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In this thesis, we describe the use of Genetic Programming (GP) to learn

obstacle detectors to be used for obstacle avoidance on a mobile robot. The first group

of experiments focus on learning visual feature detectors for this task. We provide

experimental results across a number of different environments, each with different

characteristics, and draw conclusions about the performance of the learned feature

detector and the training data used to learn such detectors. We also explore the utility

of seeding the initial population with previously evolved individuals and subtrees,

and discuss the performance of the resulting individuals. We then include sensory

data from a laser range-finder and a camera and discuss the performance of resulting

individuals as we use just laser data, just image data, and both in combination.
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Chapter 1

Overview

1.1 Introduction

Feature extraction from images and laser data is a difficult task. Assumptions about

the nature of the environments, and how they appear in images and laser scans often

prove to be incorrect, lowering the performance of feature extractors. With these

difficulties in mind, we use Genetic Programming (GP) techniques [18] to evolve a

feature detection algorithm to be used for obstacle avoidance on a mobile robot.

Since such algorithms are often fine-tuned to work on their particular training

set, we have performed a series of experiments across different environments, each

with its own distinctive characteristics and challenges. By taking individuals evolved

to deal with one environment and running them in each of the other environments,

we hope to gain a better understanding of what is needed in a training set to cre-

ate high performance individuals in this particular task. We also explore the use

of a previously-evolved seed individual in the initial population in order to ensure

evolutionary success and high fitness levels. We then fine tune these explorations

by identifying subtrees of well performing individuals that act as building blocks of

success, where the GP system utilizes these subtrees to greater levels of success.

While the previously mentioned experiments use image data alone, the ex-

periments in Chapter 4 explore sensor fusion. In these multi-sensor experiments we

explore the suitability of using using image data alone, laser data alone, and the com-

bination of image and laser data, by looking at the modes of error in each of these

situations. We summarize these results with a discussion of the ways in which the ad-

dition of other sensory data can help or hurt in the evolution of successful individuals

in our domain.
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The work reported here is a direct extension of Martin’s [23], and began as

an attempt to test how well the results previously reported generalize across several

environments. In the process, we sought to identify various techniques to help ensure

the evolutionary success of a GP run. Such techniques form a set of GP best practices

that are applicable to other problems in our domain, if not across others. We extended

this work to use a laser range-finder, and then ran experiments using image and laser

data combined.

We begin by discussing the particular domain that we are interested in develop-

ing feature detectors for, robot obstacle avoidance. We then briefly summarize some

related work in the area of feature detection. Next, we discuss our multi-environment

experiments and various techniques to help ensure high fitness levels. We describe

our experimental setup, and then give the results of our experiments and offer some

conclusions from this work. We then detail our experiments with image and laser

data. We outline our experimental setup, and then give the results of our experi-

ments. Finally, we offer some conclusions from this work and reflect on its value and

possible future directions.

1.2 Genetic Programming

Genetic Programming (GP) is a programming technique inspired by genetics and

evolution where solutions are evolved to solve a given problem. In order to demon-

strate this technique, we use a very simple example where we try to learn a program

that takes two integers as input, and produces as output, an integer as close to two

hundred as possible (an easy problem for demonstration).

To start, the programmer needs to think about what kind of programming

constructs are needed to solve the problem. Therefore, for this problem, we decide we

need some arithmetic operators such as x, /, -, and +, and a squaring operator that

takes in a parameter and squares it, called sqr. All of these programming constructs

take parameters and are called functions in GP terminology. We also decide that we

need some random constants such as: 2, 7, 100, and two variables, a and b, to hold

the two input numbers. The programming constructs that do not take parameters

are called terminals. Together, the function and terminal sets are the genes that the

GP system will use to construct programs (see figure 1.1).
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Genes {
Terminals: 2, 7, 100, a, b
Functions: x, /, −, +, sqr

Figure 1.1: Example function and terminal sets.

100

+

+

ba

+

−

ba 7

sqr

Individual 1: (a + b) + 100 Individual 2: (a - b) + 72

Figure 1.2: Two example individuals.

Once the function and terminal sets are specified, GP randomly puts these

genes together to form programmatically correct programs, or individuals. Two ex-

amples of such programs, and their parse tree representation, are shown in figure 1.2.

GP creates thousands of these randomly constructed programs, thus, creating an ini-

tial population, or group of programs, as illustrated in figure 1.3. This size of the

population is set by the programmer, and is a control parameter that we will discuss

later.

Once an entire population is created, called generation zero, we need to evaluate

each program in the population on how well they perform the given task, in this case,

how close their output is to 200. For the two example programs shown in figure 1.2,

if the both a and b are two, then program one and two evaluate to 104 and 49

0

1

5,000

Generation 0

selection
Replication

Crossover

Mutation

Generation 1

0
1

5,000

Figure 1.3: Population creation from generation to generation.
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respectively. The evaluation mechanism, or fitness function, for this task is | 200

- (program output) |, thus, the two programs have fitness values of 96 and 151

respectively. GP is an optimization technique that minimizes or maximizes a function.

In this problem, GP minimizes the fitness function so that a program that produces

output closest to 200 is learned.

Once an entire population is evaluated, GP selects two individuals for the

creation of a second population, or generation one. Many methods for selecting these

two individuals exist, but they all are based on the notion that individuals that have

better fitness values (either higher or lower depending on if it is a maximization

or minimization problem) are more likely to be selected. With better performing

programs more likely to be selected, the good traits that they possess (that helped

them perform better), are likely to be passed on to the next generation.

Once two individuals are selected, one of three genetic operators: replication,

crossover, or mutation, is used to create two new programs to be inserted into the next

generation (see figure 1.3). Replication is when a program is copied over verbatim into

the next generation. Crossover, as shown in figure 1.4, works by selecting a random

node in each of two programs and swapping the subtrees rooted at those nodes, then

inserting both of these new individuals into the new population, or next generation.

Mutation, as shown in figure 1.5, works by selecting a random node in one individual

and randomly changing it to another member of the function and terminal set.

New individuals are created using these operators until a new population of

programs of the same size as the previous population is created as shown in figure 1.3.

At this point, the process starts all over again, with all of the programs in this new

population being evaluated, with better performing individuals being more likely to

be selected, and so on. This process repeats for a fixed number of generations, and

typically, the individual with the best fitness over all inputs is designated as the result

of the GP run. Throughout this procedure, creation, crossover, and mutation, are

constrained so that resulting trees, or individuals, are viable programs.

With this process, GP essentially performs a search through the space of pos-

sible programs, or solutions to this problem. It is more computationally efficient than

an exhaustive search, but at the expense of the quality of the final solution. GP is

not guaranteed to find the optimal solution, but often succeeds in finding a good one.

GP is also able to overcome some of the local optima problems associated with local

search techniques through genetic crossover and mutation, as these mechanisms can

transplant a solution to an entirely different area of the search space.
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100

+

+

ba

+

−

ba 7

sqr

Individual 1: (a + b) + 100 Individual 2: (a - b) + 72

100

+

+

a sqr

7

+

−

ba

b

New individual 1: (a + 72) + 100 New individual 2: (a - b) + b

Figure 1.4: Result of crossover taking place in individual 1 at node b and in individual
2 at node sqr.

100

+

+

ba

100

+

+

a 2

Individual 1: (a + b) + 100 New individual 1: (a + 2) + 100

Figure 1.5: Result of mutation taking place in individual 1 at node b. Node 2 replaces
node b.
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With regard to this search space, the programmer must decide on a number

of control parameters before GP can start evolving programs. These decisions are

important as these parameters affect how much of the solution space is covered during

the search. The two main control parameters that need to be set are:

1. Population size: A larger population allows for a greater exploration of the

solution space at each generation and increases the chance of evolving a good

solution. In general, a more complex problem demands a larger population size.

2. Maximum number of generations: More generations give GP a better chance of

evolving a solution, yet offer no guarantee that a solution will be found. In some

cases, it might be best to start again with a different initial population.

With both of these parameters, it is often best for the population size and the num-

ber of generations to be as large as possible. However, GP is very computationally

expensive, with complete evolutions often taking many hours if not days. For the

computing resources at hand, the programmer needs to find a suitable trade-off be-

tween computation time and the quality of solutions generated, and set the control

parameters accordingly.
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Chapter 2

Motivations

2.1 Robot Obstacle Avoidance

Martin [23] used GP methods to learn algorithms that extracted the height of the the

lowest non-floor pixel in a given column of an image. In the office environments in

which the work was done, this corresponded to the floor/wall interface, and served as

a relative distance measure to the wall. The positions of these lowest non-floor pixels

were then used as input to a simple mobile robot navigation algorithm, inspired by

the work of Horswill [13] with Polly the Robot.

Polly gave tours at the MIT AI lab, which has a textureless floor. Obstacles,

or their boundaries, are therfore detected as areas of visual texture. Polly’s vision

algorithm starts at the bottom of the image and moves a rectangle, or window, ver-

tically, until the algorithm detects significant texture. This texture is assumed to be

an obstacle, and the further up the image this obstacle is found, the further away

it is assumed to be. Navigation is then based on steering the robot towards the

highest of the features identified. This Horswill inspired navigation system results in

surprisingly robust navigation and is an important source of motivation for this work.

Figure 2.1 shows examples of the environment and the identified features in

Martin’s work. In all of these experiments, fitness was measured by the distance

between the actual lowest non-floor pixel and the position in which the program

decided it should be.

Martin used a tree-based representation, common to many GP approaches.

The internal nodes of this representation corresponded to standard mathematical

and control operations (such as looping). The terminals included five floating point

registers, and a pre-defined set of primitive image operations, such as blurring and
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Figure 2.1: Environment and detected features from Martin [23]. The white boxes
indicate the evolved program’s predictions for the lowest non-floor pixel in the column.

various edge detectors. In his early experiments, it was noticed that during the

runs of many of the successful individuals, most of the time was spent performing

a computation over a rectangular window which iterated over a column or row of

the image. To remove the need to learn this control structure, it was explicitly

added to the representation in the form of the iterate node. This primitive moved

a rectangular window over an image, executing particular (learned) code at each

location. Its (learned) arguments determined the size of the rectangle, the initial

location, the direction and distance to iterate, and finally, a piece of code to execute

at each location.

Experiments were performed with images taken from several locations in an

office environment. In the initial set of experiments, the iterate nodes could operate

either horizontally or vertically. The best individuals learned in these experiments

performed only slightly better than programs that ignored the actual image data and

just returned a fixed number. This happened despite a population size of 10,000

individuals running for 51 generations. Individuals were limited to a total size of

6000 nodes.

However, when a poorly performing hand-written program was used to seed the

population, much more successful individuals were learned. The best such individual

achieved an average error of only 2.4 pixels, and identified 60% of the test cases within

2 pixels of the human-provided ground truth position. Martin reports subjectively

that the vast majority of fitness cases were handled more than well enough for obstacle

avoidance, and the errors did not follow any particular pattern, suggesting a simple

filter would eliminate most of them.

While many aspects of the seed individual were modified by the evolutionary

computation, others were not. In particular, the successful evolved algorithms all

iterated vertically, from the bottom of the image to the top or vice versa, just as

the seed did. Therefore, in a second set of experiments, horizontal iteration was
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eliminated and the iterate node was simplified to take only three arguments: the

window size, the horizontal location in which to iterate, and the code to execute at

every step. The result producing branch, which had simply returned the result of a

single iteration branch, was also eliminated.

These new experiments produced individuals which routinely achieved a fitness

of greater than 85% [23, page 117]. They did this despite image features such as

burned out lights and other lighting effects that caused the carpet’s average greyscale

intensity to vary between values of 0 and 140 (out of 255). They also coped with large

gradients caused by imaging artifacts, moiré patterns of image noise, and the shadow

of the robot. The results from these experiments were more than good enough for

navigation. Once again the vast majority of columns were interpreted correctly and

with one exception errors were transient. The one exception was a particular stripe

of red carpet in one corridor, which was uniformly considered an obstacle, at least

when near the robot. This suggests that a richer representation of the image, perhaps

using color rather than greyscale, might be more robust.

This work is described in more detail by Martin [23], and forms the basis of

the work reported here. Based on Martin’s observations, we are interested in looking

in more detail at the effects of an evolved (rather than hand-written) seed individual,

at the effects of training and testing in different environments, and at using GP for

learning programs for more general feature detection problems.

2.2 Related Work

Several researchers have applied GP to finding things in images. The most directly

related to the work proposed here is by Martin, and is described above. Also similar

is work by Johnson [16], which uses GP to learn visual routines [26] that were used to

determine human actions in the ALIVE virtual environment [22]. The learned routines

ran over silhouette images of a human, and detected things like hand position. The

system uses a specialized LISP-like language, similar to that used by Martin, and is

capable of learning complex programs (on the order of hundreds of expressions).

Koza [19] used GP to learn programs for a simple optical character recognition

task. More in-depth research in the same domain was carried out by Andre [2]. Teller

and Veloso used GP to learn programs that classify images in the PADO system [25].

Harvey, Husbands and Cliff [11] use GP to evolve the control and morphology

of a very simple vision system for a gantry-based mobile robot. The system consists
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of three receptive fields and their position is learned by GP so that they can detect a

small number of simple targets.

Graae, Nordin and Nordahl [10] evolve a program to calculate disparity from a

pair of greyscale stereo images, using a sliding window representation, similar to that

used by Martin.

Lutton and Martinez [21] investigate the use of GP to learn programs that

extract geometric primitives from images. Interestingly, they found that the evolved

programs were complimentary to the widely-used Hough Transform [14]. For simple

primitives, up to three parameters, the evolved programs perform poorly, and the

Hough Transform is the method of choice. For more complex primitives, the memory

and data requirements of the Hough Transform become unreasonable, but the evolved

programs produce reasonable results.

Poli [24] uses a parse-tree based representation to evolve image filters. There

are three terminals, all square blurring convolutions (2x3, 7x7 and 15x15), and six

basic functions (add, subtract, multiply, divide, max and min). The learned programs

were used to perform segmentation in medical images. They claim that the GP-

based approach was more successful than neural network methods and “many other

techniques reported in the image-analysis literature”.

Dumoulin et al. [7] use genetic algorithms to design image convolution oper-

ators that are implementable in reconfigurable hardware (FPGAs). Their program

representation involves very simple bitwise operations and control flow, as one might

expect when using FPGAs.

Not using genetic programming, but similar in spirit to the work described

here, Draper, Bins and Baek [6] use reinforcement learning techniques to learn good

sequences of image operators for detecting houses in aerial photographs. Other AI re-

searchers have also applied planning techniques to induce good sequences of operators

for image processing tasks [15].
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Chapter 3

Cross Environment and General

Performance Enhancement

3.1 Experiments

In this section, we describe the environments in which we collected training and

testing data from and outline our experimental setup.

3.1.1 Environments

We gathered data from four different indoor environments, examples of which are

shown in figure 3.1. The details of these environments are as follows:

A1 Jolley Hall - Office/corridor environment with sharp shadows from strong sunlight

coming through open doors an windows. White walls with dark molding at the

bottom. Carpet is lighter than the molding, but darker than the walls.

A2 Same environment as A1, but without shadows.

B Eliot Hall - Office conference room environment, with sharp shadows created by

overhead lights and furniture. Light-colored walls, with dark carpet that is the

same color as the molding.

C Olin Library - No shadows, white walls, with white molding and darker carpet.

all Frames from all four data sets combined. This data set consists of 70 frames,

randomly drawn from the other four data sets.
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A1 A2

B C

Figure 3.1: The four test environments. The checkered pattern evident in some images
is a printing artifact and is not present in the actual environments.

We took 351 frames of video (320 x 240 pixels) while moving through each of these

environments (frame0.pgm - frame350.pgm), and used every 5th frame starting at

frame zero to construct the training sets, and every 5th frame starting at frame

one to construct the test sets. Each of these frames has ground truth information,

corresponding to the floor/wall interface in 6 pre-specified columns, added to it by a

human. To evaluate fitness, we compare this ground truth information for all of the

images in a data set with the predicted positions, for a total of 420 (70 frames * 6

columns) fitness cases. If the predicted positions are within ten pixels of the ground

truth, the prediction is classified as correct, with total fitness being the number of

correct predictions over the total number of fitness cases.

3.1.2 Experimental Setup

We want to be able to identify the lowest non-floor pixel in a given column of an

image. For our experiments, we selected six pre-specified, evenly-spaced columns in

each image. In Martin’s work these six columns corresponded directly to the number

of sonar sensors within the camera’s field of view. In our work, however, the six

columns are specified by hand and vary from image to image while maintaining as

close to an even distribution as possible. In this setup, as described in Martin’s

work in section 2.1, only vertical iteration was used with the iterate node taking
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three (learned) arguments: the window size (area of the image the program has

access to), horizontal location, and the sub-program to execute at every step. This

setup produced individuals which achieved fitness levels exceeding 85% on Martin’s

original training and test data, and similar levels on our own experiments. Fitness

was evaluated as described above in section 3.1.1.

Martin experienced little improvement after the 50th generation [23]. For this

reason, we limit ourselves to 50 generations of evolution, with a population size of

4,000. Running for longer, with more generations, will almost certainly improve

performance, but the performance after 50 generations seems to be a reliable indicator

of final expected performance. Individuals are chosen using tournament selection with

a size of 7. Genetic operators include crossover (90% rate), with a 90% probability

of selecting a function and a 10% probability of a terminal. In order to prevent code

bloat, individuals created through crossover are limited in size to 1000 nodes. An

individual’s size is checked during crossover such that if it exceeds 1000 nodes, the

individual is not used, and another attempt at crossover is made. Reproduction, or

replication, also is used with entire, unchanged, individuals being moved to the next

generation at a rate of 10%. Mutation is not used, since, empirically, crossover seems

to introduce enough disruption onto the population.

3.2 Experimental Results

We begin this section by discussing the performance of the GP system across the

environments described in the previous section. During the course of running these

experiments, we noticed an interesting bi-modal distribution in the final fitness of the

best individuals. Either the best individual was very good or very bad. There were

no “in-between” cases where the best individual had a mediocre fitness. We discuss

this further below.

3.2.1 Performance Across Environments

For each of the five training data sets, we performed ten runs of GP, evaluating

each run on its own data set. We then selected the best individual from all of these

runs, and evaluated it on the other data sets. The results for the cross-environment

experiments are shown in table 3.2. Individuals evolved for a particular environment

do better there than in any of the others. Additionally, higher fitness was observed
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Table 3.1: List of available functions and terminals to cross environmental and general
performance experiments.

root iterate-up, iterate-down
window sizes r22, r23, r32, r33, r24, r42, r44, r55, r26, r62, r66,

r77, r28, r82, r38, r83, r88
arithmetic *, +, /, -, square, and random constants
parameters x-obstacle (the horizontal pixel location in which

to find the obstacle), area the area of the window
in pixels), image-max-x(319), image-max-y(239),
firstrect (1 if this is the first rectangle of the it-
eration, 0 otherwise, x and y the center of the
rectangle in pixels

flow control prog2, prog3, break (halts the execution of the
branch, returning immediately without any more
iterations), if-le (<= operator)

registers set-a...set-e, read-a...read-e
image statistics average & average-of-squared over the window,

raw, truncated median, median corner, Sobel
magnitude, and four directional Moravec interest
operators

Table 3.2: Fitness of best individuals after 50 generations of evolution. Best fitness
for each test set is underlined.

Test Data Set
Train A1 A2 B C all
A1 81% 62% 36% 39% 56%
A2 63% 80% 21% 53% 57%
B 74% 74% 83% 74% 77%
C 12% 35% 39% 86% 40%
all 78% 78% 77% 81% 79%
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across environments that were similar (for example A1 and A2) than across those that

were significantly different (such as A1 and B). This behavior is not surprising, and

suggests that the best individuals are using features that are unique to their training

environment. As expected, the results on the combined data sets are approximately

the average of those on the individual ones.

One interesting feature of these results is that individuals tested on data set B

uniformly perform poorly (with the exception of those also trained on B). However,

individuals trained on B, uniformly perform well on other test sets. Data set B has

less rigid structure and is more varied than the other environments (see figure 3.1).

These characteristics suggest that less structured environments should be preferred

for training, since they will tend to produce more general-purpose individuals. How to

determine which environments meet this criterion, however, is not an easy problem.

Finally, individuals trained on a combination of all of the data performed well

on all of the data sets. It is interesting to note that the fitness of these individuals

is not much better (in most cases) than the fitness of the individuals trained on data

set B. It seems that the difficulty and diversity of training set B is almost enough on

its own to produce a robust algorithm that works across environments.

Indeed, the fitness of programs trained on data set B and on the combined

data set demonstrate that individuals can generalize well by making sure the training

data has two important characteristics: diversity and difficulty. During the cross en-

vironmental experiments, we saw an individual produced by a difficult, unstructured,

enironment perform well across all environments. This difficulty in the training data

forces the resulting program to evolve controls that do not rely on the environment’s

structure, and consequently, creates a program that works well in multiple environ-

ments. We also noted that diverse training data, like the combined data set, produces

individuals that generalize well across environments. Such diversity in training data

better prepares the resulting programs to deal with a variety of situations successfully.

3.2.2 Bimodal Performance Distribution

The best individual from each experiment fell into one of two distinct groups, one

with high fitness (70–90%), and one that failed to get very far past a fitness of 50%.

Moreover, in all experiments there is a very definite point, over the space of a few

generations, where the fitness moves from the lower mode to the upper one. In all five

of the data sets, if the fitness of the best individual did not reach 50% by generation
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Figure 3.2: The bimodal distribution of the best individual fitnesses after 50 genera-
tions.

24 (in all experiments, except one that transitioned after generation 42), the run was

doomed to remain in the lower mode. This grouping is very apparent in figure 3.2,

which shows the fitness of all individuals from one experimental run, for each of the

data sets.

This behavior, where the fate of an experimental run is sealed by generation

24, suggests that an individual must learn some key operator, function, procedure, or

combination that is instrumental to its future success within those first 24 generations.

Given the way that GP works, this is an understandable behavior. If we can find out

what this vital piece of the algorithm is, we could insert it into the population from

the beginning. This algorithm piece should greatly increase the chances of a successful

experiment, possibly even guaranteeing them.

In order to test this hypothesis we chose to examine the A1 data set. Since

the learned programs are very large, we chose the single best run from a particular

experiment, and looked at how it changed with each generation. Most increases in

fitness are small, except between generations 16 and 17, where there was a 9% increase,

and between generations 18 and 19, where there was an increase of approximately

7.5%. While these fitness jumps are characteristic of evolutionary computation, they

seem to indicate that some important part of the feature detection program has been

discovered.

Analyzing the evolved individuals proved to be extremely difficult. Initially,

instead of identifying any particular key part of the individual, we re-ran the experi-

ment, with the best individual from generation 19 in the initial population. All other

initial individuals were created randomly. The results of the best individual from
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Figure 3.3: Ten best individuals from a seeded run in A1.

ten runs of the experiment are shown in figure 3.3. All parameters are the same as

described above, and we ran each experiment for 50 generations of evolution.

In each of the ten experiments, the best individual performed well, with fitness

between 81.9% and 89.6%. In all ten runs, the seed (dashed line in figure 3.3) was

modified and improved upon considerably. Even the worst fitness here, is slightly

better than the best fitness in the original set of experiments for this environment (see

table 3.2).

Seeding in this manner has three advantages over using a hand-written seed.

First, we do not need any knowledge of the problem domain or of its specific pro-

gramming needs. Secondly, we do not need to know how to create a tree by hand.

And thirdly, an evolved seed will have redundant code. Thus, it is not as brittle as

hand-written, compact code when subjected to GP operations. Because of the redun-

dancy of the evolved seed, non-catastrophic changes can be made to it, and because of

its size, there are many opportunities for crossover to select a working sub-program.

We believe that these reasons make the use of a less finely-tuned seed (one created

from evolution) a better option, at least in the domain in which we performed these

experiments, especially when hand-coding an appropriate individual is too difficult or

is unsuccessful.

We then sought to identify particular features, or function combinations, within

individuals, that are key to high fitness. Again, we examined the single best run from

data set A1 and found that in generations after large fitness increases, certain function

clusters, or subtrees, would be present and would persist throughout the evolutionary

run. This persistance seemed to indicate that these subtrees are important to feature

detection. Therefore, we decided to take these subtrees and include them in the

original function set so that they would be available to an evolutionary run from the
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Figure 3.4: Subtree 1.

Table 3.3: Fitness with and without the seed subtree for two subtrees. The t-statistic
is for the t-test of the hypothesis that the fitness with the subtree is greater than
the fitness without. Confidence is the corresponding confidence level at which this
hypothesis holds.

Subtree 1 Subtree 2
With Without With Without

Mean 75% 47% 52% 42%
Variance 2.34% 4.54% 6.00% 5.28%

t-statistic 3.35 0.88
confidence 99.5% 80%

start. We identified two key subtrees in this manner and executed ten runs with

the first subtree and ten runs without. The two subtrees are shown in figure 3.4 and

figure 3.5. The results of these experiments are shown in table 3.3.

Runs with subtree 1 performed significantly better than those without it. With

99.5% confidence, we can say that the presence of of subtree 1 helps increase fitness,

at least in our domain.

The results from the experiments with the second subtree are also shown. Runs

with the subtree averaged a fitness of 52%, compared to 42% without it. While we

can say that the presence of this function cluster helped increase fitness significantly,

we cannot say it with as much force (80% confidence level).
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Chapter 4

Multiple Sensor Fusion

4.1 Experiments

In this section, we describe the environment in which we collected training and testing

data from and outline our experimental setup.

4.1.1 Data Collection

For these experiments, we captured data from the Lewis the robot as it moved around

the Media and Machines lab at Washington University. Lewis is an iRobot B21r

mobile robot with its video camera mounted on a Directed Perception pan/tilt unit.

The robot is a red cylinder that is over four feet tall and approximately two feet in

diameter. We used one video camera, a Sony DFW-VL500 IEEE 1994 (FireWire),

and the laser range-finder, which returns 180 radial distance measurements, covering

the front 180◦ of the robot, at a height of approximately 40cm above the floor. In

order to limit the laser range-finder data to scan values that correspond to image

data, we eliminated laser scan values outside the field-of-view of the camera. We

eliminated these scan values by setting up two obstacles high enough to be detected

by the laser range-finder, at the left and right edges of the camera’s field of view as

shown in figure 4.1. During this process, we erred on the side of caution so as not to

remove any laser scan values that were within the field of view.

With the procedure above, the first 63 and last 63 laser scan values were

removed, leaving 54 laser scan values that fit within the robot’s field of vision. With

Martin and Horswill as our main motivations for these experiments, the structure

of the vision and navigation algorithms centers around the notion of exploring the
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Figure 4.1: Two obstacles at the left and right edges of the image are used to eliminate
laser data that is outside the robot’s field of view.

Figure 4.2: Washington University’s Media and Machines laboratory where the train-
ing and test data were collected for the multiple sensor experiments.

world around the robot in columns. In keeping with this column centered approach of

the vision algorithm, we hoped to provide the GP system with meaningful laser data

that represents the robot’s perception of the world over each column in the image.

In order to accomplish this goal, we divided the available 54 laser scan values, into

nine equal columns (as with the image data), such that the GP system can utilize,

average, and process six laser scan values for each column. Consequently, individual

laser scan values do not have to correspond exactly to specific points in the image.

This process afforded us more time to concentrate on evolving good individuals, and

we suspect that we did not suffer any decrease in individual fitness as our resulting

individuals attain very high fitness levels.

4.1.2 Environment

The Media and Machines laboratory, as shown in figure 4.2, is a typical office/corridor

environment. Data were collected at night, with the presence or lack of overhead

lighting producing the variations in light intensity. The walls are white with dark

molding at the bottom. The carpet is lighter than the molding, but darker than the

walls.
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We collected two data sets, each consisting of 80 frames of video (40 training

and 40 for test), and recorded the corresponding laser range-finder data to a file

while moving through this environment. One data set, low, consists of objects, the

two white boxes in the images above, that are too low for the laser range-finder to

detect. In order to establish ground truth information for each of these frames, we

had to capture a frame with the boxes situated below the laser range-finder, and then,

capture the laser data with the boxes rotated upwards such that they are detectable

by the laser range-finder. The boxes are rotated such that their longest sides run

perpendicular to the floor, they are located in the same place, and show the same

area to the robot. Any error in this repositioning is nullified due to the leeway afforded

by the column approach. The second data set, visible, consists of the same white

boxes in the images above, arranged so that they are visible to the laser range-finder.

After the data set with the boxes rotated upward is collected for data set low,

and after data set visible is collected, a human then specifies which of the nine

columns contain “obstacles of interest”, or boxes. To evaluate fitness, we compare

this ground truth information of whether a column contains a box or not for all of

the frames in a data set with the GP generated predictions. With nine columns per

frame and forty frames, we have a potential for 360 fitness cases. With the boxes being

present, on average, in two of the nine columns (22.22%), it became clear we had to

direct the GP system to evaluate certain fitness cases. If we made no adjustment, a

prediction of no obstacles of interest for all fitness cases would yield a relatively high

fitness level of 77.78%, and the GP system would have little incentive towards finding

a solution that actually detects boxes.

Therefore, we wanted to attain a more equal look at fitness cases where an

obstacle of interest is present, and where one is not. We ensured an equal look by

constraining the system such that the number of fitness cases where no obstacle is

present equals the number of cases where an obstacle is present. In these experiments,

85 columns contained an obstacle of interest and 85 did not, for a total of 170 fitness

cases. For a given individual, total fitness is the number of correct predictions over

the total number of fitness cases.

4.2 Laser Range-finder Experiments

As the description of the ground truth and data collection process suggests, we want

to be able to identify if a given column in a laser scan contains a box. For these
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Table 4.1: List of available functions and terminals to box detection experiments
using laser only.

arithmetic *, +, /, -, 0, 1, and random constants, threshold
function that returns 1 if the first parameter is
<= the second parameter, 0 otherwise

flow control <= operator
laser statistics average scan value over a column, difference of

current column average and previous column av-
erage, difference of current column average and
next column average, minimum scan value over a
column, maximum scan value over a column

experiments, we specified nine evenly-spaced columns to divide up the 54 laser scan

values. Fitness was evaluated as described above in section 4.1.2.

4.2.1 Experimental Setup

In these laser-only experiments we limit ourselves to 50 generations of evolution, with

a population size of 4,000. Individuals are chosen using tournament selection with

a size of seven. Genetic operators include crossover (90% rate), and reproduction at

a rate of 10%. In order to prevent code bloat, individuals created through crossover

are limited in size to a tree depth of 17. We chose a tree depth of 17, because 17 is

the default tree depth for Open BEAGLE, the GP framework we chose for this work,

and it was a depth that worked well for many fellow BEAGLE users. See appendix A

for more details about Open BEAGLE. Mutation is not used, since, empirically,

crossover seems to introduce enough disruption onto the population. The functions

and terminals available to the laser-only runs consist of arithmetic, flow control, and

laser statistics, as shown in table 4.1.

4.2.2 Experimental Results

We begin this section by discussing the performance of the GP system in its attempt

to detect boxes using the laser range-finder alone. We then discuss the behavior of

these evolved individuals below.
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4.2.3 Box Detection With a Laser Range-finder

In these experiments, we first trained the system on data set low where none of the

boxes can be detected by the laser range-finder. Therefore, we are not evolving a

box detection algorithm, but rather challenging the GP system to find and to exploit

patterns in the training data to produce individuals of high performance. Indeed,

the resulting individuals from these experiments had moderate “success” in detecting

these boxes, or rather in exploiting regularities in the environment.

The best performing individual from the 30 GP runs was 74.45%, with all

30 runs averaging 71.55% with a variance of 3.45%. With these results, it is clear

that the GP system made use of regularities in the environment. As with many GP

evolved programs, it is very difficult to ascertain the functionality of the program.

The best performing individual in these experiments contained 687 nodes and had

a tree depth of 16. Yet, after analyzing the predictions for each column in the data

set, it appears that the individual made use of certain patterns in the environment

and box placement. It appeared to mark columns as interesting that had an average

scan value less than 600 cm and that had small differences (40 cm) with the average

scan values to the left and right of the current column. Examples of this behavior are

shown in figure 4.3 and figure 4.4. This sort of behavior is representative of the type

of adaptive behavior that programs evolved through GP display, where individuals

make use of the information they are provided and adapt to the features of the

environment. Such patterns in the environment may or may not have been apparent

to a human programmer, and thus, GP shows its value as a pattern identifier, even in

the most unlikely of circumstances. However, the patterns identified here are highly

specific to the environment, and while the resulting fitness was achieved on test data,

they would surely fail in other environments, resulting in poor performance, and poor

generalization.

We then trained the system on data set visible, where all the boxes were

visible to the laser range-finder. The best performing individual from 30 GP runs on

this data set was 97.06%, with all 30 runs averaging 95.06% with a variance of 3.09%.

These results show that laser alone is enough to detect boxes in this environment, with

misclassifications occuring where the box extended slightly into a column that was not

marked as containing a box. It is likely that much of the success experienced here is

due to regularities in the environment as demonstrated in the results of training where

none of the boxes are visible. The combination of patterns in the environment and

detectable obstacles made this a trivial task for the laser range-finder alone. Again,
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Figure 4.3: An image divided up into nine equal columns, along with its corresponding
average laser scan values for each column. Red means the system predicted that an
“obstacle of interest” is present, and green means that no prediction was made. To
get distance in cm, multiply y-axis by 10.
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Figure 4.4: White means the system predicted that an “obstacle of interest” is not
present, and green means that no prediction was made. To get distance in cm,
multiply y-axis by 10.



27

Table 4.2: List of available functions and terminals in the main tree in the box
detection experiments using image only.

arithmetic *, +, /, -, 0, 1, and random constants, threshold
function that returns 1 if the first parameter is
<= the second parameter, 0 otherwise

flow control <= operator, ADF

the individuals evolved here are likely to achieve lesser fitness levels when tested in

other environments due to over-fitting.

4.3 Vision Based Experiments

In these image-only experiments, we want to be able to identify if a given column

in an image contains a box. For these experiments, we specified nine evenly-spaced

columns in each image with fitness evaluated as described above in section 4.1.2.

4.3.1 Experimental Setup

The number of generations, population size, and genetic operators, are the same as

those described in section 4.2.1. The list of functions and terminals (see table 4.2)

available to the image-only experiments is similar to those available to the laser-only

experiments except for the addition of an automatically defined function (ADF) and

the removal of the laser statistics. The ADF is composed of the same functions and

terminals and returns the same value (register a) as the cross environment experiments

as shown in table 3.1. ADFs are subtrees that are used as functions in the main

tree[18]. They evolve separately from the main tree and use separate function and

terminal sets to create programmatically correct trees.

4.3.2 Experimental Results

We begin this section by discussing the performance of the GP system in detecting

boxes with the use of the image data only. We discuss the nature and details of these

evolved individuals below.
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4.3.3 Vision Based Box Detection

In the vision-only experiments, where all boxes were visible to the camera, the best

performing individual did quite well by only misclassifying five of 170 fitness cases

for a fitness of 97.06%. After 30 runs, individuals averaged a fitness of 87.73% with a

variance of 34.47%. Here, the best resulting individual contained 420 nodes and had a

tree depth of 16. Misclassifications were caused by other lightly colored objects such

as a silver chair leg, or lightly colored table leg. Overall, however, the best performing

individuals from these experiments were extremely successful in identifying boxes in

a variety of conditions.

4.4 Sensor Fusion Experiments

In these experiments, we combine image and laser range-finder data. Here, we speci-

fied nine evenly-spaced columns in both, the images and the laser scans, with fitness

evaluated as described above in section 4.1.2.

4.4.1 Experimental Setup

Here, we use the same setup, with regard to number of generations, population size,

and genetic operators, as the image-only and laser-only experiments described previ-

ously. The list of functions and terminals available to these sensory fusion experiments

are a combination of those available to the image-only and laser-only experiments.

The genes available to the main tree are the same as those available to the laser

only experiments, as shown in table 4.1, except for the addition of an automatically

defined function (ADF) that envokes the image specific code. The ADF returns the

value in register a and is composed of the same genes as the ADF in the image-only

experiments as shown in table 3.1.

4.4.2 Experimental Results

We begin this section by discussing the performance of the GP system in detecting

boxes with the use of the image and laser range-finder data. We discuss the nature

and details of the evolved individuals below. We also give a more detailed comparison

of the resulting individuals from each of these experiments with image data only, laser

range-finder data only, and data from the two sensors combined.
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4.4.3 Box Detection With Sensor Fusion

The first set of experiments used data set low where all boxes are undetectable by the

laser range-finder. The best performing individual from these experiments classified

168 of 170 fitness cases correctly for a fitness of 98.82%, with 30 runs averaging

90.82% with a variance of 54.37%. Here, the best resulting individual contained 508

nodes and had a tree depth of 16. The predictions for each column in the data set

were correct for almost every fitness case. Misclassifications occured because of the

recurring issue of when a box extended slightly into a column that was not marked

as containing a box. Overall, however, the best performing individuals from these

experiments were extremely successful in identifying boxes in a variety of conditions.

However, with the laser range-finder unable to detect the boxes, we cannot say

that high performance individuals in this experimental setup made use of both sensory

modalities, but rather, they leveraged useful image data along with regularities in

the environment. Our laser range-finder only experiments show how without any

useful laser data, the GP system successfully found and exploited patterns in the

environment for better performance. Therefore, we can assume that the increased

performance noted here, with the addition of blind laser data, is a result of patterns

in the data set and not successful sensory integration.

The second set of experiments that attempted to fuse vision and laser data

used data set visible, where all boxes were detectable by the laser range-finder. The

best performing individual from these experiments classified 164 of 170 fitness cases

correctly for a fitness of 96.47%, with 30 runs averaging 94.23% with a variance of

1.62%. Here, the best resulting individual contained 319 nodes and had a tree depth

of 16. Misclassifications occured where a box extended slightly into a column that was

not marked as containing a box. Overall, however, the best performing individuals

from these experiments were extremely successful in identifying boxes in a variety of

conditions.

The results from all of these multiple sensor experiments are summed up and

compared in table 4.3 and table 4.4. The results from the second set of experiments,

as shown in table 4.4, where the boxes are visible to the laser range-finder, show

that either the laser range-finder alone, or the camera alone is sufficient in identifying

boxes. The laser range-finder runs and image-only runs had means of 95% and 88%

respectively, and best runs both equaling 97.06%. In fact, all runs with the laser

range-finder recorded fitness levels above 90%, with a small variance of 3.09%. The

results from the image-only runs show that runs with image data alone are very good
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Table 4.3: Fitness with access to different sensor data where boxes are too low for the
laser range-finder.. The t-statistic is for the t-test of the hypothesis that for each pair
above, the fitness of the first experiments (from left to right) is greater than the fitness
of the second group of experiments. Confidence is the corresponding confidence level
at which this hypothesis holds.

Image vs Laser Both vs Laser Both vs Image
Mean 87.73% 71.55% 90.82% 71.55% 90.82% 87.73%

Variance 34.47% 3.45% 54.37% 3.45% 54.37% 34.47%

t-statistic 14.36 13.86 1.73
confidence 99.99% 99.99% 95.5%

Table 4.4: Fitness with access to different sensor data where boxes are detectable
by the laser range-finder. The t-statistic is for the t-test of the hypothesis that for
each pair above, the fitness of the first experiments (from left to right) is greater
than the fitness of the second group of experiments. Confidence is the corresponding
confidence level at which this hypothesis holds.

Laser vs Image Laser vs Both Both vs Image
Mean 95.06% 87.73% 95.06% 94.23% 94.23% 87.73%

Variance 3.09% 34.47% 3.09% 1.62% 1.62% 34.47%

t-statistic 5.9 1.3 5.9
confidence 99.99% 89% 99.99%
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Figure 4.5: Image-only failure mode with silver chair leg being misclassified as a box.

Figure 4.6: Image-only failure mode with wall protrusion located between two boxes
being misclassified as a box.

at identifying boxes, but suffer from a lot of volatility. While all runs were over 70%

with the image data alone, they varied from 70% to 97%. Another important fact is

that programs evolved with image data only took an average of 22 hours to complete,

while runs with laser data only averaged 30 minutes.

The performance of the laser-only and image-only runs, where the boxes are

visible, are predictable, in that the alogrithms fail in predictable ways. After looking

at the best run from the image-only experiments (97.06% fitness), all but one of the

failures were caused by other light colored objects such as a silver chair leg, or lightly

colored table leg. Figure 4.5 shows one such case where the second column from the

left, containing the chair leg, was misclassified as having a box. The only other failure

occured when a column containing a protruding wall structure was located in between

two boxes, as shown in figure 4.6. We assume that, in this case, the combination of

the unique wall protrusion, the closeness of the protrusion to the two boxes and the

robot, and the stark contrast between the dark molding and the white walls, made

this a tough case for the alogrithm. The alogiritm did classify all other columns with

this contrasting molding and wall pattern correctly, however.
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Figure 4.7: Laser-only failure mode with column overlap causing a box classification
where one was not specified.

After examining the best run from the laser-only runs (97.06%), we noted that

all failures, or misclassifications, were due to boxes that extended into columns that

were not marked as containing boxes. Figure 4.7 shows an example of this column

overlap. This overlap is a problem in laser-only runs, as opposed to image-only

runs, because all laser statistics are based on an average value for a given column.

Therefore, small overlaps that did not warrant a classification as containing a box,

make significant differences in the column average nonetheless. This sort of error is

avoided in image-only runs because the image statistics are centered around a specific

“x” value within the column, and are not forced to consider all of the surrounding

information in that column. This laser-specific failure mode suggests that columns

containing any part of a box should be marked as containing a box, as opposed to

limiting box classifications to boxes that extend over half or more of the column. With

only five miclassifications due to this overlap, however, and with adjacent columns

being marked as containing an obstacle, the best run individual is more than adequate

for the task of box detection, especially when used for obstacle avoidance.

After close inspection of the failure modes of the best run individual from the

image and laser data combined runs (96.47%), we found that the misclassifications

in this case, were a combination of the errors with laser data only and the errors

with image data only. The best run individual failed when a column contained a wall

protrusion located between two boxes as in figure 4.6 from the image-only experi-

ments. This combined data algorithm had no trouble, however, with chair or table

legs. The algorithm failed again when boxes extended into columns that were not

marked as obstacles, but not in all of the cases that we saw in the laser-only runs.

This behavior suggests that the algorithm possibly made use of image data to help

prevent it from classifying the column incorrectly, but was not successful in combin-

ing the sensors in all cases. Indeed the combination of the laser and image data did
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not produce greater success, but rather had difficulty combining the two sensors to

form better solutions than image or laser data alone. The combined sensor runs were

far less volatile (1.62%) than the image-only runs (34.47%), as the presence of laser

data proved to be a steadying influence. However, the combined data runs were less

volatile than the laser-only runs, suggesting that the combination of the two sensors

increase the liklihood that a high fitness (over 90%) individual will be evolved.
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Chapter 5

Conclusions and Reflections

5.1 Conclusions

In this thesis, we have presented the results of using GP to learn feature detectors with

multiple sensors. In the vision domain, we discussed the results of experiments across

several environments, and analyzed a bi-modal learning behavior, which resulted in

the final performance either being very good or very bad.

We explored various techniques to help ensure that individuals achieve high

fitness levels, and although we dealt with a particular set of experiments in a particular

domain, we believe that this work sheds some light on GP in general. We found that

the use of an evolved seed can have a great effect on the final performance level of the

system. We believe that evolved seeds have the benefit of being easily manipulated

by the GP system, as well as requiring no knowledge of how to code up an individual

from scratch.

In addition, we have demonstrated that evolved subtrees, or terminal and func-

tion clusters, can increase GP performance significantly. The use of evolved subtrees

also provides the opportunity to test if GP finds the same sort of image operations,

or combinations of operations, that a human expert would use, or if it comes up with

radically different solutions.

The research done here also supports the idea of having difficult and diverse

training data so that the evolved individuals generalize well to other applications.

We also investigated the use of multiple sensors in a series of experiments where

either, just image data, just laser data, or a combination of the two are used to evolve

a box detection algorithm. We showed that in the absence of useful data, or in the

presence of misleading data, GP will look for patterns in the environment in order to
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achieve higher fitness levels. The GP system also successfully found these patterns

when they seemed not to exist to a human. Through our experiments where boxes

are too low for the laser range-finder, we highlight the danger in picking useless, or

misleading, functions and terminals (the laser statistics), as doing so leads to over-

fitting to the environment.

We found that when all boxes are visible to the laser range-finder, image data

alone, or laser data alone, are sufficient for box detection. Laser-only runs were much

faster and much less volatile than the image-only runs. Combining image and laser

data did not lead to higher fitness values, but did create less volatility and a greater

probability that performance would be very good (over 90%).

Throughout all of these experiments, we found that the success of GP increases

tremendously, when using camera and laser range-finder data, when the user has some

knowledge of the problem and of the pieces that make up the solution. In this manner,

GP becomes an effective directed search, with its direction provided by the choice of

operators, functions, and seeds. We believe that many of the principles learned here

can be applied in a variety of problem domains, especially in the areas of general

feature detection in many environments.

5.2 Reflections and Future Work

Overall, we found the domain of general feature detection using multiple sensors to

be a very useful platform for exploring GP. We learned a great deal about training

data characteristics, and other techniques such as seeding, that are useful in ensuring

higher fitness values in our domain and others. We have just scratched the surface

with regard to combining multiple sensors and the type of problems GP can handle

successfully. While the work here is a step in the right direction, this domain deserves

a more comprehensive study. We believe this work provides a complete, easy-to-use

framework that covers: data collection, off-line training, testing, and online validation

on the robot.

In the event that we had more time, we would first combine the two data

sets that we have already collected, low and visible, and train the GP system with

this combined data set. Instead of treating the boxes that are too low for the laser

range-finder as boxes, we would classify them as pieces of white paper on the floor.

As Martin and we have seen, sharp contrasting carpet patterns and shadows often

fool a vision system that associates light intensity differences with obstacles. In our
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experiments, the vision system is detecting the intensity differences between the white

boxes and the darker carpet. By treating boxes that are too low for the laser range-

finder as pieces of white paper, we are challenging the GP system to come up with

another means of detecting boxes. It is likely that with this data set, the two sensors

will disagree, with the vision system classifiying a piece of paper as a box, and the

laser range-finder not detecting this ”box”. Such sensory disagreement would perhaps

force the GP system to use the two sensors in combination in a more comprehensive

manner than we have seen thus far. The hope is that the GP system would use the

laser data to correctly classify a column containing a piece of paper as obstacle free,

and columns containing boxes as obstacles to avoid.

Additionally, with the goal of a comprehensive robot demo, we propose the

following experiments. First, collect three more data sets:

1) A typical office/corridor environment free of boxes or other obstacles except walls

2) Same as data set 1, with the addition of an equal mix of white boxes and pieces

of white paper on the floor

3) Same as data set 1, with the addition of tables along the walls

Once these data are collected, train the GP system on each of the three data sets,

using just image data, just laser data, and the two sensors combined.

Instead of outputing whether or not an ”obstacle of interest” is present in each

column, output the lowest non-floor pixel in each column. Our hypotheses for these

experiments are:

1) Image data alone are enough to successfully identify walls and boxes

2) Laser data alone are enough to find boxes that the laser range-finder can detect

3) Image data alone are not enough when high contrast floor features are present

such as white pieces of paper

4) The use of laser and image data combined prevent errors with the sheets of paper

5) The combination of laser and image data will allow the detection of the correct

position of tables, where using each sensor alone will not

With the current ability to transform the BEAGLE XML output to C code, run

this code on the robot in order to successfully detect boxes, walls and tables. Then,
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feed this obstacle detection output to a Polly navigation algorithm to show the robot

avoiding the previously mentioned obstacles, while running over pieces of paper.
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Appendix A

Open BEAGLE

Framework Open BEAGLE is a C++ Evolutionary Computation framework that

supports tree-based Genetic Programming, bit-string and real-valued genetic algo-

rithms and multiple evolutionary stategies. We selected this framework for our mul-

tiple sensor experiments because it is well-designed and stable. BEAGLE’s excellent

use of Object-Oriented programming techniques, advanced debugging and tracking

features such as a log file, and an XML-based file format for configuration and repre-

sentation of individuals are features that provide ease-of-use, robustness, versatility,

and portability. Its current support of advanced techniques such as co-evolution and

evolutionary strategy, as well as features currently in development, such as support for

distributed programming are excellent candidates for future research and additional

reasons why we selected BEAGLE as our GP framework.

Modifications While BEAGLE provided a versatile and robust framework for our

work, we had to make some modifications to the code in order to support the structure

of our individuals. The individuals in our work have a structure where an iterate node

is at the root, and takes in three arguments: the rectangle size, the column to iterate

over, and the program to execute at each step as shown in figure A.1. The built-in

creation methods in BEAGLE do not support this structure where two of the children

of the root node are constrained to be terminals, and the third child, the program to

execute at each step, is constrained to have a minimum depth of 2, or in other words,

to be a function. The programmer sets a parameter to the creation methods that

specifies the minimum depth of the trees created. In order to promote well developed

and interesting trees, we set the minimum depth to 5, as did Martin in his work. The

creation methods in BEAGLE only select functions when the minimum tree depth
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iterate−up

x−columnrect−size +

A B

Figure A.1: Example individual with Martin’s structure.

is not reached, consequently, failing when it tries to add functions as the first two

children to the root node. In order to prevent this failure, we relaxed the minimum

depth constraint on the first two children of the root, or iterate node, and re-applied

the constraint on the third child.

Our individual tree structure also made it necessary to modify the creation

process during full creation. Full creation is where the resulting tree is constrained

to be a “full” tree, or a tree where all branches have the same depth. In figure A.1,

the entire tree is not full, but the subtree rooted at “+”, is a full tree. With our tree

structure constrained to a root node with two terminals and one function, a full tree

is not possible. Therefore, we relaxed the constraint for the tree to be full for the first

two children (the terminals) of the root node, and re-applied this “full” constraint on

the third child, the program to execute at each step in the iteration process.

We also modified the creation process to check to make sure that a newly

created individual does not already exist in the population. While the probablity of

creating identical individuals is relatively small, we want to ensure that our initial

population is as diverse as possible.

Another modification to the Open BEAGLE framework is the addition of the

ability to seed the population. Seeding allows a hand-written or previously evolved

individual to be added to an otherwise randomly created initial population. BEAGLE

did not previously support seeding, and with Martin’s and our work exploring the

use of seeding to boost performance, it became a necessary feature to add. We imple-

mented seeding such that the seed individuals are put into BEAGLE’s configuration

file within an XML tag, <SEEDS></SEEDS>. With the seeds specified in this way,

we modified the base class of all initialization operators to do the following:

1) Check the configuration file for any seeds to insert into the initial population.
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2) If there are one or more seeds, read them from the configuration file and insert

them into the population.

3) Finish filling the population with randomly generated individuals.

This seeding mechanism was included in version 2.1.0 of Open BEAGLE and

was the start of our cooperative development with the BEAGLE creator.
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Appendix B

Example individual

See next page.
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