
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-34

2003-04-29

Managing Access Control in the Presence of Physical and Logical Managing Access Control in the Presence of Physical and Logical

Mobility Mobility

Christine Julien, Gruia-Catalin Roman, and Jamie Payton

The emerging mobile computing environment draws new attention to the need for co-ordination

among networked components. The very nature of this environment requires parties to interact

even when they have never met before, and subsequent encounters are totally unpredictable.

Because mobile networks are often decoupled from any fixed network infrastructure, reliance

on centralized servers to authenticate agents and to establish data access policies is

impractical. Access control is a key component of security in such systems, and application

agents must be able to directly manipulate and examine policies because they need full and

flexible control over their data. Starting... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Julien, Christine; Roman, Gruia-Catalin; and Payton, Jamie, "Managing Access Control in the Presence of
Physical and Logical Mobility" Report Number: WUCSE-2003-34 (2003). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1080

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233200232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1080?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1080

Managing Access Control in the Presence of Physical and Logical Mobility Managing Access Control in the Presence of Physical and Logical Mobility

Christine Julien, Gruia-Catalin Roman, and Jamie Payton

Complete Abstract: Complete Abstract:

The emerging mobile computing environment draws new attention to the need for co-ordination among
networked components. The very nature of this environment requires parties to interact even when they
have never met before, and subsequent encounters are totally unpredictable. Because mobile networks
are often decoupled from any fixed network infrastructure, reliance on centralized servers to authenticate
agents and to establish data access policies is impractical. Access control is a key component of security
in such systems, and application agents must be able to directly manipulate and examine policies
because they need full and flexible control over their data. Starting from this premise, we examine the
essential features of general access control policies designed to respond to the specific needs of agent
coordination in the presence of logical and physical mobility. A novel construct to support such policies is
proposed and evaluated with respect to its impact on mobile applications. We also show some example
uses of this access control construct.

https://openscholarship.wustl.edu/cse_research/1080?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1080?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages

SECCO 2003 Preliminary Version

Managing Access Control in the Presence of
Physical and Logical Mobility

Christine Julien, Gruia-Catalin Roman, and Jamie Payton 1

Mobile Computing Laboratory
Department of Computer Science and Engineering

Washington University
Saint Louis, MO, USA

Abstract

The emerging mobile computing environment draws new attention to the need for co-
ordination among networked components. The very nature of this environment requires
parties to interact even when they have never met before, and subsequent encounters
are totally unpredictable. Because mobile networks are often decoupled from any fixed
network infrastructure, reliance on centralized servers to authenticate agents and to es-
tablish data access policies is impractical. Access control is a key component of security
in such systems, and application agents must be able to directly manipulate and examine
policies because they need full and flexible control over their data. Starting from this
premise, we examine the essential features of general access control policies designed to
respond to the specific needs of agent coordination in the presence of logical and physi-
cal mobility. A novel construct to support such policies is proposed and evaluated with
respect to its impact on mobile applications. We also show some example uses of this
access control construct.

1 Introduction

In recent years, computing devices have become ubiquitous. These devices often possess
the ability to communicate wirelessly with other devices, opportunistically forming wire-
less networks not necessarily connected to a wired infrastructure. In such environments,
distributed application components need to communicate to exchange information and
services or to coordinate tasks. These networks can include a handful of devices or thou-
sands of heterogeneous components, making coordinating and mediating their competing
needs a massive task. Much work has been extended on developing practical coordina-
tion models to facilitate rapid application development for this demanding application
domain.

This paper focuses on a broad class of coordination models that utilize tuple spaces as
the basis for decoupled coordination. The Linda model [7] provides a centralized tuple

1 Email: {julien, roman, payton}@cse.wustl.edu
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

space where application agents deposit and retrieve information using content-based
matching of patterns against data items, thereby coordinating with other agents without
ever having to encounter them. Variations on this theme adapt Linda to the dynamic
mobile environment where coordination through a central repository is not feasible. Due
to the open and dynamic nature of these systems, security concerns of three types arise:
the need to protect mobile hosts from malicious agents, the need to protect agents from
tampering hosts, and the need to protect data. The D’Agents system [8] uses public-key
cryptography to authenticate incoming agents to increase the security of hosts. The
more difficult problem of protecting agents from hosts has received increased attention
of late. Undetachable threshold signatures [1], prevent hosts from tampering with an
agent’s data and also distribute authority among multiple agents.

Mechanisms for protecting data can be divided into two categories: ensuring data in-
tegrity and controlling data access. Much research has focused on encrypting communi-
cation within coordination spaces. SAMCat [13] uses SSL encryption and authentication
to securely transmit tuples into and out of a globally persistent data space. Yalta [3]
encrypts communication to and from the tuple space, requiring users attempting to ac-
cess the data to first be authenticated. Our work focuses on the final issue: controlling
data access. A solution to this problem is complicated by the fact that, in the mobile
environment, permanent disconnection from a wired infrastructure is not uncommon,
rendering a centralized solution impossible.

A common mechanism for addressing access control concerns uses access matrices
to describe the rights that subjects have regarding objects. The rows of the matrix
correspond to users, and the columns correspond to objects. Cells in the matrix contain
the access rights that user has on a particular object. The access matrix approach is a
generalization of several commonly used approaches, including access control lists and
capability definitions.

Given our coordination model’s expressiveness and the mobile environment in which
it operates, applying an access matrix to achieve access control policies is not straightfor-
ward. First, the manner of data access should include not only the issued operation but
also the pattern used to select the data. In some cases, the components of this pattern
provide information about an application’s prior knowledge of the data. The owning
agent may want to restrict access to agents who know the “correct” way to access the
data (providing a wild card pattern that matches any tuple allows an agent to access any
piece of data and gives the requesting agent a lot of power). These observations led us
to investigate a more general access control mechanism for mobile coordination systems.

This is in sharp contrast with the use of an access control matrix which requires
knowing all of the coordinating parties in advance. The number of possible agents,
combined with the amount of data available over the lifetime of the system, generates
a very large matrix that is likely to be sparsely populated. The access control function
introduced in this paper overcomes the limitations of applying an access matrix based
approach in mobile systems by operating over general descriptions of the coordinating
parties and dynamically adjusting to the changing context.

Before we discuss the specifics of the access control function, we introduce a gen-
eralized coordination model for mobile systems. Section 3 describes the access control
function, provides details of its components, and shows some examples. In Section 4, we
discuss the construct’s expressive power and the overhead incurred in using it. Section 5
overviews related work, and conclusions appear in Section 6.

2

2 A Generalized Coordination Model

In this section, capture the essential features of tuple space based coordination models
in an attempt to explain the access control requirements for mobile coordination mid-
dleware. The result is a generalization that spans the gamut from tuple definition to
sophisticated operations. To accomplish this, we focus on Linda’s content-based style of
coordination. In the original Linda model, processes generating tuples in a centralized
tuple space (via an out operation), and processes interact with the producers via in op-
erations (to remove tuples), and rd operations (to simply read tuples). Both of these
operations execute in a content-based manner in which the retrieving operation specifies
a pattern that the returned tuple must match. These operations are synchronous in that
they “block” the issuing process until a tuple satisfies the operation and is returned. The
Linda operations decouple agents in a manner useful in mobile networks, as demonstrated
below.

2.1 Data Representation: The Tuple Space

We assume a class of coordination models based on tuple spaces, by and large the dom-
inant paradigm in coordination literature. Some systems (e.g., MARS [4] and TuC-
SoN[14]) focus specifically on logically mobile agents moving across a network of phys-
ically stationary hosts. Other systems (e.g., Lime [12] and EgoSpaces [10]) address the
integration of physical and logical mobility. In all such systems, a Linda tuple space is
associated with a component of the network that maintains the availability of the data
and allows other agents in the system access to the data. In some systems, these tuple
spaces are permanently bound to hosts, in other cases they are bound to agents, and
in still other cases the tuple space is distributed throughout the network among some
combination of hosts and agents.

Fundamental to all these models for coordination in mobile environments is the use of
a Linda-like tuple space. The actual distribution of the tuples in the system is irrelevant
with respect to the access control mechanisms described in this paper. The key aspect
of the representation is the manner in which application agents interact with the data
space. Our model assumes a tuple space bound to each mobile agent. Using this model,
we can simulate other models if necessary, e.g., to simulate tuple spaces bound to a host,
we associate an agent permanently to a host and use its tuple space to represent host’s
tuple space. Next, we describe an enhanced and more flexible definition of the tuple
construct, one that subsumes and unifies all existing perspectives visible in models to
date.

2.2 Tuples, Patterns, and the Matching Function

Original Linda tuples and patterns contain a sequence of fields. Each field is of a par-
ticular type that can be either an actual or a formal; an actual contains a value of the
field’s type, while a formal is a place holder for the field’s type. Agents’ operations select
tuples by matching the tuple against a pattern. A pattern matches a tuple if they have
the same number of fields and every field in the pattern matches the corresponding field
in the tuple. Two fields match if they contain the same actual value, they contain the
same formal, or the pattern’s field contains a formal of the same type as the tuple field’s
value.

The Linda extensions discussed above use similar notions of tuples and patterns.
Our model generalizes the Linda tuple representation to one in which the fields are

3

identified by a name, allowing patterns and tuples of different lengths. A tuple is an
unordered set of triples of the form: 〈(name, type, value), (name, type, value), . . .〉. For
each field, name is the name of the field, and type is the data type of value. In a
given tuple, the name of each field must be unique. Fundamentally, users access tu-
ple spaces by matching patterns against contents of tuples. While adhering to the
content-based nature of Linda pattern matching, we extend the traditional semantics
to allow the provision of more flexible constraints over fields. A pattern takes the
form: 〈(name, type, constraint), (name, type, constraint), . . .〉. The constraints are func-
tions that provide requirements that the value in a field must match for the field in the
tuple to match the field in the pattern. More specifically, the matching function M is
defined over a tuple θ and a pattern p as:

M(θ, p) ≡ 〈∀c : c ∈ p ::
〈∃f : f ∈ θ ∧ f .name = c.name ∧ f .type instanceof c.type

:: c.constraint(f .value)〉〉. 2

M requires that, for every constraint c in the pattern, there must be a field f in the
tuple with the same name, the same type or a derived type, and a value that satisfies
the constraint. While the function requires that each constraint is satisfied, it does not
require that every field in the tuple is constrained, i.e., a tuple must contain all the fields
contained in the pattern but can contain additional fields.

2.3 Basic Operations

This section classifies the operations available in mobile coordination systems, regardless
of the structure of the tuple space. Basic operations can be divided into two groups:
tuple generation operations and on-demand access operations

Tuple Generation. Coordination systems based on Linda provide a tuple generation
mechanism; we retain Linda’s name for this operation: out. While variations exist, the
essence of tuple generation is that a tuple may be placed in a specific tuple space:
out(T , t). This operation places the tuple t in the tuple space T , i.e., a tuple space with
a particular name located at a particular agent. In EgoSpaces, an out places the tuple
in a local tuple space controlled by the generating agent. In Lime, this operation can
place a tuple in any tuple space owned by any agent on a connected host. In MARS the
generated tuple is created in the tuple space associated with the local host. In any case,
the agent responsible for the tuple space will want some control over what tuples can be
inserted in its tuple space.

Tuple Retrieval. Mobile coordination systems, in general, supply two types of
operations derived directly from Linda’s rd and in operations. In the mobile systems,
these two types of operations each assume three basic forms: blocking, atomic probing,
and scattered probing. We retain operations with the strong original semantics because
even mobile applications sometimes require strong guarantees. The standard form for
these operations is rd(T , p), which returns a tuple matching the provided pattern p

2 The three-part notation 〈op quantified variable : range :: expression〉 is defined as follows:
The variables from quantified variables take on all possible values permitted by range. Each such
instantiation of the variables is substituted in expression, producing a multiset of values to which
op is applied, yielding the value of the three-part expression. If no instantiation of the variables
satisfies range, the value of the three-part expression is the identity element for op, e.g., true
when op is ∀ or zero if op is “+” .

4

from the tuple space T . As with tuple generation, the tuple space can be either local
to the agent or controlled by some other party in the network. The second two forms
of operations, atomic probing and scattered probing, stem from the observation that
features of some mobile applications can make synchronous semantics unwieldy. Atomic
probing operations guarantee that if a matching tuple exists in the specified tuple space,
it is returned, but the operations do not block until a matching tuple exists. We will
refer to these operations as rdp and inp. Like the synchronous Linda operations, these
operations are atomic with respect to the tuple space on which they are issued, and
in some cases in the mobile environment, guaranteeing this atomicity can be difficult
and expensive. For these cases, our coordination model also provides scattered probing
operations that offer even weaker guarantees: rdsp and insp. While retrieval operations
most often entail only single tuples, constructs exist in mobile coordination models that
allow simultaneous access to groups of tuples. These operations come in all three forms
described in the previous paragraph and are referred to as group operations, e.g., rdg
refers to a blocking non-destructive read operation that returns all matching tuples from
the tuple space.

Some of the models (e.g., Lime and EgoSpaces) present these tuple space operations
to the user in a different manner. In Lime, application agents actually operate over a
federation of connected tuple spaces, while in EgoSpaces agents operate over projections
of all available data, called views. In these cases, however, these more complex inter-
actions can be reduced to either the tuple space operations here or the wide-spectrum
operations discussed next.

2.4 Wide-Spectrum Operations

Over time, some coordination models have defined new operations that do not fit the
paradigms described above but further facilitate coordination in the dynamic mobile
environment. The earliest of these additions, seen in Lime and MARS, were reactive
constructs. This initial development of new operations was motivated by the observation
that if an agent needs to wait for a particular piece of data before performing additional
actions it must either block or poll. These costly and inefficient mechanisms prevent the
agent from performing other work in the meantime. The reactive constructs allow agents
to register interest in particular pieces of data. When data matching the registration
appears in the tuple space, code specified by the agent is executed. The need to react to
events in the tuple space also appeared as coordination systems matured. For example,
an agent may want to be notified if another agent accesses a particular piece of data.

Our coordination model encompasses these behaviors. In our experience in facili-
tating application development in mobile environments, we see that ostensibly different
applications use very similar behaviors. Our model introduces a behavioral construct
that provides, as an integral part of the coordination model, these commonly used be-
haviors in an extensible and flexible fashion. These behaviors include the ability to
transparently migrate certain data from one tuple space to another and the ability to
transparently duplicate data encountered in the environment.

3 Access Control Function

Our coordination model provides flexible and efficient communication in the face of
constantly moving hosts, agents, and data. In this environment, security concerns become
of paramount importance. In our model, an agent assumes responsibility for mediating

5

access to tuples stored in its local tuple space. The ability to control access in this manner
is fundamental to coordination systems targeted to the mobile environment because it
allows the access control policies to reflect the changing needs of an agent. To accomplish
this each agent specifies an individualized access control function that limits the ability
of other agents to access its local data.

Our novel access control model utilizes tuple space based coordination to control
access to data at a fine granularity. An agent responsible for a particular data item can
restrict which agents access its data and the manner in which the access occurs. To
accomplish the former, the owning agent requires a requesting agent to identify itself via
a set of credentials. To accomplish the latter, an access control function can account for
the particular access operation when deciding whether or not to allow access. In the end,
each agent defines a single access control function that takes as parameters a particular
tuple, a set of credentials identifying the requesting agent, the specific operation being
performed, the pattern used to access the data, and the profile of the owning agent. This
function returns a boolean value indicating whether or not the requested access should
be allowed.

3.1 Profiles

Before describing the access control function in more detail, we introduce the profiles
that maintain properties of hosts and agents. While these can be viewed as two separate
profiles, we will assume that an agent’s profile logically contains the profile of the host
on which it is running. This profile provides an abstraction of contextual information
regarding the particular agent and host. We can represent this profile as a tuple, allowing
powerful content-based operations on the contextual data. Particular applications or
coordination systems may require specific attributes in this profile. In general, we always
assume that a profile contains at least a unique host ID differentiating the host from all
other hosts and a unique agent ID.

3.2 Access Control Function Parameters

An access control function takes five parameters: the tuple, the requesting agent’s cre-
dentials, the operation, the pattern used in the request, and the owner’s profile.

Credentials. Credentials are the only mechanism by which an agent can convey
information about itself to other agents. Our access control model allows an agent to
determine access based on arbitrary properties of the requesting agent. Upon requesting
operations, an agent sends a portion of its profile as credentials that identify it. In
the simplest cases, the information sent in the credentials can be a standard set of
information, e.g., the agent’s ID, a third-party authentication, etc. In other cases, when
the requesting agent has some a priori knowledge about the access requirements, these
credentials can be more complicated, e.g., a password. When constructing credentials,
the agent must be careful not to give information away to other agents with which it is
coordinating, e.g., if the agent has multiple passwords for different uses, it should send
only the correct one.

The need for this form of identification from requesting agents is of particular impor-
tance in mobile applications, which are open and dynamic systems in which coordinating
agents appear and disappear sporadically. In these applications, it is often not possi-
ble to know a priori exactly which agents can access restricted information. Instead,
these agents need to prove they have the needed privileges through other means. The

6

credentials provide exactly this alternative.
A set of credentials is a subset of the agent’s profile that can be viewed as a tuple

of attributes: 〈(att name, type, value), (att name, type, value), . . .〉. The credentials and
their transmission with the operation request are assumed to be private. This layer of
security is outside the scope of this paper but could be accomplished using any number
of cryptography schemes already under development. Because the credentials are a
tuple, the access control function can use the pattern-matching scheme inherent in the
coordination system to evaluate credentials.

Operation. The access control function can also account for the exact operation
used to access the data. For example, it is often the case that some data should be
restricted to read-only access. Current mobile coordination systems do not inherently
provide this mechanism. This restriction based on the particular operation coupled with
the provision of credentials allows an agent to decide on a per-agent, per-operation basis
whether or not to grant access to a particular tuple. This allows dynamic applications
to allow one set of operations for some agents, but perhaps a more restricted set of
operations for others.

The possible operations are represented as a set O which contains string representa-
tions of the different operations (e.g., “rd”, “reaction”, “migration”). When evaluating
the access control function, a single element of O that identifies the operation is passed
as a parameter to the access control function.

Requested Tuple. The key to providing a fine granularity of control is allowing
agents to determine access privileges based on individual data items. Because we are
focusing on tuple space based coordination models, this can be accomplished by allowing
the access control function to operate over the tuple to be returned from by an operation.
The pattern-matching capabilities of our model allow this portion of the access control
function to be easily defined while remaining sufficiently flexible.

Pattern. A powerful component of the access control function is its ability to deter-
mine privileges based on the pattern used in the content-based operation. As discussed
previously, the pattern gives the owning agent some information about the requesting
agent’s knowledge of the data is attempting to access. Some knowledge of the structure of
the requested tuple might indicate that the requesting agent shares common application
goals, giving an implicit indication of trust.

Owner’s Profile. The final parameter of the access control function considers the
owner’s current state. Because the access policy is determined dynamically, access can
be granted based on contextual information. For instance, in some cases, data may never
be sent wirelessly between devices unless they are within a secure physical environment
where eavesdropping is known to be impossible.

3.3 Access Control Function

We now focus on the access control function’s definition. This function takes the five
parameters described above, and determines whether or not to allow the requested access.
Formally, this function can be represented as:

ACF : T × C ×O × P ×Π → {0, 1}

where T is the universe of tuples, C is the universe of credentials, O is the finite set of
operations, P is the universe of patterns, and Π is the universe of profiles. The access
control function (ACF) maps the values of the parameters to a boolean indicating the

7

access decision. The function can also be represented as:

access = ACF(credentialsr, operation, tuple, pattern, profileo)

where r is the agent requesting the operation and o is the tuple’s owner.
We will show the expressive power of this construct later in this section. For now

we consider what this access control function cannot naturally or easily represent. First,
access decisions cannot be based on properties of the requesting agent not included in
its credentials. The decision cannot be based on arbitrary properties of the environment
that are not part of the owning agent’s profile. For example, an agent cannot base a
decision on the number of copies of a tuple in the tuple space because that information
is not part of the access control function’s components. This kind of behavior might be
desired if destructive reads are allowed unless they attempt to remove the last copy of a
tuple.

The access control function lends itself well to the dynamic mobile environment be-
cause it allows access policies to adapt to the context of coordinating agents. The access
decision is transparent to the requesting agent; if access is denied, the requester does not
even know that the matching tuple existed.

3.4 Using the Access Control Function

In this section, we show how real-world coordination systems use access control func-
tions. We first show how the access control function benefits a particular coordination
system, EgoSpaces. We then return to our generalized coordination model and show how
restricting operations to administrative domains can be implemented with the construct
we have presented.

Use in EgoSpaces Model. One of the first coordination models to place access
control in a central position was EgoSpaces, which addresses the needs of agents operat-
ing in large-scale heterogeneous environments. In this system, an agent operates over a
context that can include, in principle, all data available in the entire network. EgoSpaces’
unique model of coordination, however, is based on the observation that providing ac-
cess to this vast amount of information can prove costly. Therefore, EgoSpaces structures
data in terms of views, or projections of the maximal set of data. Each agent defines
its own views specialized to it’s needs; these individualized views provide a much needed
abstraction of the dynamic environment by constraining properties of the network, hosts,
agents, and data. To further reduce programming costs, EgoSpaces transparently main-
tains these views; as hosts and agents move, the view’s contents automatically reflect
contextual changes without the agent’s explicit intervention.

Due to the nature of view definitions, EgoSpaces employs the agent-specified access
control function on a per-view basis. When a reference agent defines a view, it attaches
a set of credentials and a list of operations it intends to perform over the view. The
EgoSpaces system uses each potential contributing agent’s access control function to
determine which tuples belong in the view. The view membership is still determined on
a per-tuple basis. In the end, the view contains only tuples that qualify via their owning
agent’s access control function.

Administrative Domains. Another class of applications that can benefit from the
generalized access control function involves the restriction of agent operations to ad-
ministrative domains. Because all components in our system are mobile, the domains
themselves might also be mobile. For our example, let’s assume the domains are defined
as a university’s computer system (identified via a host id’s network prefix), a depart-

8

mental computer system, and a research group’s computer system. To provide security
guarantees, certain applications may want to limit access to certain pieces of data to
only computers on the university’s network. Still other data ought to be restricted to
departmental computers, or to research group computers.

As one example, consider a user in the research group who wants to use a software
license of which the research group has n copies. Given our coordination model, the
licenses are stored as tuples in some tuple space, which can be viewed as a distributed
service repository. We assume all of the members of the research group work on physically
mobile hosts. Each host can carry its own repository, the licenses are initially distributed
in some random fashion, and another user in the group can take control of a license
in another’s repository if the computers are within communication range. The agents
controlling these repositories restrict access to requests from another agent whose user is
a member of the group, who has a departmental authentication (retrieved a priori), and
is running on a computer in the university domain. To retrieve a license, a user provides
these three things as credentials and attempts to in a license from its local repository or
a connected one. If successful, the number of available licenses decreases by one. When
the user finishes using the software, it replaces the license in its local repository.

4 Analysis and Discussion

The access control function provides a flexible mechanism for agents to specify privi-
leges dynamically and adaptively in mobile coordination models. This work relies on
encryption mechanisms that lie outside the scope of this paper to protect the message
transmissions. We assume, however, that this can be accomplished through the use of
an encryption scheme.

4.1 Expressiveness

While its expressiveness makes the access control function more flexible and arguably
more useful in coordination among constantly changing mobile agents, this flexibility
comes with some cost.

Credentials. On one hand, the fact that credentials can encode arbitrary informa-
tion about an agent makes them extremely expressive and allows particular applications
to adapt credentials to their needs. This may introduce communication overhead. On
the other hand, a requesting agent needs to take care not to reveal too much information.
Any information sent in credentials is no longer completely secret. If the requesting agent
knows five passwords and sends them with every request, any other agent that receives
its credentials knows those passwords.

Functions. Because the access control function takes as parameters a number of
facets of the coordination, it can dynamically adjust a particular agent’s access policies.
Again, flexibility comes with a cost. While it is possible to design complex access con-
trol policies, constructing the function (from the developer’s perspective) can become
difficult. Fortunately, the design of the function prevents this complexity from affecting
agents that do not require the complex policies.

4.2 Overhead

Given the model’s expressiveness, it is useful to evaluate the overhead of the new mech-
anism. First, the addition of the access control mechanism we describe introduces some

9

amount of programming overhead. This overhead is difficult to quantify without a wide
spread case study involving actual users implementing actual access control policies.
While this is a useful future task, it is outside the scope of this paper. Also useful,
however, is some measure of the additional communication required to exchange the
necessary information and the additional computation needed to evaluate the function.

Additional Communication. In evaluating the communication overhead. we will
quantify the communication costs in terms of the time required for a transmission between
two connected parties, ta,b. We refer to the transmission rate between hosts a and b as
ratea,b. Before adding access control mechanisms, the time required to send a message
from host a to host b is:

ta,b =
(|op|+ |pattern|+ |agent idr|)

ratea,b

|op| is the number of bits required to identify the operation; this will be some constant
across successive operations, dependent upon the number of possible operations. |pattern|
is the number of bits required to represent the pattern. This depends on the number of
fields in the pattern. |agent id | is the number of bits required to identify the requesting
agent so the response can be returned.

We can write a similar term to express the amount of time a transmission takes when
using the access control function:

tacfa,b =
(|op|+ |pattern|+ |host idr|+ |credentialsr|)

ratea,b
= ta,b +

|credentialsr|
ratea,b

The added time is due to the need to transmit credentials to gain access.
One way to express the communication overhead is through the ratio of the trans-

mission time with credentials to the transmission time without credentials:

overheada,b =
ta,b + |credentialsr|

ratea,b

ta,b
= 1 +

|credentialsr|
ratea,b ∗ ta,b

Credentials are essentially a tuple. An interesting observation gleaned from the above
relationship is that if we assume that the number of bits required to completely represent
a pattern is greater than that required to represent either the operation or the identity
of the agent, the size of the pattern dominates the transmission time. This assumption
is likely to hold true because the operation and agent identity are simple data types,
while a tuple is a much more complex structure. In this case, if the credentials are
approximately equivalent in size to the pattern, then the overhead of using access control
is approximately equal to 2.

An application has direct control over the amount of overhead it incurs because it
individually determines what credentials to send with each request. In this respect,
the use of application intuition to reduce the credentials transmitted to exactly those
required reduces the overhead of the communication.

Additional Computation. Evaluation of the access control function does require
some additional computation on the host where the data being accessed is located. From
the coordination system’s perspective, implementation of the access control function re-
quires a single method invocation into the agent’s code. However, because the function
can contain arbitrary code, the computational overhead lies in the hands of the applica-
tion programmer. From the programmer’s perspective, the operating conditions of the
application must be a primary concern. If so desired, a coordination system can include
a mechanism to allow a host to prevent undesirable access control functions by bounding
the time they are allowed to run or by imposing restrictions on their capabilities.

10

5 Related Work

As discussed in Section 1, the access matrix approach does not directly lend itself to
mobile coordination systems. One example of attempting to apply such a method is
demonstrated in [5], in which TuCSoN agents are assigned capabilities defining tuple
space operations for particular patterns in a certain tuple space. These capabilities are
stored in an access control list (ACL) for that tuple space. Such an approach requires
that all coordinating parties are known in advance and that some centralized party
determines access policies statically. The role based access control (RBAC) model [6]
replaces this knowledge by roles agents assume, where each role is associated with a set
of allowed operations on a set of objects. An agent’s roles can change over time, so
the set of operations an agent can perform is dynamic. An agent’s role in the access
matrix is evaluated each time it performs an operation on an object. This again requires
knowledge of all of the possible roles, and assumes a central authority to distribute roles.

Other systems use encryption schemes for access control. In SecOS [2], tuples are
unordered sequences of individually encrypted fields. Tuple matching is extended so that,
to match an encrypted field, a pattern must contain a correct key. In LimeGuard [9], keys
are associated with tuple spaces, and an agent must provide the key to access the tuple
space. This system also provides a variety of tuple level access control capabilities via
passwords. While both of these models provide access control mechanisms, they require
secure key distribution and management, which affects the scalability of the system.

Law Governed Interaction (LGI) [11] provides an expressive context-sensitive ap-
proach to access control without encryption. In LGI, a group of agents that wish to
interact via a tuple space must adhere to a law that imposes context-sensitive constraints
on the execution of tuple space operations. A law dictates actions an agent performs in
response to the arrival or departure of tuple space operations. Programming applications
in LGI requires programming specific actions in the access control policy and adding a
controller to each agent to mediate tuple space requests. In contrast, in our model, pro-
gramming takes place in the coordination model, and the agent’s requested tuple space
action is checked with the access control function.

6 Conclusion

In this paper we first provided a generalized coordination model representative of those
required by mobile applications. We then introduced access control functions for mobile
coordination and showed how it could be successfully used in systems and applications.
While this new construct does incur some overhead, the expense is not prohibitive when
compared with the coordination benefits it offers. The novel access control function
directly addresses the specific access control needs of mobile coordination models. In
particular, the construct provides increased scalability and decoupling when compared
with previous approaches without sacrificing flexibility and expressiveness.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation under Grant No.
CCR-9970939 and by the Office of Naval Research MURI Research Contract No. N00014-
02-1-0715. Any opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of the National
Science Foundation or the Office of Naval Research.

11

References

[1] Borselius, N., C. J. Mitchell and A. Wilson, Undetachable threshold signatures, in:
Cryptography and Coding—Proc. of the 8th IMA Int’l. Conf., LNCS 2360, 2001, pp.
239–244.

[2] Bryce, C., M. Oriol and J. Vitek, A coordination model for agents based on secure
spaces, in: P. Ciancarini and A. Wolf, editors, Proc. of the 3rd Int’l. Conf. on
Coordination Models and Languages (1999), pp. 4–20.

[3] Byrd, G., F. Gong, C. Sargor and T. Smith, Yalta: A secure collaborative space for
dynamic coalitions, in: IEEE 2nd SMC Info. Assurance Workshop, 2001.

[4] Cabri, G., L. Leonardi and F. Zambonelli, MARS: A programmable coordination
architecture for mobile agents, Internet Computing 4 (2000), pp. 26–35.

[5] Cremonini, M., A. Omicini and F. Zambonelli, Coordination and access control in
open distributed agent systems: the TuCSoN approach, in: A. Porto and G.-C. Roman,
editors, Coordination Languages and Models, LNCS 1906 (2000), pp. 99–114.

[6] Ferraiolo, D. F. and D. R. Kuhn, Role based access control, in: Proc. of the 15th

National Computer Security Conf., 1992.

[7] Gelernter, D., Generative communication in Linda, ACM Transactions on
Programming Languages and Systems 7 (1985), pp. 80–112.

[8] Gray, R., D. Kotz, G. Cybenko and D. Rus, D’Agents: Security in a multiple-
language, mobile-agent system, in: G. Vigna, editor, Mobile Agents and Security,
LNCS 1419, Springer-Verlag, 1998 pp. 154–187.

[9] Handorean, R. and G.-C. Roman, Secure sharing of tuple spaces in ad hoc settings,
Technical Report WUCSE-03-26, Washington University (2003).

[10] Julien, C. and G.-C. Roman, Egocentric context-aware programming in ad hoc mobile
environments, in: Proc. of the 10th Int’l. Symp. on the Foundations of Software
Engineering, 2002.

[11] Minsky, N., Y. Minsky and V. Ungureanu, Safe tuplespace-based coordination in
multi agent systems, Journal of Applied Artificial Intelligence 15 (2001).

[12] Murphy, A. L., G. P. Picco and G.-C. Roman, Lime: A middleware for physical and
logical mobility, in: Proc. of the 21st Int’l. Conf. on Distributed Computing Systems,
2001, pp. 524–533.

[13] National Center for Supercomputing Applications, Integrated Decision Technologies
Group, SAMCat: A securable active metadata catalogue (2002).
URL http://idtweb.ncsa.uiuc.edu/documents/samcat.pdf

[14] Omicini, A. and F. Zambonelli, TuCSoN: A coordination model for mobile
information agents, in: Proc. of the 1st Int’l. Workshop on Innovative Internet Info.
Systems, 1998, pp. 177–187.

12

http://idtweb.ncsa.uiuc.edu/documents/samcat.pdf

	Managing Access Control in the Presence of Physical and Logical Mobility
	Recommended Citation
	Managing Access Control in the Presence of Physical and Logical Mobility

	Introduction
	A Generalized Coordination Model
	Data Representation: The Tuple Space
	Tuples, Patterns, and the Matching Function
	Basic Operations
	Wide-Spectrum Operations

	Access Control Function
	Profiles
	Access Control Function Parameters
	Access Control Function
	Using the Access Control Function

	Analysis and Discussion
	Expressiveness
	Overhead

	Related Work
	Conclusion
	References

	Abstract: Abstract: The emerging mobile computing environment draws new attention to the need for coordination among networked components. The very nature of this environment requires parties to interact even when they have never met before, and subsequent encounters are totally unpredictable. Because mobile networks are often decoupled from any fixed network infrastructure, reliance on centralized servers to authenticate agents and to establish data access policies is impractical. Access control is a key component of security in such systems, and application agents must be able to directly manipulate and examine policies because they need full and flexible control over their data. Starting from this premise, we examine the essential features of general access control policies designed to respond to the specific needs of agent coordination in the presence of logical and physical mobility. A novel construct to support such policies is proposed and evaluated with respect to its impact on mobile applications. We also show some example uses of this access control construct.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 29, 2003
	Author: Authors: Julien, Christine; Roman, Gruia-Catalin; Payton, Jamie
	Title: Managing Access Control in the Presence of Physical and Logical Mobility **PLEASE SEE WUCSE-03-70**
	ReportNumber: 2003-34
	DepartmentName: Department of Computer Science & Engineering

