
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2004-17 

2004-04-14 

Automated Code Management for Service Oriented Computing in Automated Code Management for Service Oriented Computing in 

Ad Hoc Networks Ad Hoc Networks 

Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Roman 

Ad hoc networks are dynamic environments where fre-quent disconnections and transient 

interactions lead to de-coupled computing. Typically, participants in an ad hoc network are small 

mobile devices such as PDAs or cellu-lar phones that have a limited amount of resources avail-

able locally, and must leverage the resources on other co-located devices to provide the user 

with a richer set of func-tionalities. Service-oriented computing (SOC), an emerging paradigm 

that seeks to establish a standard way of mak-ing resources and capabilities available for use 

by others in the form of services, is a useful model for engineering soft-ware that seeks to... 

Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Handorean, Radu; Sen, Rohan; Hackmann, Gregory; and Roman, Gruia-Catalin, "Automated Code 
Management for Service Oriented Computing in Ad Hoc Networks" Report Number: WUCSE-2004-17 
(2004). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/989 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233200171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/989?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/989 

Automated Code Management for Service Oriented Computing in Ad Hoc Automated Code Management for Service Oriented Computing in Ad Hoc 
Networks Networks 

Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Roman 

Complete Abstract: Complete Abstract: 

Ad hoc networks are dynamic environments where fre-quent disconnections and transient interactions 
lead to de-coupled computing. Typically, participants in an ad hoc network are small mobile devices such 
as PDAs or cellu-lar phones that have a limited amount of resources avail-able locally, and must leverage 
the resources on other co-located devices to provide the user with a richer set of func-tionalities. Service-
oriented computing (SOC), an emerging paradigm that seeks to establish a standard way of mak-ing 
resources and capabilities available for use by others in the form of services, is a useful model for 
engineering soft-ware that seeks to exploit capabilities on remote devices. This paper proposes an 
automatic code management sys-tem supporting SOC in ad hoc networks. The system is re-sponsible for 
ensuring that the binary code required to use a service on a remote machine is available on the local host 
only when required. To support this functionality, a local code base is maintained by discovering and 
installing code from remote hosts. Since the system is specifically designed for ad hoc networks, it 
incorporates additional features that help it withstand the inherent dynamism of the network. We present 
an architecture for our system supporting automatic code management and follow it with a discussion of 
a Java-based implementation. 

https://openscholarship.wustl.edu/cse_research/989?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/989?utm_source=openscholarship.wustl.edu%2Fcse_research%2F989&utm_medium=PDF&utm_campaign=PDFCoverPages




Automated Code Management for Service Oriented Computing
in Ad Hoc Networks

Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Roman
Department of Computer Science and Engineering

Washington University in St. Louis
Campus Box 1045, One Brookings Drive

St. Louis, MO 63130-4899, USA
Email: {radu.handorean, rohan.sen, ghackmann, roman}@wustl.edu

Abstract

Ad hoc networks are dynamic environments where fre-
quent disconnections and transient interactions lead to de-
coupled computing. Typically, participants in an ad hoc
network are small mobile devices such as PDAs or cellu-
lar phones that have a limited amount of resources avail-
able locally, and must leverage the resources on other co-
located devices to provide the user with a richer set of func-
tionalities. Service-oriented computing (SOC), an emerging
paradigm that seeks to establish a standard way of mak-
ing resources and capabilities available for use by others in
the form of services, is a useful model for engineering soft-
ware that seeks to exploit capabilities on remote devices.
This paper proposes an automatic code management sys-
tem supporting SOC in ad hoc networks. The system is re-
sponsible for ensuring that the binary code required to use
a service on a remote machine is available on the local host
only when required. To support this functionality, a local
code base is maintained by discovering and installing code
from remote hosts. Since the system is specifically designed
for ad hoc networks, it incorporates additional features that
help it withstand the inherent dynamism of the network. We
present an architecture for our system supporting automatic
code management and follow it with a discussion of a Java-
based implementation.

1 Introduction

The utility and convenience of mobile devices have
prompted a migration from traditional desktop systems to
mobile devices. The result of this migration is that mo-
bile devices are becoming more and more ubiquitous and
users are becoming increasingly reliant on them. As society
embraces mobile computing technology, there is a growing

pressure to provide a rich set of software that is engineered
to the same exacting quality and performance standards as
those for traditional systems.

Providing a comprehensive library of software on mo-
bile, resource constrained devices is a challenge due to lack
of local permanent storage space and limited memory. The
problem is further exacerbated in ad hoc networks, a special
class of wireless networks where the network infrastructure
is borne by member hosts. The software resources avail-
able in an ad hoc network are the sum total of the resources
available on member hosts, as ad hoc networks are closed,
peer-to-peer networks with no access to external resources.
Thus, the provision of a rich set of services is dependent
on hosts in the ad hoc network sharing their resources with
each other.

For hosts in an ad hoc network to be able to share ca-
pabilities with each other, it is required that they advertise
their capabilities in a standard format and provide a stan-
dard way for remote hosts to interact with these capabili-
ties. This is a non-trivial task since ad hoc networks lack
standardized application level protocols for inter-host com-
munication. Additionally, frequent disconnections and tran-
sient interactions, due to host mobility, which are character-
istic of devices that participate in ad hoc networks result in
decoupled computing. This further complicates the seam-
less sharing of resources. One solution to the twin prob-
lems of the lack of standardized protocols and host mobil-
ity is to implement a service-oriented framework using the
proxy approach, as proposed in the Jini [23] model. In the
Jini model, the code for an advertised capability (called a
servicein service-oriented computing terms) resides on the
host that offers it, and a proxy, which can be conceptualized
as a remote handle to the service, is distributed to interested
clients. Proxies are advertised by the provider of a service
and fully encapsulate all details of communication between
client and provider. Interested clients can discover the proxy



and install it locally. Once the proxy is installed, it behaves
like a component of the client application. It accepts calls
from the client and delegates them to some remote instance
of the service (where the instance may change over time -
most likely due to host mobility), thus allowing usage of a
remote service as if it were a local component of the client
application.

A critical requirement of the proxy model is the avail-
ability of the proxy binary code on the client. Since prox-
ies are discovered by clients at runtime as-needed, it is very
likely that the binary code required to install and execute the
proxy is not available on the client machine. This code must
be fetched from the service provider, installed and started in
a seamless and transparent manner.

This requires that code management for proxies be fully
automated. In addition to automatically discovering and in-
stalling required proxy code, the system must also possess
the capability to examine the proxy code and automatically
discover and acquire other external dependencies that are
needed as support objects. These support objects are com-
ponents that are required for correct execution of the proxy
code, e.g., a streaming media player can be considered a
proxy to a music broadcasting service while the codecs to
interpret file formats are external components that are not
explicitly requested by the client but required by the proxy
to correctly fulfil its functionality of playing streaming mu-
sic. Often, the external dependencies may not be found on
the same host as the proxy object itself, requiring a mech-
anism to collate all required parts. A further issue is that
this entire interaction happens in an ad hoc network, where
interactions between hosts are transient. The system must
hence be robust enough to handle unpredictable disconnec-
tions while a critical activity is being performed.

The proxy approach to service oriented computing has
been described extensively in Jini literature and is not new
in of itself. The novelty of our contribution lies in the
fact that by automating code management, proxies and their
supporting code can be migrated to the client transparently,
eliminating the need for Java RMI [19] to invoke remote ser-
vices, while at the same time not increasing the complexity
of the client application code. The model we propose has
features geared towards withstanding the dynamism of ad
hoc networks while reliably fulfilling all the requirements
of a proxy code management system. We also describe a
Java based implementation of our model.

The rest of this paper is organized as follows. Section
2 covers background material on automated code manage-
ment, service oriented computing and proxy-based services
in ad hoc networks. Section 3 outlines our architecture for
automatic code management supporting proxy-based inter-
actions with services on remote hosts. We provide imple-
mentation details and illustrate the concept via a demo ap-
plication in Section 4. We highlight additional technical

challenges in Section 5 and draw conclusions in Section 6.

2 Background

The original purpose of the Proxy pattern [3] was
twofold - to provide controlled access to resources and to
behave as a placeholder for resources that external entities
could use to interact with the resource. Recent years have
seen the application of the Proxy pattern to a wide range of
scenarios. In GloMop [2], the authors use proxies to opti-
mize the interaction between remote hosts in an ad hoc net-
work, by intercepting document traffic and removing all the
formatting information from the document (and thus reduc-
ing its size) under the assumption that it is more important
for the user of a mobile device to have access to the text of
the document rather than use valuable resources to display
it with complete formatting. In [20], the author presents
a framework where proxies are used to manage load bal-
ancing among multiple participants in a distributed comput-
ing session. In [12] proxy objects are automatically gener-
ated using the Java reflection mechanism to provide a solu-
tion for local customization of externally developed code by
wrapping the obtained object in a proxy-object generated at
run time.

Jini [23], a model for service oriented computing, pro-
posed by Sun Microsystems is another notable application
of the Proxy pattern. Jini uses proxies as service adver-
tisements as well as remote handles to the service. Jini
was conceived primarily for large, wired networks such as
company LANs and the Internet. The advent of mobile
computing and ad hoc networking has motivated efforts to
tackle various problems associated with delivering service-
oriented computing solutions for mobile, wireless devices.
Proxy based systems such as Jini are especially suited for
use in such settings because of the reasons given in Sec-
tion 1. However, simply porting the Jini framework to these
resource-constrained devices does not yield a viable solu-
tion. The reason for this is that the resources required to run
Jini-based applications are too costly for the small, mobile
devices. For example, in [10], the authors identify the Java
RMI [19] mechanism, which is used by Jini to interact with
remote services, to be a costly performance bottleneck. The
Mini [8] system, their proposed solution, uses pure IP com-
munication in place of RMI to interact with remote services.

Another restriction of the Jini approach is the fact that it
uses centralized directories to store service availability in-
formation. This is not suited to ad hoc networks, where the
availability of resources is mainly influenced by the direct
connectivity between hosts and connectivity is not guar-
anteed for more than short intervals at a time. The Web
Services model is even less flexible since it uses heavy-
weight ontologies and descriptors in addition to standard-
ized markup languages such as WSDL [22], RDF [21] and

2



DAML [7] and standardized protocols such as SOAP [24].
Such a standards oriented approach is inappropriate in ad
hoc networks that exhibit heterogeneous and constrained
host capabilities and resources.

Despite certain limitations as described above, proxy
based models such as Jini and Salutation [14] represent
good starting points when developing a SOC model for mo-
bile devices and ad hoc networks. Migrating SOC to ad hoc
networks brings with it fresh challenges and imperatives, a
representative list of which may be found in [18]. Current
SOC models assume high-bandwidth, reliable wired net-
works and powerful server hosts. These assumptions fall
apart in the dynamic and demanding environment of ad hoc
networks. In the absence of these assumptions, the soft-
ware is required to be engineered to be robust so as to with-
stand the implications of frequent disconnection and decou-
pled computing. Structures such as directories have to be
re-engineered so as to not have a central point of failure.
Mechanisms and protocols such as safe distance algorithms
[9], group membership [13], and disconnected routing [6]
are needed to facilitate or simulate reliable communication
between the client and the provider during the duration of
their interaction. These represent just a few of the new chal-
lenges when moving to the ad hoc environment.

While the proxy approach mitigates many of the prob-
lems associated with engineering a SOC architecture in an
ad hoc network, it adds complications in the form of sys-
tems that deploy and manage these proxies. Traditional de-
ployment and management mechanisms are not suited for
the dynamic environment of the ad hoc network and hence
need to be built from scratch. For example, centralized di-
rectories for advertising the proxies need to be distributed
across all hosts of the ad hoc network. Interactions between
the proxy and its parent service must be handled in a seam-
less and efficient way. As an additional challenge, all these
low level mechanics must function automatically, so that the
application programmer does not have to deal with commu-
nication level issues.

In the next section, we present our architecture for au-
tomatic code management supporting SOC in ad hoc net-
works. The aim of this work is to propose an alternative to
Java RMI in Jini for the purpose of interacting with remote
services. We replace the functionality of RMI by support-
ing more sophisticated proxies that can accept calls from the
client and tunnel them to its parent service using a specified
coordination model for interaction in ad hoc networks. Al-
lowing for these proxies means that the code for these prox-
ies needs to be shipped on demand to the clients that require
it. This could be done explicitly by the client application
but this places a burden on the programmer. To simplify the
task of programming client applications, we automated the
entire process so that the programmer can write application
code, secure in the knowledge that the system will collate

and install all the required binary code as and when it is
required.

3 System Architecture

In this section, we present our architecture for automatic
code management supporting service oriented computing in
ad hoc networks. We reiterate that in our architecture, a ser-
vice consists of some application running on aproviderhost
and aservice proxythat the provider advertises. Interested
clients may retrieve the service proxy and use it locally. We
begin our presentation with a description of the software
infrastructure required on theprovider, followed by a de-
scription of the infrastructure required on theclient side.

3.1 Provider Side Infrastructure

3.1.1 Proxy Advertisement

The proxy advertisement phase commences when a host ex-
plicitly advertises a capability it wants to share with other
hosts. It does this by formulating a service advertisement, a
detailed description of the service’s functionality and per-
formance parameters. In addition, the service advertise-
ment contains a descriptor for the associated service’s proxy
class. The binary code for the service proxy is combined
with the service advertisement to form aproxy advertise-
ment. The proxy advertisement is registered with one or
moreservice directories. Service directories are public enti-
ties that are open to all hosts. Interested clients may browse
service directories for services that meet their needs.

Traditionally, service directories have employed central-
ized architectures with dedicated hosts in the network host-
ing and managing the directories. Centralized approaches
are suitable for wired networks where powerful servers can
host the directory, and reliable, permanent connectivity en-
sures prompt access to these directory hosts. However, the
dynamic environment and opportunistic interactions found
in ad hoc wireless networks make centralized structures in-
effective. As an example, we highlight two scenarios in
which a centralized directory architecture fails in ad hoc
wireless settings. In the first scenario, a client may not
be able to use a service offered on a nearby host because
the client could not access the directory thus informing him
of a candidate service’s presence within his communication
range. In the second scenario, a client could potentially
discover the advertisement of a service which is no longer
available because the host it is running on has moved away,
leaving behind orphan advertisements. Due to such issues,
alternate strategies are needed for ad hoc wireless networks.

To address issues introduced by the dynamic nature of
the environment, our design entails a distributed architec-
ture for service directories. Each host maintains its own

3



local service directory. Hosts within communication range
share these directories to form afederated service directory.
A client’s query spans the entire federated service directory,
which is the conglomeration of local service directories of
participating hosts. The content of the federated service di-
rectory is updatedatomicallywith the arrival or departure
of any host that has a local directory with service adver-
tisements. The structure and content of the federated direc-
tory thus reflects any change in connectivity andreal ser-
vice availability (i.e., there are no orphan advertisements,
each proxy in the service directory having a corresponding
server to connect to). The mechanisms by which the ser-
vice directories are merged, and by which the client query
is made to span the merged service directories are imple-
mentation details and are covered at length in Section 4.

The proxy advertisement is divided into its two con-
stituent parts (i.e., the service advertisement and the ser-
vice proxy binary). The service advertisement is added as
an entry in the service directory while the binary code for
the service proxy is added to the code repository (a direc-
tory structure identical to the service directory but which
holds binary code). When the binary code for the proxy is
added to the code repository, the system inspects the file and
automatically searches the provider host for any additional
code (dependencies) required for the correct execution of
the proxy. The dependencies are placed directly into the
code repository by the system. If a dependency is not found
by the system on the provider host, it is skipped under the
assumption that the dependency will be available from an-
other host in the ad hoc network. An argument can be made
for packaging the proxy code as well as its dependencies
into a single executable archive, e.g., JAR files. We chose
not to adopt this approach for two reasons: a) In the interest
of flexibility, we did not want to restrict a client to obtain-
ing the dependencies of a proxy solely from the advertiser
of the proxy. Returning to our example of the music service
proxy, if the dependency is standardized codec which can be
obtained from multiple hosts, the restriction is not required
and is intrusive. b) Not using JAR files allows the client
to request dependencies as required. If a certain branch of
execution in the proxy does not require a dependency, then
the client is not required to download it, thus saving valu-
able processor time. However, we do provide the support
for packaging proxies as JAR files in case some providers
wish to use this alternate approach.

3.1.2 Proxy Removal

When a provider no longer wishes to offer a service, it does
so by removing its service advertisement from the service
directory. This is a relatively straightforward operation be-
cause the server simply has to remove the advertisement
from its own local directory. Here, we reiterate that though

the service directory appears to be a single federated entity,
it is in actuality the combination of all the local directories
hence removing an advertisement from the federated reg-
istry is trivial if the advertisement lies in the portion of the
directory that is local to the server that is removing it. Re-
moving the advertisement ensures that no new clients can
discover the service and use it. However, clients that are
already using the service can continue to do so since they
have a local copy of the proxy. The provider may choose
to keep or remove the binary code that it placed in the code
repository. However, leaving the code is not harmful as it
could potentially be used by clients as dependency code.

3.2 Client Side Infrastructure

3.2.1 Proxy Discovery & Installation

The discovery process is initiated by a client that is looking
for a service. The first step in the process is formulating
a request. A request has two parts – a) An interface de-
scription and b) Performance attributes. The interface de-
scription is a list of methods and their signatures that the
client requires the service to implement. The performance
attributes are attribute-value pairs that describe the mini-
mum requirements of the client, e.g., for a printer service
a performance attribute may be [resolution, 300]. The re-
quest formulated by the client forms thetemplatefor the
discovery process. The next step is to search the service
directory. This is done by using the formulated request as
a template. Any service advertisement in the service di-
rectory that matches the template (i.e., matches all the re-
quirements of the client) becomes acandidate service. The
system chooses one service non-deterministically from the
set of candidate services and returns the advertisement for
that service to the client.

Upon receipt of the service advertisement, the client ex-
tracts the name of the corresponding proxy class from the
advertisement. It then tries to instantiate the proxy locally.
If the binary code for the proxy is not present on the client,
this step raises an exception. The system catches the excep-
tion and launches a discovery protocol to find the required
binary code. This process is identical to the process used
to discover service advertisement except that the search is
performed over the code repository rather than the service
directory. Once the binary code has been discovered and
retrieved by the client, it is installed on the client host.

The installation of the binary code for the proxy can be
of two types – a) A light installation in dynamic memory,
which exists as long as the application is executing and b) A
permanent installation which involves the binary code being
written to a file on permanent storage. The choice of light or
permanent installation is dictated by the client application
which specifies its choice by way of a command line flag to
the system at startup. Currently, our system uses the choice

4



provided at startup for all proxies. Allowing choices to be
made on a per proxy basis is a capability which we will add
in the future.

3.2.2 Discovering Dependencies

Once the proxy has been installed, it is loaded into the run-
time environment on the client machine. At this time, the
binary code for the proxy is parsed to determine if any addi-
tional code (dependencies) is required. If any dependencies
are required, the system launches the discovery protocol in
the code repository to discover the binary code for the de-
pendencies and install them on the client machine. This
process is identical to the one used for discovering the bi-
nary code for the proxy as described in the previous section.

= Proxy Component
Advertised by Host X

= External Component
Advertised by Host X

= A requires B to function

B
1

X
1

B
2

B
1

B
2

A
1

E
1

E
2

D
1

C
1

Host A

Host B

Host C

Host D

Host E

E
1

D
1

C
1

A
1

X
Y

BA

Figure 1. Federated code repository and its
contents: proxies and their dependencies.

By its design, our architecture for discovering dependen-
cies also supports service composition. One proxy can have
among its dependencies another proxy, which could itself
be a self sufficient service, offered by the same or a differ-
ent provider and advertised by the same or on a different
host. Though the dependency of the primary proxy may be
another proxy, to the primary proxy, it is simply a depen-
dency that is fetched and installed in the same manner as
other dependencies. Figure 1 illustrates this feature. Each
slice in the pie chart represents the code repository local to
each host, and the entire pie represents the federated code
repository.P 1

A is the proxy of a service advertised on host
A depending onD1

A andP 2
B . D1

A is a dependency that the
P 1

A proxy needs and is advertised by the server running on
hostA. P 2

B is a stand-alone service which can be discovered
and used independently by a client but, fromP 1

A’s perspec-
tive, it is just another dependency which will be treated in a
similar manner toD1

A.

3.2.3 Proxy Utilization

Once the proxy and all its dependencies have been fetched
and installed on the client host, the proxy can begin exe-
cuting. At this stage, the client can utilize the proxy as it
would a locally available component. The client can call
methods on the proxy which either resolves the request lo-
cally or tunnels the request back to the server on which its
parent service resides.

While most of the time the proxy connects back to the
instance of the server which published it, it is possible for
one proxy to connect to another instance of the same server,
running on a different host. This is particularly useful in
ad hoc networks, when the client can be within proximity
of different servers offering similar functionality. An exam-
ple of such a scenario is the proxy for a printing service.
While this could run on a user’s PDA (embedded in a client
application), the user could be next to different printers at
different times, and the proxy could connect to the closest
printer (the context awareness aspect of the problem is not
within the scope of this paper, but the technical mechanism
for delivering this behavior is presented).

Client
App.

Proxy
Component ServerService

Directory
Code

Repository

Advertise service

Advertise
Proxy

Advertise
dependencies

Request service

Return advertisement

Request binaries for proxy

Ship binaries to client

Request binaries for dependencies

Ship binaries to client
Instantiate Proxy

Call service
Call service

Return results
Return results

Search for binaries locally. If found,
proceed directly to instantiation step.

Figure 2. Proxy advertisement, discovery, in-
stallation and utilization.

The communication between the proxy and a server is
entirely designed by the service provider and the client does
not need to be aware of the communication protocol. This
is useful as it addresses one of the key problems of ad hoc
networks, i.e., the lack of standardized application protocols
such as SOAP [24]. The client is only required to know the

5



interface offered by the proxy. Since the client specifies the
interface the proxy must implement in the request (See Sec-
tion 3.2.1), it is reasonable to assume that such knowledge
exists on the client host. In addition, the proxy-server proto-
col needs to address a few issues specific to the ad hoc net-
working environment. Among these issues are temporary
disconnections which can be caused by the two hosts mov-
ing beyond communication range or by having the proxy
reconnect to a different server. The client will only need to
wait longer for the result of a method call to be returned,
which cannot be distinguished from a simple method call
that takes a long time to complete. In certain cases the
proxy needs to alert the user that it has reconnected to a new
provider (e.g., the printing service proxy sends the first 10
pages of a document to a printer and the other pages to an-
other printer, along the user’s way towards a meeting room).
The proxy object will need to use a timer to avoid infinite
blocking. When the time expires, the proxy searches for a
another, similar, server. If this is not found within a speci-
fied period of time, the application informs the user that the
operation cannot be performed to completion.

Figure 2 illustrates the phases of the proxy’s life cy-
cle described thus far. The server publishes the service ad-
vertisement in the service directory and deploys the binary
code to support proxy’s execution in the code repository.
The client searches for a service and if a matching advertise-
ment is found, it retrieves the proxy component and verifies
if the proxy has all that it needs locally. If not, the infrastruc-
ture on the client machine brings the needed binaries from
the code repository so that the client can instantiate and use
the proxy locally. More details about the implementation
can be found in Section 4.

3.2.4 Proxy Upgrade

In certain cases, the provider of a service may choose to
make changes to the service being offered. For example,
the provider may choose to upgrade to encrypted commu-
nication between the proxy and the server. To achieve this
upgrade, not only must the software on the provider be up-
graded, but the proxies that are distributed to clients must
also be upgraded. Since the proxy abstracts all details of
communication and interaction with the actual software on
the provider from the client, any change in the proxy soft-
ware requires an automatic, transparent live upgrade of soft-
ware.

Updating the server is easier since it does not affect soft-
ware on the client’s host in any way. If the server needs to
go off line for a short period (i.e., needs to be restarted to
run using a newer version of the software on the provider
side), the proxy can mask the short disconnection from the
client as a delayed return from a method invocation. The
situation is similar to the server’s host moving temporarily

out of range. The proxy-server interaction can be designed
such that short interruptions in communication or short dis-
connections do not cause crashes or influence the client’s
performance.

Updating the proxy is more challenging since it affects
the code on the client side. The procedure entails replacing
a piece of code the client has access to and is actively us-
ing without affecting the clients execution flow. This raises
many issues, some of which are not within the scope of this
paper. The proxy upgrade mechanism, along with related is-
sues are presented in significant detail in [17]. Due to space
constraints, we mention only selected points of interest.

The upgrade mechanism uses a dynamically generated
proxy wrapperthat wraps a proxy object so that the client
application does not have direct access to the proxy. The
proxy wrapper employs the interceptor design pattern [15]
combined with the facade design pattern [16]. During nor-
mal operation, the proxy wrapper receives calls from the
client and simply forwards them to the proxy, which then
handles the implementation of the method call. When the
proxy needs to be upgraded, the proxy wrapper holds the
client’s calls until the new proxy is in place. It is important
to note that the proxy’s interface to the client cannot change
upon upgrade since such a change could result in the new
proxy not having a method that was present in the origi-
nal proxy, which would raise an exception the next time the
client tried to access that method. This would compromise
the transparency of the upgrade. Only internal functionality
or the interface to the server delivering the advertised func-
tionality can be affected (e.g., the communication protocol
can be encrypted after the upgrade but the client still calls
the same method which now internally has the capacity to
encrypt communication).

The last issue we address with respect to proxy upgrades
is the migration of user customizations from the old version
of the proxy to the new. Any user customizations of the
proxy are cached by the proxy wrapper when the original
proxy is initialized. When the new proxy is installed, the
customizations are transferred to the new proxy as the last
step of the installation. It should be observed that all user
customizations should consist of static data, i.e., data that
cannot be mutated by the proxy. This is because if some
data was mutated by the proxy being replaced, then the
cached value is inconsistent with the value on the proxy and
restoring the cached initial value to the replacement proxy
may affect the semantics of operation of the new proxy.

3.2.5 Proxy Disposal

Once the proxy has served its purpose, it must be disposed
promptly. This is because the devices we deal with in an
ad hoc network have limited available memory at any given
time. If a light installation is used, existing garbage col-

6



lection mechanisms reclaim the memory automatically, and
our system relies on these mechanisms to free up memory
in an expedited fashion. If a permanent installation is used,
then a disposal manager is also started at the time the ap-
plication is started. The disposal manager tracks the usage
of each proxy and its associated files that are on permanent
storage. If a file has not been used for a user-defined period,
the disposal manager deletes the file and frees up the storage
space. The user may also define a frequency with which the
disposal manager checks for files that have not seen recent
usage.

4 Implementation

The framework described in the previous section has
been implemented in Java, using LIME [11] as a middleware
to handle the implications the an ad hoc wireless network,
i.e., physical mobility of hosts. In this section we present
a brief overview of LIME, followed by a description of the
implementation of the automated code management system.
We also show a proof of concept via a set of demo proxies
running on our client.

4.1 LIME Overview

L IME is a Java implementation of the Linda [4] coordina-
tion model, designed for ad hoc networks, which masks de-
tails associated with coordination and communication from
the application programmer. A host running LIME runs a
LimeServer supporting run one or more LIME agents,
which are analogous to applications. Coordination in LIME

occurs via transiently sharedtuple spaces. Every tuple
space in LIME is identified by a name. Tuple spaces hav-
ing the same name can be merged to form a federated tuple
space when their hosts are within communication range.

Tuple spaces are containers for tuples. Tuples are or-
dered sequences of Java objects which have a type and a
value. An agent places a tuple in the tuple space, making it
available to all other agents that are sharing the same tuple
space. To read a tuple from the tuple space, an agent needs
to provide a template, which is a description of the tuple
that the agent is interested in. A template is a sequence of
fields, each of which can contain a formal representing the
required type for that field or an actual value that identifies
the type and value of the corresponding field. A template is
said to match a tuple if all the corresponding fields match
pairwise.

An agent can access the tuple space via standard
Linda operations (rd (read a tuple),in (remove a tuple),
out (write a tuple)). Thein andrd operations take a tem-
plate as a parameter and return a tuple as the result or block
until a match is found (the operations are synchronous).

L IME offers probe variants of the traditional blocking oper-
ations (e.g.,inp , rdp ), and group operations (e.g.,outg ,
ing , rdg , rdgp , andingp ). While the original calls re-
turn a matching tuple (if available) or null otherwise (if non-
blocking), the group operations return all matching tuples
(or null if none available).

To provide asynchronous interactions, LIME extends the
basic Linda tuple space operations with a reaction mecha-
nismR(s, p), defined by a code fragments that specifies
the actions to be executed when a tuple matching the pat-
ternp is found in the tuple space. Blocking operations are
not allowed ins, as they might prevent the program from
reaching fixed point.

L IME protects applications from the complexity asso-
ciated with sudden disconnection by using location infor-
mation. The concept of safe distance [9] helps preserve
the consistency of the system by predicting disconnections.
When a host approaches a group, it is allowed toengage
with the group only after it comes within safe distance of
some member of the group. Once the safe distance is ex-
ceeded, an automaticdisengagementprotocol is triggered
and the group is split, ensuring that no messages between
group members are lost and that messages are always sent
and received in the same configuration.

4.2 Implementation Details

In our implementation, we represent the client and the
provider entities as LIME agents. The service directory and
code repository are modelled as tuple spaces that are shared
among client and server agents. The service directory con-
tains a set of service advertisements encapsulating proxy
objects while the code repository contains the binary code
for the classes supporting the execution of the proxies on
the client side.

When the service provider calls the
advertise(attributes, proxy) method to
publish a service, our middleware creates a tuple of the
form <Attributes:attrib, ServiceProxy:proxy> and places
it in the ServiceAdvertisements tuple space using
L IME ’s out operation. The first field in the tuple contains a
set of attribute-value pairs that describe the service’s perfor-
mance parameters and the second field contains the proxy
object in serialized form. Our middleware also analyzes
the code of the proxy object, recursively extracts every data
type instantiated inside the proxy object, and automatically
generates tuples that go in theCodeRepository tuple
space. These tuples contain the byte code for the proxy
object and for other classes that the proxy object may need
when it is being instantiated. Note that such tuples are
generated only for classes that are not part of the standard
Java or LIME classes (which we assume are available on
every host). These tuples are of the form<Names:class

7



names, BinaryCodeFile:bytecode>. The second field
contains either a Java class file or a JAR file in the form of
a byte array. The first field contains the set of names of the
classes stored in the second field (the set has one element
if the second field holds a class file or multiple elements if
the second field contains a JAR file encapsulating multiple
classes). While the byte code for the proxy object must
always be advertised by the service provider, the dependent
classes might be advertised by other providers.

The client searches for services by calling the
find(attributes, interface) method.
Internally this is translated to a reaction on the
ServiceAdvertisements tuple space for the follow-
ing pattern:<Attributes:attrib, ServiceInterface:interface>
which is installed in LIME ’s reaction mechanism. A
similar call is available for synchronous semantics, where
instead of a reaction, the middleware passes the template
to LIME ’s in operation which blocks until a matching
service shows up. A candidate advertisement is selected
non-deterministically from the set of advertisement tuples
that match the pattern. The standard matching mechanism
described in 4.1 had to be slightly altered to allow for
set inclusion in tuple matching. That is, if the set of
attributes required by the client is a subset of the set of
attributes advertised by the provider in the first field of the
advertisement tuple, a match has to be declared provided
that the other conditions are met as well. The same applies
for the tuples from the binary code tuple space, where the
first field is a set of class names.

The client extracts the proxy object from the provider’s
advertisement and tries to instantiate it. If this
step fails, the deserialization mechanism throws a
ClassNotFoundException , and the mechanism for
fetching the byte code is triggered. This is done by using
a custom class loader, a customObjectInputStream
that refers to this new class loader, and a slightly-
modified version of LIME that uses this modified
ObjectInputStream in place of the standard one
for deserializing the proxy object. Our custom
ObjectInputStream intercepts any failed attempts
to resolve classes locally and invokes our custom
LWClassLoader , which attempts ardp operation on
the code repository using the pattern<Names:classname,
BinaryCodeFile.class> with the purpose of retrieving the
byte code for the required class from the code repository.
The second field in the template is a formal specifying the
type of data expected to be found in the second field in the
tuple. If thisrdp operation succeeds, the class loader loads
the byte code contained in this proxy into memory, in the
form of a byte array read out of a byte stream, and presents
it to the class loader as a standard Java class. An excep-
tion is thrown only if the byte code cannot be found in the
code repository. We chose to adopt non-blocking semantics

when searching for byte code because blocking searched
would block the class loader on the client machine indefi-
nitely which would result in all agents on the hosts in addi-
tion to the one that initiated the call being blocked.

By using our custom class loader, we also solve the prob-
lem of class dependencies on the client. Java will note at
runtime that a non-standard class loader was used to de-
serialize the proxy object, and it will continue to use this
custom class loader whenever the proxy object refers to a
class that is not already loaded into the runtime class space.
Note that the middleware on the client side does not know
if the server packaged the classes in a JAR or a class file
and therefore has to ask for each class separately (i.e., if the
server publishes all support code in tuples containing each
a single class and the client is looking for one tuple contain-
ing the set of dependent classes in one JAR file, the request
will never return the desired result). Note that if multiple
classes are packaged in the same JAR file, when this JAR
file is downloaded because of one of the classes, it will re-
main available locally and the other classes will not trigger
the downloading mechanism since their code will be read-
ily available. This eliminates the repeated downloading of
the same JAR file. The net effect of this is that byte code
fetching is done whenever a missing class is first used by
the proxy, and the fetching is entirely transparent to the de-
veloper and the user. This allows the proxies to be deployed
as whole components without any extra effort required on
the developer’s part.

Currently, the class loader stores any retrieved class byte
code in memory, which it consults before attempting ardp
operation on the binary code repository. Though this helps
minimize the number of repeated operations within a given
client session, it cannot store retrieved byte code across
multiple sessions. We plan to include support for a cus-
tomizable persistent cache which, much like a web browser
cache, is designed to save frequently-used byte code across
multiple sessions in future implementations of our class
loader.

4.3 Demo Application

The demo application consists of a simple client shown
in Figure 3 and several services that simulate roadside ser-
vices, like a tollbooth and a parking meter. When the client
discovers one of these services, it adds the service’s proxy
(which contains its own GUI) to its main window and adds
an icon to its toolbar allowing the user to switch to the
newly-found proxy. In our example, the client has discov-
ered a tollbooth and a parking meter, and placed icons rep-
resenting them in its toolbar. The toll booth GUI is currently
displayed in the window. Both of these proxies communi-
cate back to the server in a similar fashion: when the user
clicks one of the proxies’ payment links, the proxy prompts

8



the user for a username and password, which it uses to share
an encrypted tuple space with the server. It then places a tu-
ple in this tuple space indicating the client’s payment. The
server reacts to the tuple and responds to the client’s pay-
ment which is shown on the GUI as an acknowledgement.

Figure 3. Client application with two proxies.

In our example, the functionality provided by the service
could have been packed in one single proxy object. Since
user interaction is required and the scene happens in a run-
ning vehicle, the GUI is a necessary addition to the proxy
object, which expanded the set of files to be downloaded to
more than the simple proxy that handles the payment. Note
that the GUI described is hard coded for this service and is
not related to the work presented in [1], which is related to
automatic provision of GUIs in Jini services. The screen
shot does not show the inner functionality of the service.
It is intended to demonstrate the applicability of automated
code management in SOC settings.

5 Discussion

In designing the system, we were able to leverage the
capabilities of certain existing systems. The LIME coordi-
nation model, which employs tuple space-based coordina-
tion among mobile hosts in an ad hoc network provided
the low level communication primitives for our system.
In addition to providing communication capabilities, the
LimeTupleSpace proved to be the ideal data structure
for modelling a distributed directory, and by its semantics
of containing data from hosts that were connected, we saved
the overhead of having to implement a process that ensured
the consistency of the directory.

Using tuple spaces for communication allows for
location-agnostic protocols at the application level. As
long as the recipient maintains connectivity with the ad hoc
group, it can receive communications intended for it re-
gardless of its physical location and without the need for
an explicit addressing scheme such as IP address. This
is achieved because tuples are read based on their content
while the actual local tuple space in which the tuple is lo-

cated is irrelevant. When a local tuple space is shared with
others, every agent perceives only a change in the content of
the tuple space it was already accessing. This behavior can
span across multiple providers and clients, each unaware of
the location of the other.

The transient sharing of the tuple spaces allowed for a
cooperative workspace giving different providers to an op-
portunity to offer services, which could then be composed
into larger services. For example, a fully deployed service
from host A can be a simple dependency for another service
offered by host B. The tuple space-mediated communica-
tion also allows for easy software updates because of the
nature of the interactions it employs. The tuple space acts
as an intermediary buffer between the two ends of a com-
munication channel decoupling their interactions. This al-
lows actions on one end without the implication/notification
of the other, such as restarting a server without crashing the
client because of broken socket level communication issues.

Lights [5] is another piece of software that proved use-
ful in the implementation of our system. Lights provides
the tuple andtemplate primitives as well as matching
mechanisms. Three levels of matching are provided – a)
Value matching, b) Matching based on type, and c) Poly-
morphic matching based on type and hierarchy, which is
the most powerful of the three. The polymorphic match-
ing mechanism allows clients to search for components by
specifying their requirements on a high level (e.g., inter-
face level). The polymorphic algorithm uses Java hierar-
chy of objects when comparing the client specified pattern
against the tuples available in the tuple space (i.e., service
advertisements and proxy binaries). Using the polymor-
phic mechanism, any instance of a class that implements
the specified interface or any other class that extends such
a class, will qualify as a candidate (e.g., aPrinter class
may implement thePrinterInterface the client uses
but LaserPrinter andInkjetPrinter can both ex-
tend thePrinter class and thus polymorphically imple-
ment the interface and therefore qualify as candidates). Fi-
nally, the choice of Java as an implementation language al-
lowed us to leverage certain key capabilities such as reflec-
tion, code mobility, and dynamic class loading that are built
into the standard libraries.

For future work, we will address certain streamlining
features for our system. Among these, we will implement
a mechanism for disposing proxies that are cached on per-
manent storage. Currently, we provide hooks for byte code
disposal, user customizable policies based on timeout, least
used, availability in the network, etc. While all these are
relatively simple to implement, our interest focusses on a
strategy that anticipates future use of the service based on
the motion profile of the client’s and provider’s hosts (e.g., if
the motion profile indicates that the two hosts will not come
in contact again, the proxy will not be able to connect to its

9



server and therefore will become a candidate for disposal;
while the same proxy may connect to a different provider
offering a similar service, the future availability of such a
provider may not be available to the decision algorithm).
We will also investigate the implications of migration (i.e.,
logical mobility of a service or the client application from
one host to another) and the guarantees that we can pro-
vide for uninterrupted service under those conditions, and
whether such migration can be transparent to an external
viewer. Our ultimate goal is to integrate this piece of soft-
ware into a comprehensive middleware for mobile devices
supporting service oriented computing in ad hoc networks.

6 Conclusions

In this paper, we presented an architecture for automatic
code management supporting service oriented computing
in ad hoc networks. Our presentation covered various
aspects of the software infrastructure required on the
provider and client hosts such as advertisement, discovery,
installation, utilization, upgrade and disposal of binary
code for service proxies. Special attention was given to
making the architecture robust enough to deal with the
dynamism of ad hoc network such as host mobility and
resultant opportunistic interactions. The result is a system
that significantly simplifies the task of a mobile application
programmer by abstracting all details of code management.
This allows the programmer to develop applications at
higher levels of abstraction, leveraging the power of the
code management system to handle the low level mechan-
ics of remote service usage in ad hoc wireless environments.

Acknowledgements: This research was supported by the
Office of Naval Research under MURI contract N00014-02-
1-0715. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not represent the views of the research sponsors.

References

[1] Aritma Software. ServiceUI. http://www.artima.com
/jini/serviceui.

[2] Armando Fox and Steven D. Gribble and Eric A. Brewer
and Elan Amir. Adapting to Network and Client Variabil-
ity via On-demand Dynamic Distillation. InProceedings of
ASPLOS VII, pages 160–170. ACM press, 1996.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns - Elements of Reusable Object-Oriented Software,
chapter 4, pages 207–219. Addison Wesley, 1994.

[4] D. Gelernter. Generative communication in Linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, January 1985.

[5] Gian Pietro Picco. LighTS Webpage.
http://lights.sourceforge.net/.

[6] R. Handorean, C. Gill, and G.-C. Roman. Accommodat-
ing Transient Connectivity in Ad Hoc and Mobile Settings.
In Proceedings of The Second International Conference on
Pervasive Computing (Pervasive 04), 2004.

[7] I. Horrocks. DAML+OIL: A Description Logic for the Se-
mantic Web. IEEE Bulletin of the Technical Committee on
Data Engineering, 25(1), March 2002.

[8] P. Huang, V. Lenders, P. Minnig, and M. Widmer. Mini:
A Minimal Platform Comparable to Jini. InInternational
Symposium on Distributed Objects and Applications, 2002.

[9] Q. Huang, C. Julien, and G.-C. Roman. Relying on Safe
Distance to Achieve Partitionable Group Membership in Ad
Hoc Networks.Accepted to be published in IEEE Transac-
tions on Mobile Computing.

[10] V. Lenders, P. Huang, and M. Muheim. Hybrid Jini for Lim-
ited Devices. InProceeding of the International Conference
on Wireless LANs and Home Networks, pages 27–34, 2001.

[11] A. Murphy, G. Picco, and G.-C. Roman. LIME: A middle-
ware for physical and logical mobility. InProceedings of
the 21st International Conference on Distributed Comput-
ing Systems, pages 524–533, April 2001.

[12] K. Renaud and H. Evans. JavaCloak: Reflecting on
Java Typing for Class Reuse Using Proxies. In S. M.
A. Yonezawa, editor,Proceedings of REFLECTION 2001,
volume 2192. Springer-Verlag Heidelberg, 2001.

[13] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent Group
Membership in Ad Hoc Networks. InProceedings of 23rd
International Conference on Software Engineering, pages
381–388, 2001.

[14] Salutation Consortium. Salutation web page.
http://www.salutation.org.

[15] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, volume 2, chap-
ter 2, pages 109–141. John Wiley and Sons Ltd., 2000.

[16] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, volume 2, chap-
ter 2, pages 47–75. John Wiley and Sons Ltd., 2000.

[17] R. Sen, R. Handorean, G. Hackmann, and G.-C. Roman. An
Architecture Supporting Run-Time Upgrade of Proxy-Based
Services in Ad Hoc Networks. InTo appear in the Proceed-
ings of the International Conference on Pervasive Comput-
ing and Communications PCC-04, 2004.

[18] R. Sen, R. Handorean, G.-C. Roman, and C. Gill.Service
Oriented Software Engineering: Challenges and Practices.
Idea Group Publishing, To appear in 2004.

[19] Sun Microsystems. Java Remote Method Invocation.
http://java.sun.com/products/jdk/rmi.

[20] D. Thissen. Flexible Service Provision Considering Specific
Customer Resource Needs”, booktitle =.

[21] W3C Semantic Web Activity. Worldwide Web Con-
sortium Page on Resource Description Framework.
http://www.w3.org/RDF.

[22] W3C XML Activity On XML Protocols. W3C Rec-
ommendation: Web Services Description Language 1.1.
http://www.w3.org/TR/wsdl.

[23] J. Waldo. The Jini Architecture for Network-Centric Com-
puting. Communications of the ACM, 42(7):76–82, 1999.

[24] XML Protocol Working Group. W3C Recommendation:
SOAP version 1.2 Parts 0-2. http://www.w3.org/TR/SOAP.

10


	Automated Code Management for Service Oriented Computing in Ad Hoc Networks
	Recommended Citation
	Automated Code Management for Service Oriented Computing in Ad Hoc Networks

	tmp.1470340445.pdf.oZpKS

	Abstract: Abstract: Ad hoc networks are dynamic environments where frequent

disconnections and transient interactions lead to decoupled

computing. Typically, participants in an ad hoc

network are small mobile devices such as PDAs or cellular

phones that have a limited amount of resources available

locally, and must leverage the resources on other colocated

devices to provide the user with a richer set of functionalities.

Service-oriented computing (SOC), an emerging

paradigm that seeks to establish a standard way of making

resources and capabilities available for use by others in

the form of services, is a useful model for engineering software

that seeks to exploit capabilities on remote devices.

This paper proposes an automatic code management system

supporting SOC in ad hoc networks. The system is responsible

for ensuring that the binary code required to use

a service on a remote machine is available on the local host

only when required. To support this functionality, a local

code base is maintained by discovering and installing code

from remote hosts. Since the system is specifically designed

for ad hoc networks, it incorporates additional features that

help it withstand the inherent dynamism of the network. We

present an architecture for our system supporting automatic

code management and follow it with a discussion of a Java based

implementation.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: April 14, 2004
	Author: Authors: Handorean, R.; Sen, R.; Hackmann, G.; Roman, G.-C.
	Title: Automated Code Management for Service Oriented Computing in Ad Hoc Networks
	ReportNumber: 2004-17
	DepartmentName: Department of Computer Science & Engineering


