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ABSTRACT

A taxonomy is introduced and used as a backdrop against which
current state-of-the-art in the requirements engineering field is
reviewed. The emphasis is on identifying general trends and issues
rather than offering the reader a literature survey. The contents of a
requirements specification is presented in light of the consensus
reached by both theoreticians and practitioners. The desirable proper-
ties of a requirements specification are justified from a functionalist
viewpoint and it is suggested that changes in the way one uses the
requirements may alter the relative significance of different proper-
ties. Finally. the classification of requirements specification tech-
niques is approached from a total system design perspective. The paper
shows that. despite significant graowth. the requirements area still
faces a number of important unresolved issues including the need for:
broader formal foundation for both functional and non—-functional
requirements. greater degree of formality and automation. new regquire-
ments development methods. and higher level of integration in the
overall design process.
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1. INTRQDUCTION

Recent years have been marked by an increased interest in the area
of system requirements specification. This is due to the realization
that in the absence of an accurate statement of purpose the designer may
solve the wreong problem. a state of affairs which often leads to disas—
trous consequences for all parties involved. The economic realities of
system development are such that discrepancies between the delivered
system and the needs it must fulfill may cost in excess of a 100 times
what would have been required if the errors were discovered during the
initial problem definition and, in some extreme cases. they may even
render useless the entire system [BDEHS811.

The concept of requirements specification. however. is much more
general than one might be lead into believing by looking at its most
caommon interpretation—--a definition of user needs. As a matter of fact
top—-down design may be viewed as a recursive application of a paradigm
in which one starts with a requirements specification for some component
and proceeds to construct a design specification for it. Included in
the design specification are the requirements for a set of subcomponents
that will have to be designed next.
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Figure 1: From Requirements to Design-—-A Recursive Paradigm.

In the simplest terms, the distinction between requirements and design
specifications may be reduced to the difference between stating WHAT
functions must be provided by some component and stating HOW these func-
tions must be carried out. One immediate consequence of this fact is
that requirements specifications must facilitate ease of understanding
while design specifications must enable faithful rendering of physical
and logical structures nezded to realize the requirements.
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The use of a component’s design as an implicit statement of its
requirements is generally not a good practice. Even for simple and well
understood functions (e.g..» sorting). the design may turn out to be
exceedingly complex when demanding design constraints are applied (e.g.»
sorting in linear time). The ensuing loss of requirements traceability
and separability may cause serious maintenance problems~--one can not
tell if a particular function is required or is a consequence of same
design constraint which is no longer significant.

The purpose of this article is to bring about a greater awareness
of several important issues concerning requirements specifications: (1)
the role they play in the context of the full system development life-
cycle, (2) the diversity of forms they assume. and (3) the problems we
continue to face in this critical area. The discussion will concentrate
on the means for expressing the requirements rather than ways of gen-
erating them. This will assure a clean separation from design specifi-
cation concerns which are outside the scope of this article. The
presentation starts with a brief review of requirements specification
cantents and concerns. It is followed by a discussion of various clas~—
sification criteria for existing requirements specification techniques.
The discussion provides the backdrop against which the requirements
specification issues are being highlighted.

2. REBUIREMENTS SPECIFICATION CONTENTS

The requirements specification serves as the acceptability criteria
against which any proposed realization of some component is judged.
This section reviews the kinds of information that ought to be included
in a requirements specification document independent of the nature of
the component for which the reguirements are written. The “component
may be a whole system. a software package or a hardware device.

As shown by Yeh C[YEHB21. among others. requirements fall into
two general categories: functional and non-functional. (The latter are
also called constraints.) The functional requirements capture the
nature of the interaction between the component and its environment.

The non-functional requirements restrict the domain of acceptable reali-
zations by placing constraints on the types of solutions one might con-
sider.

2.1, Functional Requirements

-

The construction of the functional requirements involves modelling
the relevant internal states and behavior of both the caomponent and its
environment. Balzer and Boldman [BALZ791 have noted that the model.
often called a conceptual model. must be cognitive in nature, i.e.. it
must involve concepts relevant to the milieu in which the component is
used and should not include concepts related to its design or implemen—
tation.
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The conceptual model is incomplete unless the environment with
which the component interacts is also modeled. There are several rea-
sons for this., First, if the environment is not well understoad it is
unlikely for the requirements. as specified, to reflect the actual needs
the component must fulfill. Second: when the boundary between the com-—
ponent and its environment is flexible: the component complexity may be
reduced by imposing certain constraints on the way the environment is
expected to behave. A user. for instance. may be required to save
periodicly the file being edited although the editor could be designed
tc be fool proof--convenience is traded for improved performance or
reduced development cost. Third. the behavior of the environment is a
significant factor affecting the complexity of the component design. A
reai-time system: for instance. is significantly less complex when the
environment is known to generate stimuli at precise points in time as
compared with the case when the interval between succesive stimuli is
arbitrary.

Aside from defining the functional validation criterion far the
component design. the conceptual model is also an important vehicle for
communication between designers and users. in the problem definition
stagey and between desigrners. during the resmainder of the development
life-cycle. The impuortance of the conceptual model increases with the
complexity of the task., the risk factors associated with the project and
the number of people involved.

2.2. Non-functional Requirements

The degree of complexity associated with a particular design is
also determined by the nature of the non-functional requirements that
must be satisfied. A constraint such as high reliability. for instance,
may raise significantly both the cast of the system and the level of
effort associated with its design and testing.

Additional complications stem from the fact that formal specifica-
tion of the non—functional requirements is difficult te accomplish.
First. some constraints (e.g.. response to failure) are related to pos-
sible design solutions which are not known at the time the requirements
are written while others (e.g.. human factors) may be determined only
after complex empirical evaluations. Second. many constraints (e.g..
maintainability) are not formalizable given current state—of-the-art.
Third, not all constraints are explicit. As in the case of other
engineering disciplines: a software or hardware designer is expected to
follow certain generally accepted rules of the trade without having them
e2xplicitly stated. Actually, one may even be justified to speculate
these days that a successful law suit could be brought against any com-
pany that delivers on some contract a large monclithic program,
Finally. there is a great diversity of types of non-functional require-
ments.

A simple classification of the non—-functional requirements provides
sufficient evidence of their great diversity and of the difficulty
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involved in developing a unified and comprehensive theory on which to
base some formal specification technique. We separate the non-
functional requirements into six main categories:

= interface constraints
- performance constraints
- operating constraints
- life-cycle constraints
- economic constraints
- political constraints

Interface constraints deal with the precise definition of the means
of interaction between the component and its environment. 1In the case
of some application pragram. for instance. the environment may consist
of system users. the operating system, the hardware and a software pack—
age. The functional requirements for this program must capture the
demands and services associated with each one of these environmental
entities but not the syntax of the procedure invocations, the interrupt
addresses or the screen format. These details are interface constraints
that should not affect what the program does but the way it does it.

Performance constraints are usually separated into three
categories: time/space bounds. reliability and security. We add to
these three survivability. The first category covers requirements con-
cerning response time, workload. throughput, available storage space.
etc. It is our expectation that user oriented measures such as produc-
tivity will alsp become increasingly important in the definition of
requirements for systems that provide direct production support. Relia—
hility constraints deal with both the availability of physical com-
ponents and the integrity of the information maintained or supplied by
some component. Similarly, security constraints span physical con-
siderations such as emission standards and logical issues such as per-
missible information flows {(e.g..» for secure operating systems) and
information inference (e.g.» from statistical summaries about the data-
base contents). Survivability is a requirement associated not only with
defense systems but also with every day data processing where off-site
copies of the database are kept to prevent loss in case of fire.

Operating constraints include physical constraints (e.g.. size,
weight, power, etc.)s: personnel availability. skill level considera-
tions, accessibility for maintenance. environmental conditions (e.g.»
temperature. radiation, etc.). spatial distribution of components, etc.

Life-cycle constraints fall inteo two broad categories: thaose that
pertain to qualities of the design and those that impose limitations on
the development. maintenance and enhancement process. In the first
group we include maintainability. enhanceability, portability. flexibil-
ity. reusability of components. expected market or production life span.
upward compatibility. integration into a family of products. etc.
Failure to satisfy any of these constraints may not compromise the ini-
tial delivered component but may result in increased life-cycle tosts
and an overall shorter life for the component. In the second group we
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place development time limitations. resource availability and methodo-
logical standards. The latter include design techniques. tool usage.
quality assurance programs. programming standards. etc.

Economic constraints represent considerations relating to immediate
and long term costs. They may be limited in scope to the component at
hand {e.qg., development cost) but, most often. they involve global mark-
eting and production objectives. A high life-cycle cost may be accepted
in exchange for some other tangible or intangible benefits.

Political constraints deal with policy and legal issues. A
company’s unwillingness to use a caompetitor's device and the obligation
to use a certain percentage of indigenous eguipment in some foreign
country illustrate the type of issues falling in this category of non-
functional constraints.

The product documentation is a statement of those aspects of the
component that must be known by anyone wanting tc use it. As such, a
product documentation differs from a requirements specification pri-
marily in terms of the readership it addresses. The functional regquire-
ments are identical but only a subset of the non-functional requirements
may be relevant to the component user. The typical subset includes the
interface, performance and operating constraints.

The similarity between the two types of specifications suggests
that essentially the same techniques may be used for both., This holds
the promise for significant improvements in the gquality and uniformity
of software product documentation. The approach is economically attrac—
tive (the requirements ought to be developed anyway) and should appease
the current dissatisfaction with software product documentation which is
generally characterized by incomplete functional descriptions and the
absence of any performance data.

The relevance of requirements specification techniques for product
documentation appears to have received little or no formal recognition
in the literature but the case when the user manual is written before
the system is designed, for instance. is an implicit acknowledgment of
the dual role requirements can play.

Growing interest in the requirements specification has been accom—
panied by the emergence of general guidelines regarding the properties
of a good specification. Our own attempt to organize and to find the
motivation for these guidelines led us to adopting a functionalist
viewpoint: a property of a requirements specification is desirable if it
satisfies some identifiable need of the design process. This apprpach
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suggests that the way requirements are used determines the kind of pro-
perties they ought to have. Some properties are needed because the
requirements must be read. others because designs must be checked
against the requirements. yet others because requirements change with
time during development and enhancement. Aspects that contribute to
having a good requirements specification today may lose their signifi-
cance in the future if the design process changes its character due to
increased levels of automation or other factors.

We provide below a list of desirable requirements specification
properties. The list is compiled form several sources [DUBDS2., ZAVES1]
and is annotated from a functionalist perspective.

Appropriateness refers to the ability of some specification to cap-
ture, in a manner which is straight forward and free of design con-
siderations, those concepts that are germane to the component’s role in
the environment for which it is intended (business data processing. pro-
cess control, communication hardware. etc.) Its absence may render the
generation of the requirements impossible or very cumbersome.

A related property is conceptual cleanliness. It covers notions
such as simplicity, clarity. and ease of understanding. It is needed
above all because people are invelved in developing and using the
requirements. When the requirements are generated and used by design
tools alone.: conceptual cleanliness is usually sacrificed for the sake

of computational efficiency.

Constructability deals with the existence of a systematic (poten~
tially computer-assisted) approach to formulating the requirements.
This is in recognition of the fact that the mere availability of a
requirements specification formalism is not sufficient to make it use-
ful, particularly on large problems.

Both humans and topls having to examine the requirements benefit
from a structuring that emphasizes separation of concerns and ease of
actess to frequently needed information.

Precision. lack of ambiquity, completeness and consistency are
important because the requirements represent the criteria against which
the component acceptability is judged. Lack of precision (e.g., “"large
main memory”) is defined as the impossibility to develop a procedure for
determining if some realization does or does not meet some particular
requirement. Ambiguity is present whenever two or more interpretations
may be attached to a particular requirement—-this is different from the
case when several possible realizations are equally acceptable. A
requirement specification is incomplete if some relevant aspect has been
left out and is inconsistent if parts of the specification contradict
one another. Both completeness and consistency require the existence of
criteria against which one may evaluate the specification. While some
of them may be included in the semantics of the regquirements specifica-
tion language others may not. This is especially difficult to accom-
plish when one needs to address the consistency between multiple related
specifications such as a human interface prototype and a data-flow model
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of the functionality.

Consistency and completeness checks, the verification of the design
against requirements. and other analytic activities presuppose the
analyzability of the requirements by mechanical or other means. The
higher the degree of formality the more likely is that requirements may
be analyzed by some mechanical means thus opening the way to the use of
tools.

Jestability is defined as the availability af cost effective pro-
cedures which allow ane to verify if the design and/or realization of
some component satisfies its functional and non-functional requirements.
This property is probably the most important one and. at the same time.
the most difficult one to achieve. To illustrate the complexity
involved in guaranteeing testability one may want to think of the diffi-
culties associated with program verification where the code is checked
against a set of assertions stated in predicate calculus. The problem
of checking a system design against the system requirements is several
orders of magnitude harder to solve and is complicated further by the
fact that requirements may be application oriented.

Iraceability and executability of the requirements are often ade—
quate substitutes for testability. Traceability refers to the ability
to cross-reference items in the requirements specification with items in
the design specification. Without assuring testability. some help is
thus provided to the designer in his/her effort toc check that all
requirements have been considered. Executability implies the possibility
to construct functional simulations of the component from its require-~
ments specification prior to starting the design or implementation. The
requirements are validated by the user/designer through experimentation
with the functional simulation.

Finally, in recognition of the fact that requirements are built
gradually over long periods of time and continue to evolve throughout
the component's life-cycle, the specifications must be tolerant pf
incompleteness and adaptable to changes in the nature of the needs being
satisfied by the component. they must exhibit economy of expression. and
they must be easily modifiable.

5. CLASSIFICATION CRITERIA

The objectives of this section are two-fold: to provide a framework
useful in thinking about and in evaluating proposed techniques and to
construct a cohesive picture of the current state-of-the-art thus
revealing the issues facing this area today.

We propose five classification criteria which. when applied to a
requirements specification technique. help one establish its position in
the requirements engineering field. i.e.. its domain of applicability.
intrinsic limitations and basic philosophy:



G.-C. Roman (& June 1988) 8.

- formal foundation

- scope

~ level of formality

- degree of specialization
- specialization area

- development method

The remainder of the section discusses the relevance of each criterion.

S.1. Formal Foundation

Significant advances in the requirements field are determined by
the strength of its theoretical foundation which is the basis for subse-
quent automation. A class of components for which formal functional
requirements are routinely built is represented by compilers and inter-
preters. Their requirements are given by the syntax and semantics of
the language for which they are constructed. Standard methods are
avaitlable today for the definition of both syntax and semantics
[PABAB2]. OFf particular interest to the broader area of requirements
specification are the three types of semantic models currently in use!
denotational (the meaning of a program is stated as a mathematical func—
tion). axiomatic (the meaning of a program is stated by providing the
axioms and inference rules needed to prove programs correct) and opera-
tional (the meaning of the program is given by the result of executing
it on an abstract machine).

These models are expected to play an increasingly important role in
the fieid. Yo date, they cilearly influenced the work on the specifica-
tion of functional requirements for individual programs [LISK791. For
pure procedures, axiomatic specifications take the form of input/output
assertions and operational specifications are represented by simple and
clear algorithms that perform the same function as the intended program
but ignore any performance issues. (They are not intended for use by
the actual program.) Abstract objects (appearing in cbject oriented
design) may be specified by sets of axioms relating the operations per-—
missible over each object or. operationally. by showing how each opera-
tion uses and modifies some abstract representation of the object.

A number of successful attempts have been made in the use of pro-
gramming language semantic models as the basis for new requirements
specification techniques but their full potential has not yet been esta-
blished.

However: a good grasp of the principles behind the semantic
models for programming languages 1is important in any type of
design activity that involves writing or interpreting require-
ments and more emphasis should be placed on including this kind
of knowledge in the designers' training together with more trad-
itional formal computer science.

A designer documenting an Ada (Ada is a registered trademark of the u.
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8. Government. Ada Joint Program Office) package specification, for
instance, could benefit to a great extent from some knowledge of how to
specify abstract objects., Similarly, a designer will find that. by not
understanding the operational specification concept, will be mare likely
to misinterpret requirements written in a language such as RSL [ALFO791
which has an operational nature.

Efforts to develop system level requirements specifications (i.e..
the component is assumed to be a computer-based system) have explored a
number of alternate formal foundations. Some approaches are based on
the use of finite-state machines. Others emphasize dataflow or
stimulus-response paths. Attempts have also been made to model system
functionality as a community of communicating processes while data-
oriented modeling of the requirements has been stimulated by efforts in

the database area.

The use of finite-~state machines offers elegance and a great degree
of apalizability. RLP (Requirements Language Processor) [DAVI791, {for
instance, treats system processing as a mapping that takes the current
system state and an incoming stimulus and produces a new system state
and a response. Redundancy. incompleteness and inconsistency in the
definition of the finite-state machine are related to corresponding
problems in the requirements specification.

Dataflow models are among the most popular in use today. The typi-
cal dataflow model consists of processing activities and data arcs show-
ing the flow of data between the activities. Processing is triggered by
the presence of data in the input queues associated with each activity.
What makes dataflow attractive is the fact that it is very well suited
for modelling the structure and behavior of most human organizations.
SADT [ROSS771 and PSL/PSA [TEIC77]1 illustrate two distinct uses of
dataflow. BSADT is a requirements "blueprint language” that stresses
accurate communication of ideas by graphical means; while PSL/PSA
stresses the use of a requirements database and automated tools for the
development and analysis of dataflow type requirements.

Techniques using stimulus-response paths decompose the regquirements
with respect to the processing that must be carried out subsequent to
the receipt of each stimulus. The approach. rooted in the needs of the
real-time processing. is widely known primarily due to the development
of RBL [ALF0771].

The activities identified in both dataflow and stimulus-response
models may be easily simulated by using communicating concurrent
processes, Formally. a process is represented by a set of states and by
a state transition mapping. This view is shared by all the techniques
that model reguirements using communities of processes. Fundamental
differences occur mostly in the manner in which communication is being
defined. In PAISLey [ZAVEB1l asynchronous interactions are specified by
means 0f function applications. (So called "exchange functions" allow
the passing of information via their arguments and returned values).
Jackson £JACK78] uses unbounded queues defined such that only one pro-
cess may "write" to each queue and only pne process may "read" from each
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queue. IORL [TELEBZ2] provides a set of eight communication primitives
that permit the establishment of communication paths and the exchange of

data.

Data-oriented techniques concentrate on the specification of the
system state represented by the data that needs to be maintained.
Built-in data manipulation primitives are used to construct specifica-
tions for the system functionality. CSDL LROUS791, for instance. is a
conceptual schema definition language used to structure one's knowledge
of the application area. Based on semantic network modelling and other
techniques proven successful in the artificial intelligence field, CSDL
provides a highly abstract and intuitive representations of knowledge.

The techniques we have cited are representative of the significant
progress registered during the last decade but also indicative of some
of the limitations of the current state-of—-the-art.

Since no technique is equally appropriate for all applications
or comprehensive in its coverage of the requirements issues sig-
nificant effort should be directed toward esvaluating the poten-
tial of proven techniques in new contexts.

Furthermore, there is a need to expand the formal foundation of
the requirements area.

It is clear, for instance. that praobabilistic concepts have not received
appropriate attention. that logic based models are just beginning to be
exploited, that axiomatic methods for dealing with the specification of
behavior {(event sequencing) is only a theoretical concern. etc.

S5.2. Scope

The scope is defined by the type of requirements the specification
technique attempts to express. Gome techniques limit themselves to
functional requirements. others are concerned solely with particular
non—-functional requirements (e.9.,» reliability), while others cover
functionality and a selected subset of the non-functional requirements.
SREM [ALF0791, for instance, falls in the last category. By employing
stimulus-response paths to model the system functipnality. SREM makes
the formal specification of processing time constraints relatively easy.

There are two major difficulties in attempting to expand the scope
of the current specification techniques.

First, despite progress in the ability to express adequately the
functionality. there are still major difficulties with the es~—
tablishment of a formal foundation for most of the non-
functional requirements.

Sacond, broad integration of functional and non-functional re-
quirements has not been accomplished.
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If these issues are not addresseds requirements engineering environments
will fail to achieve the level of integration and mechanization expected
from them. It should be remembered that the severity of the constraints
determines the complexity of the design and that much of the design
evaluation effort is invested in checking if the constraints are met.

5.3. Level of Formality

The level of formality is determined by the extent to which a
specification language may be understood by some machine. The typical
user manual for some software package is generally characterized by a
certain degree of structure but a lack of formality because it is writ-
ten in a natural langquage. The pseudo-code possesses a somewhat higher
degree of formality because the structured constructs state unambigu-
ously the flow of control among the statements of the specification
which are written in a natural language. (NOTE: Pseudo-code is generally
used to develop design specifications but, in the proper context, it may
serve as a language for specifying requirements. The behavior of a VLSI
chip. for instance. may be specified using pseudo-code prior to starting
the logic design.)

PSL/PSA (TEIC77] represents a next step toward formality. Rela-
tionships between arbitrary entities (e.g.. "inputs A and B generate
output C") may be formally captured without any concern as to their
meaning. The burden of interpreting the meaning of the entities (e.g..
Ay B, and C) and of the relationships (e.g9.. “"generate") rests with some
consensus among designers. Completely formal specification technigues
do exist but for highly specialized classes of procblems.

There is great need to reach increasing levels of formality.
However, in the absence of proper automated toolss the
designers' ability to cope with formality is a major stumbling
block.

A dramatic illustration of the advantages of formal specifications
comes from the database area where a number of models have been proposed
LTSICB2] with the relational model being the simplest and the cleanest
among them. These madels are in fact requirements specifications for a
class of components we call databases—-they describe the desired func-
tionality and not the way the database is implemented.

S5.4. Degree of Specialization

Specialization of the requirements technique teo a particular type
of component is motivated in part by the desire to achieve high degree
of analyzability and direct representation of the concepts used by the
designer. The former helps to increase the potential for automation
while the latter makes the technique easy to use. Taken to its extreme.
however. specialization may lead to problems of its own. They include
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increased training costs, lack of flexibility, the need to validate the
applicability of the technique for each new project. personnel comparti-
mentalization. etc.

Current techniques cover the entire spectrum from domain specific,
to domain sensitive, and, finally. to domain independent. An extreme
case of specialization is represented by requirements techniques that
address such a small class of companents that automatic generation of
the component from the requirements becomes possible. Problem oriented
languages can be viewed as part of this category. Most system require-
ments specification techniques tend to fall into the category we call
domain sensitive. Bath RSL and PSL, for instance. are adequate for
problems which fall outside their primary domains of applicability and
adapt to the specifics of particular problems by means of designer
defined extensions. The SADT notation is representative for the domain
independent techniques. So is the use of formal logic in the definition
of requirements.

Because there are merits associated with hoth specialization and
generality: the developer of a requirements specification technique must
gvaluate carefully the trade-offs between the two directions.

Ideally: one would like to have a technique that is general
enough to be useful for a large number of problems (e.g., real-
time control, data processing. databases, etc.) and. at the same
time. is capable of defining the problem specific concepts need-
ed (or convenient to use) in each case (e.g.. internal and
external events. report formats. relations, etc.).

One way this might be achieved is to have a single unified formal foun-
dation {e.g.. logic) and a single human interface style, along with
problem specific concepts and semantic constraints.

9.8. BSpecialization Area

Toe understand fully the opportunities for specialization and the
diversity of needs requirements specification techniques must satisfy at
different points in the development life-cycle. one simply has to con-
sider what is invelved in the development of a complete system. i.e.. a
software/hardware aggregate. The Total System Design (TSD) Framework
proposed by Roman et al. [ROMAB4] separates the development of such sys-—
tems into six stages:

— Problem Definition
~ System Design

— Software Design

= Machine Design

= Circuit Design

— Firmware Design
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Among the stages ot the TSD framework the problem definition stage
is distinguished in two ways! it is application oriented and it involves
ne design activities. Its sole purpose is to assure that a clear under-
standing of the problem has been achieved and a statement of the system
requirements has been generated prior to the start of the system design.
Because of the large number of applications that are exploiting the use
of computer systems., specialized requirements specification technigues
have been developed for use with this stage. Some are aimed at large
ciasses of applications sharing some common feature {(e.g.. real-time
processing) while others address the needs of specific application
domains (e.g.: geographic data protessing). The growing interest in
expert systems for requirements specification will. most likely.
increase the pressure toward specialization. This diversification, how-—
ever, will not necessarily undermine the need for highly integrated
requirements engineering environments. 0On the contrary,. the common
logic foundation of such systems may actually enhance the opportunities
for integration.

Requirements work is often assumed to be limited to the problem
definition stage. This kind of narrow definition may be a convenient
simplifying assumption if one is interested in the problem definition
stage alone but, if taken seriously, it may suggest a fundamental lack
of understanding of the very essence of the design process. The design
of sach component entails the specification of both functional and non-
functional requirements for a set of subcomponents from which the com-
ponent will be eventually assembled. Variability in the nature of the
requirements technigques occurs along the development life-cycle due to
changes in the nature of the components involved. Because a distributed
system may be viewed as a set of processing nodes and communication
lines, the system design stage is tasked with the development of the
software and hardware requirements for each node and communication line.
These requirements are subsequently used by the software and machine
design stages. respectively. The same paradigm occurs also within a
stage, even though (unfortunately) the requirements for some components
(e.g.» input/output assertions for procedures) are not always formally
generated,

This state of affairs suggests that any attempt to separate
requirements and design specifications is counter productive when one
deals with the design stages.

The key to across life-cycle integration of design activities
rests with the ability to relate design and requirements specif-
ications.

Since the design of a component (e.g., system) must satisfy all the
functional and non-functional requirements specified for it, this means
that, at design time: one needs to show that the component’s require-
ments are satisfied as long as the subcomponents {(e.g.. subsystems) will
meet the their requirements. When the subcomponent requirements are not
included as part of the design this is impossible to do.
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Consequently. design languages must have the ability to specify the
requirements for the types of subcomponents they identify and must over-
come the current emphasis on functionality alone by incorporating for-
mally an increasing number of non—-functional requirements. In the case
of a software design language. for instance. it is not sufficient to
have the ability to state the logic of a procedure using pseudo-code.
One must also be able to state its requirements using pre- and post-
agsertions. let say. For: otherwise, little may be said of the design’s
correctness until all procedures are designed and. for a large systems
this is a major drawback!

Furthermore. system development environments must provide the ana-
lytic power necessary to show that the requirements for some component
are satisfied if the requirements for its subcomponents are met. (The
requirements for the component and for its subcomponents may actually be
defined using different techniques!)

S.6. [Development Method

Recent years brought about a new distinguishing factor among
requirements specification techniques: the development method. While
the prevailing approach is to state the requirements completely before
proceeding with the design. rapid prototyping has made significant gains
in popularity. As recent studies [BOEHB41 show, both methods have
advantages and disadvantages. Rapid prototyping seems to lead to less
code, less effort and ease of use while the traditional approach is
characterized by better coherence. more functionality. higher robust-
ness, and ease of integration. More importantly,. these results could be
interpreted as suggesting the need to use a mixed approach where one
uses a subset of the requirements to develop rapid prototypes which in
turn lead to further clarification and refinement of the original
requirements. (Because of the relation between requirements and product
documentation we consider that even pure rapid prototyping does lead to
a statement of requirements. It should be noted that while requirements
as such may never be generated, proaduct documentation is still nesaded—-
at least in the form of on-line user documentation.)

Two more exotic methods are also making their beginnings in the
requirements field., The first one is represented by efforts ta intro-
duce expert knowledge-based systems into the process of developing the
requirements. (The 77th International Conference on Software Engineer-
ing in March 1984, for instance,» included one session on this topic.)
The second one relates to defining requirements for situations wherse the
problem is extremely ill specified (e.g.. a medical diagnosis system).
This situation is very common in the artificial intelligence community
and the usual solution is not to specify the “functionality" but an
evaluation procedure and a set of related acceptance criteria (e.g.. 90%
agreement with some group of experts on a predefined set of cases).

Many of the shortcomings we see in the today’s approaches are due
to the underlying assumptions being made about how requirements ought to
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be developed.

While current strategies tend to structure the requirements
specification process. it 1is hoped that future requirements
development stategies will provide instead a milieu for reason-
ing about the problem at hand.

However. the systematic investigation of new requirements development
strategies has just been started and its full impact remains still to be
determined.

4. GCONCLUSIONS

Although it is our hope that the taxonomy introduced in this
paper-—in conjunction with an increasing number of important empirical
evaluations [BOEHB4. SCHEB41--will contribute to crystalization of
current knowledge of requirements specification techniques, we used it
primarily as a backdrop against which we reviewed the current state—of-
the-art in the requirements engineering field. The emphasis has been on
identifying general trends and issues rather than offering the reader a
complete literature survey. We have looked at the contents of a
requirements specification in light of the consensus reached by both
theoreticians and practitioners. The desirable properties of a require-
ments specification have been justified from a functionalist viewpoint
and it has been suggested that changes in the way one uses the require-
ments may alter the relative significance of different properties.
Finally. the classification of requirements specification technigues has
been approached from & total system design perspective.

The paper has shown that. despite significant growth. the require-
ments area still faces a number of important unresolved issugs and
suffers form a lack af crystalization. The formal foundation of the
field must be broaden by evaluating the capabilities of different types
of formalisms (e.g.. logic: probability theory. etc.}. A theoretical
foundation for the specification of non—functienal requirements still
needs to be established. The degree of formality must be increased in
order to reach greater levels of automation. The designers® abilities
to deal with formality must be enhanced through proper training and new
forms of automation that take into consideration the human factor and
incarporate more domain specific concepts in the requirements. New
methods for developing requirements specifications must be considered.

A major integration effort must be undertaken for the purpose of estab-
lishing a unified formal foundation that could bring together applica-
tion and design oriented specifications., functional and non-functional
requirementss the life-cycle phases: and design and requirements defini-
tion activities,

Work on requirements specification techniques must overcome the
current conceptual fragmentation of the field. This requires the emer-
gence of a consensus with regard to a growing number of issues, the
development of an understanding about what to he expected from the use
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of a particular technique in some given set of circumstances, the
refinement of current evaluation methods. and the development of highly
integrated design/requirements engineering facilities.
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