linear amplifier, a full hearing

aid channel, and a complete hearing aid signal processing.

1.4 Outline

This thesis is organized as follows. In chapter 2, we introduce the three numerical

representations (16-bit linear, 9-bit logarithmic, and 10-bit floating-point representa-

tions) and examine their qualifications for audio signal processing. Then we describe

the functionality of the non-linear amplifier and present the detailed implementation

of the non-linear amplifier using the three numerical representations. In chapter 3,

we give a review of the implementation of the FIR filter, another fundamental com-

ponent in the hearing aid, developed by E. Hemmeter [18]. Then the construction of

a full hearing aid channel is described. Chapter 4 presents the discrete event simula-

tion model for power estimation. We compare the relative power consumption of the

non-linear amplifiers, a full channel, and the complete hearing aid signal processing

for the three numerical representations. Finally, we conclude in Chapter 5 with a

summary and a discussion of future work.



9

Chapter 2

Implementation of a Non-linear

Amplifier

2.1 Multichannel Hearing Aid Architecture

To ease the computational burden, the real-time implementation of the hearing aid

utilizes a multirate design for the signal processing, which is illustrated in Figure 2.1

[13]. The input signal comes in on the upper left side of the figure, is sampled at a

rate of 32 kS/s, and is delivered to an allpass filter in channel 6 (for equalization of

the group delay across the channels) and to a lowpass filter and downsampler (so that

signals in channels 5 through 1 have sampling rates that are successively halved). The

bandpass filters and non-linear amplifiers in the center of the diagram are the same

as before, only the frequency of execution is diminished for lower frequency channels.

The output of the second bandpass filter in each channel is first added to the output

from any lower frequency channels, upsampled, and lowpass filtered.

In the prototype implementation, the bandpass filters are 21-tap FIR filters

designed by windowing and sampling IIR Butterworth bandpass impulse responses
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Figure 2.1: Multirate signal processing flow diagram for the digital hearing aid.
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and are identical for all channels. The allpass equalization filters are simply circular

delay buffers. Since this function can be combined into the filter that follows it, its

power is not explicitly modeled. The lowpass filters are 21-tap FIR filters with a

normalized cutoff frequency of 0.3π, also identical for all channels. Additional details

are available in [13].

2.2 Numerical Representations

Focusing our attention on audio signals that communicate human speech, a dynamic

range of approximately 100 dB and a signal-to-quantization-noise ratio (SQNR) of

approximately 30 dB have been shown to be adequate [31]. In this investigation, we

compare the power consumption of a 16-bit linear representation (in two’s comple-

ment Q0.15 format), a 9-bit sign-magnitude logarithmic representation (using base

0.941 logarithms [22]) and a 10-bit floating point representation (with one sign bit, 4

exponent bits, and 5 mantissa bits). The dynamic range can be expressed as follows:

Dynamic Range (dB) = 20 log10

(
xmax

xmin

)

where xmax corresponds to the largest representable value and xmin corresponds to

the smallest non-zero representable value.

SQNR is quantified as follows:

SQNR = 20 log10




xi√
2

|xi−xi+1|√
12




where xi and xi+ represent the ith and (i+1)th value present in the number represen-

tation. The above expression makes the assumption that the input signal is a sinusoid
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with peak value xi and the quantization error is uniformly distributed between xi and

xi+1.

2.2.1 16-bit Linear Representation

A number (x) in a 16-bit linear representation (in two’s complement Q0.15 for-

mat) has a value in the range of -1 (x = 10000000000000002) to +(1 − 2−15) (x =

01111111111111112), with a dynamic range of 90.3 dB. The value of x can be com-

puted using the following formula.

x =
15∑

i=1

ai2
−i − a0

where a0 is the MSB and a15 is the LSB.

Figure 2.2 shows the range of representable values and the SQNR for those

values in the 16-bit linear representation. The linear representation has an SQNR

that ranges from near 0 dB, well below the 30 dB we desire, up to almost 100 dB,

which is much more than necessary.

2.2.2 9-bit Logarithmic Representation

A number (xl) in a 9-bit sign-magnitude logarithmic representation (using base 0.941

logarithms [22]) has a value in magnitude ranging from 1.84× 10−7 (xl = 0111111112

or 1111111112) to 1 (xl = 0000000002 or 1000000002). Its dynamic range is 134.7 dB.

The value of xl can be computed as follows.

xl = (−1)a0 ×
8∑

i=1

ai2
(8−i)
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Figure 2.2: SQNR for 16-bit linear representation.

where a0 is the MSB (also is the sign bit) and a8 is the LSB. xl denotes the logarithmic

value of x, which is

x = sng(xl)× (0.941)(|xl|)

Figure 2.3 shows the range of representable values and the SQNR for those

values in the 9-bit logarithmic representation. The logarithmic representation has a

flat SQNR just over 30 dB for most of the representable values. In the dead zone

near zero where the quantization noise is greater than the representable value, the

SQNR drops sharply. In reality, due to the limitations of the A/D converters the dead

zone can be much bigger than what is shown in this figure. More information can be

found in [22]. The following formula quantifies the SQNR for the 9-bit logarithmic

representation.

SQNR = 20 log10




xi√
2

max( |xi−xi+1|√
12

, xmin)



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Figure 2.3: SQNR for 9-bit log representation.

2.2.3 10-bit Floating-point Representation

A number (xf ) in a 10-bit floating-point representation (1 sign bit, 4 exponent bits,

and 5 mantissa bits) can be expressed in bit format as follows:

a0︸︷︷︸
sign

a1a2a3a4︸ ︷︷ ︸
exponent

a5a6a7a8a9︸ ︷︷ ︸
mantissa

where a0 is the MSB and a9 is the LSB.

The value of xf can be computed using the following formula. Let

sign = a0

expo = a12
3 + a22

2 + a32
1 + a42

0

mant = a52
4 + a62

3 + a72
2 + a82

1 + a92
0



15

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

Input Value (x)

S
Q

N
R

 (
dB

)

Figure 2.4: SQNR for 10-bit float representation.

Then,

xf = (−1)sign × mant

25
× 2(expo)−(24−1)

where mantissa is normalized with a leading ’1’, and the exponent is in excess no-

tation with a bias of 15. In magnitude xf ranges from 2−16 (xf = 00000100002

or 10000100002) to 0.96875 (xf = 01111111112 or 11111111112). Specifically, xf =

0000000000 is used to represent zero value. Its dynamic range is 96.3 dB.

Figure 2.4 shows the range of representable values and the SQNR for those

values in the 10-bit floating point representation. The SQNR of the floating-point

representation varies in a sawtooth fashion, ranging from slightly over 30 dB to just

below 40 dB.
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2.2.4 Summary of Numerical Representation Properties

Table 2.1 summaries the properties of the three numerical representations in the above

sections. Although the logarithmic representation uses fewer bits than the other two

representations, it has the greatest dynamic range. The logarithmic representation

also has flat SQNR over a big portion of its dynamic range, which is slightly over

the required 30 dB. The linear representation gives the highest maximum SQNR,

however, at low sign input level, the SQNR is lower than 30 dB. Table 2.1 also shows

that the floating-point representation has properties in between the logarithmic and

linear representations.

Table 2.1: Summary of the properties of the linear, logarithmic and floating-point
representations.

numerical dynamic range min SQNR max SQNR
representation (dB) (dB) (dB)
16-bit linear 90.3 7.8 98.1

9-bit log 134.7 < 0 32.4
10-bit floating-point 96.3 31.9 37.6

2.3 Non-linear Amplifier

The following equation describes the functionality of the non-linear amplifier [13].

y =





A× x if |x| ≤ t

B × xp if |x| > t

where x is the input value (ranging from -1 to 1), y is the output, t is the compression

threshold, A is the gain in the linear region, and p is the compression ratio (with

values between 1
4

and 1
2
). The value of B is determined by A, p, and t, ensuring the
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Figure 2.5: The non-linear amplifier function on a log-log scale.

two curves meet at the threshold. Since A and B are positive, y has the same sign as

x. To simplify the computation, we restate the equation as follows.

y = sgn (x)×





A× |x| if |x| ≤ t

B × |x|p if |x| > t

Figure 2.5 illustrates the non-linear amplifier function on a log-log scale. |x|
and |y| denote the magnitudes of the input and output signals, respectively. At low

signal levels (below the compression threshold) the non-linear amplifier has a linear

response with a high gain. At high signal levels (above the compression threshold)

signals experience 1 : p compression (p is the compression ratio). The two-piece

amplification function has a unit slope for the first piece and p for the second piece.

2.3.1 Linear Representation

Implementation

Clearly, the implementation issues associated with the above expression center around

the need to perform exponentiation. Here, we implement the computation of xp by

transforming it into 2p×log2(x). A polynomial approximation is then used for the
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log2 (x) and 2w (w = p × log2 (x)) implementations. Base 2 is chosen to enable

the use of shifting for portions of the required transformations. Starting with the

log2 (x) implementation, the Taylor series expansion for ln (1 + u) (0 ≤ u ≤ 1) is well

behaved and used extensively [19]. To convert into a range that can be directly used,

we normalize x to

x = (1 + u)× 2m

where u is from 0 to 1 and m is from -15 to -1. Then log2 (x) can be transformed as

follows:

log2 (x) =

(
1

ln (2)

)
× ln (x)

=

(
1

ln (2)

)
× (ln (1 + u) + m× ln (u))

= m +

(
1

ln (2)

)
× ln (1 + u)

= m +

(
1

ln (2)

)

×
(
C1 × u + C2 × u2 + C3 × u3 + C4 × u4 + C5 × u5 + C6 × u6

)

This results in a computation dominated by multiply-accumulate operations.

To compute 2w (w = p× log2 (x)), we use a similar strategy to the one above.

As mentioned previously, the range of p is limited to between 1
4

and 1
2
. As a result,

w is limited in range from -3.5 to 0 for p of 1
4

and from -7 to 0 for p of 1
2
. Given that

the Taylor expansion for ex is accurate even with just a few terms when x is between

0 and 1, we split w into integer and fractional parts.

w = bwc+ (w − bwc) = i + f,
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where i denotes bp× log2 (x)c, which is a non-positive integer; and f denotes

(p× log2 (x)− bp× log2 (x)c), which is a positive fraction. Now,

2p×log2(x) = 2i+f = 2i × 2f

Since f ranges from 0 to 1 and ln (2) is less than 1, A Taylor expansion can be

used to compute 2f as follows.

2f = e(f×ln(2))

= 1 + ln (2)× f

+
((

1

2!

)
× (ln (2))2

)
× f 2

+
((

1

3!

)
× (ln (2))3

)
× f 3

+
((

1

4!

)
× (ln (2))4

)
× f 4

+
((

1

5!

)
× (ln (2))5

)
× f 5

+
((

1

6!

)
× (ln (2))6

)
× f 6

Thus, 2f can be easily implemented using a multiply-accumulate unit. Since i is an

integer, a simple shift operation is all that is necessary to implement 2i.

The computation structure for xp is shown in Figure 2.6. As analyzed above,

the functions log2 (u) and 2f can be implemented using a multiplier-accumulator.

A Baugh-Wooley multiplier [2] is designed to minimize power consumption for the

multiplication operation.

Figure 2.7 shows the computation structure of the complete non-linear am-

plifier using a linear numerical representation. The comparator compares the input

data x and the threshold t. Based on the result of this comparison, x is sent to either



20

normalizer Log2u
u

m

p splitter
2f

f

x

xpshifter
i

Figure 2.6: Computation structure for xp using a linear representation.
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sel

Figure 2.7: Computation structure for the non-linear amplifier using a linear repre-
sentation.

the multiplier or exponentiation function at the next level. At the same time, only

the upper path or the lower path is enabled to process the input data. When the

processing is done, a sel signal will notify the component mux to send data out.

Error Analysis

Given that a polynomial approximation is used to compute xp, we next examine

how much error is introduced by this approximation. For comparison purposes, we

implemented xp in C. For the same input set, we compare the output of the C version

of the exponentiation function (y) with the simulation output of the VHDL version

(y′). The noise due to numerical error associated with the signal y is |y − y′|. The
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Figure 2.8: Signal to noise ratio for p = 0.25.

signal-to-noise ratio (SNR) is quantified as:

SNR = 20 log




y√
2

|y−y′|√
12




The SNR for a normalized signal is commonly used to evaluate the validity of an im-

plementation [4]. In the above expression, the input signal is assumed to be a sinusoid

with amplitude y and the numerical error is assumed to be uniformly distributed in

the range 0 to |y − y′|.
Figure 2.8 through Figure 2.10 show three comparison results for different

values of p. Some points are missing in the figures because when |y − y′| is equal to

0 the corresponding SNR is infinity. Compared to the SQNR for the 16-bit linear

representation, SNR for the xp computation is well above 30 dB, especially for small

values of x, implying sufficient precision in the polynomial approximation.
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Figure 2.9: Signal to noise ratio for p = 0.375.
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Figure 2.10: Signal to noise ratio for p = 0.5.
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Figure 2.11: Computation structure for the non-linear amplifier using logarithmic
representation.

2.3.2 Logarithmic Representation

In the above implementation of the non-linear amplifier, most of the power is con-

sumed computing xp, which is comprised of a number of multiply-accumulate oper-

ations. By using a logarithmic representation, the exponentiation operation is im-

plemented as a multiplication and multiplication is implemented as an addition. We

expect to see significant power savings using the logarithmic representation.

Implementation

The following equation shows the functionality of the non-linear amplifier using a

logarithmic representation.

yl = sgn (xl)×





Al + |xl| if |xl| ≥ tl

Bl + p× |xl| if |xl| < tl

where yl denotes log0.941 (y) and similar notation applies to Al, Bl, xl and tl.

Figure 2.11 shows the computation structure of the non-linear amplifier using a

logarithmic representation. It has similar structure as that of the linear representation

amplifier in Figure 2.7 except that internal processing modules are much simpler.
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2.3.3 Floating-point Representation

Implementation

The following equation shows the functionality of the non-linear amplifier using a

floating-point representation.

yf = sgn (xf )×





Af × |xf | if |xf | ≤ tf

Bf × |xf |p if |xf | > tf

Like the linear representation non-linear amplifier, the implementation of the

exponentiation is the key part in the floating-point representation non-linear ampli-

fier. The same technique used in the implementation of the linear representation

non-linear amplifier could also be used here. However, we will exploit the limited

number of bits in each field of the floating-point representation. Since parameter p

(between 1
4

and 1
2
) is fixed for the individual patient who uses the hearing aid, and

exponent and mantissa have only 4 and 5 (with a leading ‘1’) bits each, two 16 entry

LUTs were deployed for the table lookup of the exponentiation of the exponent and

mantissa. In the normalizer, the mantissa of the lookup results are normalized, with

the exponent of each lookup result adjusted accordingly. Figure 2.12 shows the com-

putation structure of the non-linear amplifier using a floating-point representation.

It has similar structure as that of the linear representation amplifier in Figure 2.7

except that the exponent implementation uses table lookup.
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Figure 2.12: Computation structure for the non-linear amplifier using floating-point
representation.
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Chapter 3

Full Hearing Aid Channel Design

In this chapter, we first introduce the implementations of the FIR filter, another

fundamental component in the hearing aid design. This is the work of E. Hemmeter

[18]. Using the FIR filter and the non-linear amplifier we construct a full hearing aid

channel (Specifically, channel 6 of Figure 2.1).

3.1 Implementation of FIR Filter

The Finite Impulse Response (FIR) filters perform the calculation shown below.

y(j) =
n∑

i=1

c(i)x(j − i)

where n is the number of taps in the filter, c(i) is the coefficient of tap i, and x(j− i)

is the (j− i)th input value. The filters in the design of [14] have 21 taps and therefore

21 coefficients. Figure 3.1 and Figure 3.2 show the frequency response and impulse

response of the FIR filter [18].
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Figure 3.1: Frequency response of the FIR filter.

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0 5 10 15 20

tap

am
pl

it
ud

e

Figure 3.2: Impulse response of the FIR filter.



28

accumulation
register

x×cx

c

y

Figure 3.3: Computation structure for the FIR using linear representation.

3.1.1 Linear Representation

As shown in Figure 3.3, the filter implementation is straightforward with a linear

representation. To minimize power consumption a Baugh-Wooley [2] multiplier is

used instead of a simple shift-add multiplier. The accumulation is a basic summation

function with some clipping logic. After 21 cycles the accumulated result is available

to be output.

3.1.2 Log Representation

The logarithmic implementation (Figure 3.4) of an FIR filter is not as straightforward

as the linear implementation. The filter still performs multiply-accumulation opera-

tions, but the multiplication is implemented using an adder and the accumulation is

implemented using a LUT. The adder consumes much less power than a multiplier,

and the power consumption of the look-up table is minimized by only using it when

required.

Clearly, an adder is used to implement multiplication, since

log(x× y) = log(x) + log(y)
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Figure 3.4: Computation structure for the FIR using logarithmic representation.

so to compute z = x × y, zl = xl + yl is implemented. To implement accumulation

the following relationship is exploited

log(x + y) = log(
x + y

x
) + log(x) = log(1 +

y

x
) + log(x)

This calculation is instantiated as LUT (yl−xl)+xl , where LUT (al) computes

log(1+al) and al = yl−xl. If necessary, the inputs x and y can be exchanged so that

x is larger than y (i.e., yl is larger than xl since the base of the logarithm is 0.941).

To conserve power the look-up table is only accessed if the difference, yl−xl, is

small enough that y is significant with respect to x (i.e., y is outside the quantization

noise of x). If x is much larger than y, the value of xl is passed to the output without

exercising the look up table.

3.1.3 Floating-point Representation

The structure of the floating-point FIR unit is shown in Figure 3.5. It operates as

follows: the data input and coefficient are separated into their three parts: sign bit,

exponent bits, and mantissa bits; the mantissa bits are multiplied together using

partial products, while the exponents are added; the sign bits are combined using an

exclusive-or function to give the sign of the multiply result. Next, the mantissa of
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Figure 3.5: Computation structure for the FIR using floating-point representation.

the resulting multiply is normalized and the exponent is adjusted appropriately. The

result of the multiply is compared to the current output of the accumulator register.

First, the mantissa of the number with the smaller exponent is shifted, in preparation

for the add, such that both numbers have the same exponent. The shifted mantissas

are then added together and the result is normalized, again adjusting the exponent

appropriately. The final result is then latched in the register when the controller

asserts the latch enable signal.

3.2 Implementation of A Full Channel

A full hearing aid channel is constructed using two FIR filters and one non-linear

amplifier. It is executed at a rate of 32 kS/s, which corresponds to channel 6 in

Figure 2.1. All the parameters of the non-linear amplifier take on realistic values, so

that the simulation results indicate how the circuit operates in typical usage.

Figure 3.6 shows the implementation block diagram of a hearing aid channel.

For a single data input, a 21-tap FIR filter needs more processing time than the

non-linear amplifier. Therefore, a master control is designed to synchronize the FIR

filters and non-linear amplifier. The master controller monitors the output enable
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Figure 3.6: Implementation block diagram of a hearing aid channel.

signals. When any of them becomes valid (high for one clock cycle), the corresponding

output data are latched. When seeing all three valid output enable signals, the master

controller releases an input enable signal. In the meanwhile, the output data latched

in the master controller are released to the downstream component. For the first

FIR filter, input data comes from a file, where sampled speech data are stored. The

output data from the 2nd FIR filter are also written to a file.



32

Chapter 4

Power Consumption

4.1 Modeling Power Consumption

The post-synthesis logic-level simulation models digital systems in a discrete-event

fashion. [7] validated the use of discrete-event simulation models for power estimation

in this type of system. Reporting transition counts explicitly is strictly an energy

measure; however, by keeping the number of input samples constant across tests,

energy is linearly related to power.

The input set was three seconds of audio sampled at 32 kS/s from the Speech In

Noise (SPIN) audiological test for human speech intelligibility [3, 20] (Figure 4.1). All

of the designs are specified using the VHDL language and during the synthesis step

targeted to either an FPGA or an ASIC. The FPGA target is a Xilinx Virtex 2000E,

and the ASIC target is the ADK standard-cell library from the Mentor Graphics

Higher Education Program [1]. Table 4.1 shows a list of standard cells in the ADK

standard-cell library.
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Table 4.1: A list of standard cells in the ADK standard-cell library.

cell name
and02 and03 and04 or02 or03 or04
nand02 nand03 nand04 nor02 nor03 nor04
inv01 inv02 inv04 inv08 inv12 inv16
buf02 buf04 buf08 buf12 buf16 mux21
latch latchr latchs latchsr fake vcc fake gnd
dff dffr dffs dffsr fadd1 hadd1
sff sffr sffs sffsr xnor2 xor2

ao21 ao22 ao221 ao32 aoi21 aoi22
aoi221 aoi222 aoi32 aoi321 aoi322 aoi33
aoi332 aoi333 aoi422 aoi43 aoi44 oai21
oai22 oai221 oai222 oai32 oai321 oai322
oai33 oai332 oai333 oai422 oai43 oai44
tri01 trib04 trib08

4.1.1 Simulation Results for the Non-linear Amplifier

In this section, we show the simulation results for the non-linear amplifier exercised us-

ing unfiltered speech input vectors. Results of the filtered speech data is presented in

the next subsection. Table 4.2 shows the signal transition counts in the post-synthesis

simulation of the non-linear amplifiers. For the FPGA target, the signal transition

counts for the linear numeric representation are 69.7 times and 18.4 times greater

than those for the logarithmic representation and floating-point representation, re-

spectively. For the ASIC target, the logarithmic representation and floating-point

representation achieve 54.4 times and 10.2 times power savings relative to the lin-

ear representation, respectively. For both FPGA and ASIC targets, the non-linear

amplifier using the linear numerical representation is the most power consuming im-

plementation. This is because the component “xp” (Figure 2.6) with twelve 16-bit

multipliers and one 20-bit multiplier consumes more than 75% of the total power.

While the relative power consumption across targets is inappropriate to judge using
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Figure 4.1: Waveform of the 3 second speech input.

signal transition counts, clearly a significant savings is present independent of the

implementation technology for both logarithmic and floating-point representations

verses linear representation.

Table 4.2: Signal transition counts for the non-linear amplifier exercised using speech
input vectors.

numerical representation FPGA target ASIC target
linear 1.484× 109 3.213× 109

log 2.129× 107 5.910× 107

floating-point 8.080× 107 3.145× 108
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4.1.2 Simulation Results for a Hearing Aid Channel

FPGA-targeted Hearing Aid Channel

Table 4.3 shows the signal transition counts for the two FIR filters and the non-linear

amplifier (NLA) for an FPGA-targeted hearing aid channel using speech input vectors.

The last row shows the total transition counts of the hearing aid channel. Figure 4.2

and Figure 4.3 present the signal transition counts and relative power savings for

the FPGA-targeted hearing aid channel. Note that the two identical FIR filters have

different signal transition counts for each of the three numerical representations. This

is due to the difference in the input vectors to the two FIR filters. Although the power

savings within the non-linear amplifier is dramatic for the logarithmic representation

verses the linear representation, the overall power savings is limited to 2.5×. This

is because the total power consumption is dominated by the two FIR filters, where

the logarithmic representation has slightly less than a 2.5× power improvement over

the linear representation. Within the non-linear amplifier, the power savings for the

floating-point representation compared to the linear representation is 14×. However,

the total power saving is less than unity because for both FIR filters the signal

transition counts using floating-point are 17.6% and 13.4% greater than those using

the linear representation, respectively. In effect, the power penalty in the FIR filters

is greater than the power savings realized in the non-linear amplifier.

ASIC-targeted Hearing Aid Channel

Table 4.4 shows the signal transition counts for the ASIC-targeted hearing aid chan-

nel. The signal transition counts and power savings in graphical form are shown

in Figure 4.4 and Figure 4.5. Again, speech input is used to exercise the channel.

Not surprisingly, for logarithmic and linear representation, the results tell a similar



36

1st FIR 2nd FIR NLA Total
0

2

4

6

8

10

12
x 10

9

S
ig

na
l t

ra
ns

iti
on

 c
ou

nt
s

linear
log
floating−point
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Figure 4.3: Power savings for FPGA-targeted hearing aid channel.
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Table 4.3: Signal transition counts for an FPGA-targeted hearing aid channel exer-
cised using speech input vectors.

FGPA target
numerical representation linear log floating-point

1st FIR 4.492× 109 2.167× 109 5.281× 109

2nd FIR 5.176× 109 2.033× 109 5.869× 109

nonlinear amplifier 7.045× 108 2.256× 107 4.977× 107

total transition counts 1.037× 1010 4.223× 109 1.119× 1010

story as that in the previous section, although the platforms are different. The total

power savings using logarithmic representation verses linear representation is 2.9×,

slightly higher than 2.5×. One interesting phenomenon is that for the FPGA-targeted

FIRs in Figure 4.2, the average signal transition counts using the floating-point rep-

resentation is 15.5% greater than those using the linear representation; while for

the ASIC-targeted FIR in Figure 4.4, the average signal transition counts using the

floating-point representation is 53.9% lower than those using the linear representation.

Due to this reason, the overall power savings using the floating-point representation

is improved by 2.1× over the linear representation.

Table 4.4: Signal transition counts for an ASIC-targeted hearing aid channel exercised
using speech input vectors.

ASIC target
numerical representation linear log floating-point

1st FIR 7.763× 109 3.022× 109 4.292× 109

2nd FIR 7.301× 109 2.953× 109 3.820× 109

nonlinear amplifier 2.350× 109 6.134× 107 2.924× 108

total transition counts 1.741× 1010 6.036× 109 8.406× 109
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Figure 4.4: Signal transition counts for ASIC-targeted hearing aid channel.
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Figure 4.5: Power savings for ASIC-targeted hearing aid channel.
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4.2 Results for the Full Hearing Aid

Using the results from section 4.1.2, we can readily calculate the relative power sav-

ings for two 6-channel hearing aids (Figure 1.1 and Figure 2.1). There exist many

other hearing aid architectures, while we limit our investigation to these two archi-

tectures. Although memory requirement and chip area of a hearing aid design are

very important evaluation factors, our primary interest is in the power consumption

of these two architectures. For simplicity, we assume that different filters consume

the same amount of energy, modeled by the mean of the two measured filters. This

may not be the case since the input vectors to each filter are different, which can

result in different signal transition counts. Although the bandpass filter coefficients

are identical, a different set of coefficient are used to implement the lowpass filter.

Therefore if we apply the same speech input vectors used in the above sections to a

multirate hearing aid Figure 2.1, the following formula gives us the total transition

counts.

Ctotal = C6 + C5 + C4 + C3 + C2 + C1

= 3CFIR + CNLA

+
1

2
(4CFIR + CNLA)

+
1

4
(4CFIR + CNLA)

+
1

8
(4CFIR + CNLA)

+
1

16
(4CFIR + CNLA)

+
1

32
(3CFIR + CNLA)

= 6.844CFIR + 1.967CNLA
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where Ctotal is the total transition counts, CFIR and CNLA denote the transition

counts of the FIR filter on average and the non-linear amplifier, respectively. The

signal transition counts for channel 6 to channel 1 are denoted by C6 to C1. The

signal transition counts of each channel are also listed separately. The last term gives

the total transition counts. Note that for the purposes of this calculation, the lowpass

filters on the left side of the channels are considered with the higher-frequency channel,

since they operate at the higher sample rate. On the contrary, the lowpass filters on

the right side of the channels are considered with the lower-frequency channel because

of their operation on the lower sample rate.

Similarly, for the design using a uniform sampling rate (unirate) shown in

Figure 1.1, the total signal transition counts are given by:

Ctotal = C6 + C5 + C4 + C3 + C2 + C1

= 2CFIR + CNLA

+4CFIR + CNLA

+8CFIR + CNLA

+16CFIR + CNLA

+32CFIR + CNLA

+64CFIR + CNLA

= 126CFIR + 6CNLA

Note that the length of the FIR filters in Figure 1.1 increases inversely with frequency

range of each channel.

The total signal transition counts for the twelve designs shown in Tables 4.5

and 4.6 provide estimates of their relative efficiency.
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Table 4.5: Total signal transition counts for multirate and unirate hearing-aid designs
on FPGA target.

FPGA target
linear log floating-point

multirate 3.447× 1010 1.438× 1010 3.825× 1010

unirate 6.133× 1011 2.647× 1011 7.028× 1011

Table 4.6: Total signal transition counts for multirate and unirate hearing-aid design
on ASIC target.

ASIC target
linear log floating-point

multirate 5.617× 1010 2.056× 1010 2.833× 1010

unirate 9.631× 1011 3.768× 1011 5.128× 1011

In general, it is seen that FPGA-targeted and ASIC-targeted hearing aid im-

plementations provide approximately 43:1 and 46:1 power savings with multirate-log

processing over unirate-linear processing, respectively. No matter on which platform

(FPGA or ASIC) the design is targeted, the FIR filters are the dominating compo-

nent in power consumption. As can be observed in the above tables, about 18:1 is

the benefit from multirate processing over unirate processing.

Although our primary interest is in the power consumption of these two hear-

ing aid architectures, memory requirements and chip area are also important design

criteria. Our calculation shows that an estimated 1008 buffers are needed for the

equalizations and FIR filters in the multirate architecture; for the unirate architec-

ture, the total number of buffers needed by the FIR filters are nearly 2000. This

significant memory requirement implies that both designs are too memory intensive

and with current technology an in-the-ear aid is unlikely to be able to afford that

much memory due to area constraints.
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Chapter 5

Conclusion

5.1 Remarks

In this thesis, the power savings associated with constructing a hearing aid using a

numerical representation customized to the needs of the application is investigated.

Specifically, we compare the relative power consumption of three designs, one using a

traditional 16-bit linear representation, one using a 9-bit logarithmic representation,

and the other using a 10-bit floating-point representation. Each design is targeted

in two directions, an FPGA implementation and an ASIC implementation. Signal

transition counts in the post-synthesis simulation are used to evaluate relative power

consumption. A hearing aid component, non-linear amplifier, is implemented and

evaluated. A complete hearing aid channel is also constructed. The non-linear ampli-

fier implementation using a logarithmic numerical representation is shown to provide

significant power savings (more than 30×) over that of a traditional linear numeric

representation. The power improvement using floating-point representation is about

14 and 8 times over using linear representation for FPGA and ASIC targets, respec-

tively. Since the total power consumption is dominated by the FIR filters, the total
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power saving is on the order of the filters. Using the results for an individual channel,

we also compute the relative power savings for the entire hearing aid for multirate

processing and unirate processing. Although the specific results presented here are

limited to 9-bit logarithmic, 10-bit floating-point, and 16-bit linear representations,

the general message is much broader. With the ready availability of FPGA and

ASIC fabrication, rigid, fixed-function computational hardware is no longer a neces-

sity of modern digital system design, and significant power savings can result if the

requirements of the application are used to specify the properties of the numerical

representation.

5.2 Future Work

In [7], Chamberlain et al. evaluated the validity of using signal transition counts

to model actual power consumption for audio signal processing applications targeted

on an ASIC platform. We have assumed that the same relationship exists for the

hearing aid applications targeted on an FPGA platform. Our future work is to build

a hearing aid channel on the Field Programmable Port Extender (FPX) platform

[24], measure the real power consumption, and compare the power numbers with the

signal transition counts obtained from the post-synthesis logic simulation.

In this thesis, the floating-point representation investigated used a traditional

sign-magnitude format. Hemmeter [18] has shown a benefit in terms of power con-

sumption for multiply accumulate operations if the mantissa of the floating-point

number is represented in two’s complement form, enabling the use of a Baugh-Wooley

multiplier. The use of this floating-point representation in the non-linear amplifier is

also of interest.
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