
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCS-2006-39

2006-08-01

Adaptive Quality of Service Control in Distributed Real-Time Adaptive Quality of Service Control in Distributed Real-Time

Embedded Systems Embedded Systems

Xiaorui Wang

An increasing number of distributed real-time embedded systems face the critical challenge of

providing Quality of Service (QoS) guarantees in open and unpredictable environments. For

example, such systems often need to enforce CPU utilization bounds on multiple processors in

order to avoid overload and meet end-to-end dead-lines, even when task execution times deviate

significantly from their estimated values or change dynamically at run-time. This dissertation

presents an adaptive QoS control framework which includes a set of control design

methodologies to provide robust QoS assurance for systems at different scales. To

demonstrate its effectiveness, we have applied the framework to... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Wang, Xiaorui, "Adaptive Quality of Service Control in Distributed Real-Time Embedded Systems" Report
Number: WUCS-2006-39 (2006). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/916

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/916?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/916

Adaptive Quality of Service Control in Distributed Real-Time Embedded Systems Adaptive Quality of Service Control in Distributed Real-Time Embedded Systems

Xiaorui Wang

Complete Abstract: Complete Abstract:

An increasing number of distributed real-time embedded systems face the critical challenge of providing
Quality of Service (QoS) guarantees in open and unpredictable environments. For example, such systems
often need to enforce CPU utilization bounds on multiple processors in order to avoid overload and meet
end-to-end dead-lines, even when task execution times deviate significantly from their estimated values
or change dynamically at run-time. This dissertation presents an adaptive QoS control framework which
includes a set of control design methodologies to provide robust QoS assurance for systems at different
scales. To demonstrate its effectiveness, we have applied the framework to the end-to-end CPU utilization
control problem for a common class of distributed real-time embedded systems with end-to-end tasks.
We formulate the utilization control problem as a constrained multi-input-multi-output control model. We
then present a centralized control algorithm for small or medium size systems, and a decentralized
control algorithm for large-scale systems. Both algorithms are designed systematically based on model
predictive control theory to dynamically enforce desired utilizations. We also introduce novel task
allocation algorithms to ensure that the system is controllable and feasible for utilization control.
Furthermore, we integrate our control algorithms with fault-tolerance mechanisms as an effective way to
develop robust middleware systems, which maintain both system reliability and real-time performance
even when the system is in face of malicious external resource contentions and permanent processor
failures. Both control analysis and extensive experiments demonstrate that our control algorithms and
middleware systems can achieve robust utilization guarantees. The control framework has also been
successfully applied to other distributed real-time applications such as end-to-end delay control in real-
time image transmission. Our results show that adaptive QoS control middleware is a step towards self-
managing, self-healing and self-tuning distributed computing platforms

https://openscholarship.wustl.edu/cse_research/916?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/916?utm_source=openscholarship.wustl.edu%2Fcse_research%2F916&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-39

Adaptive Quality of Service Control in Distributed Real-Time Embedded
Systems, Doctoral Dissertation, August 2006

Authors: Xiaorui Wang

Corresponding Author: xiaoruiwang@gmail.com

Abstract: An increasing number of distributed real-time embedded systems face the critical challenge of
providing Quality of Service (QoS) guarantees in open and unpredictable
environments. For example, such systems often need to enforce CPU utilization bounds on multiple processors
in order to avoid overload and meet end-to-end deadlines, even when task execution times deviate signi¯cantly
from their estimated values or change dynamically at run-time.
This dissertation presents an adaptive QoS control framework which includes a set of control design
methodologies to provide robust QoS assurance for systems at different scales. To demonstrate its
e®ectiveness, we have applied the framework to the end-to-end CPU utilization control problem for a common
class of distributed real-time embedded systems with end-to-end tasks. We formulate the utilization control
problem as a constrained multi-input-multi-output control model. We then present a centralized control algorithm
for small or medium size systems, and a decentralized control algorithm for large-scale systems. Both
algorithms are designed systematically based on model predictive control theory to dynamically enforce desired
utilizations.
We also introduce novel task allocation algorithms to ensure that the system is controllable and feasible for

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ADAPTIVE QUALITY OF SERVICE CONTROL

IN DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

by

Xiaorui Wang

Prepared under the direction of Professor Chenyang Lu

A dissertation presented to the Henry Edwin Sever Graduate School of

Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF SCIENCE

August 2006

Saint Louis, Missouri

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

ADAPTIVE QUALITY OF SERVICE CONTROL

IN DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

by

Xiaorui Wang

ADVISOR: Professor Chenyang Lu

August 2006

Saint Louis, Missouri

An increasing number of distributed real-time embedded systems face the critical
challenge of providing Quality of Service (QoS) guarantees in open and unpredictable
environments. For example, such systems often need to enforce CPU utilization
bounds on multiple processors in order to avoid overload and meet end-to-end dead-
lines, even when task execution times deviate significantly from their estimated values
or change dynamically at run-time.

This dissertation presents an adaptive QoS control framework which includes a set
of control design methodologies to provide robust QoS assurance for systems at
different scales. To demonstrate its effectiveness, we have applied the framework to
the end-to-end CPU utilization control problem for a common class of distributed real-
time embedded systems with end-to-end tasks. We formulate the utilization control
problem as a constrained multi-input-multi-output control model. We then present a
centralized control algorithm for small or medium size systems, and a decentralized
control algorithm for large-scale systems. Both algorithms are designed systematically
based on model predictive control theory to dynamically enforce desired utilizations.
We also introduce novel task allocation algorithms to ensure that the system is
controllable and feasible for utilization control. Furthermore, we integrate our control
algorithms with fault-tolerance mechanisms as an effective way to develop robust
middleware systems, which maintain both system reliability and real-time perfor-
mance even when the system is in face of malicious external resource contentions

and permanent processor failures. Both control analysis and extensive experiments
demonstrate that our control algorithms and middleware systems can achieve robust
utilization guarantees. The control framework has also been successfully applied to
other distributed real-time applications such as end-to-end delay control in real-time
image transmission. Our results show that adaptive QoS control middleware is a step
towards self-managing, self-healing and self-tuning distributed computing platforms.

To my wife and my parents

Contents

List of Tables . ix

List of Figures . x

Acknowledgments . xiii

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Contributions . 8

1.3 Dissertation Organization . 11

2 Related Work . 12

2.1 QoS Control in Real-Time Systems 12

2.2 Real-Time Middleware . 15

3 End-to-End Utilization Control . 17

3.1 Task Model . 17

3.2 Problem Formulation . 19

3.3 Applications . 20

4 EUCON: Centralized Control . 22

4.1 EUCON Overview . 23

4.2 Dynamic System Model . 24

4.3 Design and Analysis of A Model Predictive Controller 25

4.3.1 Formulation for Model Predictive Control 26

4.3.2 Stability Analysis . 29

4.3.3 Control Tuning . 31

4.4 Experimentation . 32

4.4.1 Experimental Setup . 32

4.4.2 Baselines . 33

iv

4.4.3 Experiment I: Steady Execution Times 35

4.4.4 Experiment II: Varying Execution Times 40

4.4.5 Experiment III: Comparison with FC-U-E2E 41

4.4.6 Overhead . 43

4.5 Summary . 43

5 DEUCON: Decentralized Control . 44

5.1 Limitations of Centralized Control . 45

5.2 Design of DEUCON . 46

5.2.1 Global System Model . 46

5.2.2 Problem Decomposition . 47

5.2.3 Localized Feedback Control Loop 50

5.2.4 Controller Design . 51

5.2.5 Stability Analysis . 53

5.3 Simulation Results . 56

5.3.1 Simulation Setup . 56

5.3.2 System Performance . 57

5.3.3 Overhead . 63

5.3.4 Scalability . 65

5.4 Summary . 68

6 FCS/nORB: Uniprocessor QoS Control Middleware 69

6.1 Introduction . 70

6.2 Feedback Control Real-time Scheduling 72

6.2.1 Task Model . 72

6.2.2 FCS Algorithms . 74

6.3 FCS/nORB Architecture . 75

6.3.1 Extensions to nORB for FCS 75

6.3.2 Configuration Interface . 76

6.3.3 Feedback Control Loop . 77

6.3.4 Implementation . 79

6.4 Empirical Evaluations . 80

6.4.1 Experimental Set-up . 80

6.4.2 Experiment I: Performance Portability 85

6.4.3 Experiment II: Varying Synthetic Workload 90

v

6.4.4 Experiment III: Varying Realistic Workload 93

6.4.5 Experiment IV: Overhead Measurement 95

6.5 Summary . 101

7 FC-ORB: Robust End-to-End QoS Control Middleware 102

7.1 Introduction . 102

7.2 Design of the FC-ORB Architecture 104

7.2.1 Applications . 105

7.2.2 Middleware Support for End-to-End Tasks 106

7.2.3 End-to-End Utilization Control Service 109

7.2.4 Fault Tolerance . 112

7.2.5 Implementation . 115

7.3 Empirical Evaluation . 115

7.3.1 Experimental Setup . 115

7.3.2 Experiment I: Uncertain Execution Times 118

7.3.3 Experiment II: Varying Execution Times 121

7.3.4 Experiment III: External Disturbances 123

7.3.5 Experiment IV: Processor Failure 125

7.3.6 Experiment V: Overhead . 126

7.4 Summary . 128

8 Controllability and Feasibility . 129

8.1 Problem Formulations . 130

8.1.1 Controllability Problem . 130

8.1.2 Feasibility Problem . 131

8.2 Controllability Analysis . 134

8.2.1 Controllability Condition . 134

8.2.2 Structural Controllability . 135

8.2.3 Impact of Workload Variations 136

8.3 Offline Task Allocation Algorithms 138

8.3.1 Feasibility . 139

8.3.2 Controllability . 140

8.4 Online Allocation Adjustments . 143

8.4.1 Feasibility Adjustment . 143

8.4.2 Controllability Maintenance 144

vi

8.5 Middleware Implementation . 144

8.6 Experiments . 146

8.6.1 Numerical Results . 146

8.6.2 Empirical Results . 149

8.7 Summary . 155

9 CAMRIT: Control-based Real-Time Image Transmission 156

9.1 Introduction . 157

9.2 Middleware Architecture . 158

9.2.1 Service Interface . 159

9.2.2 Image Transmission . 160

9.2.3 Selection of Task Periods . 162

9.2.4 Feedback Control Loop . 163

9.3 Dynamic Model . 163

9.3.1 Controlled System Model . 164

9.3.2 Tile Size and Quality Factor 167

9.4 Control Design and Analysis . 169

9.5 Experimental Evaluation . 172

9.5.1 WSOA Scenario . 172

9.5.2 Experimental Platform . 173

9.5.3 Experimental Parameters . 174

9.5.4 Experimental Results . 174

9.6 Summary . 178

10 Conclusions and Future Work . 179

10.1 Conclusions . 179

10.2 Future Work . 182

Appendix A Transformation to Least-Squares Problem 184

Appendix B Detailed Stability Analysis in EUCON 188

Appendix C Parameters of MEDIUM used in Section 4.4 191

Appendix D Detailed Stability Analysis in DEUCON 193

vii

References . 196

Vita . 205

viii

List of Tables

4.1 Task parameters in SIMPLE (Proc represents the processor where a

subtask is located) . 33

4.2 Controller parameters . 33

6.1 Methods invoked by the workload 81

6.2 Task sets in real image matching workload 82

6.3 Control configuration in all experiments 85

6.4 Results of coarsed-grained overhead measurement 96

6.5 Results of differentiated fine-grained overhead measurement 98

7.1 Overhead of utilization control . 127

8.1 Impact of different workload variations 136

8.2 Workload parameters . 150

8.3 Task rates of all tasks . 152

10.1 Adaptive QoS control framework . 179

C.1 Parameters of the MEDIUM workload 192

ix

List of Figures

3.1 An example DRE application . 18

4.1 The MIMO feedback control loop in EUCON 23

4.2 The model predictive controller . 27

4.3 Utilization under different execution time factors (SIMPLE) 36

4.4 Average utilization on P1 . 37

4.5 Utilization and task rates when execution times fluctuate at run time 39

4.6 Utilization under EUCON and FC-U-E2E (etf = 0.2, MEDIUM) . . . 41

5.1 Data exchange between C1 and its neighbors (other data exchanges are

not shown) . 48

5.2 A medium size workload . 55

5.3 CPU utilization of P1 to P5 (ietf=8) 58

5.4 The average and deviation of the CPU utilization of P1 with different

execution times . 59

5.5 Average CPU utilization (ietf=5) . 60

5.6 CPU utilization of P6 to P10 when execution times fluctuate at run-time 61

5.7 Deadline miss ratio of T17 to T21 when execution times fluctuate at

run-time . 62

5.8 Entire system size vs. neighborhood size 63

5.9 Controller execution time in MATLAB 64

5.10 Estimated communication overhead 64

5.11 Per-controller overhead when tasks increase with processors 65

5.12 Per-controller overhead when subtasks increase with processors 66

5.13 Fraction of master processors in both cases 67

5.14 Average per-processor control overhead of the system in both cases . 67

6.1 The Architecture of FCS/nORB . 75

6.2 Images used in Experiment III . 83

x

6.3 A typical run of FC-U on Server A 86

6.4 Performance results of FCS algorithms on Server A in Experiment II 88

6.5 A typical run of FC-U on Server B 89

6.6 A typical run of FC-UM on Server B 89

6.7 A typical run of FC-M on Server B 90

6.8 Utilization and deadline miss ratio under varying workload 91

6.9 Utilization and deadline miss ratio under realistic workload 94

6.10 Detailed overhead measurement . 98

6.11 Overhead measurement of adjusting timer 99

6.12 Code size difference with/without FCS service 100

7.1 An example DRE application . 106

7.2 FC-ORB’s end-to-end architecture . 106

7.3 The distributed feedback control loop of the utilization control service 111

7.4 A medium size workload . 116

7.5 CPU utilizations under FC-ORB when task execution times deviate

from estimations . 118

7.6 CPU utilizations of all processors under different execution-time factors 120

7.7 CPU utilizations of all processors when execution times fluctuate at

run-time (ietf = 2) . 122

7.8 CPU utilizations of all processors under external disturbances (ietf = 2)124

7.9 CPU utilizations of all processors while Norbert has a system failure

(ietf = 2) . 126

8.1 Middleware architecture of the extended FC-ORB system 145

8.2 Feasible ratio under different processor numbers 147

8.3 Feasibility margin under different processor numbers 147

8.4 Controllable ratio under different processor numbers 147

8.5 Workload configuration and variations in controllability experiments . 151

8.6 System becomes uncontrollable after task termination 152

8.7 System becomes controllable after controllability maintenance 152

8.8 Workload variations in feasibility experiments 153

8.9 System becomes infeasible after task arrivals 154

8.10 Task rates saturate at boundaries when system is infeasible 154

8.11 System remains feasible after feasibility adjustment 155

xi

9.1 Overview of the CAMRIT architecture 160

9.2 Quality factors of tiles received in the kth sampling period 167

9.3 An example aerial image . 168

9.4 Linearization of a(u) . 170

9.5 Block diagram of closed-loop system 170

9.6 Tile buffer levels during typical transmission of Image 1 175

9.7 Quality factors during typical transmission of Image 1 175

9.8 Transmission delay under different network bandwidth 176

9.9 Average quality factor under different network bandwidth 178

D.1 The root locus of the closed-loop system 195

xii

Acknowledgments

First, I would like to thank my research advisor, Dr. Chenyang Lu for his guidance

and detailed advice on this dissertation work. I would like to thank Dr. Christopher

Gill and Dr. Xenofon Koutsoukos for their valuable suggestions and significant help.

Most of this dissertation work is the result of my collaboration with them.

I would like to thank Mr. Malcolm Ware and Dr. Charles Lefurgy at IBM Austin

Research Lab for being great mentors when I was a research intern there last summer.

I also thank all members of the power-aware systems department. It was a pleasure

working there with those great people.

My thanks once again go to Dr. Chenyang Lu, Dr. Christopher Gill, Mr. Mal-

colm Ware, Dr. Charles Lefurgy and Dr. Xenofon Koutsoukos for writing letters of

recommendation for me. I really appreciated their help.

I am indebted to Dr. Kenneth Goldman and Dr. Shirley Dyke for serving on my

dissertation committee, and for their insightful comments and feedback on this dis-

sertation. I also thank Dr. Bijoy Ghosh for serving on my proposal committee.

I would like to acknowledge that parts of this work are the result of joint work with

Dong Jia, Yingming Chen, Huang-Ming Huang and Venkita Subramonian. I thank

them for interesting discussions and enjoyable collaborations.

Finally, my greatest thanks go to my wife for the tremendous support and constant

encouragement she gave me during my doctoral studies. Without her support, it

would be impossible for me to finish this dissertation work. I would also like to thank

my parents for their patience and understanding during the past few years.

Xiaorui Wang

Washington University in Saint Louis

August 2006

xiii

1

Chapter 1

Introduction

1.1 Motivation

Classical real-time theory assumes that the characterization of workload and systems

is known a priori in order to do schedulability analysis and provide performance

guarantees in predictable environments (e.g., embedded process control and avionic

applications). For example, classical scheduling algorithms such as Rate Monotonic

(RM) [54] and Earliest Deadline First (EDF) [54][55] require complete knowledge of

real-time tasks such as execution times, task periods, precedence constraints, and fu-

ture arrival times. In real-time systems where accurate workload characteristics like

execution times are not available, worst-case estimations are commonly used to guar-

antee desired real-time performance. However, this pessimistic solution often causes

resource over-provisioning which may significantly increase the system cost because

the computing resource (e.g. processors) may be severely underutilized. In addition,

in many soft real-time systems like web servers, e-business applications, and audio and

video processing, worst-case real-time analysis may not be applicable because those

systems operate in open environments where both workload and available resources

are difficult to predict. The increasing unpredictability is also due to several important

trends in real-time systems, such as the increasing use of Commercial-Off-The-Shelf

(COTS) components, the migration of real-time applications to plug-and-play open

systems, and the proliferation of event-driven applications whose execution times are

influenced heavily by input data. As such systems running in unpredictable environ-

ments become increasingly important to our society, system-wide adaptive solutions

2

are needed to meet their Quality of Service (QoS) requirements, such as real-time

deadline, resource utilization and throughput.

Adaptive Quality of Service Control

In recent years, a new paradigm of real-time computing based on Adaptive QoS Con-

trol (AQC) has received significant attention (e.g., [5] [19] [57] [89]). In contrast to

traditional approaches to real-time systems that rely on accurate knowledge about

system workload, AQC can provide robust QoS guarantees in unpredictable envi-

ronments by adapting to workload variations based on dynamic feedback. Different

from traditional adaptive solutions which rely on heuristics, a key advantage of AQC

is that it adopts a control-theoretic framework for systematically developing adap-

tation strategies. The benefit of having control theory as a theoretic foundation

is that we can have (i) standard approaches to choosing the right control parame-

ters so that exhaustive iterations of tuning and testing are avoided; (ii) theoretically

guaranteed control performance such as accuracy, stability, short settling time, small

overshoot; and (iii) quantitative control analysis when the system is suffering unpre-

dictable workload variations. This rigorous design methodology is in sharp contrast

to heuristic-based adaptive solutions that rely on extensive empirical evaluation and

manual tuning.

In this dissertation, we focus on an important instance of AQC called utilization

control for soft real-time systems. The goal of utilization control is to enforce desired

CPU utilization on a processor despite significant uncertainties in system workload.

Utilization control is crucial to real-time systems because all tasks on a processor

are guaranteed to meet their real-time deadlines if the utilization of the processor is

equal to or lower than an appropriate schedulable bound [55]. For example, when

the RMS scheduling algorithm is used on a processor, the schedulable bound can

be calculated as a function of the total number of tasks on the processor [55]. As

long as the real utilization of the processor is lower than the bound, it has been

proved in real-time theory that all periodic tasks1 on the processor can meet their

1Schedulable utilization bound also exists for systems with aperiodic tasks [3].

3

deadlines [54]. Utilization control provides us an effective way to guarantee all real-

time deadlines without the detailed knowledge of the workload. It can also enhance

system survivability by providing overload protection against workload fluctuation.

Several other projects have applied control theory to real-time systems. For example,

Steere et al. and Goel et al. developed feedback-based schedulers [31] [89] that

guarantee desired progress rates for real-time applications. Abeni et al. presented

control analysis of a reservation-based feedback scheduler [5]. Lu et al. developed

feedback control scheduling algorithms that control the CPU utilization and dead-

line miss ratio [57]. However, all these projects focused on controlling the QoS of

single-processor systems. As a result, they are not applicable to a major category of

real-time systems called distributed real-time systems that have end-to-end tasks run-

ning on multiple processors. This dissertation is different from those related projects

because we focus on developing multi-input-multi-output (MIMO) control algorithms

to control multiple processors simultaneously in distributed real-time systems.

AQC in Distributed Real-Time Systems

Traditional approaches to handling end-to-end tasks such as end-to-end scheduling

[91] and distributed priority ceiling [73] rely on schedulability analysis, which re-

quires a priori knowledge about worst-case execution times. When task execution

times are highly unpredictable, such open-loop approaches may severely underutilize

the system. Recent years have seen rapid growth of Distributed Real-time Embedded

(DRE) applications executing in unpredictable environments in which workloads are

unknown and vary significantly at run-time. For example, task execution times in

vision-based feedback control systems depend on the content of live camera images of

changing environments [34]. Likewise, the supervisory control and data acquisition

(SCADA) systems for power grid control may experience dramatic load increase dur-

ing a cascade power failure [17]. Furthermore, as DRE systems become connected to

the Internet, they are exposed to load disturbances due to variable user requests and

even cyber attacks [17][13][38][101]. Hence, it is crucial to develop AQC algorithms

for DRE systems.

4

In this dissertation, we focus on end-to-end utilization control on all processors to

guarantee the end-to-end deadlines of all periodic real-time tasks. In real-time theory,

a distributed real-time system is commonly abstracted as an end-to-end task model

[55], where an end-to-end task may comprise of a chain of subtasks executing on

multiple processors. The end-to-end deadline of each task is commonly divided into

a set of subdeadlines for its subtasks. Then an appropriate schedulable utilization

bound is enforced on each processor, so all (sub)tasks on the processor can meet their

(sub)deadlines. As a consequence of end-to-end utilization control, the end-to-end

deadlines of all tasks in the system can be guaranteed. Utilization control in such

DRE systems introduces many new research challenges that have not been addressed

in earlier work on single-processor systems.

1. Utilization control in DRE systems is a multi-input-multi-output (MIMO) con-

trol problem where the CPU utilization of all processors in the system must be

guaranteed simultaneously. The multiple control inputs may be the invocation

rates of all end-to-end tasks.

2. In DRE systems, the CPU utilization of each processor cannot be controlled

independently from others. For example, changing the rate of an end-to-end

task will affect the CPU utilizations of all the processors where its subtasks

are located. Therefore, the coupling among processors must be modeled and

addressed in the design of control algorithms.

3. Control model is subject to constraints. For example, the task rates usually

can only be adapted within allowed ranges specified by application developers.

Those constraints have to be systematically modeled in control algorithms to

provide optimized online solution. Manual constraint maintenance may severely

affect the control performance.

4. Different control algorithms are needed for DRE systems at different scales. A

centralized controller may be more preferred for small or medium size DRE

systems due to considerations in security and efficiency. However, large DRE

systems (e.g. power grid management and smart spaces) usually require highly

scalable control algorithms, since the communication and computation overhead

of a centralized controller usually depends on the size of the entire system.

5

In this dissertation, we first present EUCON (End-to-end Utilization CONtrol) [59],

the first control-theoretic utilization control algorithm designed for DRE systems with

end-to-end tasks. EUCON can maintain desired CPU utilizations on multiple pro-

cessors in a DRE system despite uncertainties in task execution times and coupling

among processors. It employs a centralized MIMO model predictive controller to

manage and coordinate the adaptation of multiple processors, subject to the con-

straints on task rates. While it is well suitable for small-scale DRE systems, this

centralized control scheme has several limitations. Since its computation and com-

munication overhead depends on the size of an entire DRE system, it is not scalable

for large-scale systems (e.g. wide-area power grid management and ubiquitous smart

spaces). Furthermore, the processor executing the controller is a single point of failure

because the entire system will lose the capability of QoS adaptation if it fails.

To address the drawbacks of centralized control, we then present a more scalable

control solution called DEUCON (Decentralized End-to-end Utilization CONtrol)

[94] that can dynamically enforce desired utilizations on multiple processors in large-

scale DRE systems. In contrast to centralized control schemes, DEUCON features a

novel decentralized control structure that requires only localized coordination among

neighbor processors. DEUCON is systematically designed based on recent advances

in distributed model predictive control theory. Both control-theoretic analysis and

simulations show that DEUCON can provide robust utilization guarantees and main-

tain global system stability despite severe variations in task execution times. Fur-

thermore, DEUCON can effectively distribute the computation and communication

cost to different processors and tolerate considerable communication delay between

local controllers. Our results indicate that DEUCON can provide scalable and robust

utilization control for large-scale distributed real-time systems executing in unpre-

dictable environments.

While EUCON and DEUCON have shown promise, a fundamental problem of end-

to-end utilization control is guaranteeing system controllability and feasibility. Both

controllability and feasibility are important properties of DRE systems. No control

algorithm (including EUCON, DEUCON or any other algorithms) can control a sys-

tem if the system itself is uncontrollable. It may still be infeasible for a controllable

system to achieve the desired utilization set points due to the task rate constraints. In

this dissertation, we prove that controllability and feasibility depend crucially on the

6

end-to-end task configuration of a DRE system. We then present novel allocation al-

gorithms for deploying end-to-end tasks to ensure that the system is controllable and

robustly feasible. Furthermore, we develop runtime algorithms that maintain con-

trollability and feasibility by reallocating subtasks dynamically in response to task

termination and arrival. Our results demonstrate that our task allocation algorithms

improve the robustness of utilization guarantees in DRE systems.

Adaptive Real-Time Middleware

While novel control algorithms have to be designed specifically for DRE systems, an-

other important challenge is the implementation platform of the control algorithms.

Modern DRE systems increasingly rely on middleware (e.g., Real-Time CORBA [67])

to meet QoS requirements on Commercial Off-The-Shelf (COTS) platforms. A key

benefit of middleware is that it supports functional portability across different oper-

ating system platforms so that an application does not need to be reimplemented for

different platforms. For QoS-critical applications, however, DRE middleware must

support QoS portability [2][58] in addition to functional portability. A DRE middle-

ware should allow applications to run on different platforms with the same critical

QoS guarantees (e.g., CPU utilization) without the need for manual performance tun-

ing. DRE middleware is an ideal platform to implement control algorithms because

(i) adaptive middleware equipped with QoS control is an effective way to achieve

both functional portability and QoS portability, (ii) DRE middleware operates at a

distributed scope unlike stand-alone operating systems, so it is a particularly suitable

layer for end-to-end control, and (iii) the integration of QoS control and established

fault-tolerance mechanisms in DRE middleware provides double guarantees in terms

of both system reliability and real-time QoS. Traditional fault-tolerant middleware

exclusively focuses on reliability and failover strategies. In DRE systems, however,

an end-to-end application that violates its real-time properties is equivalent to (or

sometimes even worse than) an application that does not perform its computation.

Therefore, it is extremely important to maintain real-time guarantees while recovering

from failures.

In this dissertation, we first develope a single processor QoS control middleware called

FCS/nORB as a starting point. FCS/nORB integrates a Feedback Control real-time

7

Scheduling (FCS) service with nORB, a small-footprint real-time Object Request

Broker (ORB) designed for networked embedded systems [90]. FCS/nORB features

feedback control loops that provide real-time performance guarantees by automati-

cally adjusting the rate of remote method invocations transparently to an application.

FCS/nORB thus enables real-time applications to be truly portable in terms of real-

time performance as well as functionality, without the need for hand tuning. Chapter

6 presents the design, implementation, and evaluation of FCS/nORB. Our extensive

experiments on a Linux testbed demonstrate that FCS/nORB can provide deadline

miss ratio and utilization guarantees in face of changes in the platform and task

execution times, while introducing only a small amount of overhead.

We then present FC-ORB (Feedback Controlled ORB) [96], a real-time Object Re-

quest Broker (ORB) middleware that employs end-to-end utilization control to handle

fluctuations in application workload and system resources. The novelty of FC-ORB

is the integration of end-to-end scheduling, adaptive QoS control, and fault-tolerance

mechanisms that are optimized for unpredictable environments. FC-ORB implements

a distributed utilization control loop that enforces desired CPU utilization bounds on

multiple processors by adapting the rates of end-to-end tasks within user-specified

ranges. The core of FC-ORB is a set of middleware-level mechanisms designed to

support end-to-end tasks and distributed multi-processor utilization control in a real-

time ORB. Extensive experimental results show that FC-ORB can maintain desired

utilizations in face of uncertainties and variations in task execution times, resource

contentions from external workloads, and permanent processor failure. FC-ORB

demonstrates that the integration of utilization control, end-to-end scheduling and

fault-tolerance mechanisms in DRE middleware is a promising approach for enhanc-

ing the robustness of DRE applications in unpredictable environments.

At the end of the dissertation, we introduce CAMRIT [93], a Control-based Adaptive

Middleware framework for Real-time Image Transmission. Real-time image transmis-

sion is important to an emerging class of DRE systems operating in open network

environments. Examples include avionics mission re-planning over Link-16 [20], secu-

rity systems based on wireless camera networks, and online collaboration using cam-

era phones. Meeting image transmission deadlines is a key challenge in such systems

due to unpredictable network conditions. CAMRIT features a distributed feedback

control loop that meets image transmission deadlines by dynamically adjusting the

8

quality of image tiles. We derive an analytic model that captures the dynamics of a

distributed middleware architecture. A control theoretic methodology is applied to

systematically design a control algorithm with analytic assurance of system stability

and performance, despite uncertainties in network bandwidth. Experimental results

demonstrate that CAMRIT can provide robust real-time guarantees for a represen-

tative application scenario.

1.2 Research Contributions

Specifically, this dissertation research makes the following major contributions.

• Formulation of end-to-end utilization control as a constrained least squares

optimization problem. We derive a dynamic control model that captures the

coupling among different processors and the constraints in DRE systems exe-

cuting end-to-end tasks.

• Design and analysis of an MPC controller. We develop a Model Predictive

Control (MPC) approach for the constrained MIMO control problem in DRE

systems. We design and analyze a MIMO feedback control loop that provides

robust utilization guarantees based on control theory when task execution times

deviate from their estimation or vary significantly at run-time.

• Design and analysis of a decentralized control algorithm. We propose

a new approach for decomposing the global MIMO utilization control problem

into local subproblems to facilitate the design of decentralized control solutions.

We design the DEUCON algorithm featuring a novel peer-to-peer control struc-

ture that enforces desired utilizations of multiple processors through localized

coordination among controllers. We present control analysis based on the dis-

tributed model predictive control (DMPC) theory [16] which establishes the sta-

bility properties of the DEUCON algorithm in face of uncertain task execution

times.

• Evaluation and comparison of control algorithms. We develop event-

driven simulators to evaluate EUCON and DEUCON, respectively. Our results

9

indicate that both EUCON and DEUCON can provide robust utilization con-

trol for distributed real-time systems executing in unpredictable environments.

While DECUON scales much better in large systems, it requires more compli-

cated control analysis and has slightly worse control performance due to the

lack of global information.

• Architectural design of feedback control middleware. We document the

design of a utilization control service at the ORB middleware layer, which pro-

vides real-time performance portability and robust performance guarantees in

face of workload variations. We implement a feedback control loop in a dis-

tributed ORB middleware that dynamically adjusts the rates of remote method

invocations. We also address the design challenges of real-time middleware in-

troduced by the integration of QoS control strategies such as continuous rate

adaptation.

• Design of end-to-end real-time ORB architecture. We design an ORB

architecture to support end-to-end real-time tasks based on the end-to-end

scheduling framework [55]. We specialize the FC-ORB architecture to facili-

tate efficient end-to-end adaptation in memory-constrained DRE systems. We

implement a distributed feedback control loop that provides the utilization con-

trol service and coordinates adaptations on multiple interdependent processors.

• Integration of QoS control with fault tolerance mechanisms. We in-

tegrate FC-ORB with fault tolerance mechanisms to handle processor failures

with an adaptive strategy that combines reconfigurable utilization control and

task migration. A unique feature of our fault tolerance approach is that it can

maintain real-time properties for DRE applications after a processor failure.

• Design of subtask allocation algorithms to guarantee controllability and

feasibility in end-to-end utilization control. We transform the controllability

and feasibility problem to an end-to-end task allocation problem. We design

allocation algorithms to preprocess the system workload before its deployment

so we can ensure that the system is controllable and robustly feasible. We

evaluate the algorithms with a large number of randomly generated workloads.

• Investigation of controllability and feasibility when workloads vary at

runtime. We prove that dynamic task termination affects controllability while

10

dynamic task arrival affects feasibility. We maintain controllability and feasi-

bility by reallocating subtasks dynamically at a small cost of runtime overhead.

We implement and empirically evaluate the algorithms in the FC-ORB middle-

ware system.

• Design and analysis of a control middleware for real-time image transmis-

sion. We derive an analytic model that captures the dynamics of a distributed

middleware architecture. We systematically design a control algorithm with

analytic assurance of system stability and performance, despite uncertainties in

network bandwidth.

• System developments and public release. This dissertation research has

produced three real-time middleware systems and two event-driven simulators.

All the software is open-source and is publicly released at:

http://deuce.doc.wustl.edu/FCS nORB/. Based on the number of inquiry/ques-

tion emails we received, the source code and executable files of those systems

have been downloaded by many researchers at different universities and research

institutes. The specific information of each system is as follows:

– FC-ORB: implemented in 7017 lines of C++ code. The controller is

implemented in 2089 lines of C++ code. Software is released at

http://deuce.doc.wustl.edu/FCS nORB/FC-ORB/.

– FCS/nORB: implemented in 7898 lines of C++ code. Software is re-

leased at http://deuce.doc.wustl.edu/FCS nORB/FCS nORB/.

– CAMRIT: implemented in 12835 lines of C++ code. Software is released

at http://deuce.doc.wustl.edu/FCS nORB/CAMRIT/.

– EUCON Simulator: implemented in 2185 lines of C++ code. Software

is released at http://deuce.doc.wustl.edu/FCS nORB/EUCON/.

– DEUCON Simulator: implemented in 2430 lines of C++ code. Software

is released at http://deuce.doc.wustl.edu/FCS nORB/DEUCON/.

11

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 reviews the related

work. Chapter 3 formulates the end-to-end utilization control problem. Chapter 4

and Chapter 5 present the design, analysis and evaluation of the centralized EU-

CON algorithm and the decentralized DEUCON algorithm, respectively. Chapter 6

introduces and empirically evaluates the FCS/nORB middleware system which pro-

vides QoS control service for single processor real-time system. Chapter 7 presents

the architecture design, the control loop, the fault-tolerance mechanisms and the ex-

perimental results of the end-to-end FC-ORB middleware. Chapter 8 investigates

the controllability and feasibility of end-to-end utilization control in DRE systems.

Chapter 9 presents the application of feedback control to real-time image transmis-

sion. Chapter 10 concludes the dissertation and outlines future research directions.

12

Chapter 2

Related Work

In this chapter, we survey related work on end-to-end real-time scheduling, the ap-

plications of feedback control theory to different real-time computing systems, and

adaptive real-time middleware.

2.1 QoS Control in Real-Time Systems

Traditional approaches for handling end-to-end tasks such as end-to-end scheduling

[91] and distributed priority ceiling [73] rely on schedulability analysis, which requires

a priori knowledge about worst-case execution times. When task execution times

are highly unpredictable, such open-loop approaches may severely underutilize the

system. An approach for dealing with unpredictable task execution times is resource

reclaiming [14][85]. A drawback of existing resource reclaiming techniques is that they

often require modifications to low-level scheduling mechanisms in operating systems.

In contrast, the feedback control approach and rate adaptation techniques adopted

in this dissertation can be easily implemented at the application or middleware layer

on top of the Commercial Off-The-Shelf (COTS) platforms [58].

Several projects that applied control theory to real-time scheduling and utilization

control are directly related to this dissertation. For example, Steere, et al., developed

a feedback based CPU scheduler [89] that coordinates allocation of CPU cycles to

consumer and supplier threads in a modified Linux kernel. Goel et al. developed

feedback-based scheduler [31] that guarantees desired progress rates for real-time

applications. Abeni et al. presented control analysis of a reservation-based feedback

13

scheduler [5]. Authors of [57] developed feedback control scheduling algorithms

that controlled the CPU utilization and deadline miss ratio. These algorithms have

been implemented as a middleware service [58]. For systems requiring discrete con-

trol adaptation strategies, hybrid control theory has been adopted to control state

transitions among different system configurations [1][48].

Control theoretic approaches have also been applied to a number of other computing

systems. For example, recently, control theory has been successfully used to do power

or thermal control for processors [106][87][102] and computing servers [95][84]. Feed-

back control technique has also been applied to digital control applications [19] [84],

networks [45][9][35], data service and storage system [61][44][7], and Internet servers

[62][97][21]. A survey of feedback performance control in computing systems is pre-

sented in [2].

All the aforementioned projects focused on controlling the performance of single-

processor systems. Their algorithms are based on single-input-single-output (SISO)

linear control techniques which are not applicable to distributed systems with multiple

processors. This dissertation is in sharp contrast to those related projects because we

focus on developing multi-input-multi-output (MIMO) control algorithms to control

multiple processors simultaneously in distributed real-time systems. Another key

difference between the work presented in this dissertation and the related work is

that we integrate our utilization control algorithms into ORB middleware systems,

while the related work is based on either simulations or kernel implementations. ORB

middleware is a particularly suitable layer for managing end-to-end adaptation in

distributed systems since it operates at a broader (distributed) scope than stand-

alone operating systems.

Two recent papers [88][53] proposed feedback control scheduling algorithms for dis-

tributed real-time systems with independent tasks. For example, Stankovic et al.

proposed a distributed feedback control real-time scheduling algorithm designed for

distributed systems [88]. These algorithms do not address the dependencies among

processors caused by end-to-end tasks, which are commonly available in DRE sys-

tems. Instead, they assume that tasks on different processors are independent from

each other, so they cannot handle the interrelationship between different controlled

variables (i.e. processors). In contrast, our control algorithms are specially designed

14

to handle multiple processors that are coupled due to end-to-end tasks in DRE sys-

tems.

Diao et al. developed MIMO control algorithms to control the processor and memory

utilizations for Apache web servers [21] and to do load balancing for data servers

[22]. However, their algorithms were designed based on simpler linear control theory

so they cannot handle actuation constraints. While those linear control algorithms

may be sufficient for general data servers, attention has to be given in real-time sys-

tems because constraints are strictly enforced there. In this dissertation, we have

innovatively developed the control algorithms based on the model predictive control

(MPC) theory which can deal with constraints naturally. In addition, our decentral-

ized control algorithm is the first designed to provide highly scalable control solution

for large-scale DRE systems.

Another important distinction between our work and the aforementioned work is that

our work is the first one which addresses the controllability and feasibility problem

for DRE systems. Both controllability and feasibility are important properties of

distributed systems where MIMO control is necessary. A recent paper [43] raised

the problem of designing controllable systems. However, that paper focused only

on some practical issues regarding how to get better control performance for SISO

systems. In contrast, our work investigates the fundamental issues defined in control

theory such as whether it is possible to control a DRE system and how to make an

uncontrollable system controllable. Feasibility is another important issue. While the

feasibility of scheduling tasks [8] has been addressed before in real-time community, in

this dissertation, we focus on the feasibility of controlling DRE systems. We transform

the controllability and feasibility problem to a task allocation problem in DRE system.

Task allocation is a classical problem which has been discussed by several existing

projects [36][27][6]. The difference between our work and those related projects is

that we are trying to guarantee system controllability and maximize the probability

of system remaining feasible, instead of minimizing communication cost or ensuring

load balancing.

15

2.2 Real-Time Middleware

Adaptive middleware is emerging as a core building block for DRE systems. For

example, TAO [81], dynamicTAO [47], ZEN [46], and nORB [90] are adaptive mid-

dleware frameworks that can (re)configure various properties of ORB middleware at

design- and run-time. Higher-level adaptive resource management frameworks, such

as QuO [107], Kokyu [29] and RT-ARM [41], leverage lower-level mechanisms pro-

vided by ORB middleware to (re)configure scheduling, dispatching, and other QoS

mechanisms in higher-level middleware. ORB services such as the TAO Real-Time

Event Service [33] and the TAO Scheduling Service [29] offer high-level services for

managing reliability and real-time properties of interactions between application com-

ponents.

Our middleware systems have several important features that distinguish them from

the aforementioned earlier work on adaptive middleware. First, our work integrates

the end-to-end scheduling service with a utilization control service. This integrated

approach enables the middleware to meet end-to-end deadlines by dynamically con-

trolling the utilizations on individual processors. Second, in contrast to earlier works

that rely on heuristics-based adaptive techniques, our middleware service imple-

ments control algorithms that have been rigorously designed and analyzed based on

a control-theoretic approach. Finally, our work enhances traditional fault-tolerance

mechanisms with utilization control techniques to handle processor failures.

Agilos [52] was an earlier effort on control-based middleware framework for QoS adap-

tation in distributed multimedia applications. The work presented in this dissertation

is different from Agilos in two important aspects. First, our work provides a gen-

eral framework which is applicable to various real-time applications, whereas Agilos

only supports adaptation strategies (e.g., image operations) specific to client-server

multimedia applications (e.g., visual tracking). Second, our work employs advanced

control-theoretic techniques to handle the complex couplings and constraints in large-

scale DRE systems, whereas Agilos is based on control schemes such as linear control

and fuzzy control, which cannot handle coupling or constraints in the controlled sys-

tems.

16

Another project that is closely related to our work is ControlWare [104], which is an

incarnation of software performance control at the middleware layer. The difference

is that ControlWare embodies adaptation mechanisms (such as server process allo-

cation in the Apache server) that are tailored for Quality of Service provisioning on

Internet servers, while our work integrates feedback control loop with remote method

invocation mechanisms for distributed real-time embedded systems.

WSOA [20] gave a large-scale demonstration of adaptive resource management at

multiple architectural levels in a realistic distributed avionics mission computing en-

vironment. The WSOA image transmission application is in essence a networked

ad hoc control system, with adaptation of image tile compression to meet download

deadlines. Based on the WSOA application, a real-time system computing model and

theoretical controller has been developed in [93]. The work presented in this disser-

tation also seeks to add rigor to middleware-based resource management by applying

control theory within the middleware itself. In doing so, we seek to complement other

middleware projects for DRE systems, and increase the capabilities offered by DRE

middleware as a whole.

Another difference between our work and the above three projects on control-based

middleware is that our system is built upon the real-time Object Request Bro-

ker (ORB) middleware architecture which is a more general commercial-of-the-shelf

(COTS) platform for DRE systems. In addition, our work provides an end-to-end

utilization control service in a peer-to-peer architecture for DRE systems. A key

feature of our work is that it can effectively coordinate the adaptation on multiple

interdependent processors through a distributed feedback control loop.

17

Chapter 3

End-to-End Utilization Control

In this chapter, we formulate the end-to-end utilization control problem for DRE

systems. The (CPU) utilization of a processor is the percentage of time when its

CPU performs useful computation. Our utilization control strategy ensures that the

utilizations of all processors in a DRE system remain below their set points specified

by the user. Utilization control is important not only for preventing system crash

due to CPU saturation but also for meeting end-to-end deadlines of distributed real-

time tasks by enforcing an appropriate schedulable utilization bound on each host

[55][59][94]. Adaptation is essential for a utilization control strategy to handle work-

load uncertainties and variations. A utilization control strategy may use different

adaptation mechanisms as actuators to dynamically control the utilizations of pro-

cessors. In this dissertation we focus on controlling the utilizations by dynamically

adjusting task rates, i.e., the rates at which periodic tasks are released. Note that

the algorithms developed in this dissertation can also be applied to other adaptation

mechanisms.

3.1 Task Model

We adopt an end-to-end task model [55] implemented by many DRE applications. A

system is comprised of m periodic tasks {Ti|1 ≤ i ≤ m} executing on n processors

{Pi|1 ≤ i ≤ n}. Task Ti is composed of a chain of sub-tasks {Tij|1 ≤ j ≤ ni}
located on different processors. The release of subtasks is subject to precedence

constraints, i.e., subtask Tij(1 < j ≤ ni) cannot be released for execution until

18

P
3

T
21

Precedence constraint

Subtask

T
11
 T
12

P
1
 P
2

T
22

P
4
 P
5

T
51

T
31

T
32
 T
33

T
42
T
41

P
3

T
21

Precedence constraint

Subtask

T
11
 T
12

P
1
 P
2

T
22

P
4
 P
5

T
51

T
31

T
32
 T
33

T
42
T
41

Figure 3.1: An example DRE application

its predecessor subtask Tij−1 is completed. In a DRE middleware, the release of a

subtask Tij(1 < j ≤ ni) is usually triggered by its predecessor Tij−1 through a remote

operation invocation or an event. If a non-greedy synchronization protocol (e.g.,

release guard [91]) is used to enforce the precedence constraints, all the subtasks of

a periodic task share the same rate as the first subtask. Therefore, the rate of a task

(and all its subtasks) can be adjusted by changing the rate of its first subtask. In

this proposal, the processor Pj hosting the first subtask of a task Ti is called Ti’s

master processor and we say Pj masters Ti. Only a task’s master processor can

change its rate. An example DRE application with five end-to-end tasks running on

five processors is shown in Figure 3.1.

Our task model has two important properties. First, while each subtask Tij has an

estimated execution time cij available at design time, its actual execution time may

be different from its estimation and vary at run time. Modeling such uncertainty

is important to DRE systems operating in unpredictable environments. Second, the

rate of a task Ti may be dynamically adjusted within a range [Rmin,i, Rmax,i]. This

assumption is based on the fact that the task rates in many applications (e.g., digital

control [64][83], sensor update, and multimedia [10][12]) can be dynamically adjusted

without causing system failure. A task running at a higher rate contributes a higher

value to the application at the cost of higher utilizations.

We assume that each task Ti has a soft end-to-end deadline related to its period. In an

end-to-end scheduling approach [91], the deadline of an end-to-end task is divided into

subdeadlines of its subtasks [42][66]. When the release guard protocol [91]) is used

to synchronize the execution of subtasks, each subtask can be modeled as a periodic

task. Hence the problem of meeting the deadline can be transformed to the problem

19

of meeting the subdeadline of each subtask. A well known approach for meeting the

subdeadlines on a processor is to ensure its utilization remains below its schedulable

utilization bound [50][54]. Therefore, the end-to-end scheduling approach provides a

way to meet end-to-end deadlines by controlling the utilizations of all processors in

the system.

3.2 Problem Formulation

Utilization control can be formulated as a dynamic constrained optimization problem.

We first introduce several notations. Ts, the sampling period, is selected so that

multiple instances of each task may be released during a sampling period. ui(k) is

the CPU utilization of processor Pi in the kth sampling period, i.e., the fraction of time

that Pi is not idle during time interval [(k − 1)Ts, kTs). Bi is the desired utilization

set point on Pi. rj(k) is the invocation rate of task Tj in the (k+1)th sampling period.

Given the utilization set point vector, B = [B1 . . . Bn]T and the rate constraints

[Rmin,j, Rmax,j] for each task Tj, the control goal at kth sampling point (time kTs)

is to dynamically choose task rates {rj(k)|1 ≤ j ≤ m} to minimize the difference

between Bi and ui(k + 1) for all processors:

min
{rj(k)|1≤j≤m}

n∑

i=1

(Bi − ui(k + 1))2 (3.1)

subject to constraints

ui(k + 1) ≤ Bi (1 ≤ i ≤ n) (3.2)

Rmin,j ≤ rj(k) ≤ Rmax,j (1 ≤ j ≤ m) (3.3)

The utilization constraints ensure that no processor exceeds its set point, and the rate

constraints ensure all tasks remain within their acceptable rate ranges. The optimiza-

tion formulation maximizes task rates by making the utilization of each processor as

close to its set point as allowed by the constraints. The design goal is to ensure that all

processors quickly converge to their utilization set points after a workload variation,

20

whenever it is feasible under the rate constraints. Therefore, to guarantee end-to-end

deadlines, a user only needs to specify the set point of each processor to be a value

below its schedulable utilization bound. In most real systems, the set point is usually

configured to be the bound for maximum utilization, so hereinafter we use the words

bound and set point interchangeably. Utilization control algorithms can be used to

meet all the end-to-end deadlines by enforcing the set points of all the processors in

a DRE system.

The control design faces three key challenges: (1) the utilization on multiple pro-

cessors is coupled because changing the rate of one end-to-end task may affect the

utilization of multiple processors. Therefore, a MIMO controller must be designed

to control multiple processors simultaneously by adapting multiple task rates, (2)

the control is subject to constraints including the upper bounds on utilizations and

limits on acceptable task rates, and (3) the control algorithm must be able to handle

unknown and varying task execution times.

3.3 Applications

End-to-end utilization control has several important applications over a broad range

of QoS-critical systems.

Meeting end-to-end deadlines: Real-time tasks must meet their end-to-end dead-

lines in DRE systems. In the end-to-end scheduling approach [91], the deadline of

an end-to-end task is divided into subdeadlines for its subtasks, and the problem of

meeting the deadline is transformed to the problem of meeting the subdeadline of

each subtask. A well known approach for meeting the subdeadlines on a processor

is by enforcing the schedulable utilization bound [54]. The subdeadlines of all the

subtasks on a processor are guaranteed if the utilization of the processor remains

below its schedulable utilization bound. To guarantee end-to-end deadlines, a user

only needs to specify the utilization set point of each processor to be a value below

its schedulable utilization bound. This method can work with various subdeadline

21

assignment algorithms [42][66] and schedulable utilization bounds for different task

models [50][54] presented in the literature.

QoS portability: End-to-end utilization control can also be deployed in a middle-

ware to support QoS portability [60]. When an application is deployed on a faster

platform, the task rates will be automatically increased to take advantage of the ad-

ditional resource. On the other hand, when an application is deployed to a slower

platform, task rates will be automatically reduced to maintain the same CPU utiliza-

tion guarantees. This kind of self-tuning capability can significantly reduce the cost

of porting DRE software across platforms.

Overload protection: Many distributed systems (including non-real-time systems)

must avoid saturation of processors, which may cause system crash or severe service

degradation [4]. On COTS operating systems that support real-time priorities, high

utilization by real-time threads may cause kernel starvation [60]. End-to-end utiliza-

tion control allows a user to enforce desired utilization bounds for all the processors

in a distributed system. Moreover, the utilization set point can be changed online.

For example, a user may lower the utilization set point on a particular processor in

anticipation of additional workload, and the utilization controller will dynamically

readjust task rates to enforce the new set point.

DRE systems span a wide spectrum in terms of scale and network support, so differ-

ent control algorithms have to be designed for different systems. In this dissertation,

we first present a centralized QoS control algorithm that is usually sufficient to many

small-scale DRE systems (e.g., avionics systems, shipboard computing, and process

control systems) running on server clusters, in which several processors connected

through a high speed communication interface (e.g., a VME bus backplane). A de-

centralized control algorithm is then presented to provide scalable QoS guarantees for

large-scale DRE systems (e.g., wide-area power grid management).

22

Chapter 4

EUCON: Centralized Control

As a step toward QoS control for the end-to-end task model, this chapter proposes

the End-to-end Utilization CONtrol (EUCON) algorithm. EUCON can maintain

desired CPU utilization in distributed systems with end-to-end tasks in unpredictable

environments through online adaptation. The primary contributions of this chapter

are four-fold:

• We derive a dynamic model that captures the coupling among processors and

constraints in DRE systems executing end-to-end tasks.

• We develop a Model Predictive Control (MPC) approach for utilization control

in DRE systems.

• We design and analyze a distributed multi-input-multi-output (MIMO) feed-

back control loop that provides robust utilization guarantees based on control

theory when task execution times deviate from their estimation and vary sig-

nificantly at run-time.

• We present extensive simulation results that demonstrate the effectiveness of

EUCON and validate our control design and analysis.

In this chapter, we first give an overview of EUCON in Section 4.1. We then derive

a dynamic system model for control design in Section 4.2. The detailed design and

analysis are presented in Section 4.3. Section 4.4 evaluates EUCON with simulations.

Section 4.5 summaries this chapter.

23

Model

Predictive

Controller

m
m
n
 R

R

R

R

B

B

max,

1
max,

min,

1
min,
1

)
(

)
(
1

k
u

k
u

n

)
(

)
(
1

k
r

k
r

m

Distributed System

(m tasks, n processors)

Utilization

Monitor

Rate

Modulator

UM
 UM

RM

Feedback Loop

Precedence Constraints

Subtask

Control

Input

Controlled

Variables

Model

Predictive

Controller

m
m
n
 R

R

R

R

B

B

max,

1
max,

min,

1
min,
1

)
(

)
(
1

k
u

k
u

n

)
(

)
(
1

k
r

k
r

m

Distributed System

(m tasks, n processors)

Utilization

Monitor

Rate

Modulator

UM
 UM

RM

Feedback Loop

Precedence Constraints

Subtask

Control

Input

Controlled

Variables

...

...

...

...

...

Figure 4.1: The MIMO feedback control loop in EUCON

4.1 EUCON Overview

As shown in Figure 4.1, EUCON features a MIMO feedback control loop composed of

a centralized controller, a utilization monitor and a rate modulator on each processor.

EUCON is invoked periodically, and its invocation period Ts is selected so that mul-

tiple instances of each task may be released during a sampling period. The controlled

variables are the utilizations of all processors, u(k) = [u1(k)...un(k)]T . The control

inputs from the controller are the changes in task rates ∆r(k) = [∆r1(k) . . . rm(k)]T ,

where ∆ri(k) = ri(k)− ri(k − 1)(1 ≤ i ≤ m).

The feedback control loop works as follows:

1. The utilization monitor on each processor Pi sends its utilization ui(k) in the

last sampling period [(k − 1)Ts, kTs) to the controller.

2. The controller collects the utilization vector u(k) = [u1(k) . . . un(k)]T , computes

a new rate change vector ∆r(k) = [∆r1(k) . . . rm(k)]T , and sends the new task

rates r(k) = r(k− 1) + ∆r(k) to the rate modulators on master processors

(i.e., processors that master at least one task).

3. Then the rate modulators on master processors change the rates of tasks ac-

cording to r(k).

24

4.2 Dynamic System Model

Following a control theoretic methodology, we must establish a dynamic model that

characterizes the relationship between the control input ∆r(k) and the controlled

variable u(k). First, we model the utilization ui(k) of one processor Pi. Let ∆rj(k)

denote the change to task rate, ∆rj(k) = rj(k)− rj(k − 1). We define the estimated

change to utilization, ∆bi(k), as

∆bi(k) =
∑

Tjl∈Si
cjl∆rj(k) (4.1)

where Si represents the set of subtasks located at processor Pi. Note ∆bi(k) is based on

the estimated execution time. Since the actual execution times may be different from

their estimation, we model the utilization ui(k) as the following difference equation.

ui(k) = ui(k − 1) + gi∆bi(k − 1) (4.2)

where the utilization gain gi represents the ratio between the change to the actual

utilization and its estimation ∆bi(k − 1). For example, gi = 2 means that the actual

change to utilization is twice of the estimated change. Note that the exact value of gi

is unknown due to the unpredictability of subtasks’ execution times. Equation (4.2)

models a single processor. A system with m processors is described by the following

MIMO model.

u(k) = u(k − 1) + G∆b(k − 1) (4.3)

where ∆b(k) is a vector including the estimated change to utilization of each proces-

sor, and G is a diagonal matrix where gii = gi (1 ≤ i ≤ n) and gij = 0 (i 6= j). Note

that G describes the effect of uncertainty in workload on the utilization of a DRE

system. The relationship between the utilization and task rates is characterized as

follows.

∆b(k) = F∆r(k) (4.4)

25

The subtask allocation matrix, F, is an n × m-order matrix, where fij = cjl if a

subtask Tjl of task Tj is allocated to processor Pi, and fij = 0 if no subtask of task

Tj is allocated to processor Pi. F captures the coupling among processors due to

end-to-end tasks. Equations (4.3-4.4) give a dynamic model of a distributed system

with m tasks and n processors.

Example: Consider a system with two processors and three tasks. T1 has only one

subtask T11 on processor P1. T2 has two subtasks T21 and T22 on processors P1 and

P2, respectively. T3 has one subtask T31 allocated to processors P2. We have

u(k) =


 u1(k)

u2(k)


 , G =


 g1 0

0 g2


 , F =


 c11 c21 0

0 c22 c31


 ,∆r(k) =




∆r1(k)

∆r2(k)

∆r3(k)




From (4.3), the system model is

u1(k + 1) = u1(k) + g1(c11∆r1(k) + c21∆r2(k))

u2(k + 1) = u2(k) + g2(c22∆r2(k) + c31∆r3(k))

4.3 Design and Analysis of A Model Predictive

Controller

We present the design and analysis of a model predictive controller for EUCON. We

first derive a mathematical formulation of EUCON in the model predictive control

framework. Next this formulation is transformed to a constrained least-squares prob-

lem, which allows us to design the control algorithm based on an existing least squares

solver. Finally, we prove the stability of our controller through control analysis.

26

4.3.1 Formulation for Model Predictive Control

Based on the system model, a MIMO predictive controller can be designed to guaran-

tee the utilization set points on multiple processors. The single-input-single-output

(SISO), linear control approach adopted in earlier works on feedback control real-

time scheduling [57][88] is not suitable for DRE systems due to the coupling among

multiple processors and the constraints. To solve this control problem, we adopt a

Model Predictive Control (MPC) [63] approach. MPC is an advanced control tech-

nique used extensively in industrial process control. Its major advantage is that it

can deal with coupled MIMO control problems with constraints on the plant and the

actuators. This characteristic makes MPC very suitable for end-to-end utilization

control in DRE systems where the performance measures and the coupling between

processors can be expressed by constraints and MIMO system models.

The basic idea of MPC is to optimize an appropriate cost function defined over a

time interval in the future. The controller employs a model of the system which is

used to predict the behavior over P sampling periods called the prediction horizon.

The control objective is to select an input trajectory that minimizes the cost while

satisfying the constraints. An input trajectory includes the control inputs in the fol-

lowing M sampling periods, e.g., ∆r(k), ∆r(k + 1|k), . . . ∆r(k + M− 1|k), where

M is called the control horizon. The notation x(k+ i|k) means that the vector signal

x depends on the conditions at time k. Once the input trajectory is computed, only

the first element ∆r(k) is applied as the input signal to the system. In the next step,

the prediction horizon slides one sampling period and the input is computed again

as a solution to a constrained optimization problem based on performance feedbacks

u(k). MPC combines performance prediction, optimization, constraint satisfaction,

and feedback control into a single algorithm. Details of MPC can be found in [63].

We now design a controller for EUCON. As illustrated in Figure 4.2, our model predic-
tive controller includes a least squares solver, a cost function, a reference trajectory,
and an approximate system model under the rate constraints. In the end of every
sampling period, the controller computes the control input ∆r(k) that minimizes the
cost function under the rate constraints based on an approximate system model 4.7.

27

Least Squares Solver

�
�
�

�

�

�
�
�

�

�

)(

)(1

ku

ku

n

�

�
�
�

�

�

�
�
�

�

�

∆

∆

)(

)(1

kr

kr

m

�

Model Predictive Controller

System
Model

Cost
Function

Reference
Trajectory

�
�
�

�

�

�
�
�

�

�

nB

B

�

1 Rate
Constraints

Least Squares Solver

�
�
�

�

�

�
�
�

�

�

)(

)(1

ku

ku

n

�

�
�
�

�

�

�
�
�

�

�

∆

∆

)(

)(1

kr

kr

m

�

Model Predictive Controller

System
Model

Cost
Function

Reference
Trajectory

�
�
�

�

�

�
�
�

�

�

nB

B

�

1 Rate
Constraints

Figure 4.2: The model predictive controller

The cost function to be minimized by our controller is

V (k) =
P∑

i=1

‖u(k + i|k)− ref(k + i|k)‖2Q(i) +
M−1∑

i=0

‖∆r(k + i|k)−∆r(k + i− 1|k)‖2R(i) (4.5)

where P is the prediction horizon, M is the control horizon, Q(i) is the tracking

error weight, and R(i) is the control penalty weight. The first term in the cost func-

tion represents the tracking error, i.e., the difference between the utilization vector

u(k + i|k) and a reference trajectory ref(k + i|k). The reference trajectory defines

an ideal trajectory along which the utilization vector u(k + i|k) should change from

the current utilizations u(k) to the utilization set points B. Our controller is designed

to track the following exponential reference trajectory so that the closed-loop system

will behave as a linear system.

ref(k + i|k) = B− e−
Ts
Tref

i
(B− u(k)) (1 ≤ i ≤ P) (4.6)

Tref is the time constant that specifies the speed of system response. A higher Tref

causes the system to converge faster to the set points. By minimizing the tracking

error, the closed-loop system will converge to the utilization set points if the system

is stable. The weight matrix Q(i) can be tuned to represent preferences between

processors. For example, we can assign a higher weight to a processor if it executes

more important applications. The second term in the cost function represents the

28

control penalty. The control penalty term ensures that the controller will minimize

the changes in the control input.

We have established a system model for DRE systems in Section 4.2. However, the

model cannot be directly used by the controller because the system gains G are

unknown. Therefore the controller must use an approximate model. Our controller

assumes G = diag[1 · · · 1] in (4.3), i.e., the controller assumes the actual utilization

will be the same as the utilization predicted based on estimated ones. Hence our

controller solves the constrained optimization based on an approximate system model

as

u(k + 1) = u(k) + F∆r(k) (4.7)

Although this approximate model may behave differently from the real system. How-

ever, as we prove in 4.3.2, the closed loop system under our controller can still main-

tain stability and guarantee desired utilization set points as long as G is within a

certain range. Furthermore, this range can be established using stability analysis

[60].

The controller must minimize the cost function (4.5) under the utilization and rate

constraints (3.2) and (3.3) based on the approximate system model described by

(4.4) and (4.7). This constrained optimization problem can be transformed to a

standard constrained least-squares problem (the detailed transformation is available

in Appendix A). The controller then uses a standard least-squares solver to solve the

problem on-line.

In our system, we implement the controller based on the lsqlin solver in Matlab.

lsqlin uses an active set method similar to that described in [30]. The worst-case

computation complexity of the solver is polynomial in the numbers of tasks and pro-

cessors in the system model (4.3). More specifically, our constrained least-square

optimization is a convex nonlinear optimization, for which interior point methods re-

quire O(n) Newton iterations [103], where n is the number of optimization variables.

Since each Newton iteration requires O(n3) algebraic operations, the worst-case com-

putation complexity of the solver is cubic in the number of tasks and processors in the

29

system model. A preliminary overhead measurement in the MATLAB environment

is presented in Section 4.4.6.

4.3.2 Stability Analysis

In MPC, a system is called stable iff for any initial condition it will converge to the

equilibrium point [63]. In our case, the equilibrium points of the system are the

utilization set points B. Hence a stable DRE system guarantees that the utilization

of every processor converges to its set point. We now outline a general approach for

analyzing the stability for a DRE system controlled by our controller.

1. Derive the control inputs ∆r(k) that minimize the cost function based on the

approximate system model described by (4.4) and (4.7).

2. Derive the closed-loop system model by substituting the derived control inputs

∆r(k) into the actual system model described by Equations (4.3-4.4). The

closed-loop system model is in the form

u(k) = Au(k − 1) + C (4.8)

where A is a matrix whose eigenvalues depend on the utilization gains {gi|1 ≤
i ≤ n}.

3. Derive the stability condition of the closed-loop system described by (A.2).

According to control theory, the closed-loop system is stable if all the eigenvalues

of matrix A locate inside the unit circle in the complex space. Solving this

stability condition will give the range of gi(1 ≤ i ≤ n) where the system will

guarantee stability.

In our stability analysis, we assume the constrained optimization problem is feasible,

i.e., there exists a set of task rates within their acceptable ranges that can make the

utilization on every processor equal to its set point. If the problem is infeasible, no

controller can guarantee the set point through rate adaptation. In Chapter 8, we

address the issues of system feasibility and controllability by adjusting end-to-end

task allocation.

30

Example: We now apply the stability analysis approach to the example system

described in the end of Section 4.2. The system has 3 tasks and 2 processors. We set

the prediction horizon P = 2 and the control horizon M = 1. According to the MPC

theory, the system is also stable with any longer prediction horizon and control horizon

if it is stable with shorter horizons. The time constant of the reference trajectory is

Tref/Ts = 4. The weights on all terms are 1. The cost function can be transformed

to the following formula in scalar form

V (k) =
2∑

j=1

2∑

i=1

‖uj(k + i|k)− refj(k + i|k)‖2 +
3∑

j=1

‖∆rj(k)−∆r(k− 1)‖2 (4.9)

Substituting the model parameters of the example system to (4.4) and (4.7), we have




u1(k + 1)

u2(k + 1)

u1(k + 2)

u2(k + 2)




=




u1(k)

u2(k)

u1(k + 1)

u2(k + 1)




+




c11 c21 0

0 c22 0

c11 c21 0

0 c22 c31







∆r1(k)

∆r2(k)

∆r3(k)


 (4.10)

Substitute (A.3) and the reference trajectory in (4.6) to (A.2), the cost function

becomes a function of ∆r(k). We then derive the control input vector ∆r(k) that

minimize the cost function (4.9) through partial differentiation. Following Step 2,

we establish the closed-loop model by substituting ∆r(k) derived in the last step

into the actual system model (4.3-4.4). The closed-loop model is a function of the

system gains (g1, g2). Following Step 3, we can establish a stability region for (g1, g2)

in which the closed-loop system will remain stable. For example, in the special case

when g1 = g2, the example system is guaranteed to be stable if 0 < g1 = g2 < 5.95.

That is, EUCON can maintain stability even if the execution time of every subtask

becomes as high as 5.95 times its estimated one. The details of the stability analysis

on this example are available at Appendix B. Note this approach is also applicable

to more complex systems following the same steps.

31

4.3.3 Control Tuning

For a stable system, controller tuning involves a trade-off between utilization oscilla-

tion and the speed of convergence. Severe oscillation in utilization is undesirable even

if the average utilization remains close to the set point. In practice, this may lead to

oscillation in application performance such as video frame rate and the frequency of

control in process control systems. The speed of converge is also important because it

represents how quickly a system can recover from utilization variations and regain the

desired utilization. If the gains used in the controller (1 in EUCON) is lower than the

actual one (gi), the real effect of the control input is going to be larger than what the

controller has predicted and the system will oscillate. Using pessimistic estimation on

execution times will reduce system oscillation because the system gains are less than

1 when execution times are overestimated. It should be noted that using pessimistic

estimated execution times under EUCON does not cause underutilization. This key

difference from open-loop scheduling is because EUCON dynamically adjusts rates

based on measured utilization rather than the estimated execution times. However,

more pessimistic estimation on execution times leads to smaller gains, which cause

slower convergence to the set points.

The choice of the sampling period must balance convergence time, overhead, and os-

cillation. A short sampling period speeds up convergence by enabling the system to

adapt to variations at a higher frequency. However, a short sampling period also in-

creases the run-time overhead of EUCON because its feedback control loop is invoked

once per sampling period. Moreover, since EUCON measures the average utilization

over a sampling period, a longer sampling period may filter out noise in the utilization

input to the controller and hence reduce oscillation.

32

4.4 Experimentation

4.4.1 Experimental Setup

Our simulation environment is composed of an event-driven simulator implemented

in C++ and a controller implemented in MATLAB (R12). The simulator implements

the distributed real-time system controlled by EUCON, the utilization monitor and

the rate modulator. The sub-tasks on each processor are scheduled by the Rate Mono-

tonic (RMS) scheduling algorithm [54]. The precedence constraints among subtasks

are enforced by the release guard protocol [91]. The controller is based on the lsqlin

least squares solver in MATLAB. The simulator opens a MATLAB process and ini-

tializes the controller at start time. In the end of each sampling period, the simulator

collects the CPU utilization on each processor from the utilization monitors, and

calls the controller in MATLAB with the utilization vector u(k) as parameters. The

controller computes the control input, ∆r(k), and return it to the simulator. The

simulator then calls the rate modulator on each processor to adjust the task rates.

Each task’s end-to-end deadline di = ni/ri(k), where ni is the number of subtasks in

task Ti. Each end-to-end deadline is evenly divided into subdeadlines for its subtasks.

The resultant subdeadline of each subtask Tij equals its period, 1/ri(k). Hence the

schedulable utilization bound of RMS [54] is used as the utilization set point on each

processor:

Bi = mi(2
1/mi − 1) (4.11)

where mi is the number of subtasks on Pi. All (sub)tasks meet their (sub)deadlines

if the utilization set point on every processor is enforced. As discussed in Section 3.3,

other subdeadline assignment algorithms [42] and utilization bounds [50] may also be

used with EUCON. Network delay is ignored in the simulations.

Two different workload/system configurations were used in our experiments. SIMPLE

(see Table 4.1) is the example used in the stability analysis in Section 4.3.2. The

second configuration, MEDIUM, simulates a more complex workload. MEDIUM

33

Table 4.1: Task parameters in SIMPLE (Proc represents the processor where a
subtask is located)

Tij Proc cij 1/Rmax,i 1/Rmin,i 1/ri(0)
T11 P1 35 35 700 60
T21 P1 35

35 700 90
T22 P2 35
T31 P2 45 45 900 100

Table 4.2: Controller parameters

System P M Tref/Ts Ts

SIMPLE 2 1
4 1000 time unit

MEDIUM 4 2

includes 12 tasks (with a total of 25 subtasks) executing on 4 processors. There

are eight end-to-end tasks running on multiple processors and four local tasks (tasks

T8 to T12). The execution time of every subtask Tij in MEDIUM follows a uniform

distribution.

To evaluate the robustness of EUCON when execution times deviate from the esti-

mation, the average execution time of each subtask Tij can be changed by tuning a

parameter called the execution-time factor, etfij(k) = aij(k)/cij, where aij is the av-

erage execution time of Tij. The execution time factor represents how much the actual

execution time of a subtask deviates from the estimated one. The execution-time fac-

tor (and hence the average execution times) may be kept constant or changed dynam-

ically in a run. When all subtasks share a same constant execution time factor etf, etf

equals to the system gain on every processor in the model, i.e., etf = gi(1 ≤ i ≤ m).

The controller parameters are listed in Table 4.2. The controller for MEDIUM has

higher control and prediction horizons to guarantee stability in a larger system.

4.4.2 Baselines

We compare EUCON against two baseline algorithms, OPEN and FC-U-E2E. OPEN

is an open-loop algorithm that uses fixed task rates. It assigns task rates a priori

34

based on estimated execution times so that B = Fr′, where F is the subtask allocation

matrix defined in Section 4.2, and r′ is the vector of task rates assigned by OPEN.

From the definition of etf(k) we have

u(k) = etf(k)B (4.12)

Although OPEN can result in desired utilization when estimated execution times

are accurate (i.e., etf(k) = 1), it causes underutilization when execution times are

overestimated (i.e., etf(k) < 1), and CPU over-utilization when execution times are

underestimated (i.e., etf(k) > 1). Unfortunately, it is often difficult to establish tight

bound on task execution times - especially in open and unpredictable environments

where task execution times are heavily influenced by the value of sensor data or user

input at run time.

FC-U-E2E is an extension of the FC-U [57] algorithm. Similar to EUCON, FC-U

features a feedback control loop that controls utilization by dynamically adjusting

task rates. However, FC-U is a single-processor algorithm, i.e., it only controls the

utilization of a single processor. It uses a single-input-single-output (SISO) Propor-

tional controller to compute the changes to task rates based on measured utilization.

A simple approach for utilization control in a distributed system is executing a FC-U

algorithm on each processor. Each FC-U algorithm controls the utilization of its own

processor by computing task rates independently from others. However, this approach

cannot handle the end-to-end task model due to its constraint that all the subtasks

of an end-to-end task must execute at the same rate. In contrast, FC-U algorithms

on those processors may decide to assign different rates to the same task based on

the states of their own processors. For example, the FC-U controller on a heavily

loaded processor may assign a lower rate to a task than that assigned by a lightly

loaded processor that shares the same task. Therefore conflicts among the desired

rates by multiple processors must be resolved. To guarantee the utilization bound

constraints on all processors, a conservative approach can be adopted to assign the

lowest rate given by any processors to a task. This mechanism can be implemented

by adding a min component to the rate modulator on each processor. In the end

of every sampling period, the rate modulator on each processor Pi receives the rates

assigned to each of its tasks from all the FC-U controllers on processors that share

35

tasks with Pi, and change the rate of each of its task to the minimum one among all

the received rates for this task. We refer to this extended algorithm FC-U-E2E. A

fundamental difference between EUCON and FC-U-E2E is that EUCON explicitly

incorporates the inter-processor coupling in a distributed system in its the design

of a MIMO MPC, while FC-U-E2E implicitly handles the coupling by resolving the

conflict among multiple SISO Proportional controllers through a min operator. As a

baseline FC-U-E2E allows us to study the benefit of MPC compared to simple linear

control.

In the following, we present three sets of simulations. In Experiment I, execution

times are steady but deviate from the estimation. In Experiment II, task execution

times vary dynamically at run-time. Experiment III compares EUCON with FC-U-

E2E.

4.4.3 Experiment I: Steady Execution Times

In this set of experiments, all subtasks share a constant execution-time factor in each

run. Since the system gains g1 and g2 equal the execution-time factor under this setup,

we can compare the results of our stability analysis to the simulation results through

these experiments. Figure 4.3(a) shows the system performance when the average

execution time of every subtask is only half of the estimated one. In the beginning

of the run, both processors are underutilized. EUCON then increases the task rates

until the utilization of both processors converges to the utilization set points. As

predicted by our control analysis, the system remains stable in this case. In contrast,

Figure 4.3(b) shows the situation when the average execution time of every subtask

is seven times its estimation. In the beginning, the processors were fully utilized

because of the long task execution times. At around time 30Ts, the utilization drops

sharply to almost zero and starts to oscillate. The utilization on P2 also oscillates

significantly. The system fails to converge to the utilization set point. This result is

also consistent with our stability analysis that predicts the system will be unstable

when the system gains exceed 5.95.

We plot the mean and standard deviation of utilization on P1 during each run in

Figure 4.4(a). Every data point is based on the measured utilization u(k) from time

36

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sampling period)
C

P
U

 u
til

iz
at

io
n

P1 P2 Set Point

(a) Execution-time factor = 0.5

0

0.2

0.4

0.6

0.8

1

0 100 200 300

Tim e (sam pling period)

C
P

U
 u

ti
liz

at
io

n

P1 P2 Set Point

(b) Execution-time factor = 7

Figure 4.3: Utilization under different execution time factors (SIMPLE)

100Ts to 300Ts to exclude the transient response in the beginning of each run. The

system performance is considered acceptable if the average utilization is within 0.02

to the utilization set point, and the standard deviation is less than 0.05. Satisfying

the requirement on average utilization ensures that the system achieves the desired

utilization. Satisfying the requirement on standard deviation ensures that the utiliza-

tion does not oscillate significantly. While the thresholds for acceptable performance

depend on specific applications, the general conclusions drawn in this section are

applicable to many applications. As shown in Figure 4.4(a), the average utilization

remains close to the set point for execution-time factors between 0.20 and 5.95, and

it starts deviating from the set point and increases linearly when the execution-time

37

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
P
U

u
i
l
i
z
a
t
i
o
n

Execution-time factor

Courier, 24

Deviation
Average
Set point

(a) SIMPLE

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6

C
P
U

u
i
l
i
z
a
t
i
o
n

Execution-time factor

Deviation
Average
Set point

OPEN

(b) MEDIUM

Figure 4.4: Average utilization on P1

factor exceeds 6.00. When execution-time factor = 5.95, the average utilizations on

P1 and P2 are 0.828 and 0.829, respectively. When execution-time factor increases

to 6.00, however, the average utilization on P1 and P2 become 0.828 and 0.833, re-

spectively. Based on the set point of 0.828 on both processors, the system becomes

unstable (on P2) when execution-time factor is in the range [5.95, 6.00] in the run.

38

This empirical result is close to the analysis which shows the system should remain

stable when the gain is below 5.95 (see Section 4.3.2).

The standard deviation of utilization indicates the intensity of oscillation. As the

execution-time factor increases from 0.2 to 3, the standard deviation remains less than

0.05 and the average utilization remains within 0.02 to the set point. These results

demonstrate that EUCON can enforce the same utilization guarantees when execution

times deviate from the estimates as long as the execution-time factor remains below

3. However, the standard deviation is higher than 0.05 for execution-time factors

between 4 and 6, although the system is analytically stable in this range. This result

is consistent with our analysis in Section 4.3.2 that pessimistic estimation on execution

times will reduce oscillation without underutilizing the CPUs.

We then repeat our experiments under MEDIUM in order to evaluate the system

performance under more complex settings. Figure 4.4(b) plots the mean and stan-

dard deviation of utilization on processor P1 under different execution-time factors

(the performance on other processors is similar to P1 and is not shown due to space

limit). For comparison, the expected utilization under OPEN (computed based on

(4.12)) is also plotted. OPEN causes underutilization when execution times are over-

estimated (etf < 1), and causes overload when execution times are underestimated

(etf > 1). In contrast, EUCON provides acceptable utilization guarantees for any

tested execution-time factor within the range [0.1, 1]. In this range, the average

utilization under EUCON remains within 0.02 to the utilization set point and the

standard deviation remains below 0.05. For example, when etf = 0.1, the utilization

under OPEN is only 0.073, while the average utilization under EUCON is 0.729 - the

same as the utilization set point - with an standard deviation of 0.003. This result

demonstrates EUCON can achieve desired utilization even when execution times are

significantly overestimated. Similar to SIMPLE, the oscillation of utilization under

MEDIUM also increases as execution times are underestimated. This result confirms

our observation that pessimistic estimation of execution times should be used in the

predictive controller in EUCON.

39

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Tim e (sam pling period)

C
P

U
 u

ti
liz

at
io

n

P1 P2 P3 P4

(a) Global fluctuation (EUCON)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
Tim e (sam pling period)

C
P

U
 u

ti
liz

at
io

n

P1 P2 P3 P4

(b) Local fluctuation on P1 (EUCON)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sampling period)

�
��

�
�

�
�
�

�
��

�
	

P1 P2 P3 P4

(c) Global fluctuation (OPEN)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sampling period)`

�
�
�
�
�
�
�
�
�
	

�
�
�
�

P1 P2 P3 P4

(d) Local fluctuation on P1 (OPEN)

Figure 4.5: Utilization and task rates when execution times fluctuate at run time

40

4.4.4 Experiment II: Varying Execution Times

In Experiment II, execution times vary dynamically at run-time under the MEDIUM

configuration. To investigate the robustness of EUCON we tested two scenarios of

workload fluctuation. In the first set of runs, the average execution times on all

processors change uniformly. In the second set of runs, only the average execution

times on P1 change dynamically. The first scenario represents global load fluctuation

in the whole system, while the second scenario represents local fluctuation on a part

of the system.

In each run with global workload fluctuation, the execution time factor is initially

0.5. At time 100Ts, it increases to 0.9 causing an 80% increase in the execution times

of all subtasks. At time 200Ts, the execution-time factor drops to 0.33 causing a 67%

decrease in execution times. Such instantaneous variation in workload stress tests the

system capability of handling workload fluctuations. As shown in Figure 4.5(a), EU-

CON enforces the utilization set points on all processors despite significant variations

in execution times. At time 100Ts, all processors are suddenly overloaded due to the

increase in execution times. EUCON responds to the deviation from the utilization

set points by decreasing task rates. The utilization on all processors re-converges

to their set points within 20Ts. At time 200Ts, the utilization dropped dramatically

causing EUCON to increase task rates until the utilization on all processors regain

to their set points. The system settling time after 200Ts is longer than that fol-

lows 100Ts. As discussed in Section V this is because the system gain is smaller

during interval [200Ts, 300Ts] than [100Ts, 200Ts]. The system maintains stability

and avoids significant oscillation throughout the run despite variations in execution

times. In contrast, Figure 4.5(c) shows that the utilization under OPEN fluctuates

significantly because it cannot adapt to the workload variations.

In each run with local workload fluctuation, the execution-time factor on P1 follows

the same variation as that in global fluctuation, but all the other processors have a

fixed execution-time factor of 0.5. As shown in Figure 4.5(b), the utilization of P1

converges to its set point after the significant variation of execution times at 120Ts

and 250Ts, respectively. The settling times under local workload fluctuation are close

to those under global workload fluctuation. We also observe that the other processors

experience only slight utilization fluctuation after the execution times change on P1.

41

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Tim e (s am pling per iod)

C
P

U
 u

ti
liz

at
io

n

P1 P2 P3 P4

(a) EUCON

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Tim e (sam pling period)

C
P

U
 u

ti
liz

at
io

n

P1 P2 P3 P4

(b) FC-U-E2E

Figure 4.6: Utilization under EUCON and FC-U-E2E (etf = 0.2, MEDIUM)

This result demonstrates that EUCON effectively handles the coupling among pro-

cessors during rate adaptation. In contrast, OPEN fails to maintain steady utilization

on P1 in face of local workload fluctuation (as shown in Figure 4.5(d)).

4.4.5 Experiment III: Comparison with FC-U-E2E

A premise of this work is that the MIMO approach adopted by EUCON can outper-

form the SISO control approach. SISO control cannot handle the coupling among

42

processors effectively - especially when the utilization on different processors are un-

balanced. In this situation, the task rates computed by different controllers may

become inconsistent with each other due to the unbalanced utilization on different

processors. We now compare the performance of EU-CON and FC-U-E2E under an

unbalanced workload. The workload used in this experiment is the same as MEDIUM

except that the execution times on processor P1 are higher. The execution time factor

remains at 0.2 in each run. As shown in Figure 4.6(a), the utilization on all processors

converge to their set points despite the difference in initial values when EUCON is

used. The performance of FC-U-E2E is shown in Figure 4.6(b). The utilization on P1

follows a similar trajectory as under EUCON. However, all the other three processors

suffer from significantly longer settling times. For instance, while it only takes about

60Ts for P4 to reach its set point under EUCON, it fails to reach its set point in the

end of the run (300Ts). Long settling times are undesirable because systems need to

quickly recover from load variation.

We now analyze what causes the poor performance of FC-U-E2E. After P1 reaches

the set point at time 50Ts, its Proportional controller stops increasing the rates of all

tasks with sub-tasks on this processor. Because all tasks must execute at the lowest

rate given by any controllers in FC-U-E2E, their rates will stop increasing, even if

the controllers on the other processors need them to do so in order to reach their

set points. This effectively slows down the convergence of processors P2-P4 to their

set points. Actually, FC-U-E2E can eventually reach the set points only because

every processor has a local task whose rate can be changed independently from other

processors. P2 has the longest settling time because it shares four end-to-end tasks

with P1, while each of P3 and P4 only shares two with P1. Hence the utilization of P2

is particularly affected by the controller on P1. After P3 and P4 both reach their set

points, the utilization increase of P2 becomes even slower since only its local task can

increase its rate in this case. Compared with FC-U-E2E, a key advantage of EUCON

lies in its capability to handle the coupling among multiple processors. Furthermore,

MPC provides a theoretic framework to analyze system stability under a wide range

of execution-time factors.

43

4.4.6 Overhead

To estimate the run-time overhead of the controller, we measure the execution time of

the least squares solver which dominates the computation cost of the controller. In the

simulations with the MEDIUM configuration on a 2GHz Pentium 4 PC with 256MB

RAM, each invocation of the solver in MATLAB takes less than 9ms (corresponding

to less than 1% CPU utilization when the sampling period is 1 sec). This result

indicates the overhead of the controller is acceptable for a range of applications.

Since this preliminary result is based on the solver in the MATLAB environment, it

is not a precise benchmark for a controller implemented in native code. Evaluation

of EUCON in a real middleware environment is presented in Chapter 7.

4.5 Summary

EUCON features a model predictive controller to handle the coupling among mul-

tiple processors and constraints based a mathematical model that characterizes the

dynamics of distributed systems with end-to-end tasks. Both stability analysis and

simulation results demonstrate that EUCON can maintain desired utilization on mul-

tiple processors when task execution times are significantly overestimated and change

dynamically at run-time. EUCON also outperforms both open-loop scheduling and

a FCS algorithm based on SISO linear control.

44

Chapter 5

DEUCON: Decentralized Control

In this chapter, we present the Decentralized End-to-end Utilization CONtrol (DEU-

CON) algorithm for large DRE systems with end-to-end tasks. In contrast to the

centralized control scheme presented in Chapter 4, DEUCON employs a peer-to-peer

control structure with a separate local controller Ci on each master processor Pi.

Each controller only coordinates with a small number of processors called its (logical)

neighbors. Specifically, the contributions of this chapter are four-fold.

• We propose a new approach for decomposing the global multi-processor utiliza-

tion control problem into local subproblems to facilitate the design of decen-

tralized control solutions.

• We describe the DEUCON algorithm featuring a novel peer-to-peer control

structure that enforces desired utilizations of multiple processors through local-

ized coordination among controllers.

• We give control analysis based on the distributed model predictive control (DMPC)

theory [16] which establishes the stability properties of the DEUCON algorithm

in face of uncertain task execution times.

• We present simulation results showing that DEUCON can provide robust uti-

lization guarantees to multiple processors through task rate adaptation1, while

achieving scalability by effectively distributing the computation and communi-

cation overhead to local controllers.

1Other control strategies such as task migration, quality level adaptation and possible combina-
tions of them are subjects of our future research.

45

In this chapter, we first discuss the limitations of centralized control in large-scale

DRE systems. We then present an approach for decomposing the global system

model into localized control subproblems, as a foundation of our decentralized control

design. Based on this foundation, we describe the design and stability analysis of the

DEUCON algorithm. Section 5.3 evaluates DEUCON with simulations. Section 5.4

summaries this chapter.

5.1 Limitations of Centralized Control

Centralized control algirthms (i.e. the EUCON algorithm described in Chapter 4)

rely on a single centralized controller to manage the adaptation of multiple processors.

Hence, in large DRE systems, a centralized control scheme has several disadvantages.

1. The run-time overhead depends on the size of an entire DRE system. Specifi-

cally, the worst-case computational complexity of a model predictive controller

is polynomial in the total number of tasks and the total number of processors

in the system. Furthermore, since every processor in the system needs to com-

municate with the controller in every sampling period, the processor executing

the controller can become a communication bottleneck. Therefore, a centralized

control scheme cannot scale effectively in large DRE systems.

2. The control design of EUCON assumes that communication delays between

the control processor and other processors are negligible compared to the sam-

pling period of the controller. This assumption may not hold in networks with

significant delays such as the Internet and wireless sensor networks.

3. The processor executing the controller is a single point of failure. The entire

system will lose the capability to adapt to the environment if it fails.

Centralized solutions are therefore not suitable for large-scale DRE systems (e.g.,

wide-area power grid management). In this section, we develop decentralized control

algorithms to improve the scalability and reliability of adaptive utilization control in

DRE systems.

46

5.2 Design of DEUCON

In contrast to the centralized control scheme adopted by EUCON, DEUCON employs

a peer-to-peer control structure with a separate local controller Ci on each master pro-

cessor Pi. Each controller only coordinates with a small number of processors called

its (logical) neighbors. A fundamental design challenge is to achieve system stability

and desired utilizations without global information. In this section, we present the

design of DEUCON based on a distributed model predictive control (DMPC) frame-

work. As a foundation of our control design, we first present a dynamic model of

the entire system and an approach for decomposing the global system model into

localized control subproblems. We then describe the design and control analysis of

the DEUCON algorithm based on the dynamic models.

5.2.1 Global System Model

In a control-theoretic methodology, a control algorithm should be designed based on a

model of the system. As described in Chapter 4, a DRE system can be approximated

by the following global system model:

u(k + 1) = u(k) + GF∆r(k) (5.1)

The vector ∆r(k) represents the changes in task rates. The subtask allocation matrix,

F, is an n×m matrix, where fij = cjl if a subtask Tjl of task Tj is allocated to pro-

cessor Pi, and fij = 0 if no subtask of task Tj is allocated to processor Pi. F captures

the coupling among processors due to end-to-end tasks. G = diag[g1 . . . gn] where gi

represents the ratio between the change in the actual utilization and its estimation.

The exact value of gi is unknown due to the unpredictability in execution times. Note

that G describes the effect of uncertainty in workload on the utilization of a DRE

system. As an example, Figure 5.1 shows a DRE system with five processors and five

tasks. It is modeled by (5.1) with the following parameters:

47

u(k) =




u1(k)

u2(k)

u3(k)

u4(k)

u5(k)




,F =




c11 0 0 0 c51

c12 c22 0 0 0

0 c21 c31 0 0

0 0 c32 c41 0

0 0 c33 c42 0




,

G =




g1 0 0 0 0

0 g2 0 0 0

0 0 g3 0 0

0 0 0 g4 0

0 0 0 0 g5




,∆r(k) =




∆r1(k)

∆r2(k)

∆r3(k)

∆r4(k)

∆r5(k)




5.2.2 Problem Decomposition

Although our previous work showed that the above global system model is sufficient

for designing a centralized controller for EUCON [60], it cannot be used for designing

decentralized control algorithms because it includes information about the entire sys-

tem. To address this problem, we propose a new approach to decompose the global

utilization control problem into a set of localized subproblems.

From a local controller Ci’s perspective, the goal of decomposition is to partition the

set of system variables into three subsets, including local variables on host processor

Pi, neighbor variables on Pi’s neighbors, and all other variables in the system. Ci’s

subproblem only includes its local and neighbor variables. A key feature of our

decomposition scheme is that it balances two conflicting goals. On one hand, the

number of neighbor variables should be minimized to improve system scalability. On

the other hand, the neighbor variables must capture the coupling among processors

so that local controllers can achieve global system stability through coordination in

their neighborhoods.

We give several definitions before presenting our decomposition scheme.

Definition Processor Pj is Pi’s direct neighbor if (1) Pj has a subtask belonging to

an end-to-end task mastered by Pi and (2) Pj is not Pi itself.

48

P
3

T
21

C
3

r
2
(k)

Control signal for C
1

Precedence constraint

Subtask

T
11
 T
12

P
1
 P
2

T
22

P
4

C
1
 C
4

r
1
(k)

u
’
2
(k+1)

P
5

T
51

P
3

T
21

C
3

r
2
(k)

Control signal for C
1

Precedence constraint

Subtask

Control signal for C
1

Precedence constraint

Subtask

T
11
 T
12

P
1
 P
2

T
22

P
4

C
1
 C
4

r
1
(k)

u
’
2
(k+1)

P
5

T
51

Figure 5.1: Data exchange between C1 and its neighbors (other data exchanges are
not shown)

Definition The concerned tasks of Pi are the tasks which have subtasks located on

Pi or Pi’s direct neighbors.

Definition Processor Pj is Pi’s indirect neighbor if (1) Pj is the master processor of

any of Pi’s concerned tasks and (2) Pj is not Pi’s direct neighbor or Pi itself.

For example, we consider controller C1 in the system shown in Figure 5.1. P1 has

one direct neighbor (P2) due to task T1 mastered by P1. Its concerned tasks include

T1, T5 and T2 (which has a subtask on direct neighbor P2). Hence P3, the master

processor of T2, is P1’s indirect neighbor.

The subproblem of a controller includes a set of utilizations as controlled variables,

and a set of task rates as manipulated variables. In our decomposition scheme, the

controlled variables of controller Ci include ui(k), the host processor Pi’s utilization,

and UDi(k), the set of utilizations of Pi’s direct neighbors. UDi(k) are considered

Ci’s neighbor variables because they are affected by the rates of tasks mastered by

Pi. Since each concerned task contributes to the utilizations of Pi and/or its direct

neighbors, Ci’s manipulated variables include the rates of all of Pi’s concerned tasks.

Note that a concerned task may be mastered by Pi itself, its direct neighbor, or its

indirect neighbor. For example, C1 has two controlled variables, u1(k) and u2(k), and

three manipulated variables r1(k), r2(k) and r5(k).

49

Let set NRi(k) denote the rates of all of Pi’s concerned tasks, and set NUi(k) =

UDi(k) ∪ {ui(k)}, the subproblem of Ci then becomes the following localized con-

strained optimization problem within its neighborhood:

min
NRi(k)

∑

ul(k)∈NUi(k)

(Bl − ul(k + 1))2 (5.2)

subject to

Rmin,j ≤ rj(k) ≤ Rmax,j (rj(k) ∈ NRi(k))

In contrast to the global model (5.1) used in EUCON, each controller in DEUCON

has a localized model which only includes its local and neighbor variables. This local

model of Ci is described as:

nui(k + 1) = nui(k) + GiFi∆nri(k) (5.3)

where nui(k) and nri(k) are vectors comprised of all elements in NUi(k) and NRi(k),

respectively. Gi and Fi are defined in the same way as G and F in (5.1), but include

only the processors in NUi(k) and the task rates in NRi(k).

For example, the controller C1 shown in Figure 5.1 is modeled with the following

parameters.

nu1(k) =


 u1(k)

u2(k)


 ,F1 =


 c11 0 c51

c12 c22 0


 ,G1 =


 g1 0

0 g2


 ,∆nr1(k) =




∆r1(k)

∆r2(k)

∆r5(k)




From (5.3), C1’s local model is

u1(k + 1) = u1(k) + g1(c11∆r1(k) + c51∆r5(k))

u2(k + 1) = u2(k) + g2(c12∆r1(k) + c22∆r2(k))

50

5.2.3 Localized Feedback Control Loop

We now present DEUCON’s localized feedback control loop based on our decomposi-

tion scheme. The execution of a controller Ci at each sampling point k includes three

steps:

1. Local control computation: Ci executes an MPC algorithm to solve its local

subproblem. The feedback input to the control algorithm includes (1) ui(k)

from the local utilization monitor, (2) a set of predicted utilizations UD′i(k) of

its direct neighbors, and (3) the rates of concerned tasks, NRi(k−1) in the last

sampling period. The output from the controller Ci includes the new rates for

concerned tasks, NRi(k). The details of the control algorithm are presented in

Section 5.2.4.

2. Local actuation: The rate modulator on Pi changes the rates of the set of tasks

mastered by Pi according to the control input from Ci. The other task rates in

the control input will be ignored because they are not mastered by Pi.

3. Data exchange among neighbors: Ci sends its predicted utilization at the next

sampling point, u′i(k + 1), to other controllers of which it serves as a direct

neighbor. Ci also sends the rates of tasks mastered by Pi to those controllers

which have these tasks as their concerned tasks. In addition, Ci receives new

predicted utilizations from its direct neighbors, and the actual rates of the

concerned tasks which are not mastered by itself, from its direct and indirect

neighbors. They will be used for the local control computation at the next

sampling point (k + 1).

Compared to centralized control schemes, a fundamental advantage of DEUCON

is that both the computation and communication overhead of a controller depends

on the size of its neighborhood instead of the entire system. This feature allows

DEUCON to scale effectively in many large DRE systems.

Another important advantage of DEUCON is that it can tolerate considerable network

delays. Note that in step 1, the predicted utilizations UD′i(k) (instead of UDi(k)) are

provided by Ci’s direct neighbors in the previous sampling period. This is because

51

UDi(k) is not instantaneously available to Ci at time kTs due to network delays.

UD′i(k) is predicted based on UDi(k − 1) at time (k − 1)Ts, as a substitute for

UDi(k) to be transmitted over the network during interval [(k − 1)Ts, kTs). Each

element u′j(k) ∈ UD′i(k) is calculated using the following reference trajectory from

measured utilization uj(k − 1) to its set point Bj over the following P sampling

periods.

refj((k − 1) + l|k − 1) = Bj − e−
Ts
Tref

l
(Bj − uj(k − 1)) (1 ≤ l ≤ P) (5.4)

where Tref is the time constant that specifies the speed of system response. P is

called the prediction horizon. The notation x((k− 1) + l|k− 1) means that the value

of variable x at time ((k− 1) + l)Ts depends on the conditions at time (k− 1)Ts. The

value of refj(k|k−1) is assigned to u′j(k). Since UD′i(k) can take the entire sampling

period to transmit, DEUCON can tolerate much longer communication delays than

EUCON which assumes the delays to be negligible.

DEUCON can also improve system fault-tolerance by avoiding a centralized controller

which is a single point of failure in the whole system. In DEUCON, even if the

system failure of a processor may disable a local controller, the subtasks on the

failed processor can be immediately migrated to their backup processors, and then

be effectively controlled by other local controllers there. As a result, single processor

failures will not cause the system to lose control in DEUCON.

5.2.4 Controller Design

DEUCON employs a local controller on each master processor. Non-master processors

do not need controllers because they cannot change the rate of any task. For the

example shown in Figure 5.1, processors P1, P3 and P4 each have a controller, while

P2 and P5 do not have controllers because they are not master processors for any

tasks. This feature reduces the overhead of DEUCON.

We design a model predictive control algorithm [15] for controller Ci. We choose model

predictive control because it can deal with coupled MIMO control problems with con-

straints on the actuators. At every sampling point, the controller computes an input

52

trajectory in the following M sampling periods, e.g., ∆nri(k),∆nri(k + 1|k), . . .

∆nri(k + M− 1|k), that minimizes the following cost function under the rate con-

straints.

Vi(k) =
P∑

l=1

‖nui(k + l|k)− refi(k + l|k)‖2

+
M−1∑

l=0

‖∆nri(k + l|k)−∆nri(k + l− 1|k)‖2 (5.5)

where P is the prediction horizon, and M is the control horizon. The first term in the

cost function represents the tracking error, i.e., the difference between the utilization

vector nui(k + l|k), which is predicted based on (5.6), and the reference trajectory

refi(k + l|k) defined in (5.4). The controller is designed to track the exponential

reference trajectory that converges to the set points so that the closed-loop system

behaves like a desired linear system. By minimizing the tracking error, the closed-

loop system will also converge to the utilization set points. The second term in the

cost function represents the control penalty. The control penalty term causes the

controller to minimize the changes in the control input.

The controller predicts the cost based on the following approximate model:

nui(k + 1) = nu′i(k) + Fi∆nri(k) (5.6)

The above model has two differences from the actual system model (5.3). First,

the utilizations of direct neighbors are approximated by their predicted utilizations

nu′i(k), where nu′i(k) is a vector comprised of all elements in NU ′i(k). As discussed

in Section 5.2.3, this approximation allows DEUCON to tolerate network delays.

Second, because the real system gains Gi in system model (5.3) are unknown in un-

predicted environments, our controller assumes Gi = diag[1 . . . 1], i.e., the controller

assumes that the estimated execution times are accurate. Although this approximate

model is not an exact characterization of the real system, the closed-loop system

under our controller can still maintain stability and guarantee desired utilization set

points as long as Gi are within a certain range (see analysis and simulation results

in Sections 5.2.5 and 5.3.2). This is due to the coordination scheme and the online

feedback controls used in our distributed model predictive control algorithm.

53

The controller computes the input trajectory ∆nri(k),∆nri(k + 1|k), . . .

∆nri(k + M− 1|k) that minimizes the cost function subject to the rate constraints.

This constrained optimization problem can be transformed to a standard constrained

least square problem [63][60]. Controller Ci can then use a standard least-square

solver to solve this problem on-line. The detailed transformation can be found in Ap-

pendix A. The worst-case computation complexity of the solver is polynomial in the

numbers of tasks and processors in the localized model (5.6). More specifically, our

constrained least-square optimization is a convex nonlinear optimization, for which

interior point methods require O(n) Newton iterations [103], where n is the number

of optimization variables. Since each Newton iteration requires O(n3) algebraic oper-

ations, the worst- case computation complexity of the solver is cubic in the number

of tasks and processors in the localized model.

Once the input trajectory is computed, only the first element ∆nri(k) is applied

as the control input and sent to the rate modulators. At next sampling point, the

prediction horizon slides by one sampling period and the control input is computed

again as a solution to the constrained optimization problem based on the utilization

feedbacks from its direct neighbors and itself.

5.2.5 Stability Analysis

A fundamental benefit of the control-theoretic approach is that it enables us to prove

the utilization guarantees provided by DEUCON despite uncertainties in task exe-

cution times. We say that a DRE system is stable if the utilizations u converge to

the desired set points B, that is, limk→∞ u (k) = B. In this subsection, we present

a method that, given a system and a range of variations in task execution times,

allows to analytically assess the stability and robustness of DEUCON. To ensure that

the system can be stabilized, the constrained optimization problem must be feasible,

i.e., there exists a set of task rates within their acceptable ranges that can make the

utilization on every processor equal to its set point. If the problem is infeasible, no

controller can guarantee the set point through rate adaptation. The system feasibil-

ity and controllability issues are addressed in Chapter 8 by adjusting end-to-end task

allocation.

54

In DEUCON, each controller solves a finite horizon optimal tracking problem. Based

on optimal control theory [51], the local control decision is a linear function of the

current utilization and the set point of the local CPU, the utilizations of its direct

neighbors and the previous decisions for its manipulated tasks and concerned tasks.

We now outline the process for analyzing the stability of the system controlled by

DEUCON.

1. Compute the feedback and feed-forward matrices for each local controller i by

solving its local control input ∆nri based on the local approximate system

model (5.6) and reference trajectory (5.4). The solution is in the following

form:

∆nri (k) = Kinu′i (k) + Hi∆nri (k− 1) + EiBi (5.7)

2. Construct the feedback and feed-forward matrices for the whole system (5.1)

based on those for local system models derived in Step 1.

∆r (k) = Ku (k) + Lu (k− 1) + H∆r (k− 1) + EB (5.8)

This is a dynamic controller. The stability analysis needs to consider the com-

posite system consisting of the dynamics of the original system and the con-

troller.

3. Derive the closed-loop model of the composite system by substituting the control

inputs derived in Step 2 into the actual system model described by (5.1). The

closed-loop composite system is in the form




u (k + 1)

u (k)

∆r (k)


 =




I + GFK GFL GFH

I 0 0

K L H







u (k)

u (k− 1)

∆r (k− 1)


+




GFE

0

E


B

(5.9)

where I is the identity matrix. Note that the closed-loop system model is a

function of G.

4. Derive the stability condition of the closed-loop system (5.9) given a range of G

values. According to the control theory, if all poles locate inside the unit circle

in the complex space and the DC gain matrix from the control input ∆r(k) to

55

P
1

P
2
 P
3
 P
7
 P
6
 P
5

P
4
P
10
P
9
 P
8

T
4,1

T
4,2

T
6,1
T
6,2

T
2,1

T
2,2

T
3,1

T
3,2

T
3,3

T
7,1
 T
7,2
 T
7,3

T
11,1

T
11,2
 T
10,1

T
10,2

T
14,1
 T
14,2

T
9,1

T
9,2
T
9,3

T
8,1

T
8,2
T
8,3

T
17,1
 T
17,2

T
19,1

T
19,2

T
18,1

T
18,2
T
16,1
 T
16,2
T
16,3
T
1,1

T
5,1

T
12,1

T
13,1

T
15,1

T
20,1
 T
21,1

P
1

P
2
 P
3
 P
7
 P
6
 P
5

P
4
P
10
P
9
 P
8

T
4,1

T
4,2

T
6,1
T
6,2

T
2,1

T
2,2

T
3,1

T
3,2

T
3,3

T
7,1
 T
7,2
 T
7,3

T
11,1

T
11,2
 T
10,1

T
10,2

T
14,1
 T
14,2

T
9,1

T
9,2
T
9,3

T
8,1

T
8,2
T
8,3

T
17,1
 T
17,2

T
19,1

T
19,2

T
18,1

T
18,2
T
16,1
 T
16,2
T
16,3
T
1,1

T
5,1

T
12,1

T
13,1

T
15,1

T
20,1
 T
21,1

Figure 5.2: A medium size workload

the system state u(k) is the identity matrix, the utilizations u(k) will converge

to the set point.

The details of the above steps follow the method given in [16]. We have developed a

MATLAB program to perform the above stability analysis procedure automatically.

To illustrate our method for stability analysis, we have applied the stability analysis

approach to the example system described in Figure 5.2. The detailed analysis is

available in Appendix D. The result shows that all poles of the closed-loop system

are within the unit circle for 0 < g < 2. Furthermore, the DC gain of the closed-

loop system is the identity matrix for 0 < g < 2. Therefore, the system is stable.

Our analysis proves that DEUCON can provide robust utilization guarantees to the

example system even when actual execution times deviate significantly from the esti-

mation. For instance, our results indicate that DEUCON can converge to the desired

utilizations on all processors even if the execution time of every task is 90% lower

(g = 0.1) or 90% higher (g = 1.9) than the estimation as long as the range of task

rates are not violated. We validate this analysis through simulations presented in

Section 5.3.

56

5.3 Simulation Results

In this section, we first describe the simulation settings. We then compare the perfor-

mance and overhead of DEUCON and EUCON. We choose EUCON as the baseline

for performance as it is the only available utilization control algorithm for DRE

systems with end-to-end tasks. Previous results showed that EUCON significantly

outperformed a common open-loop approach that assigned fixed task rates based on

estimated execution times [60]. Finally, we evaluate the scalability of DEUCON in

large systems using randomly generated workloads.

5.3.1 Simulation Setup

Our simulation environment is composed of an event-driven simulator implemented

in C++ and a set of controllers implemented in MATLAB (R12). The simulator

implements the utilization monitors, the rate modulators, and the distributed real-

time system with an interface to the controllers. The subtasks on each processor are

scheduled by the Rate Monotonic Scheduling (RMS) algorithm [54]. The precedence

constraints among subtasks are enforced by the release guard protocol [91]. The

controllers are based on the lsqlin least square solver in MATLAB. The simulator

opens a MATLAB process and initializes all the controllers at start time. In the end

of each sampling period, the simulator collects the local utilization, the predicted

neighborhood utilizations and the concerned task rates for each controller, and then

calls the controller in MATLAB. The controllers compute the control input, ∆r(k),

and return it to the simulator. The simulator then calls the rate modulators on each

processor to adjust the rates of its mastered tasks.

Each task has its end-to-end deadline as di = ni/ri(k), where ni is the number of

subtasks in task Ti. Each end-to-end deadline is evenly divided into subdeadlines for

its subtasks. The resultant subdeadline of each subtask Tij equals its period, 1/ri(k).

The schedulable utilization bound of RMS [54], Bi = mi(2
1/mi − 1) is used as the

utilization set point on each processor, where mi is the number of subtasks on Pi. All

57

(sub)tasks meet their (sub)deadlines if the utilization set point on every processor is

enforced2.

A medium size workload (as shown in Figure 5.2) is used in our experiments. It

includes 21 tasks (with a total of 40 subtasks) executing on 10 processors. There are

14 end-to-end tasks running on multiple processors and 7 local tasks. The controller

parameters used for this workload include the prediction horizon as 2 and the control

horizon as 1. The control period Ts = 1000 time units. The time constant Tref/Ts

used in (5.4) is set as 4. Specific parameters of tasks are not shown due to space

limitations.

To evaluate the robustness of DEUCON when execution times deviate from the esti-

mation, the execution time of each subtask Tij can be changed by tuning a parameter

called the execution-time factor, etfij(k) = aij(k)/cij, where aij is the actual execu-

tion time of Tij. The execution time factor represents how much the actual execution

time of a subtask deviates from the estimated one. The execution time factor (and

hence the actual execution times) may be kept constant or changed dynamically in

a run. When all subtasks share a same constant etf, it equals to the system gain on

every processor in the model, i.e., etf = gii(1 ≤ i ≤ m). In the following, we use

inversed etf (ietf) defined by ieftij(k) = 1/etfij(k) because we are more interested

in the situation when execution times are overestimated (i.e. etf < 1)3.

5.3.2 System Performance

In this subsection, we present two sets of simulation experiments. The first one

evaluates DEUCON’s system performance when task execution times deviate from

the estimation. The second experiment tests DEUCON’s ability to provide robust

utilization guarantees when task execution times vary dynamically at run-time.

58

0

0.2

0.4

0.6

0.8

1

0
 50
 100
 150
 200
 250
 300

Time (sampling period)

C

P
U

 u
ti

liz
at

io
n

P1
 P2

P3
 P4

P5

(a) DEUCON

0

0.2

0.4

0.6

0.8

1

0
 50
 100
 150
 200
 250
 300

Time (sampling period)

C
P

U
 u

ti
liz

at
io

n

P1
 P2

P3
 P4

P5

(b) EUCON

Figure 5.3: CPU utilization of P1 to P5 (ietf=8)

Steady Execution Times

In this experiment, all subtasks share a fixed execution-time factor (ietf) in each

run. Since it is often difficult to estimate the execution times of real-time tasks

precisely in DRE system, we stress-test DEUCON’s performance when real execution

time significantly deviate from their estimations. Figures 5.3(a) and (b) show the

utilizations of processors P1 to P5 when execution times of tasks are one-eighth of their

estimations. In this case, we can observe a noticeable difference in the transient state

between DEUCON and EUCON. While the utilizations of EUCON follow the same

trajectory, utilizations of DEUCON diverge in the middle of the run and then converge

to their set points in the end. The reason for this divergence is that each controller

in DEUCON only utilizes local information and makes local decision. Despite this

slight difference in the transient state, all utilizations converge to their set points

2Other utilization bounds [50] can be used by DEUCON when the subdeadlines of subtasks are
not equal to their periods

3In general, as discussed in [60], algorithms based on model predictive control and distributed
model predictive control cause oscillation when the execution times are underestimated (i.e. etf > 1).

59

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0 2 4 6 8 10

C
PU

 u
til

iz
at

io
n

Inversed execution time factor (ietf)

DEUCON Deviation
DEUCON Average
EUCON Deviation
EUCON Average

Set point

Figure 5.4: The average and deviation of the CPU utilization of P1 with different
execution times

within similar settling times. Both DEUCON and EUCON achieve desired utilization

guarantees in steady states.

To examine DEUCON’s performance under different execution time factors, we plot

the mean and standard deviation of utilization on P1 during each run in Figure 5.4.

Every data point is based on the measured utilization u(k) from time 200Ts to 300Ts

to exclude the transient response in the beginning of each run. Both EUCON and

DEUCON achieve desired utilizations for all tested execution-time factors within the

ietf range [0.5, 10]. In this range, the average utilizations under EUCON and DEU-

CON remain within ±0.012 to the utilization set points and the standard deviations

remain below 0.025. However, when ietf = 8, DEUCON’s performance is slightly

worse than that of EUCON, as its average utilization is 0.012 lower than its set point.

In addition, EUCON has a high deviation when ietf = 9, because P1 has a longer

settling time under EUCON. As a result, the system is still in its transient state for

part of the interval [200Ts, 300Ts]. We also observe that both EUCON and DEUCON

suffer a standard deviation of ±0.025 when ietf = 0.5. However, as a key benefit,

both EUCON and DEUCON can achieve desired utilizations even when execution

times are severely overestimated. This capability is in sharp contrast to open-loop

approaches which are based on schedulability analysis. Open-loop underutilizes the

processors in such cases.

60

0.6

0.65

0.7

0.75

0.8

P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8
 P9
 P10

Processor

C
P

U
 u

ti
liz

at
io

n

DEUCON
 EUCON
 Set point

Figure 5.5: Average CPU utilization (ietf=5)

To further investigate the CPU utilizations on other processors, Figure 5.5 plots the

average utilizations of all processors when ietf is 5. The deviations of all utilizations

are less than 0.008. We observe that on P2 to P7, the difference between the uti-

lizations and the set points for DEUCON are slightly larger than that of EUCON.

However, all the differences are within the ±0.009 range. In practice, such small

steady-state errors can be handled by setting the set points to slightly lower than the

schedulable utilization bounds.

In summary, the simulation results demonstrate that DEUCON can achieve almost

the same performance as EUCON, for a wide range of ietf ([0.5, 10] in our experi-

ments). We also note that the range of ietf corresponds to a system gain g in a range

[0.1, 2]. Therefore, our simulation results validate the correctness of our stability

analysis presented in Section 5.2.5.

Varying Execution Times

In this experiment, execution times vary dynamically at run-time. To investigate the

robustness of DEUCON we tested two scenarios of workload fluctuation. In the first

set of runs, the average execution times on all processors change simultaneously. In

the second set of runs, only the execution times on P10 change dynamically, while

those on the other processors remain unchanged. The first scenario represents global

load fluctuation, while the second scenario represents local fluctuation on a part of

the system.

61

0

0.2

0.4

0.6

0.8

1

0
 50
 100
 150
 200
 250
 300

Time (sampling period)

C

P
U

 u
ti

liz
at

io
n

P6
 P7

P8
 P9

P10

(a) Global fluctuation

0

0.2

0.4

0.6

0.8

1

0
 50
 100
 150
 200
 250
 300

Time (sampling period)

C
P

U
 u

ti
liz

at
io

n

P6
 P7

P8
 P9

P10

(b) Local fluctuation on P10

Figure 5.6: CPU utilization of P6 to P10 when execution times fluctuate at run-time

Figure 5.6(a) shows a typical run with global workload fluctuation4. The ietf is

initially 1.0. At time 100Ts, it is decreased to 0.56, which corresponds to an 79%

increase in the execution times of all subtasks such that all processors are suddenly

overloaded. Figure 5.7(a) shows that the deadline miss ratios of tasks T17 to T21

increase suddenly from zero to almost 100%5. This kind of significant deadline misses

is undesired to most real-time applications. DEUCON responds to the overload by

decreasing task rates which causes the utilizations on all processors to re-converge to

their set points within 20Ts. As a result, all end-to-end tasks are able to meet their

deadlines again. At time 200Ts, the ietf is increased to 1.67 corresponding to a 66%

decrease in execution times. The utilizations on all processors drop sharply, causing

DEUCON to dramatically increase task rates until the utilizations re-converge to

their set points. The system maintains stability and avoids any significant oscillation

throughout the run, despite the variations in execution times.

4Only the results of P6 to P10 are included for clarity. The results of P1 to P5 are similar.
5We choose to show the deadline miss ratios of tasks T17 to T21 because they are located on

P6 to P10 and three of them (T17, T19 and T21) are located on P10 which is chosen to show local
fluctuation.

62

0

0.2

0.4

0.6

0.8

1

0
 50
 100
 150
 200
 250
 300

Time (sampling period)

D

ea
d

lin
e

m
is

s
ra

ti
o

T17
 T18

T19
 T20

T21

(a) Global fluctuation

0

0.2

0.4

0.6

0.8

1

0
 50
 100
 150
 200
 250
 300

Time (sampling period)

D
ea

d
lin

e
m

is
s

ra
ti

o

T17
 T18

T19
 T20

T21

(b) Local fluctuation on P10

Figure 5.7: Deadline miss ratio of T17 to T21 when execution times fluctuate at
run-time

In each run with local workload fluctuation, the ietf on P10 follows the same variation

as the global fluctuation, while all the other processors have a fixed ietf of 1.0.

As shown in Figure 5.6(b), the utilization of P10 converges to its set point after

the significant variation of execution times at 120Ts and 250Ts, respectively. We

also observe that the other processors experience only slight utilization fluctuation

after the execution times change on P10. This result demonstrates that DEUCON

effectively handles the coupling among processors during rate adaptation. Figure

5.7(b) shows that only tasks T19 and T21 have deadline misses during the execution

time increase on processor P10. That is because T19 and T21 are located on P10 and

their task rates are smaller than the task rates of T16 and T17 which are the other

two tasks on P10, as shown in Figure 5.2. As a result of the RMS scheduling [54], T21

suffers the most significant deadline misses while T19 also has a considerable deadline

miss ratio. The performance results of DEUCON in this experiment are very close to

EUCON’s performance reported in [60].

63

0

5

10

15

20

P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8
 P9
 P10
 AVG
 EUCON

Processor

Direct neighborhood size

Number of concerned tasks

Figure 5.8: Entire system size vs. neighborhood size

5.3.3 Overhead

As discussed in Section 5.1, a major limitation of a centralized controller is that

the run-time overhead is related to the size of the entire system. In contrast, the

overhead of each local controller in DEUCON is just a function of its neighborhood

size. Figure 5.8 compares the size of the entire system with the neighborhood size

of each processor for the medium size workload. The centralized EUCON controller

needs to model all the 10 processors and the 21 tasks in the system. In contrast, the

average for DEUCON controllers is only 2.6 processors and 7.1 tasks, corresponding

to a reduction by 74% and 66%, respectively.

To estimate the average computation overhead of the controllers, we measure the

execution time of the least squares solver which dominates the computation cost on a

2GHz Pentium IV PC with 256MB RAM. In order to minimize the effect of the time

delay caused by the IPC communication between the simulator and the MATLAB

process, we use a single MATLAB command to run this least squares solver for 1000

times as a subroutine. The data shown in Figure 5.9 is the average of those 1000 runs.

The average execution time of all controllers in DEUCON is only 62% of EUCON’s

centralized controller. We note that the speedup in execution times is not strictly

polynomial in the numbers of neighbors and concerned tasks as one would expect

from the theoretical complexity of MPC algorithms. This is attributed to difference

between the average execution time of MATLAB’s lsqlin solver and the worst-case

computational complexity. In addition, the initialization cost in the optimization

calculations is not negligible for relatively small scale problems in our workload.

64

0

0.2

0.4

0.6

P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8
 P9
 P10
 AVG
 EUCON

Processor

T
im

e
(m

s)

Figure 5.9: Controller execution time in MATLAB

0

2

4

6

8

10

P1
 P2
 P3
 P4
 P5
 P6
 P7
 P8
 P9
 P10
 AVG
 EUCON

Processor

N
u

m
b

er
 o

f
p

ro
ce

ss
o

rs

 Utilizations exchange

Task rates exchange

Total

Figure 5.10: Estimated communication overhead

We now investigate DEUCON’s communication overhead. As mentioned in Section

5.2, a controller’s communication overhead is a function of the number of processors

communicating with it6. To estimate communication overhead due to utilizations ex-

change, we count the number of processors from which a controller receives predicted

utilizations. This is equal to the number of direct neighbors of the controller. To

estimate communication overhead due to task rates exchange, we count the proces-

sors from which a controller receives the actual rate changes for one or more of its

concerned tasks. The set of processors communicating with a controller is the union

of these two processor sets. From Figure 5.10 we can see that DEUCON’s average

estimated per-controller communication overhead is 33% of the EUCON controller’s

communication overhead.

6Multiple data values (utilizations and/or rates) from a same processor can be easily combined
to a single message in a real system implementation.

65

0

10

20

30

40

100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

Number of processors and tasks

Direct neighborhood size

Concerned tasks

Communicated processors

Figure 5.11: Per-controller overhead when tasks increase with processors

5.3.4 Scalability

Our final set of simulations evaluates the scalability of DEUCON in large systems. In

all the following simulations, we employ randomly generated workloads. All subtasks

are randomly allocated to processors such that every processor has the same number

of subtasks. The number of subtasks per processor is fixed at 5 in all following

simulations. To evaluate the scalability of DEUCON, we increase both the number

of processors and the total number of subtasks in the systems proportionally.

Since the total number of subtasks is the product of the number of tasks and the

number of subtasks per task, the system size can be varied in two ways.

• Case 1, we keep the number of subtasks per task fixed at 5 and increase both

the number of tasks and the number of processors from 100 to 1000.

• Case 2, we keep the number of tasks fixed at 500 and then increase the number

of subtasks per task from 1 to 10 and the number of processors from 100 to

1000.

Figure 5.11 shows the direct neighborhood size, the number of concerned tasks, and

the number of communicated processors of a controller in case 1. Every result is

the average value of all controllers in the system. We can see that the size of direct

66

0

20

40

60

80

1

100

2

200

3

300

4

400

5

500

6

600

7

700

8

800

9

900

10

1000

Number of subtasks per task

Number of processors

Direct neighborhood size

Concerned tasks

Communicated processors

Figure 5.12: Per-controller overhead when subtasks increase with processors

neighborhood remains almost constant despite the ten-fold increase in the number

of processors. At the same time, the numbers of concerned task and communicated

processors increase very slowly. Even in the system with 1000 processors, a controller

only communicates with fewer than 34 processors on average. These results demon-

strate that the per-controller overhead of DEUCON is almost independent of the total

size of the system when the number of subtasks per task remains fixed.

We then investigate case 2. Figure 5.12 shows that the three overhead metrics increase

when the numbers of processors and subtasks increase. This is because, when each

task has more subtasks, the number of processors in the control model of a controller

also increases, resulting a larger neighborhood. However, our results show that the

per-controller overhead remains moderate even when each task has a high number of

subtasks. For example, a controller communicates with only 59.3 of 1000 processors

on average even when each task has 10 subtasks. We note that in practice it is rare

for a task to have an extremely large number of subtasks.

In addition to per-controller overhead, we are also interested in the master ratio,

defined as the fraction of processors in the system that are master processors. The

master ratio is important because only master processors have controllers. Figure

5.13 shows the fraction of master processors in the whole system in both cases. For a

fixed number of subtasks per task (case 1), the master ratio remains fixed at around

67

0

0.2

0.4

0.6

0.8

1

100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

Number of processors

M
as

te
r

ra
ti

o

Case 1

Case 2

Figure 5.13: Fraction of master processors in both cases

0

5

10

15

20

25

100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

Number of processors

Direct neighborhood size (case 1)

Concerned tasks (case 1)

Communicated processors (case 1)

Direct neighborhood size (case 2)

Concerned tasks (case 2)

Communicated processors (case 2)

Figure 5.14: Average per-processor control overhead of the system in both cases

0.65, i.e., only 65% of the processors have controllers. On the other hand, the master

ratio decreases while the number of subtasks per task increases (case 2).

We then evaluate the average per-processor control overhead of the system by mul-

tiplying the per-controller overhead present in Figure 5.11 and Figure 5.12 with the

fraction of the master processors in Figure 5.13. Figure 5.14 shows that the average

per-processor overhead converges to fixed levels in both cases as the size of the system

increases. Note that in case 2 the increase in the per-controller overhead is compen-

sated by the decrease in the master ratio. As a result, the per-processor overhead

is almost independent of the system size for large systems. Therefore, DEUCON is

highly scalable in large systems.

Moreover, we observe that real-world systems may allocate subtasks in a clustered

fashion, i.e., all subtasks of a subsystem tend to share several processors and only

a small number of tasks run across multiple subsystems. We expect such clustered

68

allocation to result in even smaller neighborhood size than the random allocation in

our simulations.

5.4 Summary

We have presented the DEUCON algorithm for dynamically controlling the utilization

of DRE systems. DEUCON features a novel decentralized control structure to handle

the coupling among multiple processors due to end-to-end tasks. Both stability anal-

ysis and simulation results demonstrate that DEUCON achieves robust utilization

guarantees even when task execution times deviate significantly from the estima-

tion or changes dynamically at run-time. Furthermore, DEUCON can significantly

improve the system scalability by distributing the computation and communication

cost from a central processor to local controllers distributed in the whole system and

tolerating network delays.

69

Chapter 6

FCS/nORB: Uniprocessor QoS

Control Middleware

Object Request Broker (ORB) middleware has shown promise in meeting the func-

tional and real-time performance requirements of distributed real-time and embedded

(DRE) systems. However, existing real-time ORB middleware standards such as RT-

CORBA do not adequately address the challenges of (1) providing robust performance

guarantees portably across different platforms, and (2) managing unpredictable work-

load. To overcome this limitation, we have developed a QoS control middleware called

FCS/nORB that integrates a single-processor Feedback Control real-time Scheduling

(FCS) service with the nORB small-footprint real-time ORB designed for networked

embedded systems. FCS/nORB serves as a foundation for us to develop end-to-end

QoS control middleware for DRE systems.

The main feature of FCS/nORB is several feedback control loops that provide real-

time performance guarantees by automatically adjusting the rate of remote method

invocations transparently to an application. FCS/nORB thus enables real-time appli-

cations to be truly portable in terms of real-time performance as well as functionality,

without the need for hand tuning. This chapter presents the design, implementation,

and evaluation of FCS/nORB. Our extensive experiments on a Linux testbed demon-

strate that QoS control middleware can provide deadline miss ratio and utilization

guarantees in face of changes in the platform and task execution times, while intro-

ducing only a small amount of overhead.

70

6.1 Introduction

Object Request Broker (ORB) middleware [81][90] has shown promise in meeting

the functional and real-time performance requirements of distributed real-time and

embedded (DRE) systems built using common-off-the-shelf (COTS) hardware and

software. DRE systems such as avionics mission computing [20], unmanned flight

control systems [99], and autonomous aerial surveillance [56] increasingly rely on

real-time ORB middleware to meet challenging requirements such as communication

and processing timeliness among distributed application components.

Several kinds of middleware are emerging as fundamental building blocks for these

kinds of systems. Low-level frameworks such as ACE [80] provide portability across

different operating systems and hardware platforms. Resource management frame-

works such as Kokyu [29] use low-level elements to configure scheduling and dispatch-

ing mechanisms in higher-level middleware. Real-Time ORBs such as TAO [81] and

nORB [90] are geared toward providing predictable timing of end-to-end method in-

vocations. ORB services such as the TAO Real-Time Event Service [33] and TAO

Scheduling Service [29] offer higher-level services for managing functional and real-

time properties of interactions between application components. Finally, higher-level

middleware services [37][71][98][107] provide integration of real-time resource man-

agement in complex vertically layered DRE applications.

However, before it can fully deliver its promise, ORB middleware still faces two key

challenges.

• Provide real-time performance portability: A key advantage of middleware is

supporting portability across different OS and hardware platforms. However,

although the functionality of applications running ORB middleware is readily

portable, real-time performance can differ significantly across different platforms

and ORBs. Consequently, an application that meets all of its timing constraints

on a particular platform may violate the same constraints on another platform.

Significant time and cost must then be incurred to test and re-tune an appli-

cation for each platform on which it is deployed. Hence, DRE applications are

not strictly portable even when developed using today’s ORB middleware. The

71

lack of robust real-time performance portability thus detracts from the benefits

of deploying DRE applications on current-generation ORB middleware.

• Handle unpredictable workloads: The task execution times and resource require-

ments of many DRE applications are unknown a priori or may vary significantly

at run time - often because their executions are strongly influenced by the op-

erating environment. For example, the execution time of a visual tracking task

may vary dramatically as a function of the number and location of potential

targets in a set of camera images sent to it.

A key reason that existing ORB middleware cannot deal with the above challenges

is that common scheduling approaches are based on open-loop algorithms, e.g., Rate

Monotonic Scheduling (RMS) or Earliest Deadline First (EDF) [54], which depend on

accurate knowledge of task execution times to provide real-time performance guar-

antees. However, when workloads and available platform resources are variable or

simply not known a priori, open-loop scheduling algorithms either result in extremely

underutilized systems based on pessimistic worst-case estimation, or in systems that

fail when workloads or platform characteristics vary significantly from design-time

expectations.

As a foundation for developing adaptive ORB middleware that supports end-to-end

QoS control, in this chapter, we first integrate a single-processor Feedback Control

real-time Scheduling (FCS) framework [57] with real-time embedded ORB middleware

[90], to provide portable real-time performance and robust handling of unpredictable

workloads. FCS/nORB provides key scheduling support that makes DRE software

performance (1) portable across OS and hardware platforms and (2) more robust

against workload variations when tasks have negotiable QoS parameters that can be

adjusted. The FCS service we have implemented in this work automatically adjusts

the rates of method invocations on remote application objects, based on measured

performance feedback. Our choice of this adaptation mechanism is motivated by

the fact that in many DRE applications, e.g., digital feedback control loops [23][83],

sensor data display [19], and video streaming [10], task rates can be adjusted on-line

without causing instability or system failure. Other QoS adaptation mechanisms such

as online task admission control can also be incorporated easily into the FCS/nORB

service.

72

Specifically, this chapter makes three main contributions to research on DRE systems:

• Design documentation of a FCS service at the ORB middleware layer, that

provides real-time performance portability and robust performance guarantees

in face of workload variations,

• Implementation of a feedback control loop in an distributed ORB middleware

that dynamically adjust the rates of remote method invocations transparently

to the application (subject to application-specified constraints), and

• Results of empirical performance evaluations on a physical testbed that demon-

strate the efficiency, robustness and limitations of applying FCS at the ORB

middleware layer.

The rest of this chapter is structured as follows. We first briefly review previous

work on FCS control algorithms in Section 6.2. Section 6.3 describes the design and

implementation of our FCS service for nORB. We present results of our performance

evaluation on a Linux testbed in Section 6.4. Finally, Section 6.5 summarizes the this

chapter.

6.2 Feedback Control Real-time Scheduling

Recent research has shown that FCS algorithms can provide performance guarantees

in terms of deadline miss ratios and CPU utilization even when actual task execution

times are unknown or vary at run time. In this section, we describe our instantiations

of three existing FCS algorithms in a nORB middleware service. Further details of

the algorithms and their control analyses can be found in [57].

6.2.1 Task Model

We first describe the task model adopted by FCS. With ORB middleware, applica-

tions typically execute using method invocations on objects distributed across multi-

ple endsystems. Invocation latency for remote methods includes latency on the client,

73

the server, and the communication network. Each method invocation may be sub-

ject to an end-to-end deadline. An established approach for handling timeliness of

remote method invocations is through end-to-end scheduling [55]. In this approach,

an end-to-end deadline is divided into intermediate deadlines on the server, client,

and communication network, and the problem of meeting the end-to-end deadline is

thus transformed into the problem of meeting every intermediate deadline.

In this chapter, we focus on the problem of meeting intermediate deadlines on a single

processor, the server. We assume that the client and server are not collocated on the

same processor. Such a configuration is common in networked digital control appli-

cations that run multiple control algorithms on a server processor that interacts with

several other client processors attached to sensors and actuators. Communication

delay is not the focus of this dissertation, although it is possible to treat a network

similarly as a processor in an end-to-end scheduling model.

In the rest of this chapter, we use the term task to refer to the execution of a remote

method on the server. We assume that each task Ti has an estimated execution time

EEi known at design time. However, the actual execution time of a task may be

significantly different from EEi and may vary at run time. We also assume that

the rate of Ti can be dynamically adjusted within a range [Rmin,i, Rmax,i]. Earlier re-

search has shown that task rates in many real-time applications (e.g., digital feedback

control [19], sensor data update, and multimedia [10][11]) can be adjusted without

causing application failure. Specifically, each task Ti is described by the following

three attributes:

• EEi: the estimated execution time,

• [Rmin,i, Rmax,i]: the range of acceptable rates, and

• Ri(k): the rate in the kth sampling period.

We useX(k) to represent the value of a variableX in a sampling period [(k−1)W,kW)

seconds, where k > 1 and W is the sampling period length. We assume all tasks are

periodic, and each task Ti’s (relative) deadline on the server, Di(k), is proportional

to its period.

74

A key property of our task model is that it does not require accurate knowledge of

task execution times. The execution time of a task may be significantly different from

its estimation and may vary at run time.

6.2.2 FCS Algorithms

The core of an FCS algorithm is a feedback control loop that periodically monitors

and controls its controlled variables by adjusting QoS parameters (e.g., task rates

or service levels). Candidate controlled variables include the total (CPU) utilization

and the (deadline) miss ratio. The utilization, U(k), is defined as the fraction of

time when the CPU is busy in the kth sampling period. The miss ratio, M(k), is

the number of deadline missed divided by the total number of completed tasks1 in

the kth sampling period. Performance references represent the desired values of the

controlled variables, i.e., the desired miss ratio Ms or the desired utilization Us. For

example, a particular system may require a miss ratio Ms = 1.5% or a utilization

Us = 70%. The goal of an FCS algorithm is to enforce the performance references

specified by the application, via run-time QoS adaptation.

Three FCS algorithms have been developed based on the choice of different sets of

these controlled variables. The FC-U and FC-M algorithms each control U(k) or

M(k), respectively, and the FC-UM algorithm controls both U(k) and M(k) at the

same time. The feedback control loop in each FCS algorithm is composed of one or

more Monitors, a Controller, and one or more QoS Actuators. The Utilization and

Miss Ratio Monitors measure the controlled variables, U(k) and M(k), respectively.

At the end of each sampling period, the Controller compares the controlled variable

with its corresponding performance reference (Us or Ms), and computes B(k+1), the

total estimated utilization for the subsequent sampling period. The QoS Actuators

then adjust tasks’ QoS parameters to enforce the total estimated utilization on the

server. For example, a Rate Actuator assigns a new set of task rates such that i.e.,

B(k + 1) =
∑
i(EEi ∗ Ri(k + 1)), and instructs each client to adjust its invocation

rate accordingly. Other examples of QoS actuation mechanisms include admission

control and adaptation techniques based on the imprecise computation model [40].

1When a task has a firm deadline, it may be aborted when it misses its deadline. An aborted
task is counted as a completed one and a deadline miss for miss ratio calculation.

75

Timer
threadworker

thread

conn.
thread

ClientServer

…………

…………

FCS

util monitor

miss monitor

controller

rate assigner

conn.
thread

…………

…………

rate
modulator

FCS

feedback lane

………… …………

…………

RMI lanes

…………

Timer
threadworker

thread

conn.
thread

ClientServer

…………

…………

FCS

util monitor

miss monitor

controller

rate assigner

conn.
thread

…………

…………

rate
modulator

FCS

feedback lane

………… …………

…………

RMI lanes

…………

Figure 6.1: The Architecture of FCS/nORB

It is important to note that B(k) may be different from U(k) due to the difference

between the estimated and actual task execution times. The details of the three FCS

algorithms are available in [57].

6.3 FCS/nORB Architecture

In this section, we present the architecture of an FCS service that instantiates the

FCS algorithms described in [57] atop a real-time embedded middleware ORB called

nORB, as illustrated in Figure 6.1. We first give an overview of our extensions to

nORB for use with FCS, and then describe the design and implementation of the

FCS service.

6.3.1 Extensions to nORB for FCS

nORB [90] is a light-weight real-time ORB designed to support networked embedded

systems. Both nORB and the new FCS service are based on ACE [79]. The current

implementation of nORB, to which we applied our FCS extensions, only supports

fixed priority scheduling. To avoid priority inversion at the communication layer, a

76

separate TCP connection called a lane [74] is established between a server and a client

for each priority level that is used for method invocation requests. Further details of

nORB are presented in [90].

While FIFO queuing in each static priority lane is sufficient for many applications,

to support the on-line adaptation of task rates needed by FCS we had to extend the

basic nORB queuing capabilities, as is shown in Figure 6.1. An FCS/nORB client

has a number of timer threads and connection threads. Each pair of timer/connec-

tion threads (connected through a buffer) is assigned a priority and submits method

invocation requests to the server at this priority. Each timer thread is associated

with a timer that generates periodic timeouts, to initiate method invocation requests

at a specified rate. A basic FCS/nORB server has several pairs of worker and con-

nection threads. Each pair of worker/connection threads is assigned a priority and

is responsible for processing method invocation requests at that priority. Connection

threads receive method invocation requests from clients, and worker threads invoke

the corresponding methods and send the results back to clients. We apply the RMS

policy [54] to assign task priorities to the thread pairs on the server. Each thread

pair on the client shares a same priority as the thread pair on the server that it is

connected to. A key contribution of this work is to show that FCS services can be

realized in reduced-feature-set ORBs such as nORB that are tailored to fit within

the space and power limitations seen in many networked embedded systems, without

sacrificing real-time performance.

6.3.2 Configuration Interface

Application developers can specify a set of scheduling parameters in a configuration

file that is used to initialize the FCS service when the system is started. Configuration

parameters include the specific FCS algorithm to run, the performance references, the

sampling period, and two parameters, GA and GM . Based on the control analysis in

[57], FCS/nORB determines the value of the control parameters based on GA and GM

in order to achieve the desired control performance. In general, higher GA and GM

increase the range of platform and workload variability that FCS can handle. Detailed

analysis of GA and GM is available in [57]. Applications can register their tasks in

77

a task description file. Each task Ti is described by a tuple (EEi, Rmin,i, Rmax,i) as

described in Section 6.2.

6.3.3 Feedback Control Loop

The FCS service on a server includes a utilization monitor, a miss ratio monitor, a

controller, a rate allocator, and a pair of FCS/connection threads. The FCS service

on a client includes a rate modulator and a pair of FCS/connection threads. All

FCS/connection threads in the FCS service are assigned the highest priority so that

the feedback control loop can run in overload conditions, when it is needed most.

The FCS/connection threads on the server are connected with each client connection

thread through a TCP connection we call a feedback lane. We now present the details

of each component.

Utilization Monitor: The utilization monitor uses the /proc/stat file in Linux to

estimate the CPU utilization in each sampling period. The /proc/stat file records the

number of jiffies (each 1/100 of a second) since the system start time, when the CPU

is in user mode, user mode with low priority (nice), system mode, and when used by

the idle task. At the end of each sampling period, the utilization monitor reads the

counters, and estimates CPU utilization by dividing the number of jiffies used by the

idle task in the last sampling period by the total number of jiffies in the same period.

We note that the same technique is used by the benchmarking tool, NetPerf [39].

Deadline Miss Monitor: The deadline miss monitor measures the percentage

of completed tasks that miss their deadlines on the server in each sampling period.

FCS/nORB maintains two counters for each pair of connection/worker threads on the

server. One counter records the number of completed tasks in the current sampling

period, and the other records the number of tasks that missed their deadlines in the

same period. Each connection thread timestamps every method invocation request

when it arrives from its nORB lane. The worker thread checks whether a completed

task has missed its deadline and updates the counters after it sends the invocation

result to the client. At the end of each sampling period, the deadline miss monitor

78

aggregates the counters of all worker/connection threads, and computes the deadline

miss ratio in the sampling period. Note that FCS/nORB maintains separate counters

for each pair of connection/worker threads instead of shared global counters, to reduce

contention among threads updating the counters. This use of thread-specific storage

is important because contention among worker threads could either allow priority

inversions or introduce unnecessary overhead to prevent them.

Controller: The controller implements the control function presented in Section

2.2. Each time its periodically scheduled timer fires, it invokes the utilization and/or

deadline miss monitors, computes the total estimated utilization for the next sampling

period, and then invokes the rate assigner.

Rate Assigner: The rate assigner on the server and the rate modulator on its

clients together serve as actuators in the feedback control loop. The rate assigner

computes the new task rates to enforce the total estimated utilization computed by

the controller. Different policies can be applied to assign task rates. Our rate assigner

currently implements a simple policy that is called Proportional Rate Adjustment

(PRA) in this chapter. Assuming that the initial rate of task Ti is Ri(0), the initial

total estimated utilization B(0) =
∑
i(EEiRi(0)), and the total estimated utilization

for the following kth sampling period is B(k), the PRA policy assigns the new rate

to task Ti as follows: Ri(k) = (B(k)/B(0))Ri(0). If Ri(k) falls outside its acceptable

range [R imin ,R imax], it is rounded to the closer limit. It can be easily proven that

PRA enforces the total estimated utilization, i.e., B(k) =
∑
i(EEiRi(k)), if no task

rates reach their lower or upper limits.

The PRA policy treats all the tasks ”fairly” in the sense that the relative rates among

tasks always remain the same if no tasks reach their rate limits. When an application

runs on a faster platform, the rates of all tasks will be increased proportionally,

while on a slower platform, the rates of all tasks will be decreased proportionally. A

side effect of the PRA policy is that priorities of tasks will not change at run-time

under RMS because the relative order of task rates remains the same. This reduces

overhead on the clients because they do not need to change task deadlines on the

fly. However, since PRA potentially changes the rate of every task in each sampling

79

period, it may introduce relatively high overhead for resetting all the timers on the

clients. Fortunately, as shown in our measurement in Section 4.5.3, such overhead is

small when ACE timers are used.

Note that the PRA policy is based on the assumption that all tasks are ”equally

important”. More precisely, it assumes that all tasks’ values to the application are

uniformly proportional to their execution times. When this assumption is not true,

the rate assigner needs to optimize the total system value under the constraint of the

total estimated utilization. Although the value optimization problem is not a focus

of this study, existing optimization algorithms, e.g., [49], could be used in the rate

assigner to address this problem.

Rate Modulator: A Rate Modulator is located on each client. It receives the new

rates for its remote method invocation requests from the server-side rate assigner

through the feedback lane, and resets the interval of the timer threads whose request

rates have been changed.

6.3.4 Implementation

FCS/nORB 1.0 is implemented in C++ using ACE 5.2.7 on Linux. The entire FC-

S/nORB middleware (excluding the code in the ACE library and IDL compiler li-

brary) is implemented in 7898 lines of C++ code - compared to 4586 lines of code in

the original nORB. Both nORB and FCS/nORB are open-source software and can

be downloaded from

• nORB: http://deuce.doc.wustl.edu/nORB/

• FCS/nORB: http://deuce.doc.wustl.edu/FCS nORB/

80

6.4 Empirical Evaluations

In this section, we present the results of four sets of experiments we ran on a Linux

testbed. Experiment I evaluated the performance portability of applications on FC-

S/nORB on two different server platforms. On both platforms, we ran the same syn-

thetic workload for which the actual task execution times significantly deviate from

their estimated execution times (the same estimates were used in all experiments).

Experiment II stress-tested FCS/nORB’s ability to provide robust performance guar-

antees with a workload whose task execution times varied dramatically at run-time.

Experiment III adopted an image matching workload that is representative of target

location applications, to re-examine FCS/nORB’s robust performance guarantees in

realistic environment. Finally, Experiment IV measured the overhead introduced by

FCS from three different perspectives.

6.4.1 Experimental Set-up

Platform

We performed our experiments on three PCs named Server A, Server B, and

Client. Server A and Client were Dell 1.8GHz Celeron PCs, each with 512 MB

of RAM. Server A and Client were directly connected with a 100 Mbps crossover

Ethernet cable. They both ran Red Hat Linux release 7.3 (Kernel 2.4.19). Server

B was a Dell 2GHz Pentium4 PC with 256 MB of RAM. Server B and Client were

connected through our departmental 100 Mbps LAN. Server B ran Red Hat Linux

release 7.3 (Kernel 2.4.18). Server A and Server B served as servers in separate

experiments, while Client served as the only client host in all experiments.

Workload

To evaluate the robustness of FCS/nORB, we used both a synthetic workload and

a more realistic one that simulated real applications in our experiments. Since we

focused on unpredictable workload and platform portability, the estimated execution

81

Table 6.1: Methods invoked by the workload

method est. execution time (ms) min rate max rate number of invoking tasks
1 8.4 [1.1,2.1] 35 6
2 1.2 [1.3,1.9] 50 2
3 7.0 [1.2,2.2] 40 4

times were different from the actual execution times in all experiments. The same

estimated execution times were used in all experiments despite the fact that they used

different platforms and as a result had different actual task execution times. With

FCS, re-profiling of task execution times was not needed to provide performance

guarantees.

The synthetic workload comprised 12 tasks. Each task periodically invoked one of

three methods (shown in Table 6.1) of an application object. All the tasks invoking

the same method shared the same maximum rate, but their minimum rates were

randomly chosen from a range listed in the ”min rate” column in Table 6.1.

The realistic workload comprised an avionic task set and an additional target

location task. The avionics task set is based on an F-16 simulator presented in [1].

It includes four separate tasks (guide, control, slow navigation and fast navigation)

with different rate ranges and execution times as shown in Table 6.2. We chose these

tasks in our workload because their rate ranges are available [1]2.

The additional target location task is included because of its relatively computing

intensity and its potential execution time variation in the runtime. Those two prop-

erties make the simulated avionic system suffer a runtime performance variation,

which provides a typical platform for FCS to apply.

A common solution for target location includes a series of steps including image

restoration and enhancement, geometric correction, image matching, etc. For the

sake of simplicity, we implemented only the most critical step, image matching [30],

in our experiment. The goal of image matching is to search input images (periodically

captured by camera equipments) for a target, which is represented by another smaller

2We acknowledge that FCS may not be directly applicable to safety-critical real-time systems
such as flight control for manned aircraft, which require hard performance guarantees.

82

Table 6.2: Task sets in real image matching workload

Task est. execution time (ms) min rate max rate
Guide 100 0.2 1.0

Control 80 1.0 5.0
Slow navigation 100 0.2 1.0
Fast navigation 60 1.0 5.0
Target location 150 0.2 5.0

sized template image. Specifically, every pixel in the input image is potentially part of

where the target is located so they all are candidate points. All those candidate points

will be checked exhaustively for their similarity values with the target template (some

advanced image matching algorithms only check a subset of all pixel positions). At

each of the candidate points, a candidate region with the same size as target template

is extracted from the input image to compare with target template pixel by pixel. All

the individual similarity values from each of the corresponding pixel pairs are summed

up as an overall similarity value for this candidate point. The candidate point with

largest similarity will be identified as the match place, so long as its similarity value

is larger than a pre-defined threshold. A target is considered to have been located

when its match place is found. In our experiment, Absolute Difference (AD) [70] is

used to compute the similarity.

The application scenario for our experiment is as follows. Before the target object of

interest is located, the image matching task searches the full input image for a match

with the template. After an object is found at a particular location, a focus region is

shrunk from the full image to a small region that is centered at the known location

of the object in subsequent images to save CPU cycles for other tasks. However,

in some cases a fast moving object may escape from the focus region between two

consecutive invocations of the task, resulting in the loss of the object template. In this

situation, the full image must be searched again to relocate the target. Therefore, in

our scenario the execution time for the image matching task starts at a high level in

the beginning, then drops to a low level when the target has been detected. After this

target is lost, the execution time returns again to its initial high level. The variation

in the execution time is unknown a priori because it depends whether the target is

being found on the input image or the focus region.

83

(a) Input image

(b) Target template

(c) Focus region

Figure 6.2: Images used in Experiment III

84

Figure 6.2 shows those images used in our experiment. Since the execution time

of the exhaustive image matching with AD algorithm depends only on the sizes of

those images and is insensitive to their contents, a same input image (Figure 6.2a)

can be used in every invocation of the image matching task without affecting the

task workload, which is the main concern of FCS/nORB. Similarly, a same focus

region (Figure 6.2c) can also be used. The switch between the full input image and

the focus region is forced to simulate the target capture and loss. In the sequence

described in above scenario, we first use the full input image to search for the target

template. At a certain time the target is found and we then start to search the focus

region image for a while. Finally we change back to the input image by assuming the

target is lost from the focus region. Although the images used in our experiments

are simplified compared to real world scenarios, they are sufficient for the purpose of

causing realistic variations in the task execution time.

Control Configuration

The configuration parameters for FCS are shown in Table 6.3. To demonstrate the

robustness of feedback control, the same configuration was used in all experiments

even though they were performed on different platforms and tested with different

workloads and execution times. The Controller parameters were computed using

control theory based on GA and GM , which determine the robustness of FCS [57].

The utilization reference of FC-U is chosen to be 70%, slightly lower than the RMS

schedulable utilization bound for 12 tasks: 12(21/12−1) = 71%. FC-UM had a higher

utilization reference (75%) because it uses miss ratio control as we discussed in Section

4. The sampling period used in Experiment I and Experiment II is 4 seconds. Since

in the real image matching workload task 1 and task 3 both have 5 seconds as their

maximum period, we set the sampling period in Experiment III to 10 seconds to

decrease the sampling jitter caused by rate tuning. As a baseline, we also ran these

experiments under open-loop scheduling (RMS) by turning off the feedback loop. For

simplicity, the open-loop baseline is called OPEN in the rest of the chapter.

85

Table 6.3: Control configuration in all experiments

FC-U FC-M FC-UM
reference Us=70% Ms=1.5% Ms=1.5%

Us=75%
GA, GM GA=2 GA=2, GM=0.447

sampling period 4 seconds (10 seconds in Experiment III)

6.4.2 Experiment I: Performance Portability

In Experiment I, the execution time of each task on Server A remained approximately

twice its estimated value throughout each run. The purpose of this set of experiments

was to evaluate the performance of the FCS algorithms and OPEN when task exe-

cution times vary significantly from estimated values, either due to the difference

between a new deployment platform and the original platform on which the tasks

were profiled, or to significant inaccuracy in task profiling.

Our first experiment emulates common engineering practice based on open loop

scheduling. We first tuned task rates based on the estimated execution times so that

the total estimated utilization was 70%. However, when we ran the tasks at the rates

according to the predicted rates, the server locked up. This is not surprising: since

the estimated execution times were inaccurate, the actual total requested utilization

by all nORB threads reached approximately 140%. This caused the Linux kernel

to freeze because all nORB threads were run at real-time scheduling priorities that

are higher than kernel priorities on Linux. When the CPU utilization requested by

nORB threads reached 100%, no kernel activities were able to execute. To avoid this

problem using common real-time engineering techniques, all the tasks would need to

be re-profiled for each platform on which the application is deployed. Hence, the open

loop approach can cost developers significant time to tune the workload to achieve

the same performance on different platforms. This lack of performance portability

is an especially serious problem when there is a large number of potential platforms

(e.g., in a product line) or if a potential platform is unknown at system development

time.

86

0.00

0.10

0.20

0.30
0.40

0.50

0.60

0.70

0.80
0.90

1.00

0 25 50 75 100 125 150 175 200

Time (4 sec)

U(k)

B (k)

M (k)

Figure 6.3: A typical run of FC-U on Server A

We now examine the experimental results for the FCS algorithms themselves. As an

example, Figure 6.3 illustrates the sampled utilization U(k), the miss ratio M(k), and

the total estimated utilization B(k) computed by the controller in a typical run under

FC-U. All tasks started from their lowest rates. The feedback control loop rapidly

increased U(k) by raising task rates (proportional to B(k)). At the 5th sampling

point, the U(k) reached 67.7% and settled in a steady state around 70%. This result

shows that FC-U can self-tune task rates to achieve the specified CPU utilization

even when task execution times were significantly different from estimated values.

The results are consistent with the control analysis presented in [57].

The performance results for FC-U, FC-M, and FC-UM on Server A are summarized

in Figure 6.4(a-c). The performance metrics we used included the miss ratio and

utilization in steady state, and the settling time. The steady-state miss ratio is

defined as the average miss ratio in a steady state. The steady-state utilization is

similarly defined as the average utilization in a steady state. Both metrics measure

the performance of a system after its adaptation process settles down to a steady

state. Settling time represents the time it takes the system to settle down to a steady

state. The settling time can also be viewed as the duration of the self-tuning period

after an application is ported to a new platform. It is usually difficult to determine

the precise settling time on a noisy, real system. As an approximation, we considered

that FC-U and FC-M entered a steady state at the first sampling instant when U(k)

reached 0.99Us, and FC-M entered a steady state at the first sampling instant when

87

U(k) reached 0.99Us in the last sampling period of the experiment. Each data point

in Figure 6.4(a-c) is the mean of three repeated runs, and each run took 800 seconds.

The standard deviations in miss ratio, utilization, and settling time are below 0.01%,

0.03%, and 6.11 seconds (i.e., a 1.53 sampling period), respectively.

From Figure 6.4(a), we can see that both FC-U and FC-UM caused no deadline

misses in steady-states. FC-M’s steady-state miss ratio is 1.49%, compared to the

miss ratio reference of 1.5%. At the same time, the steady-state utilizations of FC-U

and FC-UM are respectively 70.01% and 74.97%, compared to respective utilization

references of 70.00% and 75%. The result for FC-UM occurred because the utilization

control dominated in steady state due to the fact that its steady state utilization is

lower than the miss ratio control. In contrast, FC-M achieved a higher utilization

(98.93%) in the steady state at the cost of a slightly higher miss ratio.

As shown in Figure 6.4(c), FC-M and FC-UM both had significantly longer settling

times than FC-U due to the saturation of miss ratio control in underutilization. This

means that FC-M and FC-UM need more self-tuning time before they can reach

steady states. Note that the settling times of FC-M and FC-UM are related to the

initial task rates. In our experiments, all tasks started from their lowest possible

rates in the beginning of the self-tuning phase. The settling times can be reduced

by setting the initial task rates closer to the desired rates. For example, we may

choose the initial rates to be the same as the desired rates on the slowest platform in

a product line.

To further evaluate the performance portability of FCS/nORB, we re-ran the same

experiments on Server B. Typical runs of FC-U, FC-UM, and FC-M are shown in

Figures 6.4, 6.5, and 6.6, respectively. Each run takes 1200 seconds. As was the case

on Server A, all the algorithms successfully enforced their utilization and/or miss

ratio references in steady state. The difference is that all tasks ran at a higher rate

(proportionally to B(k)) on Server B than Server A because Server B is faster than

Server A. In addition, all algorithms had longer settling times on Server B than Server

A. This is consistent with our control analyses in [27].

In summary, Experiment I demonstrated that FCS/nORB can provide a desired uti-

lization or miss ratio even when 1) applications were ported to different platforms and

88

0

0.005

0.01

0.015

0.02

FC_U FC_UM FC_M

m
is

s
ra

tio
(a) Average steady-state miss ratio

0

0.2

0.4

0.6

0.8

1

FCU FCUM FCM

C
P

U
 u

til
iz

at
io

n

(b) Average steady-state CPU utilization

0

25

50

75

FC_U FC_UM FC_M

S
et

tli
ng

 ti
m

e
(4

 s
ec

)

(c) Average settling time

Figure 6.4: Performance results of FCS algorithms on Server A in Experiment II

2) task execution times were significantly different from their estimations. Therefore,

FCS/nORB represents a way to perform automatic performance tuning on a new

platform.

89

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 50 100 150 200 250 300

Time (4 sec)

U(k)

B(k)

M(k)

Figure 6.5: A typical run of FC-U on Server B

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 50 100 150 200 250 300

Time (4 sec)

U(k)

B (k)

M (k)

Figure 6.6: A typical run of FC-UM on Server B

90

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 50 100 150 200 250 300

Time (4 sec)

U(k)

B (k)

M (k)

Figure 6.7: A typical run of FC-M on Server B

In addition, we note that a combination of FCS and open-loop scheduling can be

used to achieve both self-tuning and run-time efficiency for applications with steady

workloads. When an application is ported to a new platform, it can be scheduled

initially using the FCS algorithm to converge to a steady state with desired perfor-

mance. Then the feedback control loop can be turned off and the applications can

continue to run at the correct rates under open-loop scheduling.

6.4.3 Experiment II: Varying Synthetic Workload

In this set of experiments, we evaluated the performance of FCS/nORB and OPEN

on Server A when task execution times vary significantly at run-time. We first study

the performance of OPEN. A typical run of OPEN is illustrated in Figure 6.8(a). We

initially hand-tuned the task rates to achieve a utilization of approximately 75%. In

the beginning of the 50th sampling period (200 sec), however, the execution times of

method 1 (invoked by 6 tasks - see Table 6.1) was suddenly increased, which caused

the utilization to reach almost 100% and resulted in deadline misses. Note that the

system kernel would have frozen (as in Experiment II) had the execution time of

method 1 been increased even slightly more. At 900 seconds, the execution time of

method 1 was suddenly decreased causing the utilization to drop to approximately

40%. This experiment shows that even fine-tuned applications can not always achieve

91

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 50 100 150 200 250 300 350 400

Time (4 sec)

U(k)

M (k)

(a) OPEN

0.00
0.10
0.20

0.30
0.40

0.50

0.60
0.70

0.80
0.90
1.00

0 50 100 150 200 250 300 350 400

Time (4 sec)

U(k)

B (k)

M (k)

(a) FC-U

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 50 100 150 200 250 300 350 400

Time (4 sec)

U(k)

B (k)

M (k)

(b) FC-UM

Figure 6.8: Utilization and deadline miss ratio under varying workload

92

acceptable performance under OPEN. When the actual execution times exceed the

initial execution time used for tuning, the system can be overloaded and may even

lock up. On the other hand, if the actual execution times become lower than those

used at tuning time, the CPU is underutilized when task could have run at a higher

rate and thus shown improved QoS.

In contrast, both FC-U and FC-UM maintained specified CPU utilizations (70% and

75%, respectively) in steady states despite the variations in task execution times

(as illustrated in Figure 6.8(b) and 6.8(c), respectively). Both algorithms effectively

adapted task rates (proportionally to B(k)) in response to changes in system load.

FC-UM had a long settling time in the underutilized condition. However, its settling

time is significantly shorter in the overload condition. The short settling time un-

der overload is important because adaptation is much more important in overload

conditions than in underload conditions.

Interestingly, FC-M caused the system to lock up when the execution times increased.

This is because FC-M achieved a high utilization (more than 90%) before the execu-

tion time increased at time 200 sec. The utilization then increased to 100% due to the

increase in execution times, and the system again locked up due to kernel starvation.

In contrast, previous simulation results [57] showed that FC-M could handle such

varying workload because the impact of CPU over-utilization by the middleware on

kernel activities was not modeled in the simulator, which was design to simulator a

scheduler in the OS kernel.

In general, FCS/nORB cannot handle varying workload that even transiently in-

creases the utilization to 100% due to the starvation of the kernel under such con-

ditions. This result shows a limitation of middleware implementations on top of

common general purpose operating systems (e.g., Linux, Windows, and Solaris) in

which real-time scheduling priorities are higher than kernel priorities. On such plat-

forms, the range of variation in utilization that the FCS algorithms can handle is

limited by its steady-state utilization before the variation occurs. For example, with

a utilization reference of Us, FC-U can only handle a utilization increase of no more

than (1 − Us) in order to provide robust utilization guarantees. Therefore, the uti-

lization reference of FC-U and FC-UM should consider this safety margin in the face

93

of varying workload. Since FC-M usually achieves a high utilization and, more im-

portantly, does not have control over its safety margin, a middleware implementation

of FC-M is less appropriate for time varying workloads.

6.4.4 Experiment III: Varying Realistic Workload

In Experiment III, we reexamined FCS/nORB’s performance with the realistic work-

load in which the execution time of the target location task vary dynamically.

Figure 6.9(a) shows a typical run of OPEN. In the beginning of the run, the target

location task had a long execution time while it searched the whole input images

for the interested object. Consequently, the CPU utilization was close to 95% and a

number of task invocations missed their deadlines. At around 160th sampling period,

the target was assumed to have been found, so the focus region was shrunk to locate

the target. CPU utilization dropped significantly as we can observe in Figure 6.9.

This drop switched the system from an overloaded to an underutilized status. We

continued by assuming the target escaped from the focus region at around the 265th

sampling period, so the execution time of the target location task then returned to its

original level. At that point utilization again returned to an overload condition. Hence

in this scenario, the OPEN system just switched back and forth between overload

with deadline misses, and underutilization with unnecessarily low task rates, neither

of which leads to satisfactory performance.

Figure 6.9(b) and Figure 6.9(c) show that both FC-U and FC-UM maintained spec-

ified utilization levels in their steady states, which was over most of the entire run.

The performance of FC-U is illustrated in Figure 6.9(b). The CPU utilization was

decreased to the set point (70%) at the 15th period, so deadline misses were avoided.

At around 160th period, when the system found the object, FC-U drove the utiliza-

tion back up to the set point by increasing the rates of all current tasks to utilize the

CPU better. The faster rates also improved the system utility. Particularly for our

image matching task, more frequent invocation of the image matching task improves

tracking precision while reducing the chance that the tracked object may escape from

the window image. At the 165th sampling period, when the target did escape from the

focus region, the full image was searched again to relocate the target. FC-U only had

94

0.00
0.10

0.20
0.30
0.40
0.50

0.60
0.70
0.80
0.90

1.00
1.10

0 50 100 150 200 250 300 350 400

Tim e (10 sec)

U(k)

M(k)

(a) OPEN

0.00
0.10

0.20
0.30

0.40
0.50

0.60
0.70

0.80
0.90

1.00
1.10

0 50 100 150 200 250 300 350 400

Tim e (10 sec)

U(k)

B(k)

M(k)

(a) FC-U

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

0 50 100 150 200 250 300 350 400

Tim e (10 sec)

U(k)

B(k)

M(k)

(b) FC-UM

Figure 6.9: Utilization and deadline miss ratio under realistic workload

95

a very transient spike of deadline misses, which is highly preferable compared with

OPEN. The performance of FC-UM shown in Figure 6.9(c) had similar results to FC-

U. The only difference is that the settling time was longer when the system recovered

from underutilized status, for the same reasons explained in previous section.

Both Experiments II and III demonstrated that FC-U and FC-UM can provide robust

performance guarantees, even when task execution times vary (within the aforemen-

tioned safety margin) at run-time.

6.4.5 Experiment IV: Overhead Measurement

The feedback control loop for each FCS algorithm introduces overhead. This overhead

is caused by several factors including the timer associated with FCS, the cost of

utilization and miss ratio monitoring, the control computation in the controller, and

the rate calculation and communication overhead in the rate assigner. FCS/nORB is

a viable middleware only if the overhead it introduces is sufficiently low.

Coarse-grained overhead measurement

To quantify the overhead imposed by the FCS algorithms, we compared the average

CPU utilization under different scheduling algorithms when the same workload is

applied to the system running on Server A. To limit the overhead caused by the

utilization monitoring for OPEN and FC-M, average CPU utilizations were measured

by setting the sampling period of the utilization monitor to the duration of the entire

run, i.e., the utilization monitor is only invoked twice for each run with FC-M and

OPEN - once at the beginning of the run, and once at the end of the run. The average

CPU utilization of FC-U and FC-UM was measured by averaging the utilization of

each sampling period, since they need to execute the utilization monitor periodically.

To keep the application workload constant, we disabled the rate modulator on the

clients so that all tasks always ran at constant rates.

The results of the overhead measurements are summarized in Table 6.4. The first

row shows the mean of the average utilizations in 8 repeated runs, along with its

96

Table 6.4: Results of coarsed-grained overhead measurement

OPEN FC-U FC-M FC-UM
utilization (%) 74.15 74.55 74.70 75.05

±0.30 ±0.42 ±0.10 ±0.16
overhead (%) 0.40 0.54 0.90

90% confidence interval. Each run lasted for 800 seconds, a total of 200 sampling

periods. The second row shows the overhead of each FCS algorithm in terms of CPU

utilization, which is computed by subtracting OPEN’s utilization from each FCS

algorithm’s utilization.

The 90% confidence interval of the most efficient algorithm, FC-U, actually overlapped

with that of OPEN, which meant that FC-U showed no statistically significant over-

head based on our measurement. FC-M and FC-UM, however, showed statistically

significant overhead compared to OPEN. Over a 4 second sampling period, all three

FCS algorithms introduced overhead of less than 1% of the total CPU utilization.

FC-U introduced the least overhead among all FCS algorithms, indicating that the

utilization monitor was more efficient than the miss ratio monitor. While the utiliza-

tion monitor only needs to read the /proc/stat file once every sampling period, the

miss ratio monitor requires time-stamping every method invocation twice. FC-UM’s

overhead is slightly less than the sum of the overheads from FC-M and FC-U. This is

because, while FC-UM ran both monitors, it only execute the controller and actuator

once per invocation.

Fine-grained overhead measurement

Although the above overhead measurement shows satisfactory results based on uti-

lization comparison between OPEN and FCS algorithms, we noticed two limitations

of the above measurement approach. The first one is that the Linux system file

/proc/stat records the number of jiffies. Since each jiffy is 10ms (1/100 of a second),

the granularity of above measurement is too coarse for precise measurements on the

overhead. The second problem is that CPU utilization may suffer interference from

the operating system itself even though we minimized the number of system processes.

97

To measure overhead more accurately, we adopted a time stamping approach. Firstly,

we differentiated all FCS related code from the original nORB code. Then two time

stamps were taken at the starting point and finishing point of each segment of FCS

code to get the execution time of FCS. Fortunately, since most FCS code is within

feedback lane which is running with highest Linux real-time priority, the code segment

between two timestamps will not be preempted during its execution. Hence, the time-

stamped result accurately reflects the real execution overhead.

To achieve fine grained measurements, we needed an accurate time stamping function.

The commonly used gettimeofday system call can not be used here since this function

is also based on a 10ms scale. Instead we adopted a nanosecond scale time measuring

function called gethrtime. This function uses an OS-specific high-resolution timer,

which can be found on Solaris, AIX, Win32/Pentium, Linux/Pentium and VxWorks,

to return the number of clock cycles since the CPU was powered up or reset. The

gethrtime function has a low overhead and is based on a 64 bit clock cycle counter.

With the clock counter number divided by the CPU speed, we can get reasonably

precise and accurate time measurements. Since gethrtime is supported on Pentium

processor, we performed our fine-grained overhead measurements on Server B, a Dell

Pentium4 PC.

In Table 6.5, we list all FCS related operations and their overheads for the three FCS

algorithms respectively. All results in that table are averaged values of 10 runs and

each run’s result is an average over 300 continuous sampling periods. Operations 1

to 4 respectively give the overhead of the utilization monitor, the miss ratio monitor,

the controller, and the rate assigner, all of which ran in a feedback lane at highest

priority. Operation 5 ran in the remote method invocation lane and was used to time

stamp each remote method invocation from the Client side twice to check whether it

meets the deadline as Section 3.3 explains. The overheads of operations 1 to 4 are

relatively fixed for each sampling period, while the overhead of operation 5 depends

on how many invocations come from Client side in a given sampling period. The

measured overhead for one single gethrtime call is 0.0623us. With n invocations in

one sampling period, the overhead for time stamping is 0.1246n us. In the total value

row, we assume a common application model which has 10 tasks running at a rate of

100 invocations per second. If the sampling period is one second, we get 1000 remote

method invocations per sampling period.

98

Table 6.5: Results of differentiated fine-grained overhead measurement
no Name Description FC-U (us) FC-M (us) FC-UM (us)
1 utilization monitor /proc/stat system file reading 160.90 N/A

263.22
2 miss ratio monitor Deadline miss ratio reading N/A 181.29
3 controller Control analysis 40.64 49.84 43.27
4 rate assigner Calculating new rate; 659.90 633.73 637.74

transmitting new rate to client side
5 time stamp Time stamping each remote method N/A 0.1246 0.1246

invocation twice to check deadline
Total (Assuming 1000 remote method 861.44 989.46 1068.82

invocations in each sampling period)

0

200

400

600

800

1000

FC_U FC_M FC_UM

FCS algorithm s

O
ve

rh
ea

d
 t

im
e

(m
ic

ro
 s

ec
o

n
d

s)

Monitor

Controller

Assigner

Figure 6.10: Detailed overhead measurement

From Table 6.5, it is easy to see that FC-U has the lowest overhead and FC-UM has

the highest overhead. That observation is consistent with our coarse-grained overhead

measurements. It is also interesting to find that fine-grained overhead result for FCS

algorithms is actually much less than the result of the coarse-grained measurement.

The reason is coarse-grained measurement is based on 10ms measurement accuracy

so it is unable to gauge this overhead precisely.

Figure 6.10 illustrates the overheads for the monitor, controller and rate assigner in

the three FCS algorithms while the overhead of time stamping is not included. Rate

assigner has the dominant overhead because it involves relatively more complicated

internal data structure access, modification and socket handling while there are just

several lines of code for Monitor and Controller. Overall, the server overhead of

99

0

20

40

60

80

100

120

140

0 20 40 60 80 100

tim er num ber

o
ve

rh
ea

d
 (

u
s)

Figure 6.11: Overhead measurement of adjusting timer

all FCS algorithms in our experiments is around 1ms per sampling period, which is

clearly acceptable in a wide range of real-time and embedded applications.

Client side overhead measurement

In the previous two sections we focused on the overhead on the Server side which

hosts the monitors, controller and rate assigner. To be more specific, here we also

want to measure the overhead caused by FCS on the Client side. As we introduced

in Section 3.3, new rates for remote method invocations are calculated on Server

side and then transmitted to Client side. The only operation involved with this on

the Client side is that Client needs to read these new rates and call a timer interval

adjustment function to enforce the new rates. Since the delay for reading from a

socket is highly dependent on the state of the network, we only focus on the overhead

caused by adjusting the timer interval using the ACE reset timer interval function

call [79].

In our experiment we used the time stamping approach introduced in the previous

section to measure the overhead of timer interval adjustments. The test was executed

at the highest real-time priority in a single thread testing program so there is no pre-

emption or lock waiting involved. This testing program is separated from FCS/nORB

to avoid the overhead of multi-thread interaction and to focus only on the overhead of

resetting timer. In our experiment, we tested resetting timers with ACE Timer Heap

100

0

200

400

600

800

1000

Client Server
C

od
e

si
ze

 (
K

 b
yt

es
)

FCS/nORB

nORB

Figure 6.12: Code size difference with/without FCS service

timer queue in a fixed sequence which is consistent to FCS/nORB. In ACE [79], the

execution time of reset timer interval is highly dependent on the internal timer queue

structure and access sequence of different timers. Therefore, while this testing result

provides a performance metric for FCS/nORB, it does not serve as a benchmark for

ACE itself.

All results reported are averages of 10 separate runs. Figure 6.11 shows the overhead

in terms of execution time as a function of the number of changed timers. As Figure

6.11 illustrates, the overhead for adjusting one timer interval is on the scale of several

microseconds. We also observe that the measured overhead increased linearly with

the number of timers. Hence, the overhead of FCS on the Client side is thus simply

the product of the number of tasks and the overhead of adjusting one timer. Hence

we can easily get the conclusion that even with 1000 tasks running in FCS/nORB, the

total overhead on Client is just around 1ms, which is acceptable to many applications.

Memory footprint measurement

Besides execution time, memory overhead is also a significant factor for overall system

performance. For embedded systems, however, code size is a major part of the mem-

ory footprint because all code of a system is typically loaded into the memory before

the system starts to execute. Hence, it is useful to measure the code size increase

after we plugged in FCS related code. The measured results for both Client side

101

and Server side are illustrated in Figure 6.12. We see that adding FCS only resulted

in an increase of 78K bytes on both the Client and Server. The ratio of increase is

only 12% and 10% for Client side and Server side respectively. This minor increase

is acceptable considering the system performance improvements that were seen in

the previous experiments. We note that the combined static footprint on each given

endsystem, of both FCS/nORB and the client or server application, is well below the

static footprint of a full-featured ORB such as TAO alone (detailed footprint results

for nORB and TAO are available in [81]).

6.5 Summary

In summary, we have designed and implemented a single-processor QoS control ORB

middleware for real-time embedded systems. Performance evaluation on a physical

testbed has shown that (1) FCS/nORB can guarantee specified miss ratio and CPU

utilization levels even when task execution times deviate significantly from their esti-

mated values or change significantly at run-time; (2) FCS/nORB can provide similar

performance guarantees on platforms with different processing capabilities; and (3)

the middleware layer instantiation of performance control loops only introduces a

small amount of processing overhead on the client and server. These results demon-

strate that a combination of QoS control and ORB middleware is a promising ap-

proach to achieve robust real-time performance guarantees and performance porta-

bility for DRE applications. In the next chapter, we introduce an end-to-end QoS

control ORB middleware that is designed based on FCS/nORB, to provide robust

end-to-end QoS guarantees.

102

Chapter 7

FC-ORB: Robust End-to-End QoS

Control Middleware

A key challenge for distributed real-time and embedded (DRE) middleware is main-

taining both system reliability and desired real-time performance in unpredictable

environments where system workload and resources may fluctuate significantly. In

this chapter, we present FC-ORB, a real-time Object Request Broker (ORB) mid-

dleware that employs the EUCON control algorithm to handle fluctuations in appli-

cation workload and system resources. FC-ORB demonstrates that the integration

of utilization control, end-to-end scheduling and fault-tolerance mechanisms in DRE

middleware is a promising approach for enhancing the robustness of DRE applications

in unpredictable environments.

7.1 Introduction

Distributed real-time and embedded (DRE) applications have stringent requirements

for end-to-end timeliness and reliability whose assurance is essential to their proper

operation. In recent years, many DRE systems have become open to unpredictable

operating environments where both system workload and platform may vary signif-

icantly at run time. For example, the execution of data-driven applications such as

autonomous surveillance is heavily influenced by sensor readings. External events

such as detection of an intruder can trigger sudden increase in system workloads.

103

Furthermore, many mission-critical applications must continue to provide real-time

services despite hardware failures, software faults, and cyber attacks.

While DRE middleware has shown promise in improving the real-time properties of

many applications, existing middleware systems often do not work well in unpre-

dictable environments due to their dependence on traditional real-time schedulability

analysis. When accurate knowledge about workloads and platforms is not available,

a DRE application configured based on schedulability analysis may suffer deadline

misses or even system crash [58]. A critical challenge faced by application develop-

ers is to achieve robust real-time performance in unpredictable environments. Since

in DRE systems, an end-to-end application that violates its real-time properties is

equivalent to (or sometimes even worse than) an application that does not perform its

computation, utilization guarantees affect directly the availability of the end-to-end

application.

This chapter presents the design and empirical evaluation of an adaptive middleware

called FC-ORB (Feedback Controlled ORB) that aims to enhance the robustness of

DRE applications. The novelty of FC-ORB is the integration of end-to-end schedul-

ing, adaptive QoS control, and fault-tolerance mechanisms that are optimized for

unpredictable environments. Specifically, this chapter makes three contributions.

• End-to-End Real-Time ORB: Our ORB service supports end-to-end real-time

tasks based on the end-to-end scheduling framework [55]. The FC-ORB ar-

chitecture is designed to facilitate efficient end-to-end adaptation and fault-

tolerance in memory-constrained DRE systems.

• End-to-End Utilization Control: The utilization control service enforces desired

CPU utilizations in a DRE system despite significant uncertainties in system

workloads. The core of the utilization control service is a distributed feedback

control loop that coordinates adaptations on multiple interdependent proces-

sors.

• Adaptive Fault Tolerance: FC-ORB handles processor failures with an adaptive

strategy that combines reconfigurable utilization control and task migration. A

unique feature of our fault tolerance approach is that it can maintain real-time

properties for DRE applications after a processor failure.

104

FC-ORB has been implemented and evaluated on a Linux platform. Our experimental

results demonstrate that FC-ORB can significantly improve the end-to-end real-time

performance of DRE middleware in face of a broad set of dynamic uncertainties and

fluctuations in task execution times, resource contention from external workloads,

and processor failures. FC-ORB demonstrates that the integration of utilization con-

trol, end-to-end scheduling, and fault-tolerance mechanisms in DRE middleware is

a promising approach for enhancing the robustness of DRE applications in unpre-

dictable environments.

FC-ORB is particularly useful for DRE applications that are amenable to rate adap-

tation such as digital feedback control systems [64][83], monitoring systems [105],

and multimedia [10]. In these systems, task rates can be adjusted without causing

system failure. Furthermore, tasks running at higher rates contribute higher values

to the application (e.g. increasing the sampling rate of a digital controller improves

the control performance). Our framework can benefit Supervisory Control and Data

Acquisition (SCADA) systems which provide monitoring and control functions that

are inherently periodic at geographically distributed sites.

The rest of the chapter is organized as follows. Section 7.2 describes the design of

the FC-ORB architecture. Section 7.3 presents the experimental results. Section 7.4

summaries the chapter.

7.2 Design of the FC-ORB Architecture

In this section, we first introduce the end-to-end task model and scheduling framework

supported by FC-ORB. We then describe the main components of FC-ORB: the end-

to-end ORB service, the utilization control service, and the adaptive fault-tolerance

mechanisms.

105

7.2.1 Applications

FC-ORB supports an end-to-end task model [55] employed by many DRE applica-

tions. An application is comprised of m periodic tasks {Ti|1 ≤ i ≤ m} executing on n

processors {Pi|1 ≤ i ≤ n}. Task Ti is composed of a chain of subtasks {Tij|1 ≤ j ≤ ni}
which are implemented as a sequence of object operations on different processors.1

A subtask may be executed by one or more operation requests on a same processor.

The invocation of a subtask Tij(1 < j ≤ ni) is triggered by its predecessor Tij−1

through a remote operation request. A non-greedy synchronization protocol called

release guard [91] is used to ensure that the interval between two consecutive releases

of the same subtask is not less than its period. Hence, all the subtasks of a periodic

task share the same rate as the first subtask. In FC-ORB, the rate of a task (and all

its subtasks) can be adjusted by changing the rate of its first subtask. An example

DRE application with two end-to-end tasks running on three processors is shown in

Figure 7.1.

Our application model has two important properties. First, while each subtask Tij

has an estimated execution time cij available at design time, its actual execution time

may be different from its estimation and may vary at run-time. Such uncertainty is

common for DRE systems operating in unpredictable environments. Second, the rate

of a task Ti may be dynamically adjusted within a range [Rmin,i, Rmax,i]. This assump-

tion is based on the fact that the task rates in many DRE applications (e.g., digital

control [64][83], sensor update, and multimedia [10]) can be dynamically adjusted

without causing system failure. A task running at a higher rate contributes a higher

value to the application at the cost of higher utilization. For instance, although a

digital control system usually has better control performance when it executes at a

higher rate, it can usually remain stable when executing at a lower rate.

Each task Ti is subject to an end-to-end soft deadline related to its period. FC-ORB

implements the end-to-end scheduling approach [91] to meet task deadlines. The

deadline of a task is divided into subdeadlines of its subtasks [42][66]. The release

guard protocol is used to synchronize the execution of subtasks such that each subtask

can be modeled as a periodic task. Hence, the problem of meeting the deadline is

1FC-ORB can be extended to support a more general task model in which a task is composed of
a graph of subtasks[55].

106

P
3

Remote

operation

request

Subtask
T
21

T
22

P
1
 P
2

T
11

T
12

T
13

P
3

Remote

operation

request

Subtask
T
21

T
22

P
1
 P
2

T
11

T
12

T
13

Figure 7.1: An example DRE application

I/O SUBSYSTEM

ORB CORE

CONNECTOR

REACTOR

APPLICATION

REACTOR

CONNECTOR

I/O

SUBSYSTEM

ORB CORE

APPLICATION

REACTOR

ACCEPTOR

I/O SUBSYSTEM

ORB CORE

ACCEPTOR

REACTOR

APPLICATION

REACTOR

ACCE

PTOR

CONNE

CTOR

T
11

T
12
T
21

T
22
 T
13

Periodic

Timer

One-Shot

Timers

FIFO Waiting

Queue

Thread

Figure 7.2: FC-ORB’s end-to-end architecture

transformed to the problem of meeting the subdeadline of each subtask. A well known

approach for meeting the subdeadlines on a processor is to ensure that its utilization

remains below its schedulable utilization bound [50][54]. Therefore the end-to-end

scheduling approach enables FC-ORB to meet end-to-end deadlines by controlling

the utilizations of all processors in the system.

7.2.2 Middleware Support for End-to-End Tasks

Implementation of End-to-End Tasks

Figure 7.2 illustrates the FC-ORB implementation of the example DRE application

shown in Figure 7.1. Each subtask is executed by a separate thread whose priority

is decided by a priority manager. In Figure 7.2, each dashed box spanning from the

107

application layer to the ORB core layer represents a subtask in Figure 7.1. Every

subtask is associated with a separate Reactor [77] to create timeout events and to

manage communication connections.

As shown in Figure 7.2, the first subtask of a task is implemented with a periodic

ACE timer, a Reactor, and a Connector [78] . The ACE Connector framework is

used to decouple communication initialization from application-specific tasks that

communication services perform once initialization is complete. Connector can be

configured with different IPC mechanisms to support communication in different dis-

tributed applications. The ACE Reactor framework is an extensible, object-oriented

demultiplexer that dispatches events to application-specific handlers. It can support

I/O-based, timer-based, signal-based, and synchronization-based events. It simplifies

the development of event-driven programs for many distributed applications. The

timer periodically triggers a local operation (e.g., a method of an object) which im-

plements the functionality of this subtask. Following the execution of this operation,

a one-way remote operation request is pushed through the Connector to the succeed-

ing subtask that is located on another processor. The succeeding subtask employs

an Acceptor [78] to accept the request from its preceding subtask. Each pair of Con-

nector and Acceptor maintains a separate TCP connection to avoid priority inversion

in the communication subsystem. The release guard protocol enforces to be the in-

terval between two successive invocations of a same subtask is bounded below by its

period. Earlier research has shown that the release guard protocol can effectively

reduce the end-to-end response time and jitter of tasks in DRE systems [91]. FC-

ORB implements the release guard protocol with a FIFO waiting queue and one-shot

ACE timers. Upon receiving a remote operation request, a subtask compares the

current time with the last invocation time of this operation. Based on the release

guard rules [91], the subtask either immediately invokes the requested operation or

enqueues this request to the waiting queue if the request arrives too early. When the

request is enqueued, a one-shot ACE timer is registered with the Reactor to trigger

the requested operation at the time that equals the last invocation time plus the

task’s period. After the one-shot timer fires and the enqueued request is served, a

remote operation request is sent to the next subtask in the end-to-end task chain.

An end-to-end real-time task is completed when the execution of its last subtask is

completed.

108

Priority Management

The integration of end-to-end scheduling and utilization control introduces new chal-

lenges to the design of scheduling mechanisms in ORB middleware. For instance, the

rate adaptation mechanism adopted by FC-ORB and several other projects [58][60]

may dynamically change the rates of end-to-end tasks. This may cause the middleware

to change the priorities of all its subtasks, e.g., when the Rate Monotonic Scheduling

(RMS) policy is used. To satisfy the special requirements posed by rate adaptation

and end-to-end scheduling, our ORB service is configured with the server-declared

priority model [82] and the thread-per-subtask concurrency architecture.

To support the server-declared priority model, FC-ORB implements a priority man-

ager on each processor to assign priorities to local subtasks. The incoming requests

from another processor are served by a thread with a real-time priority dictated by

the priority manager located on the host processor. Currently the priority manager

only supports the RMS policy, although the following discussions are also applicable

to other rate- or deadline-dependent scheduling policies (note that task deadlines are

usually related to their periods). There are several advantages of using server-declared

priority model in the FC-ORB system. First, each processor is able to change thread

priorities locally, based on the current rates of the subtasks located on it, so a proces-

sor only needs to know the local subtasks. This makes the system more scalable to

large applications. Moreover, the server-declared model has less overhead because it

does not have to adjust a thread’s priority every time the priority of its predecessor

subtask is changed, as it would do with the client-propagated model.

The thread-per-priority concurrency architecture has been adopted in existing DRE

middleware (e.g., [81]). In this model,the same thread is responsible for executing all

subtasks with a same priority. This is because the workload is assumed to use only

a limited number of fixed task rates. However, this concurrency architecture is not

suitable for rate adaptation. Due to rate adaptation, the rates and thus the priorities

of subtasks vary dynamically at run-time. In such situations, the thread-per-priority

architecture would require the ORB to dynamically move a subtask from one thread

to another thread which can introduce significant overhead.

109

To avoid this problem FC-ORB implements the thread-per-subtask architecture that

executes each subtask with a separate thread. FC-ORB adjusts the priorities of the

threads only when the order of the task rates is changed. While the task rates may

vary at every control period, the order of task rates often changes at a much lower

frequency. Therefore, the thread-per-subtask architecture enables FC-ORB to adapt

task rates in a more flexible way, with less overhead.

A potential advantage of the thread-per-priority architecture is that it may need

fewer threads to execute applications. However, as FC-ORB is targeted at memory-

constrained networked embedded systems that commonly have limited number of

subtasks on a processor, each subtask can be easily mapped to a thread with a unique

native thread priority even in a thread-per-subtask architecture.

7.2.3 End-to-End Utilization Control Service

FC-ORB allows users to specify a set of application parameters in a configuration file

that is used to initialize the middleware when the system is started. Configuration

parameters include the desired CPU utilization on each processor and the allowed

range of rate for each real-time task. The utilization control service dynamically en-

forces the desired CPU utilizations on all processors by adapting the rates of real-time

tasks within the specified ranges, despite significant uncertainties and fluctuation in

system workload and platform. Therefore, to meet end-to-end deadlines, the appli-

cation users only need to specify the utilization reference of each processor to a value

below its schedulable utilization bound.

In the rest of this subsection, we first give an overview of the feedback control loop

of the utilization control service, and then describe each component of the loop in

detail.

Feedback Control Loop

The utilization control service implements the EUCON algorithm [60] as a distributed

feedback control loop in the middleware. As shown in Figure 7.3, the feedback control

110

loop is composed of a utilization monitor, a rate modulator and a priority manager

on each processor, and a centralized controller.

The feedback control loop is invoked at the end of every sampling period. It works

as follows: (1) the utilization monitor on each processor sends its utilization in the

last sampling period to the controller; (2) the controller collects the utilizations from

all processors, computes the new task rates, and sends the new task rates to the rate

modulators on all processors where the tasks are running; (3) the rate modulators

on processors that host the first subtasks of tasks change the rates of the first sub-

tasks according to the input from the controller; and (4) the priority manager on

each processor check and adjust the thread priorities based on the new task rates if

necessary.

The controller computes the new task rates using a Model Predictive Control (MPC)

algorithm. The control algorithm solves at every time step an optimization problem

that minimizes the difference between the desired and the actual utilizations subject

to the task rate constraints. The optimization problem is a constraint least-square

problem that can be solved efficiently using quadratic programming. Assuming that

the optimization problem is feasible, i.e. there exist task rates that satisfy the uti-

lization bounds, the stability of the controller can be formally analyzed and provide

statistical guarantees for the schedulability of the system. Details can be found in

[60].2

As shown in Figure 7.3, the three components of the feedback control loop on an

application processor (i.e., a processor executing applications and the ORB) are ex-

ecuted by a separate thread called the control thread. This control thread has the

highest priority in the middleware system so that the feedback control loop can be

executed in overload conditions, when it is needed most. The controller is imple-

mented as an independent process that can be deployed on a separate processor or on

an application processor. The controller also serves as a coordinator of the FC-ORB

system. Every application processor in the system tries to connect with the controller

through a TCP connection (called feedback lane) when the node is started. Once all

2We note that, as the feedback control loop is designed to control the average utilization within
each sampling period, transient deadline misses may occur during a sampling period. Therefore
FC-ORB can only provide a statistical guarantee on utilization and deadlines.

111

Feedback lane

Remote request lanes

Priority

Manager

Rate

Modulator

Model

Predictive

Controller

Remote request lanes

Utilization

Monitor

)
(

)
(

)
(

3

2

1

k
u

k
u

k
u

Controlled

Variables

)
(

)
(

2

1

k
r

k
r
Control

Input

Priority

Manager

Rate

Modulator

Utilization

Monitor

Priority

Manager

Rate

Modulator

Utilization

Monitor

Feedback lane

Remote request lanes

Priority

Manager

Rate

Modulator

Model

Predictive

Controller

Remote request lanes

Utilization

Monitor

)
(

)
(

)
(

3

2

1

k
u

k
u

k
u

Controlled

Variables

)
(

)
(

2

1

k
r

k
r
Control

Input

Priority

Manager

Rate

Modulator

Utilization

Monitor

Priority

Manager

Rate

Modulator

Utilization

Monitor

One
-
shot

timers

Periodical

timers

Control

thread

Application

thread

One
-
shot

timers

Periodical

timers

Control

thread

Application

thread

1

2

3

4
 4
 4

Figure 7.3: The distributed feedback control loop of the utilization control service

application processors are connected to the controller, the whole system starts to run

the configured application.

Control Components

We now present the details of each utilization control component.

Controller: The controller is implemented as a single-thread process. It employs a

Reactor to interact with all processors in the system. Each time its periodic timer

fires, it sends utilization requests to all application processors through the feedback

lanes. The incoming replies are registered with the Reactor as events to be handled

asynchronously. This enables the controller to avoid being blocked by an overloaded

application processor. After it collects the replies from all processors, it executes

a MPC algorithm proposed in [60] to calculate the new task rates. Then, for each

task whose rate needs to be changed, the controller sends the task’s new rate to all

processors that host one or more subtasks of the tasks whose rates have been changed.

If a processor does not reply in an entire control period, its utilization is treated as

100%, as the controller assumes this processor is saturated by its workload.

112

Utilization Monitor: The utilization monitor uses the /proc/stat file in Linux to

estimate the CPU utilization in each sampling period. The /proc/stat file records

the number of jiffies (usually 10ms in Linux) when the CPU is in user mode, user

mode with low priority (nice), system mode, and when used by the idle task, since

the system starts. At the end of each sampling period, the utilization monitor reads

the counters, and estimates the CPU utilization as 1 minus the number of jiffies used

by the idle task in the last sampling period divided by the total number of jiffies in

the same period.

Rate Modulator: A Rate Modulator is located on each processor. It receives the

new rates for its remote invocation requests from the controller through the feedback

lane, and resets the timer interval of the first subtask of each task whose invocation

rate has been changed.

Priority Manager: All processors in FC-ORB assign priorities to their subtasks

based on a real-time scheduling algorithm (e.g., RMS). It is important to strictly

enforce the scheduling algorithm to achieve desired real-time performance. However,

as a result of rate adaptation, a task with a rate higher than another task could

be assigned a lower rate in the next sampling period. Consequently, the priority of

this task has to be adjusted at run-time. The priority manager on each processor

checks the rate order of all subtasks on this processor. If the rate order of two or

more subtasks is reversed, the priority manager reassigns the correct priorities for the

threads of those subtasks.

7.2.4 Fault Tolerance

A robust DRE middleware must maintain both reliability and real-time properties

required by the applications despite partial system failure. Traditional fault-tolerance

mechanisms usually focus on reliability aspects of the system based on entity redun-

dancy. No single point of failure, transparent failover and transparent redirection, and

reinvocation are among the requirements of a fault-tolerant ORB [32]. However, less

attention has been paid to maintaining desired real-time properties in the presence

of faults.

113

Before describing the fault tolerance techniques in FC-ORB, we first introduce the

fault model. FC-ORB is designed to handle one or more persistent processor fail-

ures. The fault model, known as fail-stop processors, is very important and has been

considered extensively in the design of fault-tolerant computing systems [76][26]. We

assume that the communication between the remaining processors does not fail and

the network is not overloaded. This is a reasonable assumption for a common class

of DRE systems with processors connected by a switched/fast Ethernet LAN with

sufficient bandwidth. It should be noted that our utilization control service can be

integrated with more sophisticated fault detection and recovery techniques to handle

more complex fault models.

FC-ORB improves system robustness in terms of both reliability and real-time proper-

ties by integrating three complementary mechanisms. First, FC-ORB provides repli-

cation for subtasks and supports transparent failover to backup subtasks located at

different processors in face of processor failure. Second, after a processor fails, the re-

maining processors may experience dramatic workload increase due to the activation

of the backup subtasks, which may cause them to miss deadlines or fail. A unique

feature of FC-ORB is that it can effectively handle the workload increase via uti-

lization control so that applications can maintain desired real-time properties despite

processor failure. Finally, the FC-ORB controller can automatically reconfigure itself

at runtime to rebuild its control model, in order to effectively control the DRE system

whose deployment is changed due to processor failure.

In our replication mechanism, a subtask may have a backup subtask located on a

different processor. For example, the subtask T13 shown in Figure 7.1 can have a

backup subtask T ′13 located on processor P1. As a result, when processor P3 fails

because of hardware failure, the execution of subtask T13 is migrated to processor P1

to continue automatically. Similar to the COLD PASSIVE replication style used in

Fault-Tolerant CORBA (FT-CORBA) [32], all subtasks are assumed to be stateless

(except the connections between subsequent subtasks which are maintained by the

middleware) so that the overhead of active state synchronization is avoided.

The failover mechanism works as follows. In the normal mode, each subtask pushes

remote operation requests only to the primary instance of its successor. As a re-

sult, the backup instance does not receive any requests and its thread remains idle.

114

After a processor fails, the predecessor of a subtask located on the failed processor

detects the communication failure based on the underlying socket read/write errors.

The predecessor immediately switches the connection to the backup instance of its

successor and sends the remote operation requests to it. In the case when the failed

processor hosts the first subtask of a task, the controller activates the backup instance

of the subtask. Consequently, the execution of the end-to-end tasks is resumed after

a transient interruption.

As a part of the fault-tolerant support, the controller in the utilization control service

has been designed to be self-configurable. This is important because the control

algorithm relies on knowledge about the subtask allocation in order to compute correct

task rates [60]. When the controller detects communication failure with a processor

in the system, it first cancels the periodic timer to pause the feedback control loop.

In its internal control model, it then removes the failed processor and moves the

subtasks located on the failed processor to the corresponding backup processors. After

rebuilding the control model, the controller re-initializes itself and restarts the timer

to resume the feedback control loop.

A disadvantage of the centralized control scheme is that the controller becomes a

single point of failure. To mitigate this problem, FC-ORB can be easily extended

to replicate the controller as well. In this extension, FC-ORB can actively maintain

state consistency between the primary controller and the backup controller, in a

way similar to the ACTIVE replication style used in FT-CORBA [32]. When the

controller executes in replicated mode, all processors send their CPU utilizations

to both the primary and the backup controllers at every sampling instant. The

backup controller performs control computation just like the primary controller. The

difference is that the backup controller does not send the resultant new task rates

to any processor. Instead, it uses this method to keep the state variables in the

backup controller consistent with the primary controller. The primary and backup

controllers can exchange heartbeat messages in every sampling period. Once the

backup controller stops receiving heartbeats from the primary controller, the backup

controller takes over the utilization control service. This feature will allow FC-ORB

to maintain control of the entire system even after controller failures.

115

7.2.5 Implementation

FC-ORB 1.0 has been implemented in C++ using ACE 5.4 on Linux. FC-ORB is

based on the FCS/nORB middleware [58] which integrates a single-processor feedback

control scheduling service and a light-weight real-time ORB middleware called nORB

[90]. FC-ORB is specialized for memory-constrained DRE systems by supporting

a smaller set of features than general-purpose DRE middleware such as TAO. The

entire FC-ORB middleware (excluding the code in ACE library and IDL library) is

implemented in 7017 lines of C++ code. The controller is implemented in 2089 lines

of C++ code and a dynamically linked library that implements the constrained least

square solver. We use MATLAB Compiler to create the dynamically linked library

from lsqlin.m in the MATLAB . At the end of each sampling period, the controller

collects the utilizations from application processors and calls the lsqlin function in the

dynamically linked library with the utilizations as parameters. The lsqlin function

computes the control input and returns it to the controller. All the code is open-source

and can be downloaded from http://deuce.doc.wustl.edu/FCS nORB/FC-ORB/.

7.3 Empirical Evaluation

In this section, we present the results of five sets of experiments run on a distributed

testbed with five machines. Experiments I and II evaluate FC-ORB’s performance

when task execution times deviate from their estimations and change dynamically

at run-time, respectively. Experiment III examines FC-ORB’s capability to handle

disturbances from external workloads. Experiment IV tests FC-ORB’s robustness in

face of processor failure. Finally, Experiment V measures the overhead introduced by

utilization control.

7.3.1 Experimental Setup

All experiments are conducted on a testbed of five machines. All applications and the

ORB service run on a Linux cluster composed of four Pentium-IV machines: Ron,

Harry, Norbert, and Hermione. Ron and Hermione are 2.80GHz, and Harry and

116

 Harry

 Ron

 Norbert

Hermione

1_1

2_1

1_4

1_3

1_2

2_2

3_1
 3_2

4_1

4_2

4_3

5_1

5_2

5_3

6_1

6_2

6_3

7_1

7_2

8_1

8_2

12_1

10_1

9_1
 11_1
1_3

3_2

5_3

7_2

 Normal subtask T
ij

 Backup subtask T'
ij

i_j

i_j

Figure 7.4: A medium size workload

Norbert are 2.53GHz. All four machines are equipped with 512KB cache and 512MB

RAM, and run KURT Linux 2.4.22. The controller is located on another Pentium-

IV 2.53GHz machine with 512KB cache and 512 MB RAM. The controller machine

runs Windows XP Professional. The four machines in the cluster are connected

via an internal switch and communicate with the controller machine through the

departmental 100Mbps LAN.

All the experiments run a medium-sized workload that comprises 12 tasks (with a

total of 25 subtasks). The tasks include 8 end-to-end tasks (tasks T1 to T8) and 4

local tasks. Figure 7.4 shows how the 12 tasks are distributed on the 4 application

processors. A processor failure incident on Norbert is emulated in Experiment IV

to test FC-ORB’s fault-tolerance capability. Hence in Figure 7.4, we also show the

configured backup subtasks for all subtasks on Norbert that belong to an end-to-end

task. There is no backup subtask for local task T11,1 as we assume that the local task

is specific to Norbert.

The subtasks on each processor are scheduled by the RMS algorithm [54]. Each task’s

end-to-end deadline is di = ni/ri(k), where ni is the number of subtasks in task Ti and

117

ri(k) is the current rate of Ti. Each end-to-end deadline is evenly divided into sub-

deadlines for its subtasks. The resultant subdeadline of each subtask Tij equals its pe-

riod, 1/ri(k). Hence the schedulable utilization bound of RMS [54], B = m(21/m− 1)

is used as the utilization set point on a processor, where m is the number of sub-

tasks (including backup subtasks) on this processor. Specifically, the utilization set

points for the four experiment processors are: Ron (72.4%), Harry (72.4%), Norbert

(74.3%), and Hermione (72.4%). All (sub)tasks meet their (sub)deadlines if the de-

sired utilization on every processor is enforced. The sampling period of the utilization

control service is Ts = 4 seconds.

To evaluate the robustness of FC-ORB when execution times deviate from the esti-

mations, the execution time of each subtask Tij can be changed by tuning a parameter

called the execution-time factor, etfij(k) = aij(k)/cij, where aij is the actual execution

time of Tij. The execution time factor (etf) represents how much the actual execution

time of a subtask deviates from the estimation. The etf (and hence the actual execu-

tion times) may be kept constant or changed dynamically in a run. In the following

we use inversed etf (ietf,specifically, ietfij(k) = 1/etfij(k)) because DRE systems

commonly have undesired oscillation when execution times are underestimated (i.e.

etf > 1).

We compare FC-ORB against a baseline called OPEN. In OPEN, the utilization con-

trol service of FC-ORB is turned off and the middleware becomes a representative

real-time ORB without control. OPEN uses a typical open-loop approach to as-

sign task rates based on estimated execution time to achieve the desired utilizations.

OPEN results in desired utilization when estimated execution times are accurate

(i.e.,ietf = 1). However, it causes underutilization when execution times are overes-

timated (i.e., ietf > 1), and over-utilization when execution times are underestimated

(i.e., ietf < 1). This is a common problem faced by application developers because

it is often difficult to estimate a tight bound on execution times, especially in unpre-

dictable environments where execution times are heavily influenced by the value of

sensor data or user input.

118

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

(a) ietf = 0.5

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry

norbert hermione

(b) ietf = 4

Figure 7.5: CPU utilizations under FC-ORB when task execution times deviate
from estimations

7.3.2 Experiment I: Uncertain Execution Times

In this subsection, we evaluate FC-ORB’s performance when task execution times

deviate from the estimations. In each run of this experiment, all subtasks share a

fixed execution-time factor (ietf).

First, we run experiments for OPEN which chooses task rates based on estimated

execution times so that the estimated utilizations of all processors equal their set

points. While the system achieves the desired utilizations in the ideal case when

ietf = 1, all processors freeze when we set the ietf to 0.5. This is not surprising,

because the actual execution time of every subtask in the system is twice its estimated

119

execution time when ietf = 0.5. Consequently, the requested utilization on each

processor is about 145% (twice of the desired utilization). Since all FC-ORB threads

run at real-time priorities that are higher than the kernel priority on Linux, no kernel

activities are able to execute causing the system to crash. This result shows that

uncertainties in workloads can significantly degrade the robustness of applications

on DRE middleware. On the other hand, the utilizations of all processors drop to

only around 18% under OPEN when the actual execution times are only a quarter

of their estimations (ietf = 4). This results in a extremely underutilized system and

unnecessarily low task rates.

In contrast, FC-ORB achieves the desired utilizations on all processors even when

execution times deviate significantly from the estimations. Figure 7.5(a) shows the

utilizations when the average execution time of every subtask is twice its estimation.

In the beginning, all processors are overutilized because of the initial task rates. The

utilization control service quickly decreases the task rates until the utilizations of all

processors converge to the desired levels in around 400 seconds. Figure 7.5(b) shows

the utilizations of all processors when the execution time of every subtask is severely

overestimated (ietf = 4). In this case, all processors are initialized underutilized

due to the low execution times. FC-ORB then increases the task rates until the

utilizations of all processors converge to the set points roughly at 500 seconds. In

this experiment, the utilization control service successfully prevents the system from

crashing and underutilization via rate adaptation.

To examine FC-ORB ’s performance under different execution time factors, we plot

the mean and standard deviation of utilizations of all processors during each run in

Figure 7.6. Every data point is based on the measured utilization u(k) from time 1200

seconds to 1600 seconds to exclude the transient response at the beginning of each

run. FC-ORB consistently achieves the desired utilizations for all tested execution-

time factors within the ietf range [0.5, 4] which corresponds to eight times variation

in execution times. The results show that FC-ORB can enhance system reliability

and achieve robust real-time performance under a wide range of operating conditions.

Interestingly, when the ietf is lower or equal to 0.33, the system freezes due to the

extremely high utilization in the beginning of the run. Even though the control thread

runs at highest real-time priority, the communication subsystem of Linux runs only at

kernel priority. Therefore, the control thread of FC-ORB is blocked on communication

120

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

(a) Ron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

(b) Harry

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

(c) Norbert

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
PU

 u
ili

za
tio

n

Inversed execution time factor (ietf)

Deviation
Average
Set point

(d) Hermione

Figure 7.6: CPU utilizations of all processors under different execution-time factors

because the Linux kernel is preempted by the middleware threads. As a result, the

system fails to recover promptly from overload when the ietf is equal to or lower than

0.33, even with the help of FC-ORB. In addition, as observed in [60], the EUCON

algorithm can cause performance oscillation when execution times are underestimated

(ietf < 1). Therefore, application developers should use pessimistic estimations of

task execution times in FC-ORB . A fundamental advantage of FC-ORB is that it

does not cause system underutilization even when task execution times are severely

overestimated.

121

However, we note that some processors fail to reach the utilization set points when ietf

is equal to or larger than 5. This is because the achievable utilizations are limited

by the task rate constraints. For example, when ietf is 6, even though the rates

of all subtasks on Norbert are adjusted to the maximum values, the utilization of

the processor remains below the utilization set point. Note that this is the desired

behavior, i.e., task rates are maximized when the system is underloaded.

7.3.3 Experiment II: Varying Execution Times

The second set of experiments tests FC-ORB’s ability to maintain robust real-time

performance when task execution times vary dynamically at run-time. To investigate

the robustness of FC-ORB we create two scenarios of workload fluctuation. In the

first set of runs, the average execution times on all processors change simultaneously.

In the second set of runs, only the execution times on Ron change dynamically, while

those on the other processors remain unchanged. The first scenario represents global

load fluctuation, while the second scenario represents local fluctuation on a part of

the system.

Figure 7.7(a) shows a typical run of OPEN under global workload fluctuation. The

ietf is initially 2. At 600 seconds, it is decreased to 1.33, which corresponds to a

50% increase in the execution times of all subtasks. At time 1000sec, the ietf is

increased to 3 to emulate a 56% decrease in execution times. OPEN fails to achieve

the desired utilizations due to the lack of dynamic adaptation. In sharp contrast to

OPEN, FC-ORB effectively maintains the desired utilizations on all processors under

the same workload. As shown in Figure 7.7(b), the ietf changes to 1.33 at 600 seconds

such that all processors are suddenly overloaded. FC-ORB responds to the overload

condition by decreasing task rates which causes the utilizations on all processors to re-

converge to their set points within 100 seconds (25 control periods). At 1000 seconds,

the utilizations on all processors drop sharply due to the 56% decrease in execution

times, causing FC-ORB to dramatically increase task rates until the utilizations re-

converge to their set points.

In each run with local workload fluctuation, as shown in Figure 7.7(c), the ietf on

Ron follows the same variation as the global fluctuation, while all the other processors

122

0

0.2

0.4

0.6

0.8

1

0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron
 harry

norbert
 hermione

(a) OPEN with global fluctuation

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

(b) FC-ORB with global fluctuation

0

0.2

0.4

0.6

0.8

1

0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron
 harry

norbert
 hermione

(c) OPEN with local fluctuation

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

(d) FC-ORB with local fluctuation

Figure 7.7: CPU utilizations of all processors when execution times fluctuate at
run-time (ietf = 2)

123

have a fixed ietf of 2. As shown in Figure 7.7(d), under FC-ORB the utilization of

Ron converges to its set point after the significant variation of execution times at

600 seconds and 1000 seconds, respectively. We also observe that the other proces-

sors experience only slight utilization fluctuation after the execution times change on

Ron. This result demonstrates that FC-ORB effectively handles the interdependen-

cies among processors during rate adaptation.

7.3.4 Experiment III: External Disturbances

We now evaluate FC-ORB under resource contention from external workloads that

are not controlled by FC-ORB. Such external disturbances may be caused by a va-

riety of sources including (i) processing of critical events that must be executed at

the cost of other tasks, (ii) varying workload from a different subsystem (e.g., legacy

software from a different vendor), and (iii) software faults or adversarial cyber at-

tacks. To stress-test FC-ORB, we emulate the external disturbances using a high

priority real-time process to compete with FC-ORB for CPU resource. To investigate

the robustness of FC-ORB we create both periodic and aperiodic disturbances. In

the first set of runs, the external process periodically invokes a function with a fixed

execution time of 100ms every 500ms. In the second set of runs, the external process

aperiodically invokes another function with a random execution time. Both the re-

quest interarrival time and the execution time follow exponential distributions with

mean values of 50ms and 10ms, respectively.

The workload controlled by FC-ORB has an ietf = 2. Here we manually configure

the task rates in OPEN such that the workloads achieve the desired utilizations with-

out the external disturbances. As shown in Figure 7.8(a), the system does achieve the

required performance initially. However, at time 240sec, 360sec, 480sec and 600sec,

the external task is activated sequentially on Ron, Harry, Norbert and Hermione.

Consequently, the utilizations of all processors are raised to 100%. In contrast to

OPEN, Figure 7.8(b) shows that FC-ORB successfully maintains the desired utiliza-

tions and thus tolerates the external resource contention. Similar situations occur

for aperiodic disturbance, except that in this case, both OPEN and FC-ORB have

higher fluctuation. Despite noise introduced by the aperiodic requests, FC-ORB still

124

0

0.2

0.4

0.6

0.8

1

0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron
 harry

norbert
 hermione

(a) OPEN with periodic disturbance

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

(b) FC-ORB with periodic disturbance

0

0.2

0.4

0.6

0.8

1

0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron
 harry

norbert
 hermione

(c) OPEN with aperiodic disturbance

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

(d) FC-ORB with aperiodic disturbance

Figure 7.8: CPU utilizations of all processors under external disturbances (ietf = 2)

125

successfully maintains the CPU utilization under 80% most of the time and achieves

the desired CPU utilizations on average.

7.3.5 Experiment IV: Processor Failure

In this experiment, we evaluate FC-ORB’s ability to recover from processor failure.

At 800 seconds, we emulate the failure of Norbert by using the Linux kill command to

eliminate the process which carries FC-ORB and the application. The CPU utilization

of Norbert immediately drops to almost zero because no other application is running

on Norbert. All subtasks on Norbert have backup subtasks located on other processors

as shown in Figure 7.4, except the local task T11,1. Their preceding subtasks on

other processors detect the communication failure with Norbert and then redirect

the remote operation requests to the backup subtasks. Hence, the load of Norbert is

distributed to the other 3 processors in the system.

As demonstrated in Figure 7.9, the CPU utilizations of the other 3 processors increase

simultaneously after the failure of Norbert. At the same time, the controller on the

control processor re-configures itself to rebuild its control model after it detects the

communication failure with Norbert. Thanks to the utilization control service, the

high utilizations on the other 3 processors quickly converge to the desired utilization

bounds within 100 seconds so the desired end-to-end real-time performance is ensured.

Our results demonstrate that the system successfully recovers from a processor failure

and the utilization of the remaining processors converges to a desirable state that

ensures the real-time properties of the end-to-end application.

Fault injection using the kill command allows us to focus on the robustness of the

utilization control service rather than the error detection method. Error detection

is a complementary problem to the FC-ORB adaptation for error recovery. Our

experimental evaluation of the FC-ORB robustness can be extended to more realistic

processor crash failures assuming an appropriate error detection method. The time

required for error recovery will include both the time needed for error detection and

the convergence of the utilization control service. Formally evaluating the availability

of the distributed application requires the definition of an appropriate benchmark

[65], and is a subject of future work.

126

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry norbert hermione

Figure 7.9: CPU utilizations of all processors while Norbert has a system failure
(ietf = 2)

7.3.6 Experiment V: Overhead

The utilization control service necessarily introduces overhead. This overhead is

caused by several factors including the timers associated with FC-ORB, the uti-

lization monitoring, the control computation, the rate enforcement and the thread

priority adjustment. Utilization control is a viable middleware service only if the

overhead it introduces is sufficiently low. To measure the overhead accurately, we

adopt a time stamping approach. Firstly, we differentiate all control service related

code from other FC-ORB code. Then, time stamps are taken at the starting point

and at the finishing point of each segment of the control service code to get the ex-

ecution time of the control service. Since the utilization control service runs at the

highest Linux real-time priority, the code segment between two timestamps will not

be preempted during its execution. Hence, the time-stamped result accurately reflects

the real execution overhead.

To achieve fine grained measurements, we adopt a nanosecond scale time measuring

function called gethrtime. This function uses an OS-specific high-resolution timer

that returns the number of clock cycles since the CPU was powered up or reset. The

gethrtime function has a low overhead and is based on a 64 bit clock cycle counter

on Pentium processors. With the clock counter number divided by the CPU speed,

we can get reasonably precise and accurate time measurements.

Table 7.1 lists the average and standard deviation of the overhead of the utilization

monitor, the actuator (including the rate modulator and the priority adjuster) and

127

Table 7.1: Overhead of utilization control

Monitor (ms) Actuator (ms) Controller (ms)
Processor Avg Dev Avg Dev Avg Dev
Ron 0.090 0.013 19.078 18.160
Harry 0.096 0.013 34.389 33.305
Norbert 0.094 0.012 39.460 37.223
Hermione 0.088 0.013 27.924 25.951
Controller 5.765 0.219

the controller of the utilization control service. All results in the table are obtained

from over 600 continuous sampling periods. The overhead of the utilization monitor

is very low because it just executes around 20 lines of code to read the utilization

data from the Linux system file /proc/stat.

The actuator has the dominant overhead because it involves relatively more compli-

cated operations. The rate modulator and the priority manager are the two main

contributors to the actuating overhead. Our implementation uses the ACE function

reset timer interval to reset the timers and the ACE function thr setprio to adjust

the thread priorities in FC-ORB. In most cases, only the rate modulator is invoked to

adapt the task rates by adjusting the interval of the timers. In some periods when the

order of the task rates has been reversed, the priority manager is invoked to adjust

the priorities of the real-time threads. The overhead of adjusting thread priorities

is much larger than resetting timer intervals and so the standard deviation of the

actuating overhead is large.

To estimate the average computation overhead of the controller, we measure the

execution time of the lsqlin function in the shared library which dominates the com-

putation cost on the control processor. We call the lsqlin function for 1000 times as

a subroutine. The result is then divided by 1000 to get the execution time of a single

execution of the least square computation. As shown in Table 7.1, the overhead of

the controller is stable with small deviation and its amount is between that of the

monitor and the actuator. Overall, the execution time overhead of all control com-

ponents in our experiments is around 46ms per sampling period, corresponding to

1.15% utilization given a sampling period of 4 seconds.

128

7.4 Summary

In summary, we have designed and implemented FC-ORB, a real-time ORB mid-

dleware with a novel end-to-end utilization control service. Our experiments on a

physical testbed has shown that (1) FC-ORB can enforce desired utilizations on all

processors in a DRE system, even when task execution times deviate significantly

from their estimated values or vary significantly at run-time; (2) FC-ORB can survive

considerable resource contention imposed by external disturbances; (3) FC-ORB en-

hances the robustness of real-time properties to processor failures; (4) the middleware

layer instantiation of the end-to-end utilization control service only introduces a small

amount of processing and memory overhead. These results demonstrate that the inte-

gration of end-to-end utilization control, fault-tolerance mechanisms, and end-to-end

scheduling in ORB middleware is a promising approach to achieve robust real-time

performance guarantees for DRE applications. In the future, we plan to enhance FC-

ORB to incorporate other adaptation mechanisms such as admission control and task

reallocation so that FC-ORB can be applied to a broader class of applications. An

important research direction is to integrate FC-ORB with advanced fault detection

and recovery in order to handle more complex fault models.

129

Chapter 8

Controllability and Feasibility

In previous chapters, we have developed several control algorithms and robust mid-

dleware systems for utilization control in DRE systems. Both control analysis and

empirical results demonstrate that the algorithms and middleware can achieve ro-

bust utilization guarantees even when task execution times deviate significantly from

the estimation or change dynamically at run-time. While previous work has shown

promise, several important issues have to be addressed, in order to provide a practical

solution to utilization control in real-world DRE systems.

An fundamental problem is guaranteeing system controllability. Controllability is

an important property of DRE systems. No control algorithm (including EUCON,

DEUCON or any other algorithms) can control a system if the system itself is un-

controllable. In utilization control, an uncontrollable DRE system is a system for

which it is impossible to find a sequence of task rates that take the utilizations of all

processors in the system to certain utilization set points specified by the applications.

As a result, some processors may become overloaded while some other processors may

be poorly utilized at the same time. This kind of workload unbalance and consequent

deadline misses may cause very serious problems in real-time systems. Along with

controllability, it is also important to investigate the feasibility problem, which is

caused by actuation constraints (e.g., rate constraints of a DRE system). A control-

lable system may still fail to achieve the desired utilization set points due to its rate

constraints. Therefore, both controllability and feasibility are very important system

properties and have to be guaranteed for DRE systems.

The contributions of this chapter are four-fold:

130

• We formulate and transform the controllability and feasibility problem to an

end-to-end task allocation problem.

• We design task allocation algorithms to ensure a system is controllable and

robustly feasible.

• We analyze the impact of workload variations on controllability and feasibility

and design efficient online algorithms to dynamically adjust task allocation.

• We present both empirical and numerical results to demonstrate the effective-

ness of our algorithms.

The rest of this chapter is structured as follows. We first formulate the controllabil-

ity and feasibility problems in Section 8.1. Section 8.2 analyzes the controllability

problem and the impact of workload variations. Section 8.3 presents our offline task

allocation algorithms. Section 8.4 presents our online allocation adjustment algo-

rithms. Section 8.5 introduces the middleware implementation of the algorithms in

the FC-ORB middleware system. Section 8.6 presents our numerical and empirical

results. Finally, Section 8.7 summarizes this chapter.

8.1 Problem Formulations

In this section, we formulate the controllability and feasibility problems.

8.1.1 Controllability Problem

In a MIMO control system, if a sequence of control input variables can be found

that take all control output variables from any initial conditions to any desired final

conditions in a finite time interval, the MIMO system is said to be controllable,

otherwise the system is uncontrollable [25]. According to control theory [24], a MIMO

system x(k + 1) = Φx(k) + Γv(k) with n control outputs [x1(k) . . . xn(k)] and m

control inputs [v1(k) . . . vm(k)] is controllable iff the rank of its controllability matrix

C = [Γ ΦΓ . . . Φn−1Γ] is n, the order of the system.

131

Definition Based on the above definition of controllability, a DRE system is control-

lable if there exists a sequence of task rates that take the utilizations of all processors

in the system to any utilization set points.

As described in Chapter 3, for a DRE system with n processors and m end-to-end

periodic tasks, the system model of the end-to-end utilization control is

u(k + 1) = u(k) + GF∆r(k) (8.1)

where F is the n ×m subtask allocation matrix and G = diag[g1 . . . gn] and gi rep-

resents the ratio between the actual utilization and its estimation. As explained in

Chapter 4, matrix G is assumed to be diag[1 . . . 1] because system gains are unknown

at design time. We will show later that system gains do not affect system control-

lability. Hence, the controllability matrix of the system model is an n × nm matrix

C = [F F . . . F].

Based on the above analysis, in order to have a controllable DRE system, we have to

guarantee the rank of its controllability matrix is n, the number of processors in the

system.

8.1.2 Feasibility Problem

While controllability is an important property of DRE systems, it alone is not enough.

As introduced in our task model, the rate of each task Ti can only be adjusted within

a range [Rmin,i, Rmax,i], namely Rmin,i ≤ ri ≤ Rmax,i, (1 ≤ i ≤ m). However, in

control theory, the condition of controllability is derived with the assumption that

there is no actuation constraints (i.e. rate constraints). Therefore, a system proved

to be controllable may still not be able to achieve the desired utilization set points,

as the task rates may saturate at the boundaries of the rate ranges.

Definition If a controllable DRE system cannot get to the set points because the

rates of one or more of its tasks saturate at the rate boundaries, we say it is infeasible

to achieve the set points for the system. Otherwise we say utilization control is feasible

for the system.

132

An effective solution to the feasibility problem is subtask allocation adjustment. For

instance, if a processor in the system remains overloaded because all its subtasks

already reach their lower rate boundaries, we may move one subtask away from the

processor so it can have less workload and then recover from the overload. While

this solution is sufficient for systems where execution times never change, it has to

be extended because execution times may vary unpredictably in real DRE systems.

As a result of the variations, a previously feasible system may become infeasible at

runtime. Since execution time variations are unpredictable, it would introduce large

runtime overhead to continuously monitor feasibility and migrate subtasks. Hence,

instead of guaranteeing a system to be feasible for certain execution times, we try

to increase the probability of the system being feasible even under variations. The

higher the probability, the less the necessity of moving subtasks later at runtime.

We first introduce several definitions.

Definition The maximum estimated utilization of processor Pi is defined as the sum-

mation of the products of the estimated execution times and the maximum allowed

rates of all subtasks on the processor. Specifically, umax,i =
∑
Tjl∈Si cjlRmax,j, where

Si represents the set of subtasks located at processor Pi. Similarly, the minimum

estimated utilization of processor Pi is defined as umin,i =
∑
Tjl∈Si cjlRmin,j.

Definition The difference between the set point of processor Pi and its maximum

estimated utilization is defined as its upper margin. Specifically, marginupper =

umax,i − Bi. Similarly, the difference between the set point and the minimum es-

timated utilization is defined as Pi’s lower margin, namely marginlower = Bi−umin,i.

To increase the feasibility probability, when the variations of execution times cause

the utilization of Pi to deviate from its set point Bi, we hope there is enough margin

that allows task rates to adapt so that the utilization can reconverge to the set point.

Hence, we want to adjust subtask allocations so that the task rates can stay as far away

from their boundaries as possible when processors settle at their set points. In other

words, we want to maximize both upper margin and lower margin for all processors in

order to maximize the probability of having a feasible system under variations. In real

DRE systems, however, the lower margin is usually more important because overload

133

is highly undesirable in DRE systems. In contrast, underutilization is typically not

a problem as it does not cause deadline misses or system crash. Therefore, in the

following, we focus on practical feasibility instead of the general feasibility defined

before.

Definition A DRE system is practically feasible if its task rate constraints allow the

utilizations of all processors to either get to the desired set points or stay below the

set points.

Definition As the lower margin has significant influence on the practical feasibility

of a DRE system under execution time variations, we define it as the feasibility margin

of the system.

If we assume that all the processors in the system have the same probability for exe-

cution time variations, the feasibility problem becomes a problem of maximizing the

smallest feasibility margin among all processors in the system. Hence, the feasibility

problem can be formulated as finding a subtask allocation to optimize the following

objective.

max(min
1≤i≤n

(|Bi − umin,i|)) (8.2)

This optimization problem is subject to two constraints. The first one is utilization

constraint. The minimum estimated utilization umin,i of each processor Pi is not

allowed to be larger than Bi, because the system is infeasible in that case. The

second one is resource constraint. As a common practical issue in DRE systems,

each subtask can only be allocated to a specific set of processors due to resource

availability. In addition, when the system is scheduled by some algorithms like RMS

[54], the set point Bi of each processor Pi is commonly a function of its number of

subtasks and so may vary when subtask allocation changes.

134

8.2 Controllability Analysis

In this section, we investigate several important aspects of controllability including

the condition for a system to be controllable, structural controllability and the impact

of common workload variations on system controllability.

8.2.1 Controllability Condition

We first analyze the controllability matrix to see how we can guarantee its rank to

be equal to the number of processors in the system.

Theorem 8.2.1 A DRE system is controllable if and only if the rank of its allocation

matrix F is n.

Proof: We prove that the rank of the subtask allocation matrix F is equal to the

rank of the controllability matrix C = [F F . . . F]. We first transform C to

a matrix C′ = [F 0 . . . 0] by subtracting every column of the first F from the

rest F’s. Since elementary transformations do not change the rank of a matrix, C

has the same rank as C′. Clearly, C′ has the same rank as F. Hence, the system is

controllable if and only if the rank of F is n.

Example The DRE system shown in Figure 7.1 is not controllable because the rank

of its subtask allocation matrix F is 2, while the order of the system is 3 (3 processors).

To be specific,

Rank(F) = Rank(




c11 c21

c12 c22

c13 0


) = 2 (8.3)

An observation from the above example is that a DRE system with n processors and

m end-to-end periodical tasks is uncontrollable if m < n. In other words, any DRE

system must have more tasks (control inputs) than processors (control outputs) in

order to be controllable. Note that m > n is a necessary but not sufficient condition

135

of controllability. When this condition is met, a system is not necessarily controllable.

However, as we will show later, we can always adjust the subtask allocation matrix

of the system to make it controllable. Hence, similar to the feasibility problem, the

controllability problem has also been transformed to a subtask allocation problem.

8.2.2 Structural Controllability

As the algorithms we are proposing are used in DRE systems, here we narrow down

our attention from complete controllability (i.e. controllability defined before) to

structural controllability [86]. A system is structurally controllable if there exists

another system which is structurally equivalent to the system and is completely

controllable [86]. Two systems are structurally equivalent if there is a one-to-one

correspondence between the locations of the fixed zeros and nonzero items in their

controllability matrices [86].

A structurally controllable system may not be completely controllable because specific

numbers could make two rows/columns of its controllability matrix become propor-

tional so its rank is smaller than the system order. In our system model, two rows are

proportional means that the subtasks on two processors belong to exactly a same set

of tasks and the execution times of corresponding subtasks are strictly proportional

to each other. Two columns are proportional means that two tasks are deployed on

exactly a same set of processors and the execution times of their subtasks on a same

processor are strictly proportional to each other. Although there is a very small prob-

ability that those situations may happen in real DRE systems, it is not worth the

unbounded computation overhead introduced by existing complex algorithms [86]. In-

stead, we adopt a conservative way to handle those situations by treating proportional

rows/columns as a single row/column. We assume that we know two tasks/processors

have proportional workload beforehand and so we require the controllability matrix to

have full rank even after removing any proportional rows/columns. The conservative

solution is sufficient for a structurally controllable system to be controllable. In the

following, we focus on structural controllability and we use controllability to mean

structural controllability.

136

Table 8.1: Impact of different workload variations

Variations Feasibility Controllability
Task arrival harmful harmless
Task termination harmless harmful
Processor failure harmless harmful
Exec time variation harmful harmless

8.2.3 Impact of Workload Variations

In real DRE systems, workload variations often happen and may change subtask

allocations which in many ways affect system feasibility or controllability. Hence, it is

necessary to investigate their possible impact on system feasibility and controllability.

In this dissertation, we focus on four common workload variations: task arrival and

task termination, processor failure, and execution time variation. In the following,

we analyze the possible impact of each type of variation on the two important system

properties. If a type of variation does not affect feasibility or controllability, we

define it as a harmless variation to feasibility or controllability. Otherwise we say

it is harmful. The categorization of harmless and harmful variations allows us to

execute our runtime adjustment algorithms only when harmful variations happen, so

we can minimize the runtime overhead.

We investigate feasibility first by finding which types of variation may reduce the

feasibility margin of a system. Clearly, any variations that increase system workload

may cause the feasibility margin to decrease. Therefore, execution time variation,

task arrival are harmful to system feasibility because they may increase the workload

of some processors in the system. Task termination reduces the workload of some

processors so it is harmless. Processor failure causes task termination so it is also a

harmless variation to system feasibility. The impact of different workload variations

on feasibility is summarized in Table 8.1.

The focus of our impact investigation is on controllability. First, controllability is a

more fundamental property of DRE systems. According to the definition of feasibility,

a system needs to be controllable first in order to be feasible. Second, unlike the

feasibility problem for which we have a margin to tolerate workload variations to some

extent, any variation may affect controllability because the variation may change the

137

rank of the allocation matrix. Third, the analysis of impact on controllability is

less intuitive than that on feasibility. As discussed in previous section, we focus on

structural controllability as it is more realistic in DRE systems.

Theorem 8.2.2 Dynamic task arrival in a DRE system is harmless to controllability.

Proof: Dynamically adding an end-to-end task in a DRE system is equivalent to

adding a new column to the subtask allocation matrix F, which does not reduce the

rank of F.

Therefore, if the system is controllable, it is still controllable after the arrival. If the

system is uncontrollable, it may become controllable after the arrival. However, the

rank of F has to be recalculated in that case.

Theorem 8.2.3 Dynamic task termination in a DRE system is harmful to control-

lability.

The proof is straightforward. Removing a column from the allocation matrix may

reduce the rank of the matrix.

Theorem 8.2.4 Processor failure is harmful to controllability if the failed processor

has more than m− n+ 2 subtasks.

Proof: Removing a processor from a DRE system is equivalent to removing a row

from the subtask allocation matrix F. Without any task migration mechanism, all

tasks having subtasks on the failed processor may terminate. The termination is

equivalent to removing several columns from the allocation matrix. If the rank of

matrix F is originally n, any of its submatrices with size as n′ × m′ has the rank

as min(n′,m′). So after the processor failure, the allocation matrix has its rank as

min(n − 1,m′). In order for the matrix to have a rank less than n − 1, we need to

have m′ ≤ n−2. Hence, we need to terminate at least m−m′ = m−n+ 2 tasks.

138

Although processor failure is harmless to controllability when the condition is not

met, we still list it as harmful in Table 8.1 to be more general.

Theorem 8.2.5 Proportional execution time variations of all subtasks on one or

more processors are harmless to controllability.

Proof: Proportional execution time variations can be modeled as the system gain

variations which are represented by the matrix G in the system model (8.1). Since

G is a diagonal matrix, multiplying G with matrix F is equivalent to using g1, . . . ,

gn to multiply the corresponding line of matrix F. These elementary transformations

do not change the rank of F.

Theorem 8.2.5 guarantees system controllability when the execution time variations

of all subtask on one or more processors can be approximated as proportional. In

addition to that, as we focus on structural controllability in this dissertation, execu-

tion time variation is harmless to controllability. The impact of different workload

variations on controllability is also summarized in Table 8.1.

8.3 Offline Task Allocation Algorithms

Both controllability and feasibility problems require us to develop novel subtask al-

location algorithms for DRE systems. We need to ensure controllability at the last

step of the algorithms, because any allocation adjustment resulted from increasing

feasibility margin could make a controllable system uncontrollable. On the other

hand, however, a careful adjustment for controllability may affect feasibility margin

only slightly. Therefore, in this section, we first introduce an algorithm to effectively

increase the system feasible margin. Based on the subtask allocation generated by

the feasibility algorithm, we then present another algorithm to ensure controllability

while minimizing its effect on feasibility margin. Note that the two algorithms are

integrated as a complete solution.

139

8.3.1 Feasibility

As suggested by Equation 8.2, the feasibility problem is related to both load balancing

[6] and variable-size bin packing [55]. It is related to the variable-size bin packing

problem because it needs to pack all subtasks to processors and the capacity of a

processor shrinks when its number of subtasks increases. It differs from bin packing

because the goal here is to balance the workload on each processor, instead of using

fewest possible processors. The problem is closer to the load balancing problem

but the difference is that we are trying to maximize the smallest feasibility margin

instead of minimizing the largest load. Clearly our problem can be reduced to the load

balancing problem which is an NP-hard problem [6]. Here we present a feasibility

algorithm which is extended from the standard Max-Min algorithm used for load

balancing [6]. The Max-Min algorithm has a good trade-off between solution quality

and computation overhead [6].

In our feasibility algorithm, we first sort all subtasks based on their minimum esti-

mated utilization, umin,jl = cijRmin,j. Then we pick the subtask with largest umin,jl

and allocate it to the processor that has the largest feasibility margin after this allo-

cation. We continue the process until all the subtasks are allocated. Note that the

allocation at each step is subject to both the utilization and resource constraints.

The utilization constraint is checked at each step when a subtask is allocated to a

processor. If the largest feasibility margin after allocating a subtask to the system

becomes negative, the algorithm fails. In that case, more advanced algorithm such

as Mixed Integer Programming may be adopted to provide a solution at a cost which

could have the same complexity as exhaustive search [6]. The resource constraints

are represented by an s × p matrix cons, where s is the total number of subtasks

in the system and p is the number of processors on which a subtask can execute.

Each element cons[Tjl, q] is the qth processor that the subtask Tjl can be allocated to.

The detailed algorithm is shown in the below pseudo code. We assume all processors

are homogeneous here, but the algorithm can be easily extended to the systems with

heterogeneous processors.

140

(1) sort all subtasks Tjl based on umin,jl and enqueue them in decreasing order
(2) while there is at least one subtask in the queue

pop up the first subtask Tjl (which has the largest umin,jl)
for each processor Pq = cons[Tjl, q + +]

if ucurrent,q + umin,jl ≤ Bq
unew,q = ucurrent,q + umin,jl

feasibility margin of Pq = Bq − unew,q
end if

end for
allocate subtask Tjl to the processor Pi with the largest feasibility margin
if Tjl cannot be allocated to any processor

algorithm fails
end while

Now we analyze the complexity of this algorithm. The complexity of step 1 is

O(s log s), where s is the total number of subtasks in the system. The complexity of

step 2 is sp, where p is the number of processors that a subtask can be allocated to.

Hence, the time complexity of the feasibility algorithm is O(max(s log(s), sp)).

8.3.2 Controllability

After our feasibility algorithm successfully allocates all subtasks, we can check the

allocation matrix F to determine whether the current workload configuration is con-

trollable. If it is controllable, the workload is accepted for deployment on the target

DRE system. Otherwise we process the workload with a controllability adjustment

algorithm to make the uncontrollable system controllable. In the controllability algo-

rithm, for every processor, we search all tasks which have subtasks on the processor

to find one task to dedicate to the processor. The task is called the dedicated task

of the processor and its subtasks on the processor are called the dedicated subtasks.

A task can only be dedicated to one processor. For those processors which fail to

find dedicated tasks, we migrate subtasks of some non-dedicated tasks from other

processors to them so they can have those tasks dedicated to them.

Theorem 8.3.1 If every processor in a system has dedicated task, the system is con-

trollable.

141

Proof: If every processor has a dedicated task, the allocation matrix can be proved

to have full rank (i.e. its rank equals the order of the system). The proof is straight-

forward. We can move the columns of the matrix so that all tasks can place their

dedicated subtasks on the diagonal of the allocation matrix. If we assume there is

no two rows/columns which are proportional to each other in the matrix, as defined

for structural controllability, a matrix has full rank if there is no zero on its diago-

nal. In other words, a system is guaranteed to have structural controllability if every

processor has dedicated task.

Note that Theorem 8.3.1 is both a sufficient and a necessary condition for struc-

tural controllability. The rationale behind dedicating tasks to processors can also be

explained from system perspective, each processor can rely on the rate adaption of

its dedicated task to achieve its utilization set point, if we assume there is no rate

constraints so task rates can be any value (even negative ones).

In our controllability algorithm, we first sort all processors based on their numbers

of subtasks. We try to start dedicating tasks to the processors with fewer subtasks

first, because that may reduce the necessity of moving subtasks later on. The second

step is used to preprocess the allocation matrix for the later dedicating step. For

every processor/task pair in the allocation matrix, we search for a candidate subtask

by assuming the processor fails to find its dedicated task and needs a subtask of the

task to be moved to the processor. Since subtask migration may affect the feasibility

margin of a system, we want to minimize the impact by moving the best candidate

subtask which has the smallest minimum estimated utilization and is allowed by the

resource constraints to run on the target processor. Hence, for every element (i.e.

processor/task pair) in the allocation matrix F , we add some piggyback information

such as the location of the best candidate. The information will speed up the search

process if a processor loses its dedicated task and needs to find a new one at runtime.

In the third step, we sort all existing subtasks on each processor based on their

minimum estimated utilization. For those previous zero elements (i.e. no subtask

exists there), we sort them based on the minimum estimated utilizations of their

best candidate subtasks. The reason for sorting them is also to speed up the search

process, which is especially important for an online solution described in Section 8.4.

Finally in the last step, we start our dedicating process. If no task can be dedicated

142

to a processor, we move the best candidate subtask of the first non-dedicated task to

the processor. This subtask is guaranteed to have the smallest minimum estimated

utilization and so should only cause small impact on the system feasibility margin.

The detailed controllability algorithm is shown in the below pseudo code.

(1) In the allocation matrix F, replace all zero elements with maximum integer
sort all processors with increasing number of subtasks

(2) for each subtask Tjl in resource constraints matrix cons
for each of its allowed processor Pq

F(q, j) = min{umin,jl, F(q, j}
best candidate subtask of F(q, j) = Tjl

end for
end for

(3) for each processor in the allocation matrix F
for all existing subtasks

sort their subtasks in the decreasing order of umin,jl
for all previous zero elements

sort their best candidate subtasks in the increasing order of umin,jl
end for

(4) for each processor Pi in the allocation matrix F
for each task Tj already having subtasks on Pi (in decreasing order)

if Tj is non−dedicated, dedicate Tj to Pi, end if
end for
if all tasks are already dedicated to other processors

for each previous zero element (in the increasing order of umin,jl)
if the task is non−dedicated

move the best candidate subtask to Pi
dedicate the task to Pi

end if
end for
if cannot find a non−dedicated task, algorithm fails , end if

end if
end for

143

Now we analyze the time complexity of this algorithm. The complexity of the four

steps are O(n log n), O(sp), O(nm logm) and O(nm), respectively. Hence, the time

complexity of the whole controllability algorithm is O(max(sp, nm logm)).

8.4 Online Allocation Adjustments

Even though the algorithms presented in the previous section can effectively prepro-

cess workloads before deployment to increase feasibility margin and guarantee con-

trollability, there are two issues we have to address. First, as the subtask allocation

matrix may change at runtime due to workload variations such as task termination,

a workload processed with the above algorithms may still become uncontrollable or

infeasible. Hence, controllability and feasibility have to be maintained at runtime as

well. Second, as analyzed in the previous section, the feasibility algorithms introduce

some computation overhead. While it is acceptable to run the two algorithms to

preprocess a workload before it is deployed to DRE systems, we need to develop more

efficient ones to incrementally adjust workload at runtime.

In this section, we present online versions of our algorithms to adjust subtask allo-

cations incrementally when certain variations happen to the system, at just a small

portion of the cost of the previous algorithms.

8.4.1 Feasibility Adjustment

According to Table 8.1, two variations may reduce the feasibility margin of a system.

In DRE systems, execution time variations are commonly unpredictable and costly

to monitor online. Therefore, as we introduced before, the feasibility margin is used

to tolerate possible execution time variations, so we do not need to address the

variations at runtime. Hence, we focus on how to adjust workload incrementally

online to minimize the impact of task arrivals on feasibility, at an acceptable cost.

Even though we may run our offline feasibility algorithm to reallocate all subtasks

every time when we have new tasks coming to the system, the large computation

144

and migration overhead makes it impossible to do so at runtime. Here we run our

feasibility algorithm only to those new tasks to have a good trade-off between feasi-

bility margin and runtime overhead. The algorithm presented in previous section will

be adopted to sort and allocate only those new arriving tasks. Hence, the computa-

tion overhead is now only O(max(qn log(qn), qnp)), where q is the number of arriving

tasks.

8.4.2 Controllability Maintenance

According to the previous theorems, there are two situations that may jeopardize the

controllability of the system: task termination and processor failure. The reason that

processor failure is harmful is that they may cause one or more tasks to terminate.

Hence, we only need to check and maintain controllability when tasks terminate,

which can be handled incrementally by the following runtime task reallocation algo-

rithm:

(1) remove the terminated task from the allocation matrix
(2) if this task is not dedicated to a processor

algorithm successfully ends
(3) else

for the processor that the terminated task was dedicated to
run step (4) of the offline controllability algorithm to find a dedicated task for it

end if

The time complexity of the controllability maintenance algorithm is O(m), where m

is the number of tasks in the system.

8.5 Middleware Implementation

Both the controllability and feasibility algorithms have been implemented in the FC-

ORB middleware system [96]. FC-ORB implements an end-to-end utilization control

algorithm and is therefore an ideal platform to demonstrate the importance of con-

trollability and feasibility in DRE systems. The two algorithms are integrated with

145

Feedback lane

Remote request lanes

Priority

Manager

Rate

Modulator

Remote request lanes

Utilization

Monitor

)
(

)
(

)
(

3

2

1

k
u

k
u

k
u
Controlled

Variables

)
(

)
(

2

1

k
r

k
r
Control

Input

Priority

Manager

Rate

Modulator

Utilization

Monitor

Priority

Manager

Rate

Modulator

Utilization

Monitor

One
-
shot

timers

Periodical

timers

Control

thread

Application

thread

Feasibility

Handler

Controllability

Handler

Model Predictive

Controller

Feedback lane

Remote request lanes

Priority

Manager

Rate

Modulator

Remote request lanes

Utilization

Monitor

)
(

)
(

)
(

3

2

1

k
u

k
u

k
u
Controlled

Variables

)
(

)
(

2

1

k
r

k
r
Control

Input

Priority

Manager

Rate

Modulator

Utilization

Monitor

Priority

Manager

Rate

Modulator

Utilization

Monitor

One
-
shot

timers

Periodical

timers

Control

thread

Application

thread

One
-
shot

timers

Periodical

timers

Control

thread

Application

thread

Feasibility

Handler

Controllability

Handler

Model Predictive

Controller

Figure 8.1: Middleware architecture of the extended FC-ORB system

the FC-ORB controller which is running on a different processor from the controlled

system. The middleware architecture of the extended FC-ORB system is shown in

Figure 8.1.

The controllability maintenance algorithm is implemented as a controllability han-

dler. Based on our analysis in the previous section, only task termination affects

the controllability of a system. Consequently, the controllability handler is invoked

whenever one or more task terminate at runtime. When that happens, the handler re-

moves the terminated tasks from the control model, and then moves proper subtasks

to maintain system controllability. After that the handler re-initializes the controller

and resumes the feedback control loop. Similarly, the feasibility adjustment algorithm

has been implemented as a feasibility handler to do incremental subtask allocation

whenever new tasks are admitted to the system.

The middleware part of FC-ORB is also extended to handle subtask migrations de-

manded by the controller and dynamic task arrivals. The migration mechanism works

as follows. Each subtask can have a primary instance and a few backup instances on

the processors where it has the required resource. In the normal mode, each subtask

pushes remote operation requests only to the primary instance of its successor. As

a result, the backup instances do not receive any requests and their threads remain

146

idle. After a task migration decision is made by the controller, the predecessor of the

migrated subtask switches the connection to the desired backup instance and sends

the remote operation requests to it. In the case when the first subtask of a task

has to be moved, the controller activates the proper backup instance of the subtask.

Consequently, the execution of the end-to-end tasks is resumed after a transient inter-

ruption. Task arrivals are handled as dynamic invocation of specified object functions

in the existing FC-ORB middleware system.

8.6 Experiments

In this section, we present the results of two sets of experiments. First, numerical

experiments are used to evaluate the performance of the offline subtask allocation

algorithms introduced in Section 8.3. The numerical experiments allow us to use a

large number of randomly generated workloads to stress-test our algorithms. Second,

empirical results based on the extended FC-ORB middleware system are presented to

demonstrate the effectiveness of the dynamic adjustment and maintenance algorithms

proposed in Section 8.4. As system feasibility and controllability may change due to

workload variations, it is important to investigate how a real DRE system behaves

when it becomes uncontrollable or infeasible at runtime. We then show how our

algorithms work to make the system controllable and feasible again on the fly.

8.6.1 Numerical Results

In all experiments presented in this subsection, the number of tasks has been fixed at

50 (i.e. m = 50), while the number of subtasks of each task is varied uniformly from

1 to 7. For each task, its lower rate bound, Rmin,j, is randomly generated between

0.01 and 0.1Hz. For each subtask, its minimum estimated utilization varies randomly

between 5% and 15% and its execution time is calculated based on its rate and its

minimum estimated utilization. Each subtask can only be executed on 5 processors

(i.e. p = 5), which are randomly chosen from all processors in the system. Because

any system with more processors than tasks is uncontrollable, we vary the number

of processors (i.e. n) from 35 to 50 to examine the performance of our algorithms

147

0.6

0.7

0.8

0.9

1

35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

Processor number

F
ea

si
b

le
 r

at
io

Feasibility
 Random

Figure 8.2: Feasible ratio under different processor numbers

0

0.05

0.1

0.15

0.2

0.25

0.3

35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

Processor number

A
ve

ra
g

e
fe

as
ib

ili
ty

 m
ar

g
in

Feasibility

Random

Feasibility+Controllability

Figure 8.3: Feasibility margin under different processor numbers

0.4

0.5

0.6

0.7

0.8

0.9

1

35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

Processor number

C
o

n
tr

o
lla

b
le

 r
at

io

Feasibility

Random

Feasibility+Controllability

Figure 8.4: Controllable ratio under different processor numbers

while the average number of subtasks on each processor changes. For each value of

n, 500 different workload configurations are randomly generated and tested. The

schedulable utilization bound of RMS[54], namely Bi = mi(2
1/mi − 1), is used as the

utilization set point of each processor Pi, where mi is the number of subtasks on this

processor.

We compare our algorithms against a baseline algorithm called Random. Random

first ensures there is no idle processor by randomly allocating one subtask to each

148

processor, because otherwise the system is clearly uncontrollable. Then the rest

subtasks are also randomly allocated to processors under the utilization constraints

and resource constraints. When a subtask cannot be allocated to a processor due

to the utilization constraint of the processor, the subtask is randomly allocated to

another processor. If a subtask cannot be allocated to any processor, the algorithm

fails.

We first examine the feasible ratio (i.e. the fraction of task allocations that are

feasible) under our feasibility algorithm and Random by applying them to the ran-

domly generated workloads. A workload resulted from an allocation is feasible if

the minimum estimated utilizations of all processors are equal to or lower than their

schedulable bounds. Figure 8.2 shows that the feasibility algorithm achieves higher

feasibility ratio than Random when the number of processors is smaller than 44. For

example, when processor number is 35, more than 30% of workloads are not feasible

under Random, while the ratio is only 1% under the feasibility algorithm. The reason

is that when the number of processors is small, each processor has more subtasks,

which decreases the probability for Random to find feasible solutions.

As discussed in section 8.1.2, the main goal of our feasibility algorithm is to in-

crease the feasibility margin. Figure 8.3 plots the average feasibility margin of 250

workloads which are feasible under both the feasibility algorithm and Random. The

average feasibility margin under Random is much smaller than that under the feasi-

bility algorithm. That means the feasibility algorithm results in workloads which can

tolerate much more execution time variations. For example, with 48 processors, the

workload generated by the feasibility algorithm can remain feasible even when the

task execution times increase by 28%. When the number of processors increases, the

difference becomes larger. That is because when each processor has fewer subtasks,

the space for the feasibility algorithm to improve becomes larger.

We then compare the controllable ratio (i.e. the fraction of task allocations that are

controllable) under Random, the feasibility algorithm and the integrated feasibility

and controllability algorithm. Same as before, Random and the feasibility algorithm

are applied to all randomly generated workloads without any concern of control-

lability. In contrast, the integrated algorithm adopts the controllability algorithm

introduced in Section 8.3.2 to reallocate the subtasks if the workload processed by

149

the feasibility algorithm is diagnosed to be uncontrollable. Figure 8.4 shows that the

controllability algorithm reduces the uncontrollable cases significantly. For example,

with 50 processors, the controllable ratio has been increased more than 10%. In addi-

tion, the feasibility algorithm can also help improve controllability as its controllable

ratio is much higher than Random.

As discussed in Section 8.3, the controllability algorithm will have some impact to the

feasibility margin though the algorithm is designed to minimize the impact. Figure 8.3

shows the impact is only roughly 3%. This result demonstrates that the controllability

algorithm can improve system controllability significantly only at negligible cost of

feasibility margin.

8.6.2 Empirical Results

In this subsection, we present the experiments conducted on a real DRE system im-

plemented based on the extended FC-ORB middleware. We first introduce the exper-

imental configurations. Then we present the experimental results on controllability

and feasibility, respectively by contrasting systems with and without the dynamic

algorithms.

Experimental set-up

We perform our experiments on a testbed of six PCs. All applications and the ORB

service run on four Pentium-IV machines (P1 to P4) and one Celeron machine (P5).

P1 and P4 are 2.80GHz while P2 and P3 are 2.53GHz. P1 to P4 all are equipped with

512KB cache and 512MB RAM. P5 is 1.80GHz and has 128KB cache and 512MB

RAM. All machines run RedHat Linux 2.4.22. The controller is located on another

Pentium-IV 2GHz machine with 512KB cache and 256MB RAM. The controller ma-

chine runs Windows XP Professional with MATLAB 6.0. P1 to P4 are connected via

an internal switch and communicate with P5 and the controller machine through the

departmental 100Mbps LAN.

150

Table 8.2: Workload parameters

Estimated Execution Initial Min Max
Subtask Time (ms) Rate Rate Rate
T1,{1,2} 38 11 23.96 20 60
T2,{5,4,3} 22 28 43 29.99 20 60
T3,{2,3,4,5} 14 20 12 19.40 5 30
T4,{2,1} 25 24 12.43 10 60
T5,{1,2} 33 26 26.15 5 75
T6,{2,3,4} 26 16 21 16.97 5 20
T7,{4,1} 16 12 44.05 20 60
T8,new 23 32 10.00 10 60
T9,new 27 19 10.00 10 60
T10,new 36 29 10.00 10 60

Our experiments run a medium-sized workload that comprises 7 end-to-end tasks

(with a total of 18 subtasks). Figure 8.5(a) shows how the 7 tasks are distributed

on the 5 application processors. The workload parameters are detailed in Table 8.2.

The subtasks on each processor are scheduled by the RMS algorithm [54]. Each task’s

end-to-end deadline is di = ni/ri(k), where ni is the number of subtasks in task Ti

and ri(k) is the current rate of Ti. Each end-to-end deadline is evenly divided into

subdeadlines for its subtasks. The resultant subdeadline of each subtask Tij equals

its period, 1/ri(k). The utilization set point of every processor is set as 0.7.1 All

(sub)tasks meet their (sub)deadlines if the desired utilization on every processor is

enforced. The sampling period of the utilization control service is Ts = 5 seconds.

Controllability

In our first experiment, we run the original FC-ORB with an initial workload shown

in Figure 8.5(a). The rates of all tasks in the workload are selected based on their

execution times so that the utilizations of all processors can be initially close to their

set points. At time 300×5 seconds, task T6 and T7 terminate so the workload becomes

uncontrollable as shown in Figure 8.5(b). From the experimental results shown in

Figure 8.6, we can see that only the utilizations of processor P2 and P5 converge to

the desired set points. The utilization of P1 stays slightly below the set point. P4 is

1The schedulable utilization bound of RMS [54], B = m(21/m−1) may be used as the utilization
set point for better utilization, where m is the number of subtasks on this processor.

151

P
1
 P
5
P
4
P
2
 P
3

T
1
 T
2
T
3
T
4

T
5

T
6

T
7

(a) Initial configuration

P
1
 P
5
P
4
P
2
 P
3

T
1

T
5

T
2
T
3
T
4

(b) After task terminations

P
1
 P
5
P
4
P
2
 P
3

T
1

T
5

T
2

T
3

T
4

(c) After controllability maintenance

Figure 8.5: Workload configuration and variations in controllability experiments

severely underutilized as its utilization is just 50% while P3 is overloaded. As processor

overload may cause undeired deadline misses in a real-time system, controllability has

to be maintained at runtime.

In the second experiment, we run our extended middleware system with the controlla-

bility handler activated. All configurations remain the same as in the first experiment.

In the controllability analysis, task T7 is not dedicated to any processor so its ter-

mination is ignored. However, task T6 is dedicated to processor P4 so we have to

migrate a subtask to P4 after T6’s termination, because the two existing subtasks on

P4, T2 and T3 are already dedicated to P3 and P5, respectively. As an outcome of the

152

0

0.2

0.4

0.6

0.8

1

0
 300
 600
 900
 1200
 1500

Time (5 seconds)

C
P

U
 U

til
iz

at
io

n

P1
 P2
 P3
 P4
 P5

Figure 8.6: System becomes uncontrollable after task termination

0

0.2

0.4

0.6

0.8

1

0
 300
 600
 900
 1200
 1500

Time (5 seconds)

C
P

U
 U

til
iz

at
io

n

P1
 P2
 P3
 P4
 P5

Figure 8.7: System becomes controllable after controllability maintenance

controllability maintenance algorithm, subtask T4,2 is migrated from processor P1 to

P4, immediately after the task terminations. From the experimental results shown in

Figure 8.7, we can see that the previously uncontrollable system indeed becomes con-

trollable again. The utilizations of all processors converge to the desired set points.

Undesired processor overload or underutilization have been avoided.

Feasibility

As we analyzed before, controllability maintenance alone is not enough because it

may still be infeasible for a controllable system to achieve the desired utilization

set points when tasks arrive at runtime. In this set of experiments, we first show

Table 8.3: Task rates of all tasks

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Naive 20 30.6569 5 29.9830 5.6836 20 50.4092 10 10 10
Feasibility 43.1741 20.6556 19.3107 11.6857 5.0194 5.0004 50.5294 10.0018 11.1398 10.0008

153

P
1
 P
5
P
4
P
2
 P
3

T
1
 T
2
T
3
T
4

T
5
 T
6

T
7

T
8

T
10

T
9

(a) Task arrival and allocation in a naive way

T
2
T
3
T
4

T
5
 T
6

T
7

T
1

P
1
 P
5
P
4
P
2
 P
3

T
8

T
10

T
9

(b) Task allocation resulted from feasibility adjustment

Figure 8.8: Workload variations in feasibility experiments

that some naive allocations of dynamically arriving tasks make it infeasible for the

original FC-ORB to achieve the set points. Same as the previous experiments, the

utilizations of all processors in the system initially start from their set points. At time

300× 5 seconds, three end-to-end tasks (T8, T9 and T10) are admitted to the system

and their details are given in Table 8.2. As an example of possible naive allocations,

three subtasks are allocated to P1 while the other three are allocated to P5. Figure

8.9 shows that the system becomes infeasible after this allocation. The utilizations

of P1 and P5 become higher than their set points right after the new subtasks are

allocated. To reduce their utilizations, the rates of all tasks on them are decreased by

the controller. However, this decrease affects the utilizations of P2 to P4 and causes

them to be underutilized. Hence, the controller has to decide based on control theory

which tasks to decrease rate and which ones to increase rate. From Figure 8.8(a), we

can see that an effective way to reduce the utilizations of P1 and P5 without affecting

other processors is to decrease the rates of the new tasks: T8 to T10. Table 8.3 shows

the average task rates of all tasks in the last 50 control periods. Due to the rate

154

0

0.2

0.4

0.6

0.8

1

0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

Time (5 seconds)

C
P

U
 U

ti
liz

at
io

n

P1
 P2
 P3
 P4
 P5

Figure 8.9: System becomes infeasible after task arrivals

0

5

10

15

20

25

30

0
 200
 400
 600
 800
 1000
1200
1400
1600
1800
2000

Time (5 Seconds)

T
as

k
R

at
es

 (
H

z)

T1
 T3
 T6
 T8, T9, T10

Figure 8.10: Task rates saturate at boundaries when system is infeasible

constraints shown in Table 8.2, the task rates of T8 to T10 saturate at their lower

boundaries so cannot be decreased anymore. Figure 8.10 shows the task rates that

saturate after the task arrivals. In addition to the new tasks, the rates of tasks T1

and T3 also reach their lower boundaries and so cannot be decreased anymore. On

the other hand, from Figure 8.9, we can see processors P2 to P4 are underutilized.

A possible way to increase their utilizations without affecting other processors is to

increase the task rate of T6. Similarly, the rate of task T6 already reaches the upper

boundary so cannot be increased any further. As a result of the saturations, all

processors cannot achieve their desired utilization set points because it is infeasible

to do so.

We then run the same experiment on our extended middleware system with the

feasibility handler enabled. Whenever there are new tasks admitted to the system,

the feasibility handler conducts incremental Max-Min algorithm presented in Section

8.4 to allocate the subtasks. Based on the task details shown in Table 8.2, we can

get the subtask allocation shown in Figure 8.8(b). From Figure 8.11, we can see

that the new tasks first have a smaller impact on the utilizations of the processors in

155

0

0.2

0.4

0.6

0.8

1

0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

Time (5 seconds)

C
P

U
 U

ti
liz

at
io

n

P1
 P2
 P3
 P4
 P5

Figure 8.11: System remains feasible after feasibility adjustment

the system, compared to the naive solution. That is because the feasibility handler

distributes the impact to different processors. As demonstrated by Figure 8.11, even

though the same task rate constrains exist, the system still can achieve the desired

utilization set points thanks to feasibility adjustment. Table 8.3 shows that none of

the tasks saturate at their rate boundaries. Hence, with feasibility adjustment, it

becomes feasible for a previously infeasible system to achieve the desired set points.

8.7 Summary

Robustness and performance of the utilization control depends crucially on the end-to-

end task configuration. Specifically, task allocation affects the system controllability

and the feasibility of the constrained optimization problem. In this chapter, we have

presented task allocation algorithms for deploying end-to-end tasks that ensure that

the system is controllable and robustly feasible. Further, we have developed runtime

algorithms that maintain controllability by reallocating tasks dynamically in response

to task termination and arrival. We have evaluated the performance of our approach

for end-to-end task deployment using numerical experiments in large systems. In

addition, we have reported empirical results for the runtime task reallocation algo-

rithm on an experimental test-bed. Our results demonstrate that the proposed task

allocation algorithms improve the robustness of utilization guarantees in distributed

real-time embedded systems.

156

Chapter 9

CAMRIT: Control-based

Real-Time Image Transmission

Previous chapters have shown the successful application of our adaptive QoS control

framework to the end-to-end utilization control problem. In this chapter, we introduce

the application of our control framework on another category of real-time application:

real-time image transmission which is crucial to an emerging class of distributed em-

bedded systems operating in open network environments. Examples include avionics

mission re-planning over Link-16, security systems based on wireless camera networks,

and online collaboration using camera phones. Meeting image transmission deadlines

is a key challenge in such systems due to unpredictable network conditions.

In this chapter, we present CAMRIT, a Control-based Adaptive Middleware frame-

work for Real-time Image Transmission in distributed real-time embedded systems.

CAMRIT features a distributed feedback control loop that meets image transmission

deadlines by dynamically adjusting the quality of image tiles. We derive an ana-

lytic model that captures the dynamics of a distributed middleware architecture. A

control theoretic methodology is applied to systematically design a control algorithm

with analytic assurance of system stability and performance, despite uncertainties in

network bandwidth. Experimental results demonstrate that CAMRIT can provide

robust real-time guarantees for a representative application scenario.

157

9.1 Introduction

Recent years have seen rapid growth of a new generation of Distributed Real-time

Embedded (DRE) systems that integrate digital imaging and wireless networking

technology. For example, security systems can perform automatic intruder detection

through real-time fusion of images from multiple cameras connected through a wire-

less network [69]. Similarly, to facilitate avionics mission re-planning, personnel on

multiple aircraft need to collaborate by exchanging target imagery and display an-

notations over Link-16 wireless networks [20]. Real-time image transmission is also

important in new services on camera-equipped mobile phones (e.g., online collabo-

ration and security monitoring) that rely on “live” image transmission over cellular

networks.

These embedded applications are different from traditional imaging applications (e.g.,

online photo albums) in two ways. First, image transmission in these embedded

systems is subject to stringent timing constraints. Second, although higher image

quality usually improves system utility, these next-generation embedded applications

can tolerate some degree of degradation in image quality. For example, late image

delivery can be disastrous in a security system because it may result in a delayed

security alarm. On the other hand, distributed event detection algorithms usually can

maintain a desired probability of event detection even if input images are not perfect.

Similarly, meeting deadlines is much more important in avionics mission re-planning

than perfect image quality, as long as key target features are still distinguishable.

These emerging embedded applications are also different from traditional embedded

systems, such as process control in factories. While traditional embedded systems

usually operate over closed and predictable networks, these new types of embedded

systems need to perform image transmission across open and unpredictable networks.

For example, Link-16 is widely used for tactical communication between military air-

craft, but has very limited effective bandwidth (e.g., roughly 30 to 340 Kbps divided

among all aircraft communicating with a common JTIDS terminal [72]). Further-

more, network bandwidth may vary significantly during a mission due to changes

in weather, terrain, and communication distance [20]. These bandwidth-constrained

and unpredictable networks make real-time image transmission a challenging task.

158

We have developed CAMRIT, a Control-based Adaptive Middleware for Real-time

Image Transmission. The CAMRIT project has made three main contributions to

the state of the art in performance control for DRE systems.

1. Adaptive Architecture: We present a novel middleware architecture for feedback-

based adaptive management of image transmission. Our architecture features

a distributed feedback control loop that supports fine-grained control over the

progress of image transmission by dynamically adjusting the quality factor of

image tiles.

2. Control Modeling: We derive an analytic model that captures the dynamics of

a distributed middleware architecture. Control analysis shows that CAMRIT

can assure system stability and transmission latencies under a wide range of

available network bandwidth.

3. Middleware Implementation: CAMRIT has been implemented as a middleware

service based on the TAO [18] real-time CORBA object request broker so it is

portable across heterogeneous platforms. Experimental results on a character-

istic testbed demonstrate that CAMRIT can provide robust real-time assurance

under representative application scenarios.

9.2 Middleware Architecture

The primary goal of CAMRIT is to complete transmitting an image from a server

node to a client node within a user specified deadline. At the same time, CAMRIT

aims to maximize image quality because a higher quality image usually has higher

utility to the application. This requirement excludes trivial solutions such as always

sending an image at the lowest quality.

To achieve both goals despite an unpredictable network, CAMRIT employs a feedback

control loop that dynamically adjusts image quality based on performance feedback.

CAMRIT exploits existing image compression standards that support flexible image

quality. For example, the widely adopted JPEG [92] standard provides a user-specified

parameter called the quality factor which can be any integer from 1 to 100. Since

159

a lower quality factor leads to a smaller image size after compression, the quality

factor parameter provides a knob for controlling the time it takes to transmit an

image. However, JPEG only supports a single quality factor for a whole image.

This is insufficient for our feedback control loop, which needs to adjust the quality

factor of an image dynamically during its transmission. To support such fine-grained

adaptation, CAMRIT splits each image into tiles, each of which may be compressed

with a separate quality factor.

CAMRIT is designed as a middleware service for real-time CORBA. All the tasks in

CAMRIT are managed and scheduled according to the Rate Monotonic Scheduling

(RMS) algorithm [54] using the Kokyu [28] dispatcher within the TAO Real Time

Event Channel [33]. We note in passing that the CAMRIT architecture may also be

instantiated as individual software or be integrated with other middleware.

9.2.1 Service Interface

An application interacts with CAMRIT’s ImageTransmissionService interface, speci-

fied in CORBA IDL. The following parameters are passed to the service:

• image id: An identifier (e.g., an image file name) for the requested image.

• deadline: The relative deadline for delivery of the image.

• num tile: The number of tiles into which the image is divided. This parameter

allows the application to specify the granularity of control of the image quality,

with a trade-off of increased overhead for finer granularity.

• quality range: The defined range of acceptable image quality. This parameter

allows configuration of application-specific image quality constraints.

The CAMRIT service implementation serves to hide properties of the underlying

network from the the application, particularly the variations in available bandwidth

over a network, and delivers the image within the specified deadline. Figure 9.1

shows the major components of the CAMRIT architecture. We first describe the

160

Image

Proxy

Client component
 Server component

Image

Assembler

Get Image

Tile

Compressor

Compression

Controller

Buffer

Level

Monitor

Tile Receiver

Tile Buffer

Quality

Factor

Tile Buffer

Level on

Client

CORBA call

 TCP socket

Image

Service

Image

Splitter

Tiled

Image

Image

Source

Tile Sender

Tile Bytes Buffer

Figure 9.1: Overview of the CAMRIT architecture

mechanisms responsible for requesting and transmitting an image, and then discuss

the feedback loop for controlling transmission latency.

9.2.2 Image Transmission

The CAMRIT middleware architecture is made up of client and server components,

each on a separate endsystem. The Image Proxy object in the CAMRIT client com-

ponent provides the service interface to the application. When it receives a request

for an image, this object makes a CORBA call to the Image Service object on the

server. This CORBA call has the same parameters as the service interface. A one-

way CORBA call is used to avoid blocking the client thread that executes the call,

because transmitting a large image over a bandwidth-constrained network may take

a long time.

161

The Image Service object is implemented as a CORBA servant in the server compo-

nent, and is advertised to the outside world. When it receives the CORBA call from

the client, the Image Service object retrieves the requested image (e.g., from an image

repository or a camera), and calls the Image Splitter object to split the retrieved im-

age into a specified number of tiles. Each tile is compressed by the Tile Compressor

object according to the current quality factor, which is periodically updated by the

Controller object described in Section 9.2.4. The Tile Sender object then sends each

compressed tile, as a byte stream through a TCP socket, to the client component.

The Tile Sender and Tile Compressor are executed by a periodic task. In each

invocation, the Tile Sender fills the TCP buffer by sending image tiles to a TCP

socket. The sending socket is set to NON BLOCKING mode so that the kernel will

inform the application layer through an EWOULDBLOCK error from the send system

call if the TCP buffer is full. Note the sender may push a fraction of a tile to fill the

TCP buffer. The pseudo-code for this periodic task is shown below. Tile Bytes Buffer

is a buffer on the server that is used to hold the bytes of a tile (or fraction of a tile)

to be sent.

Tile Sender :: handle timeout() {
while (1) {

ret code = send bytes in Tile Bytes Buffer to socket;
if (ret code == EWOULDBLOCK)

exit the current invocation;
Compress next tile with current quality factor ;
Create a header for the tile ;
Append the new compressed tile to Tile Bytes Buffer;
}
}

The Tile Receiver object on the client reads the byte stream from the socket. The

boundaries between tiles are indicated in the tile header that precedes each tile. After

it receives a whole tile, the Tile Receiver object enqueues the tile into a buffer that

holds received but still compressed tiles.

The Image Assembler is executed as a periodic task. The first instance of this task

is released when the first tile of the image is inserted into the tile buffer. In every

invocation, it dequeues and decompresses a tile from the tile buffer if it is not empty.

162

When all the tiles of an image have been decompressed, it assembles them back into

a whole image and notifies the Image Proxy, which then returns a handle (e.g., the

memory address) for the decompressed image to the application.

9.2.3 Selection of Task Periods

The period of the Tile Sender task is chosen such that the TCP buffer never goes

empty while an image is being transmitted to the client. Specifically, if B is the TCP

buffer size and bmax is the maximum bandwidth of the network, the period of the

Tile Sender is set to no higher than B
bmax

. This guarantees that the TCP layer in the

kernel has enough bytes of data in the TCP buffer to send before the next invocation

of the sending task, and hence the network bandwidth is fully utilized during the

transmission of an image.

CAMRIT guarantees image deadlines by achieving the following properties. First,

the tile buffer on the client always contains at least one tile during the transmission

of an image. This is achieved by a feedback control loop described in the next sub-

section. Second, every invocation of the Image Assembler task is completed before

the end of its period. This property is guaranteed by ensuring that the CPU utiliza-

tion of the client end-system remains below the schedulable utilization bound of the

scheduling algorithm used by RT-CORBA. Finally, the period p of the Image Assem-

bler is selected to meet the end-to-end image deadline, as follows. When the first two

properties are satisfied, each invocation of the Image Assembler task decompresses

one tile by the the end of its period. Suppose the first tile of an image is inserted

into the tile buffer t1 sec after the image request is sent to the server. The first tile

is decompressed by t1 + p, and the ith tile is decompressed by t1 + ip. Therefore, the

period must satisfy the following condition in order to guarantee the whole image is

received and decompressed by the deadline:

t1 + p ∗ num tile ≤ deadline

Hence, the upper bound for the Tile Assembler period is:

p ≤ deadline− t1
num tile

(9.1)

163

9.2.4 Feedback Control Loop

As described in the last subsection, CAMRIT must maintain a tile buffer level of

at least one tile during the transmission of an image. However, while the Image

Assembler dequeues tiles from the tile buffer at a constant rate, the rate at which

tiles are inserted into the tile buffer (called the tile enqueue rate) depends on the

network bandwidth and the size of compressed tiles. To deal with the unpredictable

network, we designed a feedback control loop to maintain a specified buffer level

(the set point) by periodically adjusting the quality factor of the remaining tiles that

are yet to be transmitted. The feedback control loop is composed of a Buffer Level

Monitor, a Controller, and the Tile Compressor described earlier, which serves as an

actuator in the control loop.

Each time the Tile Receiver on the client reads a chunk of data from the socket

(i.e., completes a read() call), it sends the current tile buffer level to the Buffer

Level Monitor on the server. Note that the reported buffer level includes the fraction

of the tile that is currently being received by the client. For example, if the tile

buffer currently contains 3 tiles, and the Tile Receiver has received the first 2KB of

another tile of size 5KB, the current buffer level is 3 + 2/5 = 3.4. The Buffer Level

Monitor makes this information available to the Controller. The use of fractional

buffer levels as feedback improves control performance because it gives a more precise

representation of the buffer level than would integer values.

The Controller periodically re-computes the quality factor of the remaining tiles based

on the current tile buffer level. The new quality factor is then used by the Tile

Compressor to compress the remaining tiles that are sent in the following sampling

period. Clearly, the Controller is critical to the performance of CAMRIT.

9.3 Dynamic Model

Modeling the dynamics of the controlled system is crucial for control design. It is

also a key challenge in complex distributed middleware systems, whose dynamics are

not understood as well as those of many physical control systems. In this section we

164

establish a dynamic model for a characteristic real-time image transmission system

controlled by our feedback control loop.

9.3.1 Controlled System Model

As described in the Section 9.2, the controlled variable in our feedback control system

is the tile buffer level on the client, and the manipulated variable is the quality factor

used by the server to compress tiles. We first introduce some essential notation:

• T : the sampling period of the feedback control loop.

• l(k): the tile buffer level at the kth sampling point (kT sec after the system

starts). As described in Section 9.2, l(k) may include a fraction of a tile.

• ls: the set point, i.e., the desired tile buffer level.

• r: the constant rate (i.e., the frequency) at which tiles are dequeued from the

tile buffer by the Image Assembler. It is equal to the inverse of the period of

the Image Assembler task, r = 1/p.

• b(k): the network bandwidth in the kth sampling period, [kT , (k + 1)T). The

value of b(k) is unknown a priori in an unpredictable network environment, but

its range [bmin, bmax] is usually known.

• s: the size of an uncompressed tile. This is known and fixed for a given image

and number of tiles.

• s(q): the average size of a tile compressed with a quality factor q.

• q(k): the quality factor computed by the controller at the kth sampling point.

In each sampling period, rT tiles are dequeued from the tile buffer. Supposing n(k)

tiles are transmitted and inserted to the tile buffer in the kth sampling period, we

then have this equation:

l(k + 1) = l(k) + n(k)− rT (9.2)

165

n(k) depends on the size of compressed tiles and the network bandwidth. The size

of a compressed tile is a non-linear function of the quality factor used to compress it.

For the purpose of control design, we linearize this function such that

s(q) =
sq

g
(9.3)

where g is a gain that can be estimated through linearization in the steady-state

operation region of the system. The details of the linearization are presented in

Section 9.3.2.

In our control design, we assume b(k) = b where b is the nominal bandwidth. Although

we design the controller based on b, the controller is tuned such that it remains stable

as long as the bandwidth stays within the range [bmin, bmax].

If we ignore control delay, we get a simple first-order model for the controlled system:

l(k + 1) = l(k) +
bTg

sq(k)
− rT (9.4)

Unfortunately, this model is inaccurate because control delay plays a major role in the

dynamics of our distributed middleware. This control delay can be modeled as the

end-to-end latency from the moment when the Tile Receiver sends out the sampled

buffer level from the client, to the moment when this new quality factor starts to have

an effect on the client tile buffer. We can divide this control delay into the sampling

delay from the client to the server and the actuation delay from the server back to

the client. Considering the fact that the communication load from the client to the

server is signifcantly lower than the opposite direction during the image transmission,

we approximate the control delay td(k) in our system with the actuation delay, the

time interval starting from the moment when the controller on the server outputs the

new quality factor q(k).

The control delay is due to residual data in the TCP buffer and the Tile Byte Buffer

on the server. When the controller outputs a new quality factor, these buffers still

contain tiles compressed with the old quality factor, q(k-1). Hence the system will

continue to transmit and enqueue those old tiles to the tile buffer on the client until

166

all the data in the TCP buffer and the Tile Byte Buffer have been transmitted to the

server.

Let st(k) and sb(k) denote the amount of data in the TCP buffer and the Tile Byte

Buffer, respectively. The control delay is then

td(k) =
st(k) + sb(k)

b
(9.5)

To calculate the control delay, we need to estimate st(k) and sa(k). First, we consider

st(k). Suppose the TCP buffer size is B, and the period of the Tile Sender task is ps.

The TCP buffer is full (i.e., contains B bits of data) at the end of each invocation

of the Tile Sender task. During each period of the Tile Sender, bps bits of data are

transmitted from the TCP buffer. Therefore, the lower bound for the amount of data

that the TCP buffer may hold is B − bps bits. Since st(k) depends on the specific

time when the controller outputs q(k), we approximate st(k) with the average of its

upper bound and lower bound for our control design:

st = B − bps
2

(9.6)

As Section 9.3.2 describes, the Tile Byte Buffer holds the fraction of a compressed

tile that cannot fit into the TCP buffer. On average, this buffer contains half of a tile

compressed with quality factor q(k-1) at the beginning of the kth sampling period.

We approximate sb(k) with its average value, based on (9.3):

sb(k) =
sq(k − 1)

2g
(9.7)

As Figure 9.2 illustrates, if we choose a sampling period T > td(k), the tiles placed into

the tile buffer in the first td(k) secconds of the kth sampling period are compressed

with quality factor q(k-1), and the tiles placed there in the remaining part of the

sampling period are compressed with quality factor q(k). Therefore, a more accurate

model that considers the control delay is

167

Time

q(k
-
1)
 q(k
)

kT
 kT+T
d
 (k+1)T

Time

q(k
-
1)
 q(k
)

kT
 kT+T
d
 (k+1)T

Figure 9.2: Quality factors of tiles received in the kth sampling period

l(k + 1) = l(k) +
btd(k)g

sq(k − 1)
+
b(T − td(k))g

sq(k)
− rT (9.8)

Note that the second to last term in (9.8) is non-linear because it includes both

q(k) and td(k), which is a function of q(k-1) (see (9.5) and (9.7)). Since the quality

factor does not change significantly in a steady state, we can linearize this model by

replacing the q(k-1) in this term with q(k). Finally, let u(k) = 1/q(k) be the control

input. We then have an approximate linear model of the controlled system:

l(k + 1) = l(k) + Au(k) + Cu(k − 1) +D (9.9)

where A = (bT−st)g
s

, C = stg
s

and D = −rT .

When control delay is zero, this model is the same as the first-order model in (4).

However, when control delay is comparable to the sampling period, the coefficient

of the second order term q(k-1) becomes significant, and the second-order model is

needed to capture the system dynamics.

9.3.2 Tile Size and Quality Factor

We now describe how to estimate the gain g. We first compare the size of the com-

pressed sample image s(q) with each quality factor q, and plot the inverse of the

compression ratio a(q) = s/s(q) as a function of the inverse of the quality factor

u = 1/q, which is the control input. For an example aerial image shown in Figure

9.3 (called Image 01 in this chapter) its resulting profile of the relationship between

those parameters is a non-linear curve. We linearize a(u) in the operational region of

the system in steady state, in the following three steps.

1All images used in this chapter are available at
http : //deuce.doc.wustl.edu/FCS nORB/CAMRIT .

168

Figure 9.3: An example aerial image

1. Given the deadline d for transmission of an image, the rate r of the Image

Assembler is calculated using (9.1). In steady state, tiles are transmitted from

the server to the client at the same rate as r, to maintain a constant tile buffer

level.

2. We then use the following equation to calculate the range of a(u), [amin, amax],

that can satisfy the tile transmission rate r in steady state based on the range

of possible network bandwidth [bmin, bmax].

ba(u)

s
= r (9.10)

3. Finally, we perform linear regression on the segment of function a(u) where

amin ≤ a(u) ≤ amax. The slope of the linear regression is the estimated g.

When an image request is submitted, CAMRIT uses the estimation process above

to derive g, based on the specified deadline and the function a(u) from the profiling

results for a representative image. While function a(u) may differ for different images,

the difference is small for images in a similar application domain (e.g., landscape

images taken from airplanes). Furthermore, the feedback control loop can be designed

to tolerate a range of variations in g.

169

As an example, we now show how to estimate g based on hypothetical but plausible

system settings, and using the measured profile for Image 0. The key parameters for

this example are as follows:

• Image: 640×640 pixels; divided into 64 tiles; each uncompressed tile size s =

18.75 KB.

• Deadline: d = 200 sec.

• Bandwidth: [4 Kbps, 8 Kbps]. The top of this bandwidth range approximates

the maximum data rate of a single link at the lowest Link-16 network capacity of

28.8 Kbps [100], with time slots divided among links to 3 aircraft collaborating

with a common JTIDS terminal on the Command-and-Control aircraft (C2);

we assume a minimum network bandwidth of half the maximum; we use the

midpoint of the resulting range, b = 6 Kbps, for our control design.

The rate of the Image Assembler (also the steady-state tile transmission rate) is

computed using (9.1). CAMRIT uses 95% of the actual deadline to give some leeway

to the transmission, and t1 is estimated based on the nominal bandwidth and the

tile size with the initial quality factor (68 in this example). The resultant r = 0.34

tile/sec. According to (9.10), in order to allow the bandwidth variation from 4 Kbps

to 8 Kbps, the range for the inverse of compression ratio needs to be [6.38, 12.75].

Linearization is then performed in this range for a(q) as shown in Figure 9.4. The

slope of the linear regression is g = 341.34. The linear regression fits well (with an

R2 = 94.87%) with the original function in this operation region.

9.4 Control Design and Analysis

We now apply linear control theory to design the controller based on the controlled

system model described in Section 9.3. The z-transform of the controlled system

model (9.9) is:

L(z) = z−1L(z) + Az−1U(z) + Cz−2U(z) +
Dz

z − 1
(9.11)

170
y = 341.34x + 3.4504

R
2
 = 0.9487

6

7

8

9

10

11

12

13

14

0.01
 0.015
 0.02
 0.025
 0.03
 0.035

1 / Quality factor

1
/ C

o
m

p
re

ss
io

n
 r

at
io

Figure 9.4: Linearization of a(u)

F(z)
 (Az+C)/z
2
 z/(z-1)

+

-

U(z)
 +

L(z)

l
s
z/(z-1)

Dz/(z-1)

Figure 9.5: Block diagram of closed-loop system

A block diagram of the closed-loop system is shown in Figure 9.5. The system has

two inputs: the set point of the tile buffer level and a disturbance input Dz
z−1

that

represents the dequeuing of tiles from the tile buffer by the Image Assembler.

Letting F (z) be the transfer function of the controller, we can derive the closed-loop

transfer function in response to the reference input and disturbance, respectively:

Hs(z) =
(Az + C)F (z)

(z − 1)z + (Az + C)F (z)

Hd(z) =
z2

(z − 1)z + (Az + C)F (z)
(9.12)

171

Therefore, the close-loop response to both inputs is

L(z) = Hs(z)
z

z − 1
ls +Hd(z)

z

z − 1
D (9.13)

To achieve stability and zero steady state error, we design a Proportional-Integral

(PI) controller for our system:

F (z) =
K1(z −K2)

z − 1
(9.14)

The time-domain form of (9.14) is:

u(k) = u(k − 1) +K1e(k)−K1K2e(k − 1) (9.15)

where K1 and K2 are control parameters that can be analytically tuned to guarantee

system stability and zero steady state error using standard control design methods.

We first apply the control design to our example application integrated with the

CAMRIT framework. The sampling period is T=10 sec. The TCP buffer size is B

= 4 KB. The period of the Tile Sender task is set to 2.67 sec to fully utilize network

bandwidth. The other parameters (including g) are the same as for the example

given in Section 9.3.2. From (9.5), the control delay in the kth sampling period is

Td = 4+q(k−1)/27.31 sec. For example, the control delay is 5.8 sec when q(k-1)=50.

Compared to a sampling period of 10 sec, the control delay clearly plays a significant

role in the system dynamics. From (9.9), the parameters of the controlled system

model are A=81.922; C=54.614; D=-3.420.

Using the Root-Locus method, we select our control parameters as K1=0.0068 and

K2=0.9. The corresponding closed-loop poles are 0.278± 0.547i and 0.887. Since all

the poles are in the unit circle, the system is stable. From the final value theorem [24],

we have proved that the closed-loop system achieves zero steady state error. That is,

the tile buffer level will achieve the set point in steady state: limk→∞ l(k) = ls. If the

set point is set to ls ≥ 1, the tile buffer will remain non-empty in steady state, and

hence the image transmission deadline will be met. Furthermore, by substituting dif-

ferent bandwidths into the system model, we can prove that the system can maintain

stability and zero steady-state error with the same control parameters as long as the

172

network bandwidth remains within the range [4Kbps, 8Kbps]. A detailed analysis is

not given here due to space limitations: interested readers are referred to a standard

control textbook [24].

In summary, pseudo code for the control algorithm implemented in CAMRIT is as

follows:

Controller(ls, K1, K2) {
` = current tile buffer level ;
e = `s−`;
u = u + K1∗e − K1∗K2∗eprev;
eprev = e;
q = 1/u;
/∗ enforce constraints on acceptable quality factor ∗/
/∗ default range is [1,100] ∗/
if (q < qmin) q = qmin;
if (q > qmax) q = qmax;
UpdateQF(q);
/∗ updated q will be used by the Tile Compressor ∗/

}

9.5 Experimental Evaluation

9.5.1 WSOA Scenario

The Weapons System Open Architecture (WSOA) [20] program had a primary ob-

jective to provide internet-like connectivity, over Link-16, between legacy embedded

mission systems in a fighter aircraft and off-board Command and Control (C2) sys-

tems. This capability was designed to support time-sensitive mission re-planning and

redirection of attack nodes, as necessary based on situational events, even if a different

mission was already underway.

The following high-level sequence of interactions between the C2 and fighter aircraft

constitutes a representative WSOA scenario: 1) The C2 node receives information

about a higher priority time critical target and requests a planning session with

173

attack nodes by sending an alert; 2) Upon receiving an alert, a fighter aircraft begins

downloading a Virtual Target Folder (VTF). The VTF contains several thumbnail-

sized images, each representing a virtual target; 3) Once the fighter receives a folder,

the pilot can select a thumbnail image in the folder via a graphical display; 4) A

request is then made to the C2 for a larger version of the selected image. The

experiments presented in this chapter emulate step 4, which is the most time critical

part of the application.

9.5.2 Experimental Platform

Our experimental configuration consists of two machines each running RedHat Linux

9.0 with the 2.4.20 kernel. The C2 aircraft and the fighter were simulated using a

2.53GHz Pentium IV and a 400MHz Pentium II, respectively. The following software

was used to perform the experiments:

• ACE 5.3.5 + TAO 1.3.5 : TAO is a widely used open-source real-time CORBA

standard object request broker [18]. TAO also provides a Real Time Event

Channel [68] that is integrated with the Kokyu dispatching and scheduling

framework [28]. This integrated middleware framework allow us to (re)schedule

rates of invocation of application components, while maintaining deadline-feasible

scheduling of critical operations.

• ImageMagick++ 5.5.7 : We used this library to compress and decompress im-

ages.

• Shaper 1.3 for Linux : Shaper is a linux script for traffic shaping. It allows us

to specify the maximum bandwidth for network connection between two hosts.

We used Shaper to control the bandwidth between the two machines, i.e., to simulate

the performance of a Link-16 or other bandwidth-constrainted network over an un-

derlying Ethernet connection. We set the range of bandwidth allowed by the traffic

shapers to approximate the effective bandwidth of a plausible Link-16 configuration,

e.g., with a maximum network capacity of 28.8 Kbps [100], divided between the client

174

and server. Taking into account the slotted nature of Link-16 communication chan-

nels and other Link-16 parameters, and the characteristics of the traffic shaper we

used, we chose a maximum bandwidth of 8 Kbps for our experiments.

9.5.3 Experimental Parameters

Our experiments used the same parameters as the examples in sections 9.3.2 and 9.4.

To test CAMRIT’s ability to handle different images, our experiments used two other

aerial images than Image 0, whose profile was used to tune the control parameters.

These two images are called Image 1 and Image 2 respectively. The number of tiles for

each image is set to 64 for our experiments, to achieve a reasonable balance between

control granularity and overhead.

The set point for the tile buffer level was ls = 5 in our experiments. Note that there

is a tradeoff in the choice of the set point. If the set point is too high, the quality

factor for tiles transmitted in the first several sampling periods will be unnecessarily

low because system has to fill an initially empty buffer with more tiles (with lower

quality factors) before it reaches a steady state. On the other hand, if the set point

is too low, a fluctuation in the network bandwidth may cause the buffer level drop to

zero.

9.5.4 Experimental Results

CAMRIT uses (9.10) to calculate q(0) based on its deadline, the nominal bandwidth

(6 Kbps), and the profiled image quality function for Image 0. The resulting initial

quality factor is q(0) = 68 in all of the following experiments. While q(0) provides a

reasonable initial value for the control input, that initial value is usually not correct

for meeting the deadline because the actual bandwidth may differ from the nominal

one.

The tile buffer level and quality factors during a typical transmission of Image 1 over

a 6 Kbps network are shown in Figures 9.6 and 9.7, respectively. The buffer level

is recorded by the Image Assembler before everytime it attempts to dequeue a tile.

175

0

5

10

15

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190

Time (sec)

B
u

ff
er

 le
ve

l

Figure 9.6: Tile buffer levels during typical transmission of Image 1

0

20

40

60

80

100

0
 8
 16
 24
 32
 40
 48
 56
 64

Tile number

Q
u

al
it

y
fa

ct
o

r

Figure 9.7: Quality factors during typical transmission of Image 1

176

Time 0 in Figure 9.6 represents the time instant when the image request is sent to the

server. The tile buffer is initially empty until the first tile is inserted at around 11 sec.

This 11 sec delay includes the time it takes CAMRIT to send the image request to the

server, divide the image into tiles on the server, and transmitting the first tile. Since

the buffer level is low initially, CAMRIT reduces the quality factor from 68 to about

20 so that the buffer level rises to 5 tiles (the set point) in about 20 sec. The buffer

level remains close to 5 tiles until the last image is transmitted to the client near the

end of the run. The transmission of the whole image is completed at time 190 sec.

This is consistent with our expectation because 190 sec (95% of the deadline) is used

to compute the rate of the Image Assembler. Both tile buffer level and quality factor

have some oscillation due to system noise. For example, the sizes of different tiles

may be different (corresponding to different g values in our model) even if they are

compressed using a same quality factor. However, despite the noise the tile buffer is

always above 2.5 throughout the transmission. This is important because CAMRIT

can guarantee an image transmission deadline is met as long as the tile buffer always

contains at least one tile.

0

100

200

300

400

500

4
 5
 6
 7
 8

Bandwidth (Kbps)

T
im

e
(s

ec
)

PI
 Q=10
 Q=50
 Q=90

Figure 9.8: Transmission delay under different network bandwidth

177

The primary goal of CAMRIT is to meet image transmission deadlines. Figure 9.8

shows the transmission delay of Image 1 under different bandwidths. The transmission

delay of CAMRIT (with the feedback loop) is measured through experiments. Each

data point of CAMRIT in Figure 9.8 is the mean of 10 repeated runs. The standard

deviation of each data point is within 2.62 sec. The transmission delay results of

Image2 are not shown because they are almost identical to those of Image 1. For

comparison purposes, we also plot the estimated transmission delays for Image 1

when a fixed quality factor (10, 50, or 90) is used in each run. The transmission delay

for an image with a fixed quality factor is estimated by dividing its total (compressed)

tile size by the actual network bandwidth2.

We can see that the transmission delays for images with fixed quality factors vary

significantly as the network bandwidth changes. This result confirms the difficulty

in selecting a proper quality factor a priori when the network bandwidth is un-

predictable. A chosen quality factor may be unnecessarily low when transmission

completes much earlier than the deadline, or too high causing a deadline miss.

In contrast, the transmission delay under CAMRIT remains close to 190 sec (95%

of the original deadline) as the network bandwidth varies from 4 Kbps to 8 Kbps,

and every run meets the deadline of 200 sec. The robust real-time performance is

attributed to the feedback control loop that effectively maintains the desired buffer

level despite the variation in network bandwidth.

The secondary goal of CAMRIT is to improve the image quality. CAMRIT accom-

plishes this goal by 1) fully utilizing the network bandwidth and 2) completing the

transmission of an image close to the deadline (as shown in Figure 9.8). The combi-

nation of both properties means that CAMRIT sends close-to-maximum amounts of

data for a requested image, which generally corresponds to a higher image quality.

Figure 9.9 shows the average quality factors of both images when they are transmitted

by CAMRIT under different network bandwidths. Each data point is the mean of 10

repeated runs. The standard deviations are also shown. With CAMRIT the average

quality factor improves as more network bandwidth becomes available. This result

2This estimation is slightly lower than the actual delay because it ignores the overhead of protocol
headers.

178

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9

Q
ua

lit
y

fa
ct

or

Bandwidth (Kbps)

Quality factor average and deviation

Image1
Image2

Figure 9.9: Average quality factor under different network bandwidth

determines that CAMRIT can automatically adapt to network bandwidth variations

by adjusting the quality factor.

9.6 Summary

In this chapter, we have presented the design, modeling, and analysis of CAMRIT

based on a control theoretic approach. A key contribution of this work is an analytic

model that captures the dynamics of a moderately complex distributed middleware

architecture. CAMRIT has been successfully implemented as a CORBA-based mid-

dleware service atop the TAO real-time ORB. Our experiments on a representative

testbed demonstrate that CAMRIT can provide robust feedback control of image

transmission delays across a range of available network bandwidth, by automatically

adjusting image tile quality factors.

179

Chapter 10

Conclusions and Future Work

10.1 Conclusions

This dissertation has presented an adaptive QoS control framework, which is specif-

ically designed for distributed real-time embedded systems running in unpredictable

environments where their workloads are unknown or vary significantly at run-time.

The framework includes a set of control design methodologies to provide robust QoS

assurance for systems at different scales. In this dissertation, we have applied the

framework to the end-to-end CPU utilization control problem which is formulated

as a constrained multi-input-multi-output control model. Table 10.1 summaries the

algorithms and systems we developed in the framework for utilization control and

related problems.

Table 10.1: Adaptive QoS control framework

System scale Algorithms or Systems
EUCON: end-to-end

Small distributed systems utilization control
(Centralized MIMO control) FC-ORB: EUCON + robust Controllability

end-to-end middleware and feasibility
Large distributed systems DEUCON: decentralized
(Decentralized MIMO control) end-to-end utilization control
Single processor systems FCS/nORB: utilization and deadline control
and networks CAMRIT: real-time transmission delay control
(SISO control) Power control for computing servers [95]

180

Small-scale distributed real-time systems

Many DRE systems (e.g., avionics systems, shipboard computing, and process control

systems) depend on server clusters in which several processors connect to each other

through a high speed communication interface (e.g., a VME bus backplane). For this

class of DRE systems, a centralized QoS control architecture is usually sufficient and

more preferable for considerations in security and efficiency.

EUCON (End-to-end Utilization CONtrol) [59] is the first control-theoretic utiliza-

tion control algorithm designed for this class of DRE systems with end-to-end tasks.

EUCON can maintain desired CPU utilizations on multiple processors despite uncer-

tainties in task execution times and coupling among processors. It employs a central-

ized MIMO model predictive controller to manage and coordinate the adaptation of

multiple processors, subject to the constraints on task rates.

FC-ORB is a real-time Object Request Broker (ORB) middleware that employs the

EUCON control algorithm to handle fluctuations in application workload and system

resources. FC-ORB demonstrates that the integration of adaptive QoS control, end-

to-end scheduling and fault-tolerance mechanisms in DRE middleware is a promising

approach for enhancing the robustness of DRE applications in unpredictable environ-

ments.

Large-scale distributed real-time systems

While EUCON and FC-ORB are suitable for small-scale DRE systems, a centralized

control scheme has several limitations. Since its communication and computation

overhead depends on the size of an entire DRE system, it cannot handle large-scale

systems (e.g. wide-area power grid management and ubiquitous smart spaces). Fur-

thermore, the processor executing the controller is a single point of failure since the

entire system will lose the capability of QoS adaptation if it fails.

DEUCON is a decentralized end-to-end utilization control algorithm that can pro-

vide utilization control for large-scale DRE systems. In contrast to centralized con-

trol schemes, DEUCON features a novel decentralized control structure that requires

181

only localized coordination among neighbor processors. DEUCON can effectively dis-

tribute the computation and communication cost to different processors and tolerate

considerable communication delay between local controllers. Therefore, DEUCON

can provide scalable and robust utilization control for large-scale distributed real-

time systems executing in unpredictable environments.

Guaranteeing system controllability and feasibility is a fundamental problem of end-

to-end utilization control. Neither centralized nor decentralized control algorithms

can control a system if the system itself is uncontrollable or infeasible for control.

Controllability and feasibility depend crucially on the end-to-end task configuration

of a DRE system. Novel task allocation algorithms are developed to ensure that the

system is controllable and robustly feasible. Furthermore, we have developed run-

time algorithms that maintain controllability and feasibility by reallocating subtasks

dynamically in response to task termination and arrival.

Single processor real-time systems

While the focus of this dissertation is on distributed real-time systems, our framework

also includes algorithms and system implementations for single processor real-time

systems. As a starting point for adaptive middleware with end-to-end utilization con-

trol, we have developed a single processor utilization control middleware called FC-

S/nORB. FCS/nORB integrates utilization control with a small-footprint real-time

ORB such that it is truly portable in terms of real-time performance and functional-

ity. Our experiments demonstrate that FCS/nORB can provide deadline miss ratio

and utilization guarantees in face of changes in the platform and task execution times,

while introducing only a small amount of overhead.

As a case study of applying our framework to networking problems, we have developed

a control-based adaptive middleware called CAMRIT for real-time image transmis-

sion. CAMRIT features a distributed feedback control loop that meets image trans-

mission deadlines by dynamically adjusting the quality of image tiles in response to

varying network bandwidth. Experimental results demonstrate that CAMRIT can

provide robust real-time delay guarantees for a representative application scenario.

182

We have also applied the control framework to power control for IBM high-performance

blade servers [95] during a summer research internship at IBM Austin Research Lab.

In recent years, even high-performance servers are becoming power-constrained due

to increasing density and computing capabilities. The situation becomes even worse

in the event of a partial power-supply failure. Our design focuses on controlling

system-level power consumption by adapting the performance states of the micropro-

cessors. The resultant theoretical controller outperforms both traditional open-loop

solutions and a reasonably designed heuristic controller, in terms of better system

performance and more accurate power control. This control design resulted from our

control framework is now having a big impact at IBM and will be adopted in real

blade server products.

This dissertation work has had a broad technology impact because it not only pro-

duced 11 research papers (5 conference papers, 2 journal papers and 4 submissions),

it also generated three real-time middleware systems and two event-driven simulators,

which are being used by other research groups at a variety of universities and research

labs. All the software is open-source and is publicly released at:

http://deuce.doc.wustl.edu/FCS nORB/.

10.2 Future Work

The successful application of our adaptive QoS control framework to end-to-end uti-

lization control and related problems suggests several interesting future research di-

rections.

First, the QoS control framework presented in this dissertation can be extended to a

wide range of real-time and QoS-critical systems. For example, our work on power

control for a single computer server [95] has gained us confidence to develop more

advanced control algorithms to control both power and thermal for high-performance

computing clusters. The centralized EUCON control algorithm can be extended

to control all blade servers on a chassis which compose a small-scale distributed

system. The decentralized DEUCON control algorithm could be an effective approach

to power control in a whole commercial data center which hosts hundreds of blade

183

servers. Another promising application of the control framework is QoS control in

distributed storage systems. Recently, a novel storage architecture is distributed

storage systems composed from numerous inexpensive COTS storage disks (e.g. the

federated array of bricks (FAB) project at HP Labs [75]). Decentralized control and

theoretical guarantees on critical QoS metrics like response time and throughput could

be crucial to the success of this new architecture. Other possible applications include

peer-to-peer multimedia streaming, content delivery network, distributed data mining

and web-services based applications.

Second, one of our ultimate goals is to develop adaptive, resilient and secure mid-

dleware for distributed real-time systems. In this dissertation, the integration of the

FC-ORB control middleware with traditional fault-tolerance mechanisms is proved to

be a step towards self-managing, self-healing and self-tuning distributed computing

platforms. Hence, it is interesting to integrate our control algorithms and middleware

with more advanced fault-tolerance and security mechanisms, so analytic guarantees

can be provided for real-time and QoS-critical applications to tolerate and survive ma-

licious security attacks such as sophisticated DDOS attacks. For example, adaptive

and resilient middleware can be used in the supervisory control and data acquisition

(SCADA) systems to meet some important challenges, such as maintaining critical

real-time performance in power grid management even under cascading failures.

Finally, new control algorithms may have to be designed for DRE systems with special

configurations. For example, processors in some networked embedded systems such as

large-scale wireless sensor networks have extremely limited computing capacity and

storage. As a result, the EUCON and DEUCON control algorithms presented in this

dissertation may not be a good fit with those systems, because the two algorithms

are developed based on model predictive control theory which requires the processors

to solve constrained least squares problems. It would be challenging to simplify the

existing control algorithms to provide QoS control for those systems with guaran-

teed stability. In addition, some distributed real-time systems such as avionics only

support discrete control variables, so hybrid (continuous/discrete) control algorithms

need to be developed to handle end-to-end tasks. Furthermore, adaptive and robust

control theory may also be used to improve control performance when system model

varies dynamically at runtime.

184

Appendix A

Transformation to Least-Squares

Problem

A standard constrained least-squares problem is in the form of

min
s(k)

(
P∑

i=1

‖Θs(k)− E(k)‖2
Q(i) +

M−1∑

i=0

s(k)2
R(i)) (A.1)

subject to constraints Ωs(k) ≤ ω.

where s(k) denotes the vector of change to the control input in the control horizon.

In EUCON, s(k) =




∆r(k|k)−∆r(k − 1)
...

∆r(k +M − 1|k)−∆r(k +M − 2|k)


.

To transform our control problem to a least-squares problem, we re-write our cost

function in (4.5) and constraints (3.1) in the form (A.1). Since the control penalty

terms in (4.5) is consistent with (A.1), we only need to transform the tracking error

term in (4.5) and the constraints 3.1) to formulations in terms of s(k). First we

work on the tracking error term in (4.5). From the plant model (4.4) and (4.7), the

predicted utilization for given prediction horizon can be written as:

185




u(k + 1|k)
...

u(k +M |k)
u(k +M + 1|k)

...
u(k + P |k)




=




u(k)
...

u(k)
u(k)

...
u(k)




+




F
...∑M−1

i=0 F∑M
i=0 F
...∑P−1

i=0 F




∆r(k−1)+




F 0 · · · 0
F + F F · · · 0

...
...

. . .
...∑M

i=0 F
∑M−1
i=0 F · · · 2F

...
...

. . .
...∑P−1

i=0 F
∑P−2
i=0 F · · · ∑P−M

i=0 F




(A.2)

We can rewrite (A.2) as:

u′(k) = u(k) + Γ∆r(k − 1) + Θs(k) (A.3)

where

u′(k) =




u(k + 1|k)
...

u(k +M |k)
u(k +M + 1|k)

...
u(k + P |k)




,Γ =




F
...∑M−1

i=0 F∑M
i=0 F
...∑P−1

i=0 F




,Θ =




F 0 · · · 0
F + F F · · · 0

...
...

. . .
...∑M

i=0 F
∑M−1
i=0 F · · · 2F

...
...

. . .
...∑P−1

i=0 F
∑P−2
i=0 F · · · ∑P−M

i=0 F




(A.4)

In addition, we define

E(k) = ref ′(k)− u(k)− Γ∆r(k − 1) (A.5)

where ref ′(k) represents the reference trajectory for specified prediction horizon:

ref ′(k) =




ref(k + 1|k)
...

ref(k + P |k)


.

Given Θ and E(k) in (A.3) and (A.4), our cost function (4.5) is equivalent to the

one in the least-squares problem (A.1). We now transform the constraints (3.2-3.3)

to the linear inequality constraint form as Ωs(k) ≤ ω. Firstly we transform the rate

constraint (3.3) in control horizon M as:

186




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

−1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1







r(k)

r(k + 1)
...

r(k +M − 1)



≤




Rmax

Rmax

...

Rmax

−Rmin

−Rmin

...

−Rmin




From r(k) = r(k − 1) + ∆r(k), the above inequality is equivalent to




1 0 · · · 0

1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

−1 0 · · · 0

−1 −1 · · · 0
...

...
. . .

...

−1 −1 · · · −1







∆r(k)

∆r(k + 1)
...

∆r(k +M − 1)



≤ −




1

1
...

1

−1

−1
...

−1




r(k − 1) +




Rmax

Rmax

...

Rmax

−Rmin

−Rmin

...

−Rmin




From ∆r(k) = ∆r(k−1)+(∆r(k)−∆r(k−1)), we can transform the rate constraints
to the following linear inequality constraints:




1 0 · · · 0
2 1 · · · 0
...

...
. . .

...
M M − 1 · · · 1
−1 0 · · · 0
−2 −1 · · · 0
...

...
. . .

...
−M −(M − 1) · · · −1




s(k) ≤ −




1
2
...
M

−1
−2
...
−M




∆r(k − 1)−




1
1
...
1
−1
−1
...
−1




r(k − 1) +




Rmax

Rmax
...

Rmax

−Rmin
−Rmin

...
−Rmin




(A.6)

187

Now we consider the utilization bound constraints (3.2). From (3.2) and (A.3) the

utilization bound constraints are equivalent to the following linear inequality

Θs(k) ≤ −u(k)− Γ∆r(k − 1) + B (A.7)

We have transformed our MPC formulation to a constrained least-square formulation

described by (A.1, A.3-A.6). Since the constraints (A.6-A.7) depend on u(k), ∆r(k−
1), and r(k − 1), both of them are known at time k. We can use any standard

least-squares solver to solve this control problem now.

188

Appendix B

Detailed Stability Analysis in

EUCON

Example: We now apply the stability analysis approach to the example system

described in the end of Section V. The system has 3 tasks and 2 processors. We set

the prediction horizon P = 2 and the control horizon M = 1. According to the MPC

theory, the system is also stable with any longer prediction horizon and control horizon

if it is stable with shorter horizons. The time constant of the reference trajectory is

Tref/Ts = 4. The weights assigned to all terms are 1. The cost function can be

transformed to the following formula in scalar form:

V (k) =
2∑

j=1

2∑

i=1

(uj(k + i|k)− refj(k + i|k))2 +
3∑

j=1

(∆rj(k)−∆rj(k − 1))2 (B.1)

Substituting the model parameters to (4.4) and (4.7), we have




u1(k + 1)

u2(k + 1)

u1(k + 2)

u2(k + 2)




=




u1(k)

u2(k)

u1(k + 1)

u2(k + 1)




+




c11 c21 0

0 c22 c31

c11 c21 0

0 c22 c31







∆r1(k)

∆r2(k)

∆r3(k)


 (B.2)

For simplicity, we use ui and ∆ri to represent ui(k) and ∆ri(k), respectively, in the

rest of this section. Substitute (B.2) and the reference trajectory (4.6) in (B.1), the

189

cost function becomes

V (k) = [u1 + c11∆r1 + c21∆r2 − (B1 − λ(B1 − u1))]2

+ [u2 + c22∆r2 + c31∆r3 − (B2 − λ(B2 − u2))]2

+ [u1 + 2c11∆r1 + 2c21∆r2 − (B1 − λ2(B1 − u1))]2

+ [u2 + 2c22∆r2 + 2c31∆r3 − (B2 − λ2(B2 − u2))]2

+ [∆r1 −∆r1(k − 1)]2 + [∆r2 −∆r2(k − 1)]2

+ [∆r3 −∆r3(k − 1)]2 (B.3)

where λ = e−Ts/Tref . We then perform partial differentiation on V (k) with respect to

∆r1,∆r2 and ∆r3, respectively. The derivatives are set to zero to compute the control

input vector ∆r(k) that minimize the cost function. This gives us the following

equations:





(10c2
11 + 2)∆r1 + 10c11c21∆r2 +O = 0

(10c2
31 + 2)∆r3 + 10c22c31∆r2 + P = 0

10c11c21∆r1 + (10c2
21 + 10c2

22 + 2)∆r2 + 10c22c31∆r3 +Q = 0

(B.4)

where

O = 6c11u1 − 6c11B1 + (2c11λ+ 4c11λ
2)(B1 − u1)− 2∆r1(k − 1)

P = 6c31u2 − 6c31B2 + (2c31λ+ 4c31λ
2)(B2 − u2)− 2∆r3(k − 1)

Q = 6c21u1 + 6c22u2 − 6c21B1 − 6c22B2 + (2c21λ+ 4c21λ
2)(B1 − u1)

+(2c22λ+ 4c22λ
2)(B2 − u2)− 2∆r2(k − 1)

We compute ∆r(k) by solving (B.4), and then substitute it to the actual system

model (4.3-4.4). The closed-loop model is a function of the system gains (g1, g2).

u1(k + 1) = (g1(
2λ+ 4λ2

6
+

2c21

3

12c21 − 2c21(2λ+ 4λ2)

32c2
21 + 32c2

22

− 1) + 1)u1(k)

+g1
2c21

3

12c22 − 2c22(2λ+ 4λ2)

32c2
21 + 32c2

22

u2(k) +M

u2(k + 1) = g2
2c22

3

12c21 − 2c21(2λ+ 4λ2)

32c2
21 + 32c2

22

u1(k)

190

+(g2(
2λ+ 4λ2

6
+

2c22

3

12c22 − 2c22(2λ+ 4λ2)

32c2
21 + 32c2

22

− 1) + 1)u2(k) +N

where M,N are independent of u1(k) or u2(k). Hence the matrix A in (4.8) is

A =


 g1(c

6
+ 2c22a

3
− 1) + 1 g1

2c21b
3

g2
2c22a

3
g2(c

6
+ 2c22b

3
− 1) + 1


 (B.5)

where a = 12c21−2c21c
32c221+32c222

, b = 12c22−2c22c
32c221+32c222

, and c = 2λ+ 4λ2.

Since A is not a function of c11 or c31, the stability of the closed-loop system only

depends on the values of c21 and c22. This is because both T1 and T3 are local tasks,

i.e., each of them only has one subtask and hence only runs on a single processor. The

controller can adjust the rates of T1 and T3 to control the utilization on a processor

without affecting the other one. Therefore, only the parameters of the end-to-end

task, T2, affect system stability.

The closed-loop system is stable if the eigenvalues of A locate inside the unit circle

in the complex space. The eigenvalues of A are

ρ =
c
6
(g1 + g2) + 2

3
(c21ag1 + c22bg2)− g1 − g2 + 2± ω1/2

2

where ω = (c−6
6

)(g1 − g2)2 + 4
3
(c21ag1 − c22bg2) c−6

6
)(g1 − g2) + 4

9
(c21ag1 − c22bg2)2

Following Step 3, we can establish the condition in terms of (g1, g2) that guarantees the

stability of the closed-loop system. For example, in the special case when g1 = g2 = g,




ρ1 = 2λ2+λ−3

3
g + 1

ρ2 = 2λ2+λ−3
4

g + 1
(B.6)

To guarantee stability, we need to guarantee −1 < ρ1, ρ2 < 1. Substituting the values

of λ, Ts,and Tref , the stability condition of the closed-loop system is 0 < g < 5.95.

Therefore, EUCON can maintain stability even if the execution time of every subtask

becomes as high as 5.95 times its estimated one.

191

Appendix C

Parameters of MEDIUM used in

Section 4.4

The execution time of every subtask Tij in MEDIUM follows a uniform distribution

in a range [Minij,Maxij]∗etf , where etf is the current execution time factor used in

the experiment. The second column (Proc) represents the processor where a subtask

is located.

192

Table C.1: Parameters of the MEDIUM workload

Tij Proc Minij Maxij 1/Rmax,i, 1/Rmin,i 1/ri(0) phase
T11 P1 25 35

55 3000 300 0
T12 P2 45 55
T13 P3 45 55
T14 P4 35 45
T21 P4 45 55

55 5000 500 100
T22 P2 35 45
T31 P1 55 65

65 4000 400 0
T32 P3 35 45
T41 P1 25 35

45 6000 600 200T42 P4 35 45
T43 P2 15 25
T51 P4 105 115

115 10000 1000 200T52 P2 65 75
T53 P3 55 65
T61 P1 25 35

55 4000 400 0T62 P2 45 55
T63 P1 35 45
T71 P4 55 65

105 6000 600 100
T72 P3 95 105
T81 P2 65 75

75 5000 500 0
T82 P1 35 45
T91 P1 35 45 45 5000 500 0
T10,1 P2 35 45 45 6000 600 0
T11,1 P3 35 45 45 4000 400 0
T12,1 P4 35 45 45 6500 650 0

193

Appendix D

Detailed Stability Analysis in

DEUCON

Example To illustrate our method for stability analysis, we now apply the stability

analysis approach to the example system described in Figure 5.2. The system has 21

tasks and 10 processors. We set the prediction horizon P = 2 and the control horizon

M = 1. The time constant of the reference trajectory is Tref/Ts = 4. The weights on

all terms are 1. The parameters in the model for the controller on Processor P1 are

nu′1 (k) =
[
u′1 (k) u′2 (k) u′3 (k)

]T

=
[
u1 (k) e

− Ts
Tref u2 (k) +

(
1− e−

Ts
Tref

)
B2 e

− Ts
Tref u3 (k) +

(
1− e−

Ts
Tref

)
B3

]T

G1 =




g1 0 0

0 g2 0

0 0 g3




F1 =




c11 c21 c31 c42 0 0 0 0

0 0 c32 c41 c51 c62 0 0

0 c22 c33 0 0 c61 c71 c83




∆r1 (k) =
[

∆r1 (k) ∆r2 (k) ∆r3 (k) ∆r4 (k) ∆r5 (k) ∆r6 (k) ∆r7 (k) ∆r8 (k)
]T

B1 =
[
B1 B2 B3

]T

194

The solution for the controller on P1 is of the form

∆nr1
1 (k) =




k1
11 k1

12 k1
13

...
...

...

k1
81 k1

82 k1
83


nu′1 (k) +




h1
11 · · · h1

18
...

. . .
...

h1
81 · · · h1

88


∆nr1 (k− 1)

+




e1
11 e1

12 e1
13

...
...

...

e1
81 e1

82 e1
83


B1 (D.1)

The superscript 1 denotes that the solution is for the controller on P1.

Following Step 2, we construct the feedback and feed-forward matrices for (9). Since

controller C1 manipulates the control variables ∆r1, ∆r2 and ∆r3, the first three rows

of the matrices K and L are constructed by the first three rows of K1 as




k1
11 0 0 0 · · · 0

k1
21 0 0 0 · · · 0

k1
31 0 0 0 · · · 0




and 


0 e
− Ts
Tref k1

12 e
− Ts
Tref k1

13 0 · · · 0

0 e
− Ts
Tref k1

22 e
− Ts
Tref k1

23 0 · · · 0

0 e
− Ts
Tref k1

32 e
− Ts
Tref k1

33 0 · · · 0



,

respectively. The first three rows of the matrix E are constructed by the first three

rows of E1 and K1 as




e1
11 e1

12 +
(

1− e−
Ts
Tref

)
k1

12 e1
13 +

(
1− e−

Ts
Tref

)
k1

13 0 · · · 0

e1
21 e1

22 +
(

1− e−
Ts
Tref

)
k1

22 e1
23 +

(
1− e−

Ts
Tref

)
k1

23 0 · · · 0

e1
31 e1

32 +
(

1− e−
Ts
Tref

)
k1

32 e1
33 +

(
1− e−

Ts
Tref

)
k1

33 0 · · · 0



.

195

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

real part of the poles

im
ag

in
ar

y
pa

rt
 o

f t
he

 p
ol

es

closed−loop system by DEUCON for 0<g<2

Figure D.1: The root locus of the closed-loop system

The first three rows of the matrix H are constructed by the first three rows of the

matrix H1 as 


h1
11 · · · h1

18 0 · · · 0

h1
21 · · · h1

28 0 · · · 0

h1
31 · · · h1

38 0 · · · 0


 .

The matrices K, H and E can be completed by the corresponding matrices from

controllers on other processors. Then, we can derive the composite system (10).

The poles are functions of the system gains in G. The closed-loop system has 31 poles.

Our MATLAB program allows us to analyze the system stability under any G. For

example, Figure D.1 shows the root locus of the closed-loop system by DEUCON

for the case that all non-zero elements of G have the same value, denoted by g.

Root locus is the trajectory of the poles of the closed-loop system as g varies. The

dotted circle is the unit circle. It shows that all poles are within the unit circle for

0 < g < 2. Furthermore, the DC gain of the closed-loop system is the identity matrix

for 0 < g < 2. Therefore, the system is stable. Our analysis proves that DEUCON

can provide robust utilization guarantees to the example system even when actual

execution times deviate significantly from the estimation. For instance, our results

indicate that DEUCON can converge to the desired utilizations on all processors even

if the execution time of every task is 90% lower (g = 0.1) or 90% higher (g = 1.9)

than the estimation as long as the range of task rates are not violated.

196

References

[1] Sherif Abdelwahed, Sandeep Neema, Joseph P. Loyall, and Richard Shapiro. A
hybrid control design for QoS management. In RTSS, 2003.

[2] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu. Feedback performance
control in sofware services. IEEE Control Systems, 23(3), June 2003.

[3] Tarek F. Abdelzaher, Vivek Sharma, and Chenyang Lu. A utilization bound
for aperiodic tasks and priority driven scheduling. IEEE Trans. Comput.,
53(3):334–350, 2004.

[4] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees
for Web server end-systems: A control-theoretical approach. IEEE Transactions
on Parallel and Distributed Systems, 13(1):80–96, 2002.

[5] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a reservation-based
feedback scheduler. In IEEE RTSS, December 2002.

[6] Shoukat Ali, Jong-Kook Kim, Yang Yu, Shriram B. Gundala, Sethavidh Gert-
phol, Howard Jay Siegel, and Anthony A. Maciejewski. Utilization-based tech-
niques for statically mapping heterogeneous applications onto the hiper-d het-
erogeneous computing system, 2003.

[7] Mehdi Amirijoo, Nicolas Chaufette, Jörgen Hansson, Sang Hyuk Son, and
Svante Gunnarsson. Generalized performance management of multi-class real-
time imprecise data services. In RTSS, pages 38–49, 2005.

[8] Sanjoy Baruah. Feasibility analysis of preemptive real-time systems upon het-
erogeneous multiprocessor platforms. rtss, 00:37–46, 2004.

[9] Lotfi Benmohamed and Semyon M. Meerkov. Feedback control of congestion
in packet switching networks: the case of a single congested node. IEEE/ACM
Trans. Netw., 1(6):693–708, 1993.

[10] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A dynamic quality of service
middleware agent for mediating application resource usage. In IEEE RTSS,
December 1998.

[11] Giorgio Buttazzo and Luca Abeni. Adaptive workload management through
elastic scheduling. Real-Time Syst., 23(1-2):7–24, 2002.

197

[12] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. Elastic
scheduling for flexible workload management. IEEE Trans. Comput., 51(3):289–
302, 2002.

[13] M. Caccamo, G. Buttazzo, and L. Sha. Elastic feedback control. In Euromicro
Conference on Real-Time Systems, Stockholm, Sweden, June 2000.

[14] Marco Caccamo, Giorgio Buttazzo, and Lui Sha. Handling execution overruns
in hard real-time control systems. IEEE Trans. Comput., 51(7):835–849, 2002.

[15] E. F. Camacho and C. Bordons. Model Predictive Control. Springer Verlag,
London, 1999.

[16] E. Camponogara, D. Jia, B.H. Krogh, and S.N. Talukdar. Distributed model
predictive control. Control Systems Magazine, 22(1):44–52, February 2002.

[17] R. Carlson. Sandia SCADA program high-security SCADA LDRD final report.
SANDIA Report SAND2002-0729, 2002.

[18] Center for Distributed Object Computing. The ACE ORB (TAO).
www.cs.wustl.edu/∼schmidt/TAO.html, Washington University.

[19] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen. Feedback-feedforward
scheduling of control tasks. Real-Time Systems, 23(1):25–53, July 2002.

[20] D. Corman. WSOA-Weapon Systems Open Architecture Demonstration-Using
Emerging Open System Architecture Standards to Enable Innovative Tech-
niques for Time Critical Target (TCT) Prosecution. In Proceedings of the 20th
IEEE/AIAA Digital Avionics Systems Conference (DASC), October 2001.

[21] Y Diao, N Gandhi, JL Hellerstein, S Parekh, and DM Tilbury. Using mimo
feedback control to enforce policies for interrelated metrics with application to
the apache web server. In Network Operations and Management, 2002.

[22] Yixin Diao, Joseph L. Hellerstein, Adam J. Storm, Maheswaran Surendra, Sam
Lightstone, Sujay S. Parekh, and Christian Garcia-Arellano. Incorporating cost
of control into the design of a load balancing controller. In Proceedings of the
10th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’04), page 376, 2004.

[23] J. Eker. Flexible Embedded Control Systems. Design and Implementation. PhD
thesis, Lund Institute of Technology, Sweden, December 1999.

[24] G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of Dynamic
Systems, 3rd edition. Addition-Wesley, 1997.

198

[25] Gene F. Franklin, Abbas Emami-Naeini, and J. David Powell. Feedback Control
of Dynamic Systems, 3rd edition. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1993.

[26] Felix C. Gartner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Comput. Surv., 31(1):1–26, 1999.

[27] Sethavidh Gertphol, Yang Yu, Shriram B. Gundala, Viktor K. Prasanna,
Shoukat Ali, Jong-Kook Kim, Anthony A. Maciejewski, and Howard Jay Siegel.
A metric and mixed-integer-programming-based approach for resource alloca-
tion in dynamic real-time systems. In IPDPS ’02: Proceedings of the 16th
International Parallel and Distributed Processing Symposium, page 16, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[28] C.D. Gill, D.C. Schmidt, and R. Cytron. Multi-Paradigm Scheduling for Dis-
tributed Real-Time Embedded Computing. IEEE Proceedings, Special Issue on
Modeling and Design of Embedded Software, 91(1), January 2003.

[29] Christopher D. Gill, David L. Levine, and Douglas C. Schmidt. The Design and
Performance of a Real-Time CORBA Scheduling Service. Real-Time Systems,
The International Journal of Time-Critical Computing Systems, special issue
on Real-Time Middleware, 20(2), March 2001.

[30] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic
Press, London, UK, 1981.

[31] A. Goel, J. Walpole, and M. Shor. Real-rate scheduling. In IEEE RTAS, 2004.

[32] Aniruddha S. Gokhale, Balachandran Natarajan, Douglas C. Schmidt, and
Joseph K. Cross. Towards real-time fault-tolerant CORBA middleware. Cluster
Computing, 7(4):331–346, 2004.

[33] T.H. Harrison, D.L. Levine, and D.C. Schmidt. The Design and Performance of
a Real-time CORBA Event Service. In Proceedings of OOPSLA ’97, Atlanta,
GA, October 1997.

[34] D. Henriksson and T. Olsson. Maximizing the use of computational resources
in multi-camera feedback control. In IEEE RTAS, May 2004.

[35] C.V. Hollot, V. Misra, D. Towsley, , and W. Gong. A control theoretic analysis
of RED. In Proceedings of INFOCOM 2001, April 2001.

[36] Chao-Ju Hou and Kang G. Shin. Allocation of periodic task modules with
precedence and deadline constraints in distributed real-time systems. IEEE
Trans. Comput., 46(12):1338–1356, 1997.

199

[37] J. Huang, Y. Wang, and F. Cao. On developing distributed middleware services
for qos-and criticality-based resource negotiation and adaptation. Real-Time
Syst., 16(2-3):187–221, 1999.

[38] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control. IEEE
Trans. on Robotics and Automation, 12(5):651–670, October 1996.

[39] Information Networks Division, Hewlett-Packard, Cupertino, CA. Netperf: A
Network Performance Benchmark, March 1993. Edition B.

[40] Liu J., Lin K. J., Shih W. K., and Yu A. C. Algorithms for Scheduling Imprecise
Computations. In ONR Third Annual Workshop on the Foundations of Real-
Time Computing, 1990.

[41] J. Huang and R. Jha and W. Heimerdinger and M. Muhammad and S. Lauzac
and B. Kannikeswaran and K. Schwan and W. Zhao and R. Bettati. RT-ARM:
A Real-Time Adaptive Resource Management System for Distributed Mission-
Critical Applications. In Workshop on Middleware for Distributed Real-Time
Systems, RTSS-97, San Francisco, California, 1997. IEEE.

[42] B. Kao and H. Garcia-Molina. Deadline assignment in a distributed soft real-
time system. IEEE Trans. Parallel Distrib. Syst., 8(12):1268–1274, 1997.

[43] Christos Karamanolis, Magnus Karlsson, and Xiaoyun Zhu. Designing control-
lable computer systems. In USENIX Workshop on Hot Topics in Operating
Systems (HotOS), Santa Fe, NM, 2005.

[44] Magnus Karlsson, Christos T. Karamanolis, and Xiaoyun Zhu. Triage: Perfor-
mance differentiation for storage systems using adaptive control. TOS, 1(4):457–
480, 2005.

[45] Srinivasan Keshav. A control-theoretic approach to flow control. In SIGCOMM,
pages 3–15, 1991.

[46] Raymond Klefstad, Douglas C. Schmidt, and Carlos O’Ryan. Towards highly
configurable real-time object request brokers. In Symposium on Object-Oriented
Real-Time Distributed Computing, pages 437–447, 2002.

[47] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The Case for
Reflective Middleware. Communications of the ACM, 45(6):33–38, June 2002.

[48] Xenofon Koutsoukos, Radhika Tekumalla, Balachandran Natarajan, and
Chenyang Lu. Hybrid supervisory utilization control of real-time systems. In
IEEE RTAS, 2005.

200

[49] Chen Lee, John Lehoczky, Dan Siewiorek, Ragunathan Rajkumar, and Jeff
Hansen. A scalable solution to the multi-resource qos problem. In RTSS ’99:
Proceedings of the 20th IEEE Real-Time Systems Symposium, page 315, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[50] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadline. In IEEE RTSS, 1990.

[51] F.L. Lewis and V.L. Syrmos. Optimal Control, Second Edition. John Wiley &
Sons, Inc., 1995.

[52] B. Li and K. Nahrstedt. A Control-based Middleware Framework for QoS
Adaptations. IEEE Journal on Selected Areas in Communications, 17(9):1632–
1650, September 1999.

[53] Suzhen Lin and G. Manimaran. Double-loop feedback-based scheduling ap-
proach for distributed real-time systems. In HiPC, pages 268–278, 2003.

[54] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of ACM, Vol. 20, No.1, pp. 46-61, January
1973.

[55] Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[56] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro, C. Ro-
drigues, M. Atighetchi, and D. Karr. Comparing and Contrasting Adaptive
Middleware Support in Wide-Area and Embedded Distributed Object Appli-
cations. In Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS-21), pages 625–634. IEEE, April 2001.

[57] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Journal of Real-Time Sys-
tems, Special Issue on Control-Theoretical Approaches to Real-Time Computing,
23(1/2):85–126, July 2002.

[58] C. Lu, X. Wang, and C.D. Gill. Feedback control real-time scheduling in ORB
middleware. In IEEE RTAS, May 2003.

[59] C. Lu, X. Wang, and X. Koutsoukos. End-to-end utilization control in dis-
tributed real-time systems. In ICDCS 2004, Tokyo, Japan, March 2004.

[60] C. Lu, X. Wang, and X. Koutsoukos. Feedback utilization control in distributed
real-time systems with end-to-end tasks. IEEE Trans. Parallel Distrib. Syst.,
16(6):550–561, June 2005.

201

[61] Chenyang Lu, Guillermo A. Alvarez, and John Wilkes. Aqueduct: Online data
migration with performance guarantees. In FAST ’02: Proceedings of the 1st
USENIX Conference on File and Storage Technologies, page 21, Berkeley, CA,
USA, 2002. USENIX Association.

[62] Ying Lu, Chanyang Lu, Tarek Abdelzaher, and Gang Tao. An Adaptive Control
Framework for QoS Guarantees and its Application to Differentiated Caching
Services. In Proceedings of the International Workshop on Quality of Service
(IWQoS), Miami Beach, FL, May 2002.

[63] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[64] Pau Marti, Gerhard Fohler, Pep Fuertes, and Krithi Ramamritham. Improving
quality-of-control using flexible timing constraints: metric and scheduling. In
IEEE RTSS, 2002.

[65] J.-F. Meyer. On evaluating the performability of degradable computing systems.
IEEE Trans. Computers, 29(8):720–731, August 1980.

[66] M. Di Natale and J. Stankovic. Dynamic end-to-end guarantees in distributed
real-time systems. In IEEE RTSS, 1994.

[67] Object Management Group. Real-Time CORBA Specification, 1.1 edition, Au-
gust 2002.

[68] C. O’Ryan, D.C. Schmidt, and J.R. Noseworthy. Patterns and Performance of
a CORBA Event Service for Large-scale Distributed Interactive Simulations.
International Journal of Computer Systems Science and Engineering, 17(2),
March 2002.

[69] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commun.
ACM, 43(5):51–58, 2000.

[70] William K. Pratt. Digital image processing. John Wiley & Sons, Inc., New
York, NY, USA, 1978.

[71] Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron. Techniques for Enhancing
Real-time CORBA Quality of Service. IEEE Proceedings Special Issue on Real-
time Systems, 91(7), July 2003.

[72] R. Collins. JTIDS: Joint Tactical Information Distribution System.
www.rockwellcollins.com/ecat/gs/JTIDS.html.

[73] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-time synchro-
nization protocols for multiprocessors. In IEEE RTAS, December 1988.

202

[74] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On adaptive resource alloca-
tion for complex real-time applications. In RTSS ’97: Proceedings of the 18th
IEEE Real-Time Systems Symposium (RTSS ’97), page 320, Washington, DC,
USA, 1997. IEEE Computer Society.

[75] Yasushi Saito, Svend Frolund, Alistair Veitch, Arif Merchant, and Susan Spence.
Fab: building distributed enterprise disk arrays from commodity components.
In ASPLOS-XI: Proceedings of the 11th international conference on Architec-
tural support for programming languages and operating systems, pages 48–58,
New York, NY, USA, 2004. ACM Press.

[76] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Trans. Comput. Syst.,
1(3):222–238, 1983.

[77] D. Schmidt. Reactor: An object behavioral pattern for concurrent event de-
multiplexing and event handler dispatching. Pattern Languages of Program
Design (J. O. Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA:
AddisonWesley., 1995.

[78] D. Schmidt. Acceptor and connector: Design patterns for initializing com-
munication services. Pattern Languages of Program Design (R. Martin, F.
Buschmann, and D. Riehle, eds.), Reading, MA: Addison-Wesley., 1997.

[79] Douglas C. Schmidt. The ADAPTIVE Communication Environment: An
Object-Oriented Network Programming Toolkit for Developing Communica-
tion Software. In Proceedings of the 12th Annual Sun Users Group Conference,
pages 214–225, San Jose, CA, December 1993. SUG.

[80] Douglas C. Schmidt. The ADAPTIVE Communication Environment (ACE).
www.cs.wustl.edu/∼schmidt/ACE.html, 1997.

[81] Douglas C. Schmidt and et al. TAO: A Pattern-Oriented Object Request Broker
for Distributed Real-time and Embedded Systems. IEEE Distributed Systems
Online, 3(2), February 2002.

[82] Douglas C. Schmidt and Fred Kuhns. An overview of the real-time CORBA
specification. IEEE Computer, 33(6):56–63, 2000.

[83] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in
real-time control system. In IEEE RTSS, Washington, D.C., December 1996.

[84] Vivek Sharma, Arun Thomas, Tarek Abdelzaher, Kevin Skadron, and Zhijian
Lu. Power-aware QoS management in web servers. In IEEE RTSS, 2003.

203

[85] C. Shen, K. Ramamritham, and J. A. Stankovic. Resource reclaiming in multi-
processor real-time systems. IEEE Trans. Parallel Distrib. Syst., 4(4):382–397,
1993.

[86] R. W. Shields and J. B. Pearson. Structural controllability of multiinput linear
systems. IEEE Transactions on Automatic Control, AC-21:203–212, 1976.

[87] Kevin Skadron, Tarek Abdelzaher, and Mircea R. Stan. Control-theoretic tech-
niques and thermal-rc modeling for accurate and localized dynamic thermal
management. In HPCA ’02: Proceedings of the 8th International Symposium
on High-Performance Computer Architecture, page 17, Washington, DC, USA,
2002. IEEE Computer Society.

[88] John A. Stankovic, Tian He, Tarek Abdelzaher, Mike Marley, Gang Tao, Sang
Son, and Cenyan Lu. Feedback control scheduling in distributed real-time
systems. In Proceedings of the 22nd IEEE Real-Time Systems Symposium
(RTSS’01), 2001.

[89] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu,
and Jonathan Walpole. A feedback-driven proportion allocator for real-rate
scheduling. In Operating Systems Design and Implementation, pages 145–158,
1999.

[90] Venkita Subramonian, Guoliang Xing, Christopher D. Gill, Chenyang Lu, and
Ron Cytron. Middleware specialization for memory-constrained networked em-
bedded systems. In RTAS, 2004.

[91] Jun Sun and Jane W.-S. Liu. Synchronization protocols in distributed real-time
systems. In ICDCS, 1996.

[92] G. K. Wallace. The jpeg still image compression standard. Communications of
the ACM, 34(4):30–44, April 1991.

[93] Xiaorui Wang, Huang-Ming Huang, Venkita Subramonian, Chenyang Lu, and
Christopher D. Gill. CAMRIT: Control-based adaptive middleware for real-
time image transmission. In IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 296–305, 2004.

[94] Xiaorui Wang, Dong Jia, Chenyang Lu, and Xenofon Koutsoukos. Decentralized
utilization control in distributed real-time systems. In IEEE RTSS, 2005.

[95] Xiaorui Wang, Charles Lefurgy, and Malcolm Ware. Managing Peak System-
level Power with Feedback Control. Technical Report IBM RC23835, IBM
Research, 2005.

204

[96] Xiaorui Wang, Chenyang Lu, and Xenofon Koutsoukos. Enhancing the robust-
ness of distributed real-time middleware via end-to-end utilization control. In
IEEE RTSS, 2005.

[97] Zhikui Wang, Xiaoyun Zhu, and Sharad Singhal. Utilization and slo-based
control for dynamic sizing of resource partitions. In DSOM, pages 133–144,
2005.

[98] L. Welch. Adaptive resource management for scalable, dependable real-time
systems. In Work-In Progress Session of the Fourth IEEE Real-Time Technology
and Applications Symposium (RTAS’98), 1998.

[99] L. R. Welch, B. A. Shirazi, B. Ravindran, and C. Bruggeman. DeSiDeRaTa:
QoS Management Technology for Dynamic, Scalable, Dependable Real-Time
Systems. In IFACs 15th Symposium on Distributed Computer Control Systems
(DCCS98). IFAC, 1998.

[100] W. J. Wilson. Applying layering principles to legacy systems: Link 16 as a
case study. In IEEE International Military Communications Conference (MIL-
COM), 2001.

[101] A. D. Wood and J. A. Stankovic. Denial of service in sensor networks. IEEE
Computer, 35(10):54–62, 2002.

[102] Qiang Wu, Philo Juang, Margaret Martonosi, Li-Shiuan Peh, and Douglas W.
Clark. Formal control techniques for power-performance management. IEEE
Micro, 25(5):52–62, 2005.

[103] Yinyu Ye. Interior Point Algorithms: Theory and Analysis. John Wiley &
Sons, Inc., 1997.

[104] Ronghua Zhang, Chenyang Lu, Tarek F. Abdelzaher, and John A. Stankovic.
ControlWare: A Middleware Architecture for Feedback Control of Software
Performance. In Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2002. IEEE.

[105] Feng Zhao, Xenofon D. Koutsoukos, Horst W. Haussecker, James Reich, Patrick
Cheung, and Claudia Picardi. Distributed monitoring of hybrid systems: A
model-directed approach. In IJCAI, 2001.

[106] Y. Zhu and F. Mueller. Feedback EDF scheduling exploiting dynamic voltage
scaling. In IEEE RTAS, 2004.

[107] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support
for Quality of Service for CORBA Objects. Theory and Practice of Object
Systems, 3(1):1–20, 1997.

205

Vita

Xiaorui Wang

Degrees Bachelor of Science in Computer Science, July 1995
Master of Science in Computer Science, May 1998
Master of Science in Computer Science, August 2002
Doctor of Science in Computer Science, August 2006

Industrial
Experience

• Research Intern, IBM Austin Research Lab, Power-Aware
Systems Department, Austin, TX, Summer 2005.

• Senior Software Engineer, Huawei Technologies Co., Ltd,
Central R&D, Optical Networks Department, Shenzhen, China,
1998-2001.

Publications • Xiaorui Wang, Yingming Chen, Chenyang Lu, and Xeno-
fon Koutsoukos, FC-ORB: A Robust Distributed Real-time
Embedded Middleware with End-to-End Utilization Control,
to appear in the Elsevier Journal of Systems and Software,
Special Issue on Dynamic Resource Management in Distributed
Real-Time Systems.

• Xiaorui Wang, Dong Jia, Chenyang Lu and Xenofon Kout-
soukos, Decentralized Utilization Control in Distributed Real-
Time Systems, the 26th IEEE Real-Time Systems Sympo-
sium (RTSS 2005), Miami, Florida, December 2005.

• Xiaorui Wang, Chenyang Lu and Xenofon Koutsoukos, En-
hancing the Robustness of Distributed Real-Time Middleware
via End-to-End Utilization Control, the 26th IEEE Real-
Time Systems Symposium (RTSS 2005), Miami, Florida, De-
cember 2005.

• Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos,
Feedback Utilization Control in Distributed Real-Time Sys-
tems with End-to-End Tasks, IEEE Transactions on Parallel

206

and Distributed Systems (IEEE TPDS), 16(6):550-561, June
2005.

• Guoliang Xing, Xiaorui Wang, Yuanfang Zhang, Chenyang
Lu, Robert Pless, and Christopher Gill, Integrated Cover-
age and Connectivity Configuration for Energy Conservation
in Sensor Networks, ACM Transactions on Sensor Networks
(ACM TOSN), 1(1): 36-72, August 2005.

• Xiaorui Wang, Huang-Ming Huang, Venkita Subramonian,
Chenyang Lu, and Christopher Gill. CAMRIT: Control-
based Adaptive Middleware for Real-time Image Transmis-
sion, IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS 2004), Toronto, Canada, May
2004.

• Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos,
End-to-End Utilization Control in Distributed Real-Time Sys-
tems, The 24th International Conference on Distributed
Computing Systems (ICDCS 2004), Tokyo, Japan, March
2004.

• Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang
Lu, etc. Integrated Coverage and Connectivity Configuration
in Wireless Sensor Networks, The First ACM Conference
on Embedded Networked Sensor Systems (SenSys 2003), Los
Angeles, CA, November 2003.

• Chenyang Lu, Xiaorui Wang, and Christopher Gill, Feed-
back Control Real-Time Scheduling in ORB Middleware, IEEE
RTAS 2003, Washington DC, May 2003.

• Octav Chipara, Zhimin He, Guoliang Xing, Qin Chen, Xi-
aorui Wang, Chenyang Lu, John Stankovic, and Tarek Ab-
delzaher, Real-time Power Aware Routing in Wireless Sensor
Networks, IEEE International Workshop on Quality of Ser-
vice (IWQoS 2006), New Haven, CT, June 2006.

207

Under Review • Xiaorui Wang, Charles Lefurgy, and Malcolm Ware, Per-
formance Optimization within a Power Constraint using Pre-
cision Measurement and Feedback Control, IBM Tech Re-
port RC23835, submitted to the International Symposium
on High-Performance Computer Architecture (HPCA 2007).

• Xiaorui Wang, Dong Jia, Chenyang Lu, and Xenofon Kout-
soukos, DEUCON: A Decentralized Utilization Control Ser-
vice for Distributed Real-Time Systems, submitted to IEEE
Transactions on Parallel and Distributed Systems (IEEE TPDS).

• Xiaorui Wang, Chenyang Lu and Christopher Gill, A Feed-
back Control Real-Time Scheduling in Object Request Bro-
ker Middleware, submitted to Real-Time Systems Journal
(RTSJ).

August 2006

Short Title: Adaptive QoS Control in DRE Systems Wang, D.Sc. 2006

	Adaptive Quality of Service Control in Distributed Real-Time Embedded Systems
	Recommended Citation
	Adaptive Quality of Service Control in Distributed Real-Time Embedded Systems

	tmp.1468963809.pdf.Pgl5m

