
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCS-2006-23

2006-05-01

Timed Automata Models for Principled Composition of Timed Automata Models for Principled Composition of

Middleware Middleware

Venkita Subramonian

Middleware for Distributed Real-time and Embedded (DRE) systems has grown more and more

complex in recent years due to the varying functional and temporal requirements of complex

real-time applications. To enable DRE middleware to be configured and customized to meet the

demands of different applications, a body of ongoing research has focused on applying model-

driven development techniques to developing QoS-enabled middleware. While current

approaches for modeling middleware focus on easing the task of as-assembling, deploying and

configuring middleware and middleware-based applications, a more formal basis for correct

middleware composition and configuration in the context of individual applications is needed....

Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Subramonian, Venkita, "Timed Automata Models for Principled Composition of Middleware" Report
Number: WUCS-2006-23 (2006). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/914

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233200163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/914?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/914

Timed Automata Models for Principled Composition of Middleware Timed Automata Models for Principled Composition of Middleware

Venkita Subramonian

Complete Abstract: Complete Abstract:

Middleware for Distributed Real-time and Embedded (DRE) systems has grown more and more complex
in recent years due to the varying functional and temporal requirements of complex real-time
applications. To enable DRE middleware to be configured and customized to meet the demands of
different applications, a body of ongoing research has focused on applying model-driven development
techniques to developing QoS-enabled middleware. While current approaches for modeling middleware
focus on easing the task of as-assembling, deploying and configuring middleware and middleware-based
applications, a more formal basis for correct middleware composition and configuration in the context of
individual applications is needed. While the modeling community has used application-level formal
models that are more abstract to uncover certain flaws in system design, a more fundamental and lower-
level set of models is needed to be able to uncover more subtle safety and timing errors introduced by
interference between application computations, particularly in the face of alternative concurrency
strategies in the middleware layer. In this research, we have examined how detailed formal models of
lower-level middle-ware building blocks provide an appropriate level of abstraction both for modeling and
synthesis of a variety of kinds of middleware from these building blocks. When combined with model
checking techniques, these formal models can help developers in composing correct combinations of
middleware mechanisms, and configuring those mechanisms for each particular application.

https://openscholarship.wustl.edu/cse_research/914?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/914?utm_source=openscholarship.wustl.edu%2Fcse_research%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-23

Timed Automata Models for Principled Composition of Middleware,
Doctoral Dissertation May 2006

Authors: Venkita Subramonian

Corresponding Author: venkita@ieee.org

Web Page: http://www.cse.wustl.edu/~venkita/mw_models/

Abstract: Middleware for Distributed Real-time and Embedded (DRE) systems has grown more and more
complex in recent years due to the varying functional and temporal requirements of complex real-time
applications. To enable DRE middleware to be configured and customized to meet the demands of different
applications, a body of ongoing research has focused on applying model-driven development techniques to
developing QoS-enabled middleware.

While current approaches for modeling middleware focus on easing the task of assembling, deploying and
configuring middleware and middleware-based applications, a more formal basis for correct middleware
composition and configuration in the context of individual applications is needed. While the modeling community
has used application-level formal models that are more abstract to uncover certain flaws in system design, a
more fundamental and lower-level set of models is needed to be able to uncover more subtle safety and timing
errors introduced by interference between application computations, particularly in the face of alternative
concurrency strategies in the middleware layer.

In this research, we have examined how detailed formal models of lower-level middleware building blocks

Notes:
This research was supported in part by NSF CAREER award CCF-0448562. The timed automata models in

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TIMED AUTOMATA MODELS FOR PRINCIPLED COMPOSITION OF

MIDDLEWARE

by

Venkita Subramonian

Prepared under the direction of Professor Christopher Gill

A dissertation presented to the Henry Edwin Sever Graduate School of

Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF SCIENCE

May 2006

Saint Louis, Missouri

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

TIMED AUTOMATA MODELS FOR PRINCIPLED COMPOSITION OF

MIDDLEWARE

by

Venkita Subramonian

ADVISOR: Professor Christopher Gill

May 2006

Saint Louis, Missouri

Middleware for Distributed Real-time and Embedded (DRE) systems has grown
more and more complex in recent years due to the varying functional and temporal
requirements of complex real-time applications. To enable DRE middleware to be
configured and customized to meet the demands of different applications, a body of
ongoing research has focused on applying model-driven development techniques to
developing QoS-enabled middleware.

While current approaches for modeling middleware focus on easing the task of as-
sembling, deploying and configuring middleware and middleware-based applications,
a more formal basis for correct middleware composition and configuration in the
context of individual applications is needed. While the modeling community has
used application-level formal models that are more abstract to uncover certain flaws
in system design, a more fundamental and lower-level set of models is needed to
be able to uncover more subtle safety and timing errors introduced by interference
between application computations, particularly in the face of alternative concurrency
strategies in the middleware layer.

In this research, we have examined how detailed formal models of lower-level middle-
ware building blocks provide an appropriate level of abstraction both for modeling
and synthesis of a variety of kinds of middleware from these building blocks. When
combined with model checking techniques, these formal models can help developers
in composing correct combinations of middleware mechanisms, and configuring those
mechanisms for each particular application.

Contents

List of Tables . vi

List of Figures . vii

Acknowledgments . xii

1 Introduction . 1

1.1 Motivation . 2

1.2 Interference example . 4

1.2.1 Interference from DOC middleware 6

1.2.2 ORB Reply Wait Strategies 7

1.3 Challenges in Modeling DRE systems 12

1.4 Research Contributions . 13

1.5 Dissertation Organization . 16

2 Survey of Related Work . 18

2.1 Model Integrated Computing . 19

2.1.1 Applying MIC to DRE systems modeling 19

2.2 Model-driven Middleware . 22

2.3 Formal techniques in concurrent and component-based systems 24

2.4 Middleware Frameworks and Execution Environments 26

3 Middleware Modeling Overview . 29

3.1 System Model and Problem Definition 30

3.2 Middleware Modeling Architecture 35

3.3 Summary . 39

4 Models in UPPAAL . 40

4.1 Realization of the Middleware Modeling Architecture in UPPAAL . . 40

4.2 Modeling Foundational Data Structures and Functions 42

ii

4.3 Modeling Issues in UPPAAL . 45

4.3.1 Maximal Progress in UPPAAL 45

4.3.2 Constraining the State Space with Maximal Progress 48

4.4 UPPAAL Models of Middleware Building Blocks 51

4.4.1 IPC Channel . 51

4.4.2 Select Reactor . 52

4.4.3 Reentrant Select Reactor . 55

4.4.4 ThreadPool Reactor . 57

4.4.5 Event Handler . 60

4.4.6 Composition of models . 61

4.5 Limitations of Modeling Middleware in UPPAAL 64

4.6 Summary . 64

5 Models in the IF Toolset . 66

5.1 Realization of the Middleware Modeling Architecture in IF 66

5.2 Modeling of Foundational Data structures and Operations 68

5.2.1 Foundational Operations Using IF ADTs 69

5.2.2 Foundational Operations Using IF procedures 72

5.2.3 Use of procedure calls as guards 72

5.3 Modeling Middleware Building Blocks in IF 75

5.3.1 IPC Channel . 75

5.3.2 Select Reactor . 77

5.3.3 Thread Pool Reactor . 79

5.3.4 Event Handler . 80

5.4 Property specifications for verification 82

5.5 Issues for Modeling Concurrent Object-Oriented Systems in IF 84

5.5.1 Modeling Object Interactions in IF 84

5.5.2 Modeling Threads in IF . 85

5.5.3 Modeling Priority Based Thread Scheduling in IF 86

5.5.4 Modeling Run-to-Completion Semantics 89

5.5.5 Ordering Optimizations . 92

5.6 Summary . 95

6 Representative examples . 96

6.1 Experimental Setup . 97

iii

6.1.1 Modeling the Scenarios in UPPAAL 99

6.1.2 Modeling the Scenarios in IF 100

6.2 Execution Traces . 102

6.2.1 Execution Traces in UPPAAL 102

6.2.2 Execution Traces in IF . 103

6.3 Scenarios . 107

6.4 Scenario 1 - Blocking in a Single Reactor 108

6.4.1 Formal Analysis of Scenario 1 in UPPAAL 110

6.4.2 Formal Analysis of Scenario 1 in IF 113

6.5 Scenario 2 - Multiple Reactors, WaitOnConnection strategy 117

6.5.1 Formal Analysis of Scenario 2 in UPPAAL 119

6.5.2 Formal Analysis of Scenario 2 in IF 128

6.6 Scenario 3 – Multiple reactors, WaitOnReactor strategy 130

6.6.1 Formal Modeling of WaitOnReactor in UPPAAL 132

6.6.2 Formal Modeling of WaitOnReactor using IF 135

6.6.3 Blocking Factors When Using WaitOnReactor 138

6.6.4 Formal Analysis of WaitOnReactor Blocking Factor in UPPAAL140

6.6.5 Formal Analysis of WaitOnReactor Blocking Factor in IF . . . 143

6.7 Scenario 4 – Multiple Reactors, Multiple threads 144

6.7.1 Formal Analysis of Scenario 4 in UPPAAL 145

6.7.2 Formal Analysis of Scenario 4 in IF 149

6.7.3 Timing Anomaly and Solution 151

6.8 Model Checking Costs . 152

6.8.1 Impact of Data Structures in IF 153

6.8.2 Impact of State Space Optimization in IF 156

6.9 Summary . 158

7 Model validation . 159

7.1 Experimental Setup . 159

7.2 Model Validation for Scenario 1 . 161

7.2.1 Co-Engineering of Model and Software 161

7.2.2 Blocking Delay . 162

7.3 Model Validation of Scenario 2 . 165

7.4 Model Validation for Scenario 3 . 166

iv

7.5 Model Validation for Scenario 4 . 167

7.6 Summary . 168

8 Case Study 1 - Deadlock Avoidance Protocol 169

8.1 Overview of Deadlock Avoidance Protocols 169

8.2 Modeling and Implementation of DA Protocols 171

8.2.1 Implementation of DA Protocols 171

8.2.2 Modeling DA Protocol Support using IF 174

8.2.3 Deadlock Avoidance Protocol Overhead 174

8.3 Model Checking Deadlock Avoidance Protocols 178

8.3.1 Model Verification of DA with BASIC-P 179

8.4 Deadlock Avoidance Blocking Delays 184

8.5 Summary . 187

9 Case Study 2 - Application Gateway 188

9.1 Overview of Application-level Gateway 189

9.2 Real-time Gateway . 191

9.2.1 High Level Modeling Using RMA 192

9.2.2 Design and Implementation 193

9.2.3 Evaluating Design Alternatives 194

9.2.4 Empirical Validation . 199

9.3 Reliable Gateway with Control-Push-Data-Pull 200

9.3.1 Reply Wait Using WaitOnConnection 202

9.3.2 Reply Wait Using WaitOnReactor 204

9.4 Summary . 207

10 Conclusions and Future Work . 208

10.1 Summary of Contributions . 210

10.2 Future Work . 210

References . 214

Vita . 225

v

List of Tables

1.1 Challenges and Solution Techniques Presented in This Research . . . 14

6.1 Naming Conventions Used in Discussion of Scenarios 98

6.2 Naming Convention in Post-processed Traces 106

6.3 Impact of data structures in IF on state space 154

6.4 Impact of State Space Optimization 156

9.1 Periodic Tasks in the Gateway Example 192

vi

List of Figures

1.1 Remote Function Call as a Time and Event-driven Interaction 4

1.2 Timeline for Mode1 . 5

1.3 Timeline for Mode2 . 5

1.4 Deployment Topology . 5

1.5 Deadlock with WaitOnConnection Strategy 9

1.6 No Deadlock with WaitOnReactor strategy 10

1.7 Cause of Blocking Delay - Local view at ORB1 11

1.8 Effect of Blocking Delay - Global View 12

3.1 Middleware Modeling Methodology 29

3.2 Middleware Modeling Architecture 36

4.1 Realization of the Modeling Architecture in UPPAAL 41

4.2 A Sampling of Foundational Data Structures 43

4.3 A Sampling of Foundational Functions 44

4.4 Maximal Progress Example . 47

4.5 Maximal Progress Solution . 50

4.6 Model of an IPC Channel . 51

4.7 Instantiation of IPC Channel Automaton 52

4.8 Model of Select Reactor . 53

4.9 Instantiation of Select Reactor Automaton 53

4.10 Model of a Reactor Thread . 55

4.11 Model of Reentrant Select Reactor 56

4.12 Instantiation of Reentrant Select Reactor Automaton 57

4.13 Selecting from a Reentrant Select Reactor Stack 57

4.14 Model of ThreadPool Reactor . 58

4.15 Instantiation of ThreadPool Reactor Automaton 59

4.16 Event Handler . 60

4.17 Composition of Models - Global Data Structures 61

vii

4.18 Composition of Models - Channel Declarations 61

4.19 Composition of Models - Instantiation of SAPs 62

4.20 Composition of Models - Event Handler Registration 62

4.21 Composition of Models - Instantiation of Models 63

5.1 Realization of the Modeling Architecture using IF 67

5.2 Modeling IPC SAP Buffers with ADTs in IF 70

5.3 C++ implementation of IPC SAP Buffers ADT outside IF model . . 71

5.4 Modeling of IPC SAP Buffers with procedures in IF 73

5.5 Restrictions to Procedure Usage in IF 73

5.6 Limitation with Usage of Procedures for Condition Wait 74

5.7 Our solution to Condition Wait in IF 75

5.8 Extracts from Channel Propagating Data between Two SAPs 76

5.9 Extracts of Foundational Operations used by Select Reactor Model . 77

5.10 Extracts from the IF Based Model for Select Reactor 78

5.11 Extracts from Thread Pool Reactor Model 79

5.12 Extracts from the Model of a Service Handler 81

5.13 Cut Observer Based System Property Specifications 83

5.14 IF Observer to Propagate Threadid 87

5.15 IF Priority Rules to Model Thread Scheduling 88

5.16 Run-to-Completion Semantics for Two Threads 89

5.17 Priority Rules to Achieve Run-to-completion Semantics 90

5.18 Idle Catcher . 92

5.19 Initialization Mode Priority Rule in IF 94

5.20 Priority Rule in IF for Leader/Followers ThreadPool 95

6.1 Execution Setup for Scenarios . 97

6.2 Model of Client in UPPAAL . 100

6.3 IF based Test Harness . 101

6.4 Trace Output from IF Model Execution 104

6.5 Trace Output from IF Model Execution After Post-processing 105

6.6 Signal to Map IF Processid to a Name 106

6.7 IF Trace Before Pid to Name Mapping 107

6.8 IF Trace After Pid to Name Mapping 107

6.9 Scenario 1 Setup . 108

viii

6.10 Call Sequence for Scenario 1 . 109

6.11 Instantiating Scenario 1 in UPPAAL 110

6.12 Scenario 1 Trace in UPPAAL . 112

6.13 Scenario 1 Exhaustive Exploration in UPPAAL 113

6.14 Scenario 1 Trace in IF . 114

6.15 Scenario 1 Trace in IF with Later Deadline 115

6.16 A Different Scenario 1 Trace in IF with Later Deadline 116

6.17 Scenario 1 Traces with New Log Event Added 117

6.18 Setup for Scenario 2 . 118

6.19 Call sequence for Scenario 2 . 119

6.20 Scenario 2 Instantiation in UPPAAL 120

6.21 UPPAAL verifyta output for Scenario 2 with 1 Thread 120

6.22 UPPAAL Trace Showing Sequence Leading to Deadlock 121

6.23 Scenario 2 Deadlock in UPPAAL - Reactor Automata States 123

6.24 Scenario 2 Deadlock in UPPAAL - Client and Event Handler Automata

States . 124

6.25 Instantiation in UPPAAL for Scenario 2 with 2 Threads 125

6.26 Scenario 2 Deadlock in UPPAAL - TP-Reactor Automata States . . . 126

6.27 Scenario 2 in UPPAAL with No Deadlock - Client and Event Handler

Automata States . 127

6.28 Extracts from UPPAAL Trace Output for Scenario 2 with No Deadlock 128

6.29 IF Trace Output for Scenario 2 Leading to Deadlock 129

6.30 IF Trace Output for Scenario 2 with 2 Threads - No Deadlock 130

6.31 Interaction diagram with WaitOnReactor strategy 131

6.32 Instantiation in UPPAAL for Scenario 2 with WaitOnReactor 133

6.33 Event Handler EH1 Waiting on Reactor for Reply from EH2 133

6.34 UPPAAL verifyta output for Scenario 2 with WaitOnReactor 134

6.35 Extracts from the IF Model for an Event Handler using WaitOnReactor

Reply Wait Strategy . 136

6.36 IF Trace Output for Scenario 2 with WaitOnReactor 137

6.37 Setup for Scenario 3 . 139

6.38 Timeline for Scenario 3 . 139

6.39 Blocking delay with WaitOnReactor 141

6.40 Model Instantiation in UPPAAL for Scenario 3 141

ix

6.41 UPPAAL Trace Output for Scenario 3 Leading to a Deadline Miss . . 142

6.42 IF Trace for Scenario 3 Leading to Deadline Miss with Reply in User

Buffer . 143

6.43 IF Trace for Scenario 3 Leading to Deadline Miss with Reply in Kernel

Buffer . 143

6.44 Setup for Scenario 4 . 144

6.45 Timeline for Scenario 4 . 145

6.46 Scenario 4 Deadlock in UPPAAL - Client Automata States 146

6.47 Scenario 4 Deadlock in UPPAAL - Reactor Automata States 147

6.48 Scenario 4 Deadlock in UPPAAL - Event Handler Automata States . 148

6.49 IF Trace for Scenario 4 Leading to Deadlock 150

6.50 Model Modifications in IF to Fix Timing Anomaly 151

6.51 IF Trace for Scenario 4 after Timing Anomaly Fix 152

7.1 Comparison of Timelines - Scenario 1 161

7.2 Scenario 1 Blocking Factor from Actual Timeline 163

7.3 Scenario 1 Blocking Factor from Simulation Timeline 164

7.4 Comparison of Timelines - Scenario 2 Deadlock 165

7.5 Comparison of Timelines - Scenario 2 No Deadlock 165

7.6 Comparison of Timelines - Scenario 3 No Deadlock 166

7.7 Comparison of Timelines - Scenario 4 Deadlock 167

8.1 Call graph annotations as per DA protocol 170

8.2 Thread Pool Reactor with Deadlock Avoidance 172

8.3 Extracts from the IF Model for TP Reactor with Deadlock Avoidance 175

8.4 DA Protocol Experiment Setup . 176

8.5 DA Protocol Overhead . 177

8.6 IF Trace Showing Deadlock in Scenario 2 with No DA Protocol . . . 178

8.7 IF Trace Revealing a Bug in Our Model 180

8.8 IF Trace Showing DA Protocol Avoiding Deadlock - Part 1 181

8.9 IF Trace Showing DA Protocol Avoiding Deadlock - Part 2 182

8.10 Scenario 4 blocking delay Prediction from a Model Execution Trace . 185

8.11 Empirical confirmation of Scenario 4 blocking delay 186

9.1 Software Architecture of a Gateway 190

x

9.2 Gateway design alternatives . 195

9.3 Timelines from Model Execution . 196

9.4 Comparision of Actual and Model Execution Timelines 201

9.5 Model Execution Trace with WaitOnConnection 203

9.6 Relevant States at Deadlock with WaitOnConnection 204

9.7 Actual Execution Trace with WaitOnConnection 204

9.8 Model Execution Trace with WaitOnReactor 206

9.9 Actual Execution Trace with WaitOnReactor 207

xi

Acknowledgments

First of all, I’d like to thank the lord of Guruvayoor who is the guiding light of my

life. Thanks to my parents who taught me how to be a good human being. I am

not sure how I would pay my wife back for her endless patience and support during

the past five years during which we have seen several ups and downs in our lives.

Radhika, thanks for being with me. Thanks to my son Keshav, who brought the

utmost happiness in our lives when we needed it the most.

I am greatly indebted to my advisor Dr. Christopher Gill for giving me the opportu-

nity to come to Washington University as a research staff member and do my PhD

simultaneously. If not for his constant encouragement, patience and countless hours

of discussions with him, I would not have surpassed this phase of my life. Thanks,

Chris, for being a sincere friend and mentor. I thank my other committee members

- Dr. Douglas Niehaus, Dr. Ron Cytron, Dr. Aaron Stump and Dr. Ron Indeck

for their insightful questions and comments on my thesis. I thank Dr. Niehaus and

his students Tejasvi Aswathanarayana, Hariharan Subramaniam, Noah Watkins and

Andrew Boie for all their help and support with the DSKI/DSUI instrumentation

toolset which was of immense help in my thesis. I would not be doing justice if I

did not mention a special thanks to Tejasvi Aswathanarayana for acceding to my

innumerable requests to reboot the testbeds at ITTC.

I thank Dr. Marius Bozga, Dr. Iulian Ober and Dr. Joseph Sifakis who helped me

with the IF toolkit. I thank the UPPAAL newsgroup members who helped me with

the UPPAAL toolkit. I would like to thank my collaborators Dr. Douglas Schmidt,

Dr. Henny Sipma, Cesar Sanchez, Dr. Chenyang Lu, Dr. Kirby Keller, Dr. Douglas

Stuart, Jeanna Gossett, Tom Corcoran and Gan Deng for their insightful discussions

and suggestions regarding the projects on which we worked together.

I would like to thank Huang-Ming Huang for his support and especially for his nu-

merous suggestions on my final defense presentation. Finally, I would like to thank

my friends - Yuanfang Zhang, Xiaorui Wang, Terry Tidwell, Morgan Deters, Stephen

Torri, Radu Handorean, Delvin Defoe, Nanbor Wang, Yamuna Krishnamurthy, Irfan

Pyarali, Bala Natarajan, Jeff Parsons, Krishnakumar Balasubramaniam, Jaiganesh

xii

Balasubramaniam, Angelo Corsaro, Joe Hoffert, Dennis Noll, Roopa Pundaleeka,

Pawan Mandalkar, Praveen Krishnamurthy, Cheng Huang and Frank Hunleth.

Venkita Subramonian

Washington University in Saint Louis

May 2006

xiii

1

Chapter 1

Introduction

The following quote extracted from [2] gives a concise definition of modeling and

design which is well applicable to the work in this dissertation.

“Modeling is the act of representing a system or subsystem formally. A

model might be mathematical, in which case it can be viewed as a set

of assertions about properties of the system such as its functionality or

physical dimensions. A model can also be constructive, in which case

it defines a computational procedure that mimics a set of properties of

the system. Constructive models are often used to describe behavior of

a system in response to stimulus from outside the system. Constructive

models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves

defining one or more models of the system and refining the models until

the desired functionality is obtained within a set of constraints.”

The research presented in this dissertation deals with the development of executable

or constructive models of reusable middleware building blocks that are commonly used

to implement distributed real-time and embedded (DRE) systems. These executable

models of middleware building blocks, when used in conjunction with higher level

application models, enables a faithful analysis of timing and liveness properties during

system design.

2

1.1 Motivation

Significant research over the past decade has made middleware more customizable

through the use of pattern-oriented software frameworks [51, 50]. Although this has

made middleware solutions suitable for a wider range of applications, managing the

resulting multiplicity of customization options has become an increasing concern. To

allow middleware to be customized to meet the stringent demands of different dis-

tributed real-time and embedded (DRE) applications, recent research has focused on

applying model-driven techniques to DRE middleware [6]. Although current model-

driven middleware approaches facilitate the correct assembly, deployment and con-

figuration of DRE applications and middleware, we argue in this dissertation that a

more detailed and formal basis for reasoning about timing and liveness properties in

a variety of different middleware configurations is both desirable and possible.

Application-specific formal models have been used to uncover high-level design flaws

early in system development [76, 108]. However, such models are currently difficult to

maintain adequately as the system’s specification is refined successively throughout

the system development life-cycle. For example, decisions regarding the deployment

of application components onto endsystems, or the choice of middleware concurrency

strategies, often are not reflected in these high-level models. This may result in subtle

timing and liveness hazards due to unexpected side-effects from interference from the

middleware policies and mechanisms used by a set of distributed computations.

Interference. In general, the kind interference in DRE systems that we study oc-

curs when part of a computation shares resources with or otherwise interacts with an-

other part of a computation and in doing so impedes or obstructs its required progress.

The interaction could happen at different levels - application level (e.g., monitor ob-

jects), middleware level (e.g., reactor, threadpool), OS level (e.g., kernel buffers, file

system data structures), or hardware level (CPU, network cards, CPU registers).

Interference, if not controlled properly can produce undesirable side-effects in an

application. For example, a non-critical computation executing on a CPU could in-

terfere with a critical computation requiring the same CPU resource and thus cause

the critical computation to miss a deadline.

3

To control interference, the causes of interference at each layer must first be identified

and analyzed and then appropriate steps must be taken to mitigate its effects. For

example, schedulability analysis techniques like RMA [64, 58, 15, 62, 99] analyze the

effects of interference among a set of periodic computations sharing a CPU. Register

allocation techniques [16] in a compiler analyze the interference among variables that

are live at the same time and hence cannot be allocated to the same CPU register.

The focus of this research is to capture and analyze two specific forms of interference

occurring because of sharing of reactors [91, 90] and thread pools in the middleware

layer - (1) blocking delays at a reactor and (2) exhaustion of threads in a reactor

thread pool. (1) occurs when a I/O event is being dispatched by a reactor to the

appropriate event handler [91, 90] and another I/O event is waiting to be dispatched

to its event handler by the same reactor. (2) occurs when all threads in a reactor

thread pool are occupied processing events dispatched by that reactor and none of

them are available further for the reactor to dispatch pending events. We provide a

more formal definition of these forms of interference in Chapter 3.

Figure 1.1 illustrates how a system that is specified with only time-driven constraints

in its high-level model may be refined into a time and event-driven system during its

design and implementation phases. In the high-level model, a purely time-triggered

request is sent from a service requestor to a service provider through a middleware-

implemented remote function call. However, the implementation of this remote func-

tion call goes through multiple middleware, OS and network processing stacks, each

of which likely contains event-driven system elements. For example, Figure 1.1 shows

middleware based event demultiplexers on the sender and receiver side endsystems,

which enable a single thread on each side to be used to demultiplex I/O events

(e.g., packet arrivals and transmissions) from and onto multiple interaction channels

(e.g., sockets and pipes). Even the interaction channels are likely to be event driven,

for example when IP packets arrive and are moved from the network interface card

into an application-accessible transport-layer buffer. This dissertation addresses the

problem of modeling and analyzing interference arising from the semantically rich

interactions between system software components of the middleware layer of the sys-

tem software architecture, which we now illustrate using a concrete example in the

context of an Object Request Broker (ORB) [75].

4

Service Requestor Service Provider

Channel

Channel

Channel

Channel
event

demultiplexer

Channel
event

demultiplexer

Send
Request

Receive
Request

Event-driven
Event-driven

Event-driven

Time-driven

Figure 1.1: Remote Function Call as a Time and Event-driven Interaction

1.2 Interference example

Consider an example application that consists of two clients and three services with

two modes of operation - Mode1 and Mode2. In Mode1, illustrated in Figure 1.2, at

5msec from the start of system execution, Client1 calls Service1. After performing a

computation that takes 2ms, Service2 calls Service3. Service3 performs a computation

that takes 7ms and then replies back to Service2. Service2 does a computation for

1ms before replying back to Service1. Service1 also performs a computation for 1ms

before replying back to Client1.

In Mode2, illustrated in Figure 1.3, the sequence of events and actions is similar to

Mode1, except that Service2 does not call Service3. Instead, it does a computation

for 4ms and replies back to Service1. Moreover, Client2 makes a call to Service3 at

8ms after the start of system execution (Note that Client2 does not run in Mode1).

The example so far shows high-level models of interactions between concurrent system

components. No decisions have been shown so far regarding the middleware/OS

platform or the deployment topology. In this example, we choose the deployment

topology shown in Figure 1.4.

5

Client1 Service1 Service2 Service3

5

7

9

11

13

15

17

19

s1

s2

s3

msec

Figure 1.2: Timeline for Mode1

Client1 Service1 Service2 Service3

5

7

9

11

13

15

17

19

Client2
s1

s2
s3

msec

Figure 1.3: Timeline for Mode2

Client1

Client2

Service1

Service3
Service2

ORB1 ORB2

Figure 1.4: Deployment Topology

6

In this deployment topology, Service1 and Service3 are hosted together and Service2 is

hosted on another machine. We choose ORB middleware (e.g., TAO [50]) as the com-

munication mechanism between the distributed components. Note that the decision

to choose the deployment topology could be based on a variety of factors including

resource constraints or application requirements. We contend that a gap exists be-

tween the high level model and the actual system, since the high level model does not

consider the underlying infrastructure model, which as we describe next could result

in problems because of interference in the middleware layer.

1.2.1 Interference from DOC middleware

Middleware typically offers different strategies to configure infrastructure mecha-

nisms. The correct choice of strategies is crucial not only for the functional behavior

(delivering messages across sockets, waiting for replies, etc.) of the infrastructure, but

also is required to maintain timing and liveness properties of the application. Some

combinations of infrastructure strategies may have adverse impacts on the functioning

of the application and yet current middleware modeling approaches do not consider

the alternative configurations at a fine enough level of detail to be able to detect

some forms of interference. In particular, the middleware infrastructure may itself

introduce interference among computations in the application, possibly resulting in

violation of application safety and liveness properties. In this section, we illustrate in-

terference occurring in the ORB middleware layer in the context of a simple example

that uses distributed objects communicating with each other to realize application-

level goals. Although the discussion here is based in particular on configurations

of middleware mechanisms seen in the ORB core implementations in TAO [50] and

nORB [105], such interference could occur in other implementations and other forms

of middleware as well.

CORBA [74] based ORBs are used in many distributed systems with real-time con-

straints. Implementation of an ORB [50] involves mechanisms like Reactors and

Leader-Follower thread pools (see Sidebar 1). While modeling DRE systems, it

is necessary to consider key infrastructure mechanisms like the ORB core reactor,

the pool of threads used to receive incoming GIOP [21] requests, and the topology of

7

method invocations that generate outgoing GIOP requests. In this section we explain

why this level of detail is important to verify correctness of the system with respect to

timing and liveness properties. To support reuse of ORB middleware across a variety

of domains and applications in those domains, ORB middleware often provides a wide

set of configuration options so that it can be customized to suit the requirements of

the application. In this section, we describe one such strategy used to configure the

ORB core infrastructure – Reply Wait Strategy – to illustrate the importance of in-

cluding this level of detail in a system model. In the course of this example, we show

that the type of reply wait strategy chosen at one end-system affects the real-time

characteristics as well as liveness properties of the application, and hence the reply

wait strategy may contribute to interference in the system.

1.2.2 ORB Reply Wait Strategies

In CORBA, when a client makes a remote two-way function call, the caller’s thread

needs to wait until it receives a reply back from the server before continuing to

execute the calling method. This is in accordance with the semantics of a two-way

function call. There are different strategies to wait for the reply, each having different

implications for safety and liveness. To motivate the need for modeling and analysis of

middleware mechanism configurations, consider two different strategies used in TAO

and nORB to allow a client to wait for the reply from a server.

• WaitOnConnection - the thread that sends the request waits directly on the

connection for the reply

• WaitOnReactor - the thread that sends the request waits on a subsequent upcall

from the ORB core reactor, when the reply has arrived.

We now illustrate the impact of these strategies on the timing and liveness properties

of the example distributed application. In the ORB literature, this kind of sequence

of calls is termed “Nested Upcalls”. Without loss of generality, we first assume that

there is a single thread of execution in each of the servers.

8

Sidebar 1: Key Design Patterns in TAO and nORB

The architecture of TAO and nORB is based on the network programming patterns de-

scribed in [97]. We outline the following fundamental patterns used in TAO and nORB

that are relevant to the discussion in this dissertation:

• Reactor is an event handling design pattern used in network programming to de-

multiplex events from multiple sources, possibly using just a single thread. This

design pattern is used in ORBs to demultiplex and dispatch incoming requests and

replies from peer ORBs. Event handlers like request and reply handlers are regis-

tered with a reactor. The reactor uses a synchronous event demultiplexer, e.g., the

UNIX select system call, to wait for data to arrive from one or more ORBs. When

data arrives, the synchronous event demultiplexer notifies the reactor, which then

dispatches the appropriate registered event handler based on the event source.

• The Acceptor-Connector design pattern decouples connection establishment be-

tween ORBs and request/reply processing in an ORB end-system once a connection

is established. A Connector actively establishes a connection with a remote accep-

tor component and an Acceptor passively waits for connection requests from remote

connectors, establishing a connection upon arrival of such a request, and initializing

a service handler to process data exchanged on the connection.

• Leader/Followers is an architectural design pattern that provides an efficient

concurrency model where multiple threads take turns detecting, demultiplexing,

dispatching, and processing requests and replies from peer ORBs.

Wait on Connection. In this strategy, illustrated in Figure 1.5, the following

sequence of events takes place within the ORB layer:

1. As the remote call from application component Client1 is processed by ORB1, it

makes an upcall to the servant implementation for Service1. In the subsequent

discussion, we assume that the upcall is made in the same thread as the I/O

thread that was listening on connections for remote calls.

2. As part its implementation, Service1 makes a remote call to Service1. Internally,

ORB1 actively establishes a connection C to ORB2.

9

ORB1 ORB2

C

Reactor

4 wait

R
eactor

Service2

Deadlock here

2 3 5

6

Service1

1

Service3

Figure 1.5: Deadlock with WaitOnConnection Strategy

3. The parameters to the remote call are marshaled, a GIOP Request is formed

and sent to ORB2 using connection C.

4. The sole I/O thread (that is also the upcall thread) in ORB1 waits for the reply

on connection C using a blocking recv call.

5. The request is received by ORB2 and dispatched to the skeleton code for Ser-

vice2. Service2 skeleton code marshals the parameters and the upcall is made

to the servant.

6. The servant implementation for Service2 calls Service3. Internally ORB2 tries

to establish a connection to ORB1 so that it could send this request.

Since the sole I/O thread in ORB1 is blocked on a system call waiting for a reply

from Service2, there is no thread to accept the incoming request. This results in a

deadlock, where the ORB1 thread is waiting for a reply from Service2 and the ORB2

reactor thread executing Service2 is waiting for a reply from ORB1. Note that this

situation occurs only because of interference in the middleware and not because of

any conditions occurring in the OS layer. The situation can be improved by having

a pool of threads listening for input requests using the Leader-Follower model (see

Sidebar 1). But even with this model, when the number of outstanding requests

exceeds the number of threads, the ORB ceases to accept any more requests and this

can result in a deadlock as well, as we show in Section 6.7 in Chapter 6.

10

Wait on Reactor. In this strategy, the sequence of calls is the same as the previous

strategy until the request is written to the connection stream. After that, instead

of waiting on the connection for the reply, the caller thread waits on the ORB core

reactor, which provides synchronous demultiplexing of I/O events. This demultiplex-

ing allows incoming requests to be accepted while waiting for replies (see Sidebar 1).

The (nested) callback request from Service2 is accepted (7) and the call is completed

eventually, thus avoiding deadlock (see Figure 1.6).

Deadlock avoided by
waiting on reactor

ORB1 ORB2

C

Reactor

4wait

R
eactor

Service2
2 3 5

6

Service1

1

Service3

7

Figure 1.6: No Deadlock with WaitOnReactor strategy

However this strategy introduces another form of interference in terms of blocking

delays. It should be noted that the upcall for the incoming request is made in the

same thread context as that of the outgoing call. There could be multiple incoming

requests before the reply for the initial outgoing call arrives. The processing of the

reply for the initial outgoing call can be done only after processing of all the incoming

requests that arrived before its reply, is completed. This results in blocking delays in

completion of outgoing remote calls. This is illustrated in Figure 1.7 in the context

of the example application running in Mode2.

The timeline in Figure 1.7 shows the sequence of events that occurs at ORB1. When

the reply from Service2 arrives at 11ms, there is no thread to process that reply,

since the upcall thread is already servicing the request from Client2 to Service3.

The reply from Service2 is processed only after the reply from Service3 is sent to

11

Server1/
Server3

5

7

9

11

13

15

17

19

s1

s2
s3

s2 returns

s3 returns

s1 returns

Reply for s2 cannot
be processed until
completion of s3

processing

msec

Figure 1.7: Cause of Blocking Delay - Local view at ORB1

Client2. This introduces a blocking factor of 4ms in the processing of the reply from

Service2 resulting in a delayed reply to Client1, which may violate a timing property

of the application. The new timeline illustrating the interaction between the different

services is shown in Figure 1.8, which shows the effect of the blocking delay shown in

Figure 1.7. Figure 1.8 shows that only after the reply from Service3 is sent to Client2,

the pending reply from Service2 is processed and a reply sent to Client1.

The above example illustrates two typical kinds of interference issues encountered in

DRE middleware - interference in the form of (1) deadlock caused by a combination

of factors e.g., WaitOnConnection reply wait strategy and a single reactor thread

in ORB1 and (2) blocking delays caused by WaitOnReactor strategy. This example

reinforces the need to consider such issues when modeling real-time systems. It is

therefore important to choose appropriate strategies carefully and at fine levels of

detail in a middleware infrastructure. Depending on application characteristics, such

as use of nested upcalls, this choice may affect liveness and timing properties as was

shown in this example. Therefore, such details need to be taken into consideration

to give a more faithful analysis of system models.

12

Client1Service1 Service2 Service3

5

7

9

11

13

15

17

19

Client2
s1

s2
s3

msec

Figure 1.8: Effect of Blocking Delay - Global View

1.3 Challenges in Modeling DRE systems

The example in Section 1.2 illustrates the general concern that many of the abstrac-

tions used during high-level modeling, such as the notion of a purely time-driven or

even a time-and-priority mediated interaction between the service requestor and the

service provider, may become decreasingly representative of the system during its de-

sign and implementation. This may in turn result in a chasm between the high-level

model and the actual implementation, unless the abstractions used in the high level

model can be refined during design and implementation. Thus, a foundational set of

formal models that can express both (1) high-level abstractions such as timed remote

method invocations, and (2) low-level refinements such as concurrency and interac-

tion semantics between the objects that implement the high-level model, is needed to

support accurate verification of the high level model in terms of its low-level design

and implementation.

Furthermore, the insights obtained from modeling and analysis should be made avail-

able and used while making design and development decisions, and vice-versa. Such a

13

close correspondence between the system modeling, analysis, design and development

activities offers the following benefits: (1) more complete, detailed and executable

models of systems, including their middleware infrastructure, can be composed and

checked; (2) timing and liveness properties can be verified with greater precision; (3)

a more rigorous and formal style of documentation can be used to capture and com-

municate detailed middleware engineering expertise that is currently represented less

formally, e.g., as design patterns [97]; (4) with more representative models and more

powerful verification techniques, the extent to which systems must be “over-designed”

can be reduced due to greater insight into the possible behaviors of the system.

Performing such verification at a realistic scale will require an approach that combines

analysis using both static and dynamic models of the system. This involves the use

of protocols [88, 89] that are provably correct using static analysis with respect to

certain properties, e.g., deadlock avoidance in systems with nested upcalls. As part of

collaborative research with Dr. Henny Sipma, Cesar Sanchez and Dr. Zohar Manna

from the Theory Group at Stanford University, we have investigated the static analysis

approach [88, 89] as a complement to the executable models that were developed in

the research presented in this dissertation.

The focus of the research presented in this dissertation is the development of dynamic

or executable models of middleware and use model checking to verify the composition

of middleware. These models enable us to model-check a variety of different middle-

ware protocols including the deadlock avoidance protocols described in [88, 89]. In

order to reduce the gap between high-level formal models and actual system imple-

mentation, this research addresses the key technical challenges outlined in Table

1.1.

1.4 Research Contributions

This dissertation makes the following major contributions to the state of the art in

modeling DRE systems.

14

Table 1.1: Challenges and Solution Techniques Presented in This Research

Challenges Solution Techniques Effects and Results
Models of middleware should
be at a sufficient level of
abstraction such that they
should be able to capture se-
mantics of middleware build-
ing blocks and their interfer-
ence effects such as the ones
described in Section 1.2

A computational model and
a modeling architecture based
on timed automata, described
in Chapter 3 in which the
key models are of middleware
building blocks that are reified
in the ACE [51] framework.

The examples discussed in
Chapters 6, 8 and 9 demon-
strate that our models are ca-
pable of capturing a combina-
tion of concurrency semantics
in middleware that includes
the interference effects seen in
Section 1.2.

Modeling of concurrent ob-
ject middleware using a low-
level formalism like automata
is non-trivial - e.g., modeling
OS thread abstraction, map-
ping from an object model to
a process model, state space
explosion problem.

We present concrete engineer-
ing challenges and solutions
for modeling concurrent ob-
ject middleware using UP-
PAAL and IF in Chapters 4
and 5.

The empirical validation de-
scribed in Sections 6.8.1 and
6.8.2 shows the effectiveness of
our techniques in dealing with
these challenges.

The models of middleware
building blocks should be
reusable and composable

We use communicating timed
automata as our modeling for-
malism and tools that allow
composition of these models.
The level of abstraction of our
models is similar to that of the
reusable middleware building
blocks in the ACE toolkit
and hence our models can be
reused to model most systems
that are built using commu-
nication primitives in ACE as
the middleware substrate.

The examples that we present
in Chapters 6, 8 and 9
use a subset of middleware
building blocks that are most
commonly used in develop-
ing communication middle-
ware. We modeled all these
examples using those models.

The models should reflect the
actual system closely and pin-
point any design flaws ahead
of actual implementation

Our models are executable
models that can be checked.
We use model checking tools
like IF and UPPAAL that
generate detailed execution
traces if there is a violation
of the specified system re-
quirements. We have devel-
oped tools and techniques de-
scribed in Chapter 6 and 7
that further enable close cor-
respondence between analysis
of the model and the actual
system.

The detailed execution and
timing traces are used in the
context of the various exam-
ples described in Chapters 6,
8 and 9 and have served as
a valuable aid in debugging
models, verifying hypotheses
and uncovering design flaws.

15

It demonstrates the need for low-level middleware models. First, using

illustrative example scenarios in the context of a distributed example using ORB

middleware, it illustrates the need for including lower-level middleware details to

adequately verify correctness of DRE systems middleware configurations.

It defines a reusable and relevant middleware modeling architecture. This

dissertation defines a middleware-level modeling architecture to establish a common

basis for developing concrete models of middleware using different modeling tools. To

show the genericity of our proposed architecture, we realize this architecture using

two different modeling tools that support timed automata - UPPAAL [7] and IF [12].

It provides executable models of middleware building blocks. This research

develops executable timed automata [4] models of middleware building blocks in UP-

PAAL and IF, and demonstrates how liveness and timing analysis can be performed

using model checking on system models that include the middleware infrastructure

elements also. These timed automata models can then be used in conjunction with

higher-level formal models to provide a faithful model of a system including the mid-

dleware platform on which the system is deployed, such that the composite models can

be verified for correctness with higher fidelity to the system itself. In this research,

we develop timed automata models of the following building blocks in ACE - select

reactor, thread pool reactor with leader/followers, acceptor, connector, event handler,

barrier synchronizer, and wrapper facades such as ACE Pipe and ACE SOCK Stream

for inter-process communication. We also demonstrate the modeling of the Half-sync

Half-async and Active Object patterns, and the WaitOnReactor and WaitOnConnec-

tion reply wait strategies in the context of various examples described in Chapters 6,

8 and 9.

It provides new techniques for modeling middleware. This research also

identifies key engineering challenges associated with building models of concurrent

object middleware using the timed automata formalism in the context of UPPAAL [7]

and IF [12] and also presents solutions to address these challenges. The following novel

techniques are presented in this dissertation:

16

• Modeling objects and threads in the absence of native support for these ab-

stractions in UPPAAL and IF.

• Modeling run-to-completion semantics in IF.

• Ordering rules and an idle catcher process to optimize the state space without

over-constraining it, in IF.

• Workarounds for a limitation in IF to use procedures for waiting on condition

satisfaction.

• Post-processing trace outputs from the IF model checker to produce object

interaction traces and timeline traces that ease the process of model debugging

and validation.

Though we have identified these challenges and devised solutions to them in the

context of UPPAAL and IF, the solutions may find applicability in other modeling

environments also.

It validates the effectiveness of this approach for realistic middleware con-

figurations. We have demonstrated the effectiveness of the tools and techniques

that we developed, in the context of various illustrative examples. Our research con-

tributions include the modeling and implementation of a Deadlock Avoidance (DA)

protocol [88, 89] that was invented as part of collaborative research conducted with

Dr. Henny Sipma, Cesar Sanchez and Dr. Zohar Manna from the Theory Group

at Stanford University. We implemented the BASIC-P DA protocol in the ACE TP

Reactor, and also modeled and verified the protocol using our models. Our contribu-

tions also include modeling and verification of variants of the Gateway example that

is available as part of ACE.

1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 surveys related work in the

area of modeling middleware. Chapter 3 presents a middleware-level system model

17

and a modeling architecture that forms the basis of our models. Realizations of

this architecture using two different modeling environments - IF and UPPAAL - are

presented in Chapters 4 and 5 respectively. Chapter 6 presents an application of

our models by using simple but illustrative example scenarios and uses middleware

domain expertise to validate the outcome of the analysis from the model execution.

We also compare the effectiveness of different modeling techniques that we developed,

in the context of these examples. Chapter 7 presents an evaluation of the fidelity of

our models and compares the output from our models with that from actual execution.

Chapter 8 presents a case study using our models in the verification of a deadlock

avoidance protocol and Chapter 9 presents a case study using our models in the

context of an application level gateway example. Chapter 10 presents concluding

remarks about this research and its impact, and outlines future research directions.

18

Chapter 2

Survey of Related Work

We now survey related work from several perspectives of the modeling and middleware

research communities. Integration of distributed embedded systems using different

components, software as well as hardware, requires a great deal of a priori modeling

and analysis followed by methodical implementation. Modeling enables the system

designer to identify and analyze key design decisions that influence both functional

and para-functional [22] aspects of a system. While the idea of using models for

analysis and design of applications has been prevalent for some time, recently there

has been significant ongoing research on applying model-based approaches to the

middleware domain. Middleware is becoming an important and in many cases even

an inevitable part of distributed real-time system implementations. More and more

reusable services find their place in the middleware layer, contributing to the increased

complexity of middleware and thus motivating the need for models of middleware

building blocks that can be (re)used by the modeling community to model systems

with a higher degree of fidelity.

Meanwhile from the perspective of the middleware community, some of the tradi-

tional software engineering principles like pattern-oriented [14, 97] development fall

under the purview of good software engineering. These techniques are formal only

to the extent that they enable a common vocabulary to communicate designs using

standard notations like UML [111] and hence provide a means to understand designs.

Although there is ongoing research in modeling middleware, a more rigorous and

formal approach to middleware composition is needed therefore.

19

The work in this dissertation contributes to the application of formal model-based

approaches to the middleware domain. In this chapter we survey four main areas of

research that form the background for our research - (1) Model integrated computing

(MIC) in DRE systems (2) Model-driven middleware (3) Formal techniques in con-

current and component based systems and (4) Middleware frameworks and execution

environments.

2.1 Model Integrated Computing

Our research fits in to the broad research area of Model Integrated Computing [106,

72, 39, 42, 70]. The key idea in Model Integrated Computing (MIC) is to use models

as a common basis throughout the system development process from analysis through

design to implementation. Multiple views of a system are developed that help the de-

signer to understand and analyze different aspects of the system under consideration,

before committing to a particular implementation platform. In the case of distributed

real-time and embedded systems, this would include not only the information pro-

cessing aspects of a system, but also the physical architecture and the environment

in which the system operates. These different models of a system are then integrated

together to present a holistic view of the system and also to allow one to specify

explicitly the dependencies and constraints among the various modeling views.

2.1.1 Applying MIC to DRE systems modeling

As part of the DARPA MoBIES and PCES projects, a modeling language called the

Embedded Systems Modeling Language (ESML) [54] was developed and has been

used to model component-based DRE systems that uses a publish-subscribe model

for communication between the components. An example of a system in the avionics

domain where ESML has been used is the Boeing Bold Stroke architecture [100]. Var-

ious tool chains are used to analyze the models either in isolation or in combination

with other modeling views of the system. Some of the analysis tools that have been

developed as part of the MoBIES and PCES research are AIRES [40], CADENA [44],

Time Weaver - TimeWiz [107] and VEST [102]. A limitation of ESML used to be

20

that it mainly focused on the static structural aspects while largely ignoring the dy-

namic behavioral aspects of avionics mission computing software. This limitation is

being addressed by recent work [17] on semantic anchoring which introduces facilities

to attach behavioral semantics with models that use domain specific modeling lan-

guages like ESML. ESML models are used for high-level modeling of systems which

do not take into account the interference effects of middleware elements, which is the

focus area of our research. Whereas ESML provides models of higher-level building

blocks (e.g., processor, event channel, timer) that can be used to model DRE systems,

our research provides models of lower-level middleware building blocks (e.g., reactor,

event handler).

Distributed Real-time Embedded Analysis Method (DREAM). DREAM

[67, 66, 28] is an open-source tool and method that allows DRE system designers to do

model-based schedulability analysis of time and event-driven DRE systems. DREAM

offers a computational model called the DRE semantic domain [66]. The key ele-

ments in this computational model are tasks, timers, event channels and schedulers.

Tasks are triggered either by a timer or external aperiodic events and tasks commu-

nicate among themselves by means of an event channel. Within this computational

model, DREAM considers the problem of deciding the schedulability of a given set

of tasks with time and event-driven interactions. By using timed automata mod-

els for each of the elements in the computational model, the schedulability problem

is converted [28] into a reachability problem in the composed model using a model

checking tool like UPPAAL. DREAM also provides a model transformation facility

by which a model of the DRE system expressed using a domain specific modeling

language (e.g., ESML [54]), is transformed using model transformation [67] tools to

timed automata models in the DRE semantic domain.

Even though our approach is similar to DREAM in that we use timed automata mod-

els to verify system properties, the problems that these two bodies of research address

are different. Whereas DREAM addresses the problem of deciding schedulability of

a set of tasks under the DRE semantic domain, our research addresses the problem

of correct composition of middleware elements that are at a finer level of granularity

than the elements in the computational model offered by DREAM. Both these kinds

of analysis are important - while the higher level computational model provided by

21

DREAM helps the DRE systems designer to address the schedulability problem in

time and event-driven systems, the lower level computational model that we describe

in Chapter 3 helps the DRE system designer to choose a set of middleware config-

urations that is appropriate for the DRE application. Moreover, the computational

model in DREAM makes an assumption that all communication between tasks use

an event channel and the communication between tasks and event channels them-

selves are abstracted away using synchronized transitions in UPPAAL. During actual

implementation, these synchronized transitions are likely to be realized using com-

munication middleware like a CORBA ORB which, as we explained in Chapter 1,

could have different configurations which impact the timing and liveness properties

of a DRE system in different ways. Hence a more detailed model of the fundamen-

tal middleware elements (e.g., reactors, event handlers, reply wait strategies) that

constitute a middleware communication mechanism like an ORB or event channel is

necessary, which is the focal point of the research in this dissertation.

GME. The Generic Modeling Environment [54, 70] is a configurable toolkit for

creating domain-specific modeling and software synthesis environments. This toolkit

uses meta-models to generate domain specific modeling languages and environments.

The generated domain-specific environment is then used to build domain models that

are stored in a model database. These models are used to generate the applications

or to synthesize input to different COTS analysis tools automatically.

Although GME provides an environment for generating modeling environments, the

semantics of the domain and the domain elements themselves must still be defined in

the form of a computational model and associated semantics. As part of this research

we propose a computational model for modeling interactions among middleware build-

ing blocks and define the semantics of this model in terms of communicating timed

automata. We believe that the models developed in this research can become part

of a middleware domain modeling environment like CoSMIC [37] that uses GME for

generating the modeling environment.

Ptolemy. Ptolemy [65] is a framework for experimenting with heterogeneous mod-

els of computation. It is another modeling environment for embedded systems that

22

provides a rich set of computation models including the Giotto model [46] that pro-

vides an abstract infrastructure model for the implementation of embedded control

systems with hard real-time constraints. Ptolemy includes a code generator that

generates E-machine code [46] from Giotto models. Unlike the Giotto model which

creates a specialized concurrency environment for enforcement of timing properties,

the approach in this dissertation is to model canonical existing fine-grain middleware

abstractions found in common use, as a basis for evaluation and composition of those

elements.

Conceptually, Ptolemy supports the basic idea of the work in this dissertation that

one model of computation may not be appropriate to analyze a system completely.

While Ptolemy allows a system designer to compose different models of computation

and analyze system properties, this research focuses on defining the behavioral seman-

tics of a computation model in which the key computation elements are commonly

used middleware building blocks. Thus it is conceivable that the computation model

developed in this research and its semantics can be offered as a computation model

in Ptolemy.

As future work we plan to investigate the suitability of integrating our formal models

within the GME and Ptolemy environments, though that investigation is outside the

scope of this dissertation.

2.2 Model-driven Middleware

Our research falls directly under the Model-driven Middleware (MDM) [36] paradigm,

which is the application of model-based techniques such as MIC to the domain of

middleware. Our approach provides a more rigorous basis for middleware composition

and validation than current model-based middleware configuration techniques.

CoSMIC. The CoSMIC [37] toolset provides an integrated component assembly,

deployment and configuration environment for application developers, based on model-

driven techniques. Using these tools, application developers can specify connections

23

between components using a graphical interface. As part of this effort various mod-

eling languages have been developed (PICML [6], OCML [108], BGML [59], etc.) to

assist application developers in building model-driven applications using component

middleware. Model interpreters generate glue code, configurations and declarative

component assembly information based on models of application components. Specif-

ically, the Options Configuration Modeling Language(OCML) [108] allows a middle-

ware developer to establish a rule base by which the application developer can choose

a suitable set of configuration options for the middleware infrastructure according to

the application requirements. Another modeling language - Benchmark Generation

Modeling Language(BGML) [59] forms the basis for automatically generating a test

suite for instrumentation and measurement of application QoS properties.

The low-level formal models we have developed can be used to provide a more exact

evaluation of safety and liveness properties that emerge from the composition of ap-

plication and middleware features. This makes our approach both complementary to,

and an improvement on, higher level modeling approaches that are simply based on

feature sets and do not attempt to capture the more subtle structural and behavioral

interactions that lead to interference from middleware. In the higher-level modeling

approaches described in [59] and [6], it is possible to conduct performance experi-

ments for various combinations of features and configuration settings, which can be

done using automated testing techniques to achieve coverage of feature/setting com-

binations, and thus analyze the best combinations of features and settings for a given

application in a given context. This is very useful in practice, but does not explicitly

model why the combinations lead to different performance results. The limitations of

these approaches are thus that (1) one must try all combinations of features and set-

tings to be sure they’ve found the best ones and/or avoided the unsatisfactory ones;

(2) even when one has mapped an application that way, the addition of a new fea-

ture or setting, or a change in the application, call graph etc., may have a significant

impact on the previous profile of application performance due to the fundamental

problem of interference examined in Section 1.2.

Model checking. Advances in model checking techniques have made state space

exploration an attractive option for reasoning about system properties. Examples of

model checking tools include SPIN [49], Bogor [86, 27], UPPAAL [7] and IF [11, 12] of

24

which UPPAAL and IF offer support for timed automata models. Several techniques

have been developed by the model checking research community which make model

checking more practicable. As part of our research, we developed middleware domain

specific state space optimization techniques that complement the more general state

space reduction techniques that are being developed by the model checking research

community.

While the above tools use abstractions of actual systems expressed in some modeling

language, tools like Verisoft [35, 79] systematically explore the state spaces of sys-

tems composed of several concurrent OS processes executing arbitrary C/C++ code.

Verisoft implements a state-less search algorithm [35] to do a systematic exploration

of the state space. The execution of the system processes is controlled by an exter-

nal process called the scheduler. This process observes and controls execution of the

system processes by suspending and resuming their execution. All sources of non-

determinism are fully controlled by the scheduler process. Our research differs from

the Verisoft approach in that it captures the interactions at a much more fine-grain

level of abstraction (middleware building blocks) than OS processes.

A number of other formal models have been developed using model checking to reason

about system properties. Specifically, [23] uses the Bogor model checker to model the

behavior of a real-time event channel. [41] uses Finite State Processes(FSP) [52] and

the associated Labeled Transition System Analyzer (LTSA) [1] tool to model check

component-based real-time and embedded software. In contrast to the above work,

the work in this dissertation develops formal models of reusable middleware building

blocks that are more fundamental and reusable and hence can be used to model a

variety of middleware services including middleware protocols, application gateways,

and application-specific combinations of middleware building blocks.

2.3 Formal techniques in concurrent and component-

based systems

Reasoning in concurrent and component-based systems. Task/Scheduler

Logic (TSL) [83, 82] has been used to reason about concurrency in component based

25

software systems. Each component may come under the purview of a hierarchy of

schedulers, each imposing its own set of restrictions on the type of resources that can

be used. TSL uses first order logic to represent tasks, resources, locks and schedulers.

Such reasoning is essential in component based systems to make more efficient uses

of resources. Components are executed in environments which may be different from

the environments in which they were developed. TSL can be used to find errors in

system code, for example using a lock in a component which will eventually be run

as an interrupt handler. There are different kinds of locks like regular mutex locks,

recursive locks, readers-writer lock, etc. Based on the environment and the call graph

of functions, TSL can be used to infer the type of lock to be used by a particular

component under a particular context. The research in this dissertation develops

executable models instead of the static analysis approach used in TSL and hence the

model execution produces detailed traces of execution thus enabling us not only to

reason about system properties but also to identify why system properties are satisfied

or violated in terms of the semantics of the execution components involved.

Reasoning in CCM. Apart from providing an integrated environment for building

and modeling CORBA Component Model (CCM) [110] systems, CADENA [44] also

supports reasoning about correctness properties in component-based designs. CA-

DENA provides model checking for verifying correctness properties of CCM systems

derived from CCM IDL and XML. It does this based on behavioral specifications of

a component along with component assembly information combined with CADENA

specifications. It also provides facilities for defining component types, specifying de-

pendency information and transition system semantics for these types. Our approach

is similar to the CADENA approach in that both specify behavioral semantics of

software, except that CADENA models capture higher level application component

model behavior whereas the models developed in this research are lower-level mid-

dleware models of reusable building blocks that can be used to build a variety of

middleware subsystems including CCM container implementations.

Formal techniques in CORBA. [55] introduces new stereotypes in UML and

defines ways to map these stereotypes to the Finite State Processes(FSP) [52] process

algebra and then do model checking for deadlocks. Apart from the single threaded

26

synchronous request scenario that is discussed in the paper resulting in a deadlock, we

also consider scenarios which may not result in a deadlock based on the appropriate

choice of strategies used to wait for a reply in the underlying infrastructure. Moreover,

we also check the timing related properties of the system. Kamel’s work [53] uses

model checking to verify the GIOP protocol used in CORBA based systems. Duval’s

work [26] also uses a model checking approach to verifying CORBA based systems.

[20] uses a formal language TRIO to specify CORBA-based distributed applications

and uses a proof-based approach for reasoning about systems and verifying their

correctness. Our work differs from the above work in that it provides executable

formal models for fundamental building blocks that can be used to verify a variety of

middleware services including CORBA implementations.

2.4 Middleware Frameworks and Execution Envi-

ronments

E-machine. The Embedded Machine or “e-machine” [46] is a virtual machine that

mediates in real time the interaction between software processes and physical pro-

cesses. The e-machine runs E-code which is platform-independent and is generated

by a compiler based on higher level specifications of the embedded system. The E-

code specifies the timing of application tasks with respect to external events. The

E-code can be checked for time safety [45] to determine platform specific inconsisten-

cies. We believe the ACE toolkit can be used as a substrate to which target code

generation, similarly to how E-code is used as a target language, based on which a

variety of different applications can be developed: modeling the ACE substrate with

timed models as we do, broadens the area of applicability.

Customizable Middleware. MicroQoSCORBA [3] addresses the challenges of

middleware footprint reduction by generating customized instantiations of middle-

ware for deeply embedded systems. Using feature information about the underly-

ing hardware, operating system abstractions, and middleware components, Micro-

QoSCORBA supports fine-grain configuration and composition of only the features

27

needed for a particular application. While MicroQoSCORBA focuses on framework-

independent generation of ORB infrastructure, related Ubiquitous CORBA projects

such as LegORB [87] and the CORBA specialization [69] of the minimal Universally

Interoperable Core (UIC) [68] focuses on a meta-programming framework approach

to middleware. The Ubiquitous CORBA approach supports robust portability even

across different middleware paradigms e.g., CORBA or SOAP [101]. It offers sig-

nificant re-use of infrastructure, patterns, and techniques by generalizing features

common to multiple middleware paradigms and providing them within a minimal

meta-programming framework, thus also addressing the challenge of reducing mid-

dleware footprint. Zen [57, 56] is a RT-Java [8] based real-time ORB that is also

highly customizable. However, none of the these research efforts offers a formal basis

for composition with respect to timing and liveness properties. Our work comple-

ments these efforts by providing formal models and implementations of fine grained

mechanisms they may leverage. For example, the principal force behind the design

of Java NIO [48] is the Reactor design pattern. Our formal models of building blocks

like Reactor thus have broad applicability, and our techniques for model development,

composition and evaluation are even more generally applicable.

CIAO. The Component Integrated ACE ORB (CIAO) [109] is a QoS-aware open

source implementation of the Lightweight CORBA Component Model (CCM) [110,

73] specification. CIAO provides a component-oriented paradigm to distributed, real-

time, embedded (DRE) system developers by abstracting DRE-critical systemic as-

pects such as QoS requirements as installable/configurable units supported by the

component framework. The work in this dissertation can be used to model the be-

havior of parts of the run-time environment in CIAO, for example a CCM container.

TinyOS. The fundamental building blocks provided by TinyOS [47] are similarly

suitable for fine-grain modeling like those in ACE, except that the domains that

these two frameworks address are different - ACE provides building blocks for DRE

applications and TinyOS provides building blocks for sensor network applications.

However, we believe the modeling abstractions and ideas that we have proposed in

this dissertation are applicable to a wide-variety of other domains including sensor

networks.

28

OSEK VDX. OSEK VDX [78] is a set of interface specifications for operating

systems, communication and network management in the automotive domain. The

OSEK operating system is targeted to run on micro-controllers and therefore de-

signed to require a minimum of hardware resources like CPU and memory. These

specifications enable automotive OEM and third-party ECU (electronic control unit)

suppliers to use a standardized set of APIs to facilitate system integration, thus mak-

ing automotive applications more portable, reusable and interoperable. Models of

the pattern-oriented building blocks in OSEK VDX can be developed similar to the

models of fine-grain building blocks that we developed in this research. For example,

a task in OSEK OS can wait on multiple events at a time using the WaitEvent OSEK

function. This is similar to the Reactor pattern [97]. The Active Object [60] pattern

can be used as in [85, 84] to separate the communication subsystem in OSEK VDX

from the application.

29

Chapter 3

Middleware Modeling Overview

1. System
Model

Definition

2. Model
Architecture

3. Model
Development

4. Model
Execution &
Validation

5. Model
Application to

Use Cases

4b. Empirical
Experiments

4a. Application
Domain

Knowledge

Executable
Models

Traces/
Timelines

Inconsistencies

Figure 3.1: Middleware Modeling Methodology

Figure 3.1 illustrates the different steps involved in developing and using our formal

models for middleware based applications. Although we discuss its use in the context

of ACE, this approach is applicable to a wide range of other sets of reusable system

software mechanisms and frameworks. To illustrate how our approach would apply in

general, we now describe a methodology we followed in the context of ACE. (1) We

first define a system model where we identify the key software mechanisms and their

relationships and interactions. (2) We then develop an architecture that forms the

foundation for developing an executable model. The architecture is generic enough

30

that it can be realized and evaluated using different modeling and model checking

tools, but fine-grained enough to capture important timing and liveness properties.

(3) The next step is to realize this architecture by building concrete models of founda-

tional middleware building blocks using a specific timed automata modeling tool like

UPPAAL or IF. The resulting models are executable and amenable to model checking.

(4) The executable models then must be validated (i.e., “debugged”) to eliminate any

inconsistencies. This validation is done by applying these models to representative

examples that capture key behavioral semantics arising from different middleware

configurations. Two aspects are involved in validating the models - (4a) domain ex-

pertise that can be used to derive informal conclusions, and (4b) execution traces

from actual runs of these examples using the built middleware. Execution traces can

be used to generate detailed timelines and both traces and timelines from the runs

can be used for comparison against the traces and timelines obtained by executing the

models. Any inconsistencies detected are used in making the necessary modifications

to the models and this process is repeated throughout the development/verification

process. (5) Finally the middleware models are used to model application use-cases.

In this chapter, we introduce the system model (1) and the modeling architecture

(2). In Chapters 4 and 5, we discuss model development (3) in UPPAAL and IF

respectively. Model execution and validation (4) are discussed over Chapters 6 and

7. Finally we present two case studies applying (5) the built models in Chapters 8

and 9.

3.1 System Model and Problem Definition

Patterns and pattern languages have been very influential in the design and develop-

ment of a variety of software systems. Specifically the POSA2 [97] patterns describe

in great detail, reusable patterns for building distributed and concurrent middleware.

Even though the POSA2 patterns use formal notations like UML interaction dia-

grams, a more mathematical treatment of the behavioral interaction between the key

players in the POSA2 patterns is necessary for formal analysis of middleware that is

built using frameworks like ACE [51] that reify these patterns. In this dissertation, we

describe the necessary details to support such formalization. The system model that

31

we describe here is the beginning of such an effort that establishes the scope of this

dissertation, although as part of future collaborative work, described in Chapter 10,

we intend to enhance this model further in terms of both the formalization and the

type of model elements.

Our system model1 can be expressed as a 6-tuple {E, H, I, R, A, θ}, consisting of the

following elements:

• E is a set of events denoting relevant asynchronous changes in the system’s

state, such as the expiration of a timer, the arrival of a network packet, or a

transport-layer buffer becoming available for writing.

• H is a set of event handlers, which perform application-specific processing when

system events are dispatched to them.

• I is a set of interaction channels, such as sockets and timer registration inter-

faces, which trigger events as a result of actions performed on them.

• R is a set of reactors, which dispatch events to event handlers by invoking

event-specific handler methods.

• A is a set of actions performed on event handlers, interaction channels, and

reactors – such as registering an event handler with a reactor, dispatching an

event to an event handler, sending data over a socket, or waiting in a reactor

for events to occur.

• θ is a set of endsystem threads – actions within a thread are performed sequen-

tially, while actions in different threads can be performed concurrently.

Note that some categories of events (e.g., the return of a thread from a method

call) and actions (e.g., invoking a method call) could apply to multiple instances and

kinds of system elements. Furthermore, a given event or action can be performed

repeatedly. To avoid ambiguity, we assume that every event and every action is

identified uniquely, and that each occurrence of a given event or action is indexed

uniquely by a natural number, across the entire system. We also assume that each

occurrence of an event is instantaneous, while each occurrence of an action has a

(possibly different) non-zero temporal duration, and the initiation and completion of

each action are represented by distinct events in our system model.

1The author proposed the initial version of this model, and then enhanced and refined it in col-
laboration with Dr. Chris Gill (Washington University) and Dr. Henny Sipma (Stanford University)

32

Static relations. We first express several static relations in our system model,

which hold for the entire system lifetime. These relations partition actions according

to the system elements on which the actions can be performed, and partition threads

into reactor-specific thread pools:

• αH : H → 2A. The set of actions that can be taken on event handler h is given

by αH(h).

• αI : I → 2A. The set of actions that can be taken on interaction channel i is

given by αI(i).

• αR : R → 2A. The set of actions that can be taken on reactor r is given by

αR(r).

• threadpool : R → 2θ. The set of threads assigned statically to reactor r is

given by threadpool(r), with each thread assigned to exactly one reactor, and

at least one thread assigned to each reactor. We say that two threads are local

to reactor r if both are assigned to that same reactor. We say that two threads

are remote if they are assigned to different reactors.

Further subdivision of the thread pools may be useful for some kinds of middleware,

for example to model thread pools at different priorities within a reactor [81], but for

the scenarios considered in this dissertation, we will assume a single thread pool per

reactor unless we indicate otherwise. It is also possible for an endsystem to employ

additional threads that are not assigned to a reactor, but a useful middleware design

idiom is only to use threads from reactor thread pools so that it is easier to apply

policies such as prioritization consistently across all threads. Therefore, we confine

our attention in this dissertation mostly to the case where all endsystem threads are

in reactor thread pools. The only exception to this is the Gateway example described

in Chapter 9, where active object [60] threads are used as worker threads as part of

the gateway example implementation using the Half-sync Half-async [97] pattern.

Temporal relations. We use non-negative real number domain T to denote time,

and express several temporal relations in our system model that are useful for the

analysis of system timing and liveness properties:

33

• registered : E× I ×R×T → 2H . The set of event handlers registered for event

e on interaction channel i in reactor r at time t is given by registered(e, i, r, t).

• active : R × T → 2E. The set of events that have arrived at reactor r but have

not been dispatched to event handlers at time t is given by active(r, t).

• ready : E × R × T → 2I . The set of interaction channels for which event e is

active in reactor r at time t is given by ready(e, r, t), and a single event-specific

action, such as one read from a socket for a “data ready” event, can be taken

on a ready channel without blocking the thread in which that action is taken.

• dispatched : R×T → 2θ. The set of threads in threadpool(r) that are currently

in use to dispatch events to event handlers in reactor r, and thus are not available

to dispatch other events from active(r, t) at time t is given by dispatched(r, t).

• blocked : R × T → 2θ. The set of threads in threadpool(r) that have taken

blocking actions that will only unblock and allow the thread to continue when

a specific event occurs is given by blocked(r, t). Note that for some scenarios,

such as a thread scheduling a timer and then blocking on the timer’s expiration,

unblocking will not depend on an action being performed in another thread; for

other scenarios, such as a thread performing a blocking read on a socket, an

event to trigger unblocking must be generated by an action taken by another

(possibly remote) thread.

• deadline : N × E → T . The time by which the nth occurrence of event e is

constrained to occur is given by deadline(n, e). Event occurrences that do not

have timing constraints are assumed to have a deadline of ∞.

• occurred : N × E → T . The time at which the nth occurrence of event e

happened is given by occurred(n, e).

• live : R×T → 2θ. The set of threads assigned to reactor r within each of which

at least one action occurs after time t is given by live(r, t).

• arrival time : N × E × R × I → T . The time of arrival of the nth occurrence

of event e on channel i at reactor r is given by arrival time(n, e, r, i). Event

occurrences are numbered globally rather than by interaction channel. If the

nth occurrence of an event happened in a different channel than the one given

to the arrival time function then the return value would be ∞ indicating that

the event never occurred there.

• dispatch time : N ×E×R×I → T . The time of dispatch of the nth occurrence

of event e on channel i by reactor r to the appropriate event handler is given

34

by dispatch time(n, e, r, i). If the nth occurrence of an event happened in a

different channel than the one given to the dispatch time function then the

return value would be ∞ indicating that the event never occurred there.

Problem definition. Our approach hinges on the idea that interference occurs

when the actions taken by endsystem threads can affect each other in ways that

produce adverse consequences for the system’s specified constraints. In Chapter 1, we

gave specific examples of interference occurring in ORB middleware. In this research,

we address the specific problem of detecting interference in which threads’ actions on

reactors, event handlers, and interaction channels in the endsystem middleware can

cause violations of application-specific timing and liveness constraints.

Forms of Interference. We analyze two forms of interference - blocking delays

and exhaustion of threads in a reactor thread pool.

• blocking delay : N × E × R × I → T . The blocking delay for the nth oc-

currence of event e is given by the interval between its arrival at a reactor r

on channel i and its dispatch to an event handler, blocking delay(n, e, r, i) =

dispatch time(n, e, r, i) − arrival time(n, e, r, i). If the nth occurrence of e

happened in a different channel and/or reactor than the one given to the

blocking delay function then the return value would be 0.

• threads exhausted : R× T → {true, false}. The threads in the thread pool of

a reactor r are exhausted at time t if |blocked(r, t)| = |threadpool(r)|.

Our analysis depends both on (1) the application constraints and (2) the mechanics

of the middleware mechanisms that shape the interference. We model the constraints

as temporal logic statements and model the middleware mechanisms as timed au-

tomata, and use model checking to evaluate whether or not the constraints are al-

ways satisfied. Specifically, we use model checking to search for states of the system

in which two particular kinds of constraint violations appear: missed deadlines, which

are timing constraint violations that can occur even when liveness is preserved, and

deadlock which is a liveness constraint violation that usually also leads to timing

constraint violations in subsequent system states. Checking for a missed deadline in

a state can be done using our system model by comparing the time at which the

35

nth occurrence of event e happened, to the deadline for that occurrence of the event:

occurred(n, e) > deadline(n, e). Deadlocks can be detected in our system model by

determining whether or not we reach a state with global time t after which no further

action will be taken by any of a reactor r’s assigned threads : |live(r, t)| = 0. Note

that it is not sufficient to check whether or not all threads in a reactor are blocked:

|blocked(r, t)| = |threadpool(r)| says only that no actions can be taken by the threads

assigned to reactor r from time t until a subsequent occurrence of an event (e.g., due

to an action in a remote thread) causes one of those threads to unblock, and only

indicates deadlock if no such event occurs after time t.

When a state containing a constraint violation is reached, the model checker can

then produce a trace of the system states that led up to that constraint violation.

By examining these traces and correcting the particular patterns of interference they

reveal, we can remove design and implementation errors, and also gain insights into

new techniques that can in some cases prevent, or in others at least help avoid, those

errors. In Chapters 4 and 5 we describe the models we have developed in the research

presented in this dissertation, and our use of the modeling and model checking tools

within which we represent and explore them. In Chapters 6, 8 and 9 we present

case studies showing how different forms of interference can arise, and how model

checking can be used to detect them or to verify their absence.

3.2 Middleware Modeling Architecture

Figure 3.2 shows our modeling architecture which forms the basis for our model de-

velopment (step 3 in Figure 3.1) which is discussed further in Chapters 4 and 5. Our

models are divided into three layers: (1) models of network and OS level abstractions

such as channels for interprocess communication; (2) models of semantically rich mid-

dleware building blocks like threads, event handlers, and reactors; and (3) models of

the application functionality implemented in the form of event handlers. Although

Figure 3.2 shows a static view of our models, the realizations of these models using IF

or UPPAAL are executable and can be model-checked against system property spec-

ifications. The unshaded rectangular boxes shown in Figure 3.2 are modeled using

36

timed finite state automata specified using a modeling language that supports timed

automata, e.g., IF or UPPAAL.

IPC_SAP Buffers

IPC Channel

EventHandler
EventHandler

Reactor

Reverse channel

IPC_SAPIPC_SAP Forward channel

Handler
RepositoryIPC_SAP_Set

Handler
Repository

ThreadPool

IPC_SAP_Set

Data structures and operations

IPC_SAP

Event Handler
Transition

control
mechanisms

Application
abstraction

layer

Middleware
abstraction

layer

Network/OS
abstraction

layer

Acceptor

Connector

SAP Event Demultiplexer

SAP Reader

SAP Writer

Leader/
Followers

Property
Specifications

Read buffer Write Buffer

Read buffer Write Buffer
Read buffer Write Buffer

3

2

1

Figure 3.2: Middleware Modeling Architecture

To reduce the complexity of the state space that must be explored by model check-

ing, we also abstract certain details of the system out of the timed automata models

themselves. The shaded rectangular boxes shown in Figure 3.2 are foundational data

structures and associated operations that we have implemented to complement the

timed models. Some of these foundational data structures are shared across au-

tomata, and thus form a basis for event-driven communication between automata.

For example, one automaton could wait for data to be updated in a shared data

structure (e.g., IPC SAP Buffers) and another automaton could update this shared

37

data structure thus allowing the waiting automaton to proceed further. Communica-

tion between automata occurs through specific interfaces to the shared data. Using

these interfaces, the shared data can be manipulated. Timed transitions (transitions

that are guarded with conditions based on clock variables) are indicated in Figure 3.2

by timer icons. We now describe each of the layers of our middleware modeling

architecture in greater detail.

Network/OS abstraction layer. At the lowest architectural layer, we model

inter-process communication (IPC) mechanisms - such as sockets, pipes, FIFOs, and

message queues - as IPC channels. An IPC channel has two Service Access Points

(SAPs), for convenience called the left-hand-side SAP (lhs-SAP) and the right-hand-

side SAP (rhs-SAP). Each SAP has a read-buffer and a write-buffer associated with

it. The read-buffer is used by the SAP to receive any data sent to it from another

SAP and the write buffer is used to send data from that SAP to another SAP. Based

on the features offered by a model checker (e.g., Abstract Data Types in IF), one may

choose not to expose these buffers to the model checker if the data itself does not play

a significant role in the kind of properties, i.e., timeliness and liveness requirements,

with which our research is concerned. Instead, the read and write buffers associated

with each SAP may be stored in IPC SAP buffers outside of the model. Each SAP

has a unique handle associated with it and this handle is used in the IPC SAP Buffers

data structure to access the data buffers associated with a SAP. For example, the IF

model checker provides the Abstract Data Type feature which we use to implement

the data structures and operations and the states of these data structures are not

exposed to the model checker. We describe this in detail in Section 5.2.

An IPC channel is bidirectional. It is modeled, however, as two data-transfer au-

tomata, one for the forward direction, and one for the reverse direction. The forward

channel automaton waits for data to be enqueued on the write-buffer of the lhs-SAP

and transfers it to the read-buffer of the rhs-SAP. The reverse channel automaton

waits for data to be enqueued on the write buffer of the rhs-SAP and transfers it to

the read-buffer of the lhs-SAP. These forward and reverse channel automata also can

be parameterized with propagation delays, if needed. These propagation delays are

implemented using transitions guarded with clock variables in the model. Modeling

the IPC channel as an automaton with those parameters allows us to model different

38

degrees of asynchrony and non-determinism introduced by real-world communication

channels.

Middleware abstraction layer. The next architectural layer above the network/OS

layer is the middleware layer, where we model abstractions of semantically rich mid-

dleware building blocks. Here we use the foundational data structures and operations

to encapsulate data structures like the event handler repository used by the reactor

to store mappings between a Service Access Point (SAP) and the handler associated

with that SAP. This table is populated whenever an event handler is registered with

a reactor.

Each middleware primitive is modeled so that the behavior seen when the model is

executed closely adheres to that of the actual implementation. This faithful modeling

of the middleware primitives in turn results in high-fidelity models of higher-level

middleware services, obtained by composing these primitive models.

Application abstraction layer. In our models, we encapsulate the application

functionality using event handlers as is customary when developing ACE applications

in practice [95, 96]. Each event handler reads data from or writes data to IPC

channels, which in turn model interactions between different event handlers. The

computation performed by an event handler is abstracted away and represented by a

single transition, guarded by a constraint on a clock variable to model its execution

time as necessary. An event handler reads and writes data to an SAP using the

foundational operations described before.

Property specifications for verification. Once we build models of applications

using the layered approach that we have just described, the timing and liveness prop-

erties should be specified using a suitable formalism. This formalism depends on the

model checking tool within which our models are executed. For example, in this dis-

sertation, we use formalisms based on IF (observers) and UPPAAL (CTL expressions)

to express timing and liveness properties.

39

Transition Control Mechanisms. Since model checking tools search the state

space exhaustively for any violation/satisfaction of system properties, for a large

state space, the technique may become intractable. To make model checking more

tractable, the search space should be restricted by pruning out unnecessary non-

determinism. This is possible by providing middleware domain specific state space

optimizations.

3.3 Summary

In this chapter, we have described a middleware-level system model that captures the

key middleware elements that form the focus of this dissertation, and their relation-

ships. We proposed a middleware modeling architecture that forms the basis for the

models developed in this dissertation.

40

Chapter 4

Models in UPPAAL

In Chapter 3, we described the different steps involved with building and using the

middleware models that have been developed in this dissertation. In this chapter,

we focus on model development (step 3) using UPPAAL [7], a tool that supports

timed automata modeling and model checking. We reify the modeling architecture

described in Section 3.2 using the modeling constructs in UPPAAL.

4.1 Realization of the Middleware Modeling Ar-

chitecture in UPPAAL

Figure 4.1 shows our realization of the modeling architecture discussed in Section 3.2,

in UPPAAL. Note that the generic architecture shown in Figure 3.2 has been made

more concrete in Figure 4.1 using modeling constructs in UPPAAL. For example,

transition control mechanisms are realized in UPPAAL using techniques for maximal

progress which we discuss in Section 4.3.1. Property specification is done through

CTL [19] expressions. Formal models of foundational middleware building blocks are

realized using timed automata in UPPAAL. We developed foundational data struc-

tures like IPC SAP, collections of IPC SAPs, handler repositories, etc. using array and

user-definable record data structure features in UPPAAL. We developed functions to

operate on these data structures so that these functions can be accessed from the

timed automata models in UPPAAL. The ability to define and call user-defined func-

tions was introduced in UPPAAL 3.6 Alpha 1(Nov 2005). Note that these user-defined

functions facilitate carrying out data structure operations like adding a handler to

41

EventHandler
EventHandler

Select/TP Reactor

Reverse IPC channel

SAP buffers - shared buffers indexed by IPC_SAP handle

IPC_SAPIPC_SAP Forward IPC channel

Handler
Repository

Read/Write
SAP Set

Handler
Repository

(array)

ThreadPool

IPC_SAP_Set
(array)

Functions to operate on
shared buffers,
IPC_SAP_Set,

HandlerRepository

IPC_SAP

Event Handler Application
abstraction

layer

Middleware
abstraction

layer

Network/OS
abstraction

layer

Leader/
Followers

Data structures and Operations

UPPAAL
Timed

Automata
models

Read buffer Write buffer

Read buffer Write buffer

Read buffer Write buffer

Transition
control using

maximal
progress

Property
specifications

using CTL

Figure 4.1: Realization of the Modeling Architecture in UPPAAL

42

the handler repository. These user-defined functions are essentially a vehicle to carry

out operations on a subset of the system state, which if done using automata (as

opposed to functions) could result in an unnecessary increase in the number of states

and transitions. UPPAAL 3.6 also offers simple control structures like for, while, if

and return that can be used within user-defined functions. User-defined functions in

UPPAAL cannot have state transition constructs within them. They can be used only

for data transformation activities and hence can only be called as part of the action

statements in an exectuable automata model. It is worth noting that the language

in which the a function is defined in UPPAAL is very similar to C, although it is

not C. In contrast, the IF modeling tool that we will use in Chapter 5 offers a proce-

dure construct that wraps actual C code. Note that some of the middleware building

blocks (Acceptor, Connector) from the architecture shown in Figure 3.2 are missing

from Figure 4.1. These are not implemented because of the inability in UPPAAL

to create automaton dynamically, which is necessary to model these building blocks.

For example, an Acceptor creates a service handler dynamically when a connection

has been established.

4.2 Modeling Foundational Data Structures and

Functions

We now explain the foundational data structures and functions that we developed and

which are used by models of middleware building blocks and the applications based

on them. This discussion establishes a basis for our subsequent discussions about the

middleware building block models which use these foundational functions and data

structures. Figure 4.2 shows some of the foundational data structures modeled using

UPPAAL constructs.

The IPC SAP Buffer structure models the read and write buffers associated with a

service access point (SAP). The collection of all SAPs in the system is modeled by

the array ipc sap buffers. Each IPC SAP structure has a unique handle associated with

it, which is used to index the ipc sap buffers array to get to the buffers associated with

that IPC SAP. Note that we maintain only the number of bytes enqueued in a buffer

43
typedef struct

{

int readq;

int writeq;

} IPC_SAP_Buffer;

IPC_SAP_Buffer

ipc_sap_buffers[MAX_IPC_SAP_BUFFERS];

typedef struct

{

int handle;

bool suspended;

int annotation;

} IPC_SAP;

typedef struct

{

IPC_SAP members[MAX_MEMBERS];

int currsize;

} IPC_SAP_Set;

typedef struct

{

IPC_SAP sap;

int eh;

} HandlerRepoItem;

typedef struct

{

HandlerRepoItem

members[MAX_REPO_HANDLERS];

int currsize;

} HandlerRepo;

typedef struct

{

bool reactor_in_use;

HandlerRepo handler_repo;

IPC_SAP_Set read_sap_set_to_watch;

IPC_SAP_Set write_sap_set_to_watch;

int handle_events_stack_depth;

} Reactor_State;

Figure 4.2: A Sampling of Foundational Data Structures

and not the actual data, which in turn reduces the state space that must be checked

without modifying the outcome of verification since we limit our attention to the

effects of concurrency semantics in middleware on the timing and liveness properties of

the application. The ipc sap buffers array is a global variable in our UPPAAL model,

which is shared across all automata. Communication between automata is achieved

by putting bytes into the shared buffers, which in turn will trigger other automata

that are waiting for bytes to be enqueued into specific buffers. The HandlerRepo data

structure is used to keep track of the association between service access points and

event handlers. Each reactor automaton uses the Reactor State data structure to

maintain its state so that automata modeling threads in a reactor thread pool can all

access the state of the reactor.

Figure 4.3 shows a sampling of the UPPAAL functions that we have developed to

manipulate the global shared data structures. Functions named starting with prefix

ipc set operate on an IPC SAP Set. For example, ipc set suspend sap is used to mark

a SAP as suspended by setting the suspended flag in an IPC SAP object. This flag

is used by a reactor to determine whether an SAP should be included in its set of

SAPs to watch for I/O events. ipc set resume sap resets the suspended flag. The

44

//Operations on IPC_SAP_Set

int ipc_set_add_member(IPC_SAP_Set &sap_set, IPC_SAP sap)

int ipc_set_size(IPC_SAP_Set ipc_set)

int ipc_set_pop_first(IPC_SAP_Set &sap_set, IPC_SAP& first_sap)

int ipc_set_suspend_sap(IPC_SAP_Set &sap_set, IPC_SAP& sap)

int ipc_set_resume_sap(IPC_SAP_Set &sap_set, IPC_SAP& sap)

IPC_SAP_Set ipc_set_get_non_suspended_saps(IPC_SAP_Set &sap_set)

int ipc_set_pop_first_non_suspended(IPC_SAP_Set &sap_set,

IPC_SAP& first_non_susp_sap)

int ipc_set_clear(IPC_SAP_Set &sap_set)

IPC_SAP_Set get_hot_read_saps(IPC_SAP_Set &read_sap_set)

IPC_SAP_Set get_hot_write_saps(IPC_SAP_Set &write_sap_set)

//Operations on queues associated with IPC SAPs

int init_ipc_queues()

int put_data(IPC_SAP sap, int qtype, int bytes)

int get_data(IPC_SAP sap, int qtype)

int queue_level(IPC_SAP sap, int qtype)

bool is_empty(IPC_SAP sap, int qtype)

bool is_any_sap_hot(IPC_SAP_Set read_sap_set,

IPC_SAP_Set write_sap_set)

//Operations on handler repository

EH_PID HR_get_handler(HandlerRepo &handler_repo, IPC_SAP sap)

int HR_add_handler(HandlerRepo &handler_repo, IPC_SAP sap, EH_PID eh)

Figure 4.3: A Sampling of Foundational Functions

45

ipc set get non suspended saps function is used to filter a set of SAPs and extract

only the ones for which the suspended flag is not set. Functions put data and get data

are used to enqueue and dequeue bytes into and from the appropriate read and write

buffers in the ipc queues global shared data structure. These functions use the passed

IPC SAP object’s handle to index the ipc queues and increment or decrement the byte

counters (the readq and writeq variables associated with the specified IPC SAP object.

The is any sap hot function models the select and WaitForMultipleObjects OS calls.

It takes it a set of SAPs and determines whether any of these are “hot” with an I/O

event. For an SAP in the read set, “hot” means the read buffer for that SAP is not

empty. For an SAP in the write set, “hot” means the write buffer for that SAP is

not full. The functions get hot read saps and get hot write saps gets the SAPs that

are read-ready and write-ready from a set of SAPs. These are typically used by a

reactor to get the “hot” SAPs from the set of SAPs that are watched by the reactor.

Finally, functions named starting with prefix HR are used to manipulate a reactor’s

handler repository.

4.3 Modeling Issues in UPPAAL

In this section, we identify several engineering challenges we faced in building our

models in UPPAAL and then present solutions to overcome these challenges.

4.3.1 Maximal Progress in UPPAAL

Before we discuss our implementation of middleware building block models in UP-

PAAL, we first consider the idea of maximal progress in UPPAAL, its consequences,

and how we work around particular problems posed by it. The solutions to these

problems are used throughout our models. First, in UPPAAL, communication be-

tween two automata can be achieved through rendezvous synchronization, broadcast

synchronization and/or shared variables. In rendezvous synchronization, there is a

handshake between two automaton on the same channel, with one automaton wait-

ing on a channel (denoted as channel?) and another automaton sending on the same

channel (denoted as channel!). The sending action won’t be enabled unless there is a

46

receiver waiting on the same channel on which the sender is sending, and vice-versa.

A channel in UPPAAL, by default, is a rendezvous channel. A channel also can be

qualified as a broadcast channel, in which case multiple receivers can listen to and

receive messages sent by a single sender on the same channel. In this case, unlike with

a rendezvous channel, the sender can send on a channel even if there are no receivers

listening on that channel. The channels do not maintain history and hence a message

sent on a broadcast channel will be lost unless a receiver is already listening on that

channel.

Many event-triggered systems need to communicate asynchronously by means of

events that are triggered by change of some state variable. UPPAAL supports the

notion of guarded transitions, where an automaton can wait on some state-variable-

based condition to be satisfied. Guarded transitions can be used to model state

transitions in event-triggered systems based on state variable changes. We now ex-

plain the problems arising from the lack of maximal progress semantics in UPPAAL,

in the presence of both time and event based transitions.

Figures 4.4(a) and 4.4(b) show the client and server automata of a simple example to

illustrate the need for maximal progress in time and event based modeling of systems.

In this example, we are modeling a very simple client/server example, where the client

sends a request to a server at global time = 3 and the server sends a reply back to the

client after doing some computation for 4 time units after it detects the request. Note

that there are three clock variables that are being used in this example - global time,

Client.time and Server.time. global time is a global variable that is accessible to both

the client and server automata. Client.time and Server.time are local clock variables in

the client and server automata respectively. These local clock variables are typically

used to keep track of elapsed or relative time. For example, a local variable time is

used in the Client automaton to model the fact that if the client does not get the

reply back within 30 time units (a relative deadline of 30 time units from the time

when the request was sent), there is a deadline miss and a state transition is made to

state Miss. Local clock variables can be reset as seen in Figure 4.4(a), where during

the state transition Client:S1→S2, the local clock variable time is reset to 0. All clock

variables in UPPAAL are synchronized and are advanced by UPPAAL atomically.

47

Done

MissS2

time <=30

S1

global_time <= 3

reply == 1

time == 30global_time == 3

request = 1,
time = 0

(a) Client

S2

time <=4

S1

time == 4
reply = 1

request == 1
time = 0,
request=0

(b) Server

Figure 4.4: Maximal Progress Example

48

If, on the other hand, a reply is received before the deadline, the client takes a

transition to the Done state. This example is typical of time and event based systems,

where triggering of state transitions could be based on both time (e.g., request to be

sent at global time = 3) and event (e.g., request arrival at the server denoted by

request == 1).

Note that there is an invariant in state S1 of the client automaton (global time ≤ 3).

This forces a state transition out of that state at global time = 3. Not having this

invariant could allow UPPAAL to advance time without leaving that state, which is

not the behavior that we want. A similar purpose is served by the invariants in state

S2 of the client automaton and state S2 of the server automaton. Shared variables

such as request and reply are used for indirect communication between the client and

server automata. The client updates the shared variable request to 1 and the server

waits for this variable to become 1. Similarly, the server updates the shared variable

reply to 1 and the client waits for this variable to become 1 as it waits for its reply.

When we run a simulation of this composed system in UPPAAL, we notice that

the first transition in the system is Client:S1→S2. At state S2, there are two tran-

sitions enabled in the UPPAAL model checker - Client:S2→Miss and Server:S1→S2.

The transition Server:S1→S2 is enabled because the value of the request variable is

1. However the transition Client:S2→Miss is also enabled because of lack of maximal

progress or as soon as possible semantics in UPPAAL. With maximal progress seman-

tics, a model checker tries to make as much progress as possible, by taking successive

non-time-based transitions, until no more non-time-based transitions are enabled and

only then advances time. Since maximal progress semantics is not implemented in

UPPAAL, advancing time is also a possibility at any point in UPPAAL and hence the

model checker can give a false positive for a deadline miss query like E3 Client.Miss,

which asks whether there is any path in the state space where in any state the Client

automaton is in the Miss state.

4.3.2 Constraining the State Space with Maximal Progress

Not only does the lack of maximal progress semantics cause the UPPAAL verifier

to give false positives as was discussed in the previous section, but it also makes

49

the state space larger than necessary by introducing inappropriate non-determinism,

where time based transitions are also enabled apart from the shared variable based

guarded transitions.

We now describe how we constrain the state space by forcing UPPAAL to achieve

maximal progress and hence eliminate this non-determinism. In the example in Sec-

tion 4.3.1, one intuitive solution is to mark the state Server:S1 as an urgent state

(in UPPAAL, time cannot progress in an urgent state). In other words, the model

checker has to execute enabled transitions leaving from an urgent state before it can

advance time. Unfortunately this solution won’t work because of the very same issue

that it is supposed to address - progress of time. If we mark the state Server:S1 as

urgent, then the model checker will try to execute the sole transition Server:S1→S2

before executing any other transition since S1 is one among the initial states of the

composed automata. The transition Server:S1→S2 would become enabled only when

request = 1, which will happen only when time progresses to 3 and the Client automa-

ton updates request to 1. However time cannot progress in an urgent state and hence

no transitions are enabled, resulting in a deadlock.

Our solution to these problems is based on the concept of an urgent channel in UP-

PAAL used in conjunction with untimed guards [7] and rendezvous synchronization.

This solution applied to the example in Section 4.3.1 is shown in Figure 4.5. Every

shared-variable based guarded transition carries a rendezvous synchronization with a

dummy channel (denoted as dummy?). A new automaton is introduced in the system,

which has a single state and a single transition that has a corresponding channel send

(denoted dummy!). The dummy channel is marked as urgent so that time does not

progress while executing this rendezvous. In our modified example in shown in Fig-

ures 4.5(a)- 4.5(c), the dummy rendezvous is introduced in the two transitions whose

guards are based on shared variable updates - Server:S1→S2 and Client:S2→Done.

As soon as request becomes 1, Server:S1→S2 becomes enabled and since time cannot

progress in this transition because of the rendezvous synchronization on an urgent

channel, this is the only transition that is enabled. We use this solution in our models

in the context of all shared variable based guarded transitions. One potential limi-

tation [7] to the use of urgent channels is that they cannot be used in conjunction

with timed guards, which in our case is not a problem since we are using them only

in conjunction with untimed guards.

50

Done

MissS2

time <=30

S1

global_time <= 3

reply == 1dummy?

time == 30global_time == 3

request = 1,
time = 0

(a) Client

S2

time <=4

S1

time == 4
reply = 1

request == 1

dummy?

time = 0,
request=0

(b) Server

dummy!

(c) Dummy

Figure 4.5: Maximal Progress Solution

51

4.4 UPPAAL Models of Middleware Building Blocks

We now describe the models of middleware building blocks that we developed in

UPPAAL. These models use the foundational data structures and operations that we

described in Section 4.2. They also use the solution for maximal progress described in

Section 4.3.2 so that communication among automata through shared variables take

precedence over progress of time.

4.4.1 IPC Channel

We model an IPC Channel as a combination of two automata - a forward channel

and a reverse channel. Each of these channels is modeled as shown in Figure 4.6. The

SAPs and channels are typically instantiated in UPPAAL as follows:

S2

t<=prop_delay

S1

t==prop_delay
bytes_read = get_data(lhs_sap, IPC_WRITEQ),
put_data(rhs_sap, IPC_READQ, bytes_read)

!is_empty(lhs_sap,IPC_WRITEQ)

dummy?
t=0

Figure 4.6: Model of an IPC Channel

In effect, this automata transfers bytes from one slot (handle in lhs-SAP) in the

ipc sap buffers data structure to another slot (handle in rhs-SAP). This automata

waits for data to appear in the lhs-SAP buffer. The wait is modeled by the is empty

function which takes the lhs-SAP object as an argument. At state S1, the automaton

waits for data on the write buffer of the lhs-SAP. When there is some data in the

buffer, the automaton changes state to S2. Note the usage of dummy? once again

52

to achieve maximal progress. At S2, the automaton waits for a specified number

(prop delay) of time units. The value for prop delay is passed as the third param-

eter as is shown in the UPPAAL model instantiation in Figure 4.7. For example,

//process template arguments for IPC_Channel automaton

IPC_Channel(IPC_SAP &lhs_sap, IPC_SAP &rhs_sap, int prop_delay)

//in the global declarations section in UPPAAL modeler

IPC_SAP ipc_sap_0 = {0, false, 0};

IPC_SAP ipc_sap_1 = {1, false, 0};

//in the Process assignment section in UPPAAL modeler

client1_eh1_fwd = IPC_Channel(ipc_sap_0,ipc_sap_1,5);

client1_eh1_rev = IPC_Channel(ipc_sap_1,ipc_sap_0,7);

Figure 4.7: Instantiation of IPC Channel Automaton

channel client1 eh1 fwd transfers data from the write buffer of ipc sap 0 to the read

buffer of ipc sap 1, with a propagation delay of 5. The corresponding reverse channel

client1 eh1 rev transfers data from the write buffer of ipc sap 1 to the read buffer of

ipc sap 0. After waiting for the specified delay period, the automaton enqueues the

data to the read buffer of the rhs-SAP and comes back to state S1, and listens again

for data to be enqueued.

4.4.2 Select Reactor

Figure 4.8 shows a model in UPPAAL of the ACE Select Reactor. Note that in this

model we extensively use the foundational functions that we discussed in Section 4.2.

The reactor is modeled as a process template with parameters and instantiation as is

shown in Figure 4.9.

The reactor is modeled as a passive object waiting for the handle events method

call from the reactor thread (see Figure 4.10). The handle events method call is

modeled as a rendezvous channel in UPPAAL. Similarly, the method call’s return

is modeled as another UPPAAL channel handle events return. These channels are

passed as process template parameters, as shown in Figure 4.9 to the Select Reactor

automaton in UPPAAL so that multiple instances of the Select Reactor automaton

can be created with different channels for communication with other automata in the

53

S8

S7

S6

S5

S4

S3S2S1

eh_hor_channels[upcall_handler]?

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?

ipc_set_size(hot_write_sap_set) > 0
ipc_set_pop_first(hot_write_sap_set, first_hot_sap),
upcall_handler = HR_get_handler(reactor_state.handler_repo,first_hot_sap)

ipc_set_size(hot_write_sap_set) == 0
handle_events_return!

ipc_set_size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

ipc_set_size(hot_read_sap_set) > 0
ipc_set_pop_first(hot_read_sap_set, first_hot_sap),
upcall_handler = HR_get_handler(reactor_state.handler_repo,first_hot_sap)

is_any_sap_hot(reactor_state.read_sap_set_to_watch, reactor_state.write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(reactor_state.read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(reactor_state.write_sap_set_to_watch)handle_events?

Figure 4.8: Model of Select Reactor

//process template arguments for Select_Reactor

Select_Reactor(THREAD_ID thread_id, urgent chan &handle_events,

urgent chan &handle_events_return, Reactor_State &reactor_state)

//instantiation of Select_Reactor automaton

reactor1 = Select_Reactor(REACTOR1,

handle_events_channels[REACTOR1],

handle_events_return_channels[REACTOR1],

reactor_states[REACTOR1]);

Figure 4.9: Instantiation of Select Reactor Automaton

54

composed system. REACTOR1 is an integer constant used to identify each reactor

in the system. Each reactor has a reactor state associated with it, e.g., handler

repository, SAP handle set to listen on. These data structures are maintained in the

global state space and are passed as template arguments to each reactor instantiation

as is shown in Figure 4.9.

We now discuss in detail the state transitions in the Select Reactor model illustrated

in Figure 4.8. At state S1, the reactor waits for the handle events method call from

the reactor thread. On receipt of the handle events event, the reactor moves to state

S2. In state S2, the reactor checks to see whether any of the SAPs that it is watching

are ready (“hot”) for reading or writing. The reactor waits in S2 until there is

at least one ready SAP. It then gets the set of SAPs that are read-ready and the

set of SAPs that are write-ready. In state S3, the reactor checks whether there

are read-ready SAPs. If so, it removes the first SAP from the read-ready set of

SAPs and obtains the event handler channel corresponding to that SAP from the

handler repository and then moves to state S4. It uses the event handler channel to

rendezvous with that event handler (S4→S5). Note that the channels to communicate

with the event handlers are stored in the global arrays - eh hi channels for handle input

method calls, eh hir channels for handle input method call returns, eh ho channels for

handle output method calls and eh hor channels for handle output method call returns

. In state S5, the reactor waits for the handle input method call return from the

event handler. This sequence of steps (S3→S4→S5) is repeated until there are no

more read-ready SAPs. The same sequence is then repeated for the write-ready SAPs

(S6→S7→S8). In this sequence, instead of the handle input and handle input return

channels, handle output and handle output return channels are used to communicate

with event handler automata.

Figure 4.10 shows the UPPAAL model of a thread that repeatedly calls the han-

dle events method on the reactor. This models the reactor event loop in an applica-

tion. Typically, the loop is terminated by an application-specific condition which for

simplicity and generality we have not shown here.

55

reactor_handle_events_return?

reactor_handle_events!

Figure 4.10: Model of a Reactor Thread

4.4.3 Reentrant Select Reactor

In some cases an event handler could call handle events on a reactor in the context

of an upcall, which constitutes a recursive call into the reactor handle events method.

For instance, when using ACE to implement an object request broker like TAO [50]

or nORB [104], this is how an event handler waits for a pending reply using the

reactor rather than directly waiting on the connection. An example of this was

shown in Section 1.2.2. We now discuss in detail how recursive calls can be modeled

in UPPAAL, using the Reentrant Select Reactor model shown in Figure 4.11 as an

example.

Lack of recursive capability in Select Reactor model. In Figure 4.8, we saw

that when the select reactor is in the middle of an upcall to an event handler, it is

either in state S5 or S8 depending on whether the upcall corresponds to a read-ready

or write-ready SAP. Therefore if a recursive call is made to the handle events method

of the reactor by an event handler as part of the upcall, there will be a deadlock while

executing the model since the reactor automaton is not in state S1 where the reactor

automaton waits for the handle events method call. Instead the reactor automaton

waits for the event handler to complete the upcall processing and the event handler

won’t be able to complete its processing until the handle events call to the reactor

completes.

To support such recursive calls, we revisit the notion that the reactor model in Fig-

ure 4.8 models the execution call stack of the handle events method implementation.

Each execution stack frame of the handle events method call can be modeled by an

instance of the Select Reactor automaton. With additional modifications, recursive

56

calls can be supported. These modifications ensure that these different instantia-

tions of the reactor automaton use different channels for communication with other

automata.

Figure 4.11 shows the modifications necessary to the Select Reactor automaton to

support recursive calls. We introduce a new variable as part of the reactor state -

handle events stack depth - to keep track of the depth of recursion. As part of the tran-

sition S1→S2, we increment this variable by 1 and as part of the transition S6→S1,

we decrement this variable by 1. This depth counter is used by an event handler

to choose the appropriate channel to communicate with the reactor automaton at

the current level of nesting. To facilitate this choice, we need to instantiate multiple

instances of the Reentrant Select Reactor automaton as shown in Figure 4.12.

S8

S7

S6

S5

S4

S3S2S1

eh_hor_channels[upcall_handler]?

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?

ipc_set_size(hot_write_sap_set) > 0
ipc_set_pop_first(hot_write_sap_set, first_hot_sap),
upcall_handler = HR_get_handler(reactor_state.handler_repo,first_hot_sap)

ipc_set_size(hot_write_sap_set) == 0

handle_events_return!

reactor_state.handle_events_stack_depth--

ipc_set_size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

ipc_set_size(hot_read_sap_set) > 0
ipc_set_pop_first(hot_read_sap_set, first_hot_sap),
upcall_handler = HR_get_handler(reactor_state.handler_repo,first_hot_sap)

is_any_sap_hot(reactor_state.read_sap_set_to_watch, reactor_state.write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(reactor_state.read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(reactor_state.write_sap_set_to_watch)

handle_events?
reactor_state.handle_events_stack_depth++

Figure 4.11: Model of Reentrant Select Reactor

Both reentrant handle events channels and reentrant handle events return channels are

global arrays that contain channels for communication, with each instantiated Ren-

trant Select Reactor automaton. Note that the same reactor state is passed to all the

instantiations. This is akin to the this object reference being passed implicitly as the

57
//execution stack at depth 0

reactor1_s1 = Reentrant_Select_Reactor(REACTOR1,

reentrant_handle_events_channels[REACTOR1][STACK0],

reentrant_handle_events_return_channels[REACTOR1][STACK0],

reactor_states[REACTOR1]);

//execution stack at depth 1

reactor1_s2 = Reentrant_Select_Reactor(REACTOR1,

reentrant_handle_events_channels[REACTOR1][STACK1],

reentrant_handle_events_return_channels[REACTOR1][STACK1],

reactor_states[REACTOR1]);

//execution stack at depth 2

reactor1_s3 = Reentrant_Select_Reactor(REACTOR1,

reentrant_handle_events_channels[REACTOR1][STACK2],

reentrant_handle_events_return_channels[REACTOR1][STACK2],

reactor_states[REACTOR1]);

Figure 4.12: Instantiation of Reentrant Select Reactor Automaton

first parameter to an object method implementation in an object oriented language’s

run-time execution model.

To communicate with the appropriate reactor automaton, the current stack depth is

used as shown in Figure 4.13. The current handle events stack depth is obtained from

the appropriate reactor’s state and then the reentrant handle events return channels is

used to obtain the appropriate channel over which to communicate with that reactor

automaton.

//obtain the current stack depth

handle_events_stack_depth =

reactor_states[reactor_pid].handle_events_stack_depth

//wait for return from a handle_events call on a reactor

reentrant_handle_events_return_channels[reactor_pid][handle_events_stack_depth]?

Figure 4.13: Selecting from a Reentrant Select Reactor Stack

4.4.4 ThreadPool Reactor

The ThreadPool Reactor model shown in Figure 4.14, is an extension of the Select

Reactor model in which we model multiple threads taking turns to wait in the same

58

reactor using the Leader/Followers pattern. Multiple instantiations of the TP Reactor

automaton are instantiated as shown in Figure 4.15. This is to simulate the different

execution stacks associated with the execution of the reactor handle events method

under different thread contexts.

S3

S2

S10

S9

S8

S7

S6

S5S4

S1

ipc_set_size(hot_read_sap_set) == 0 and
ipc_set_size(hot_write_sap_set) == 0

ipc_set_size(hot_read_sap_set) > 0 or
ipc_set_size(hot_write_sap_set) > 0

reactor_state.reactor_in_use == false
dummy?

reactor_state.reactor_in_use = true,
read_sap_set_to_watch = ipc_set_get_non_suspended_saps(reactor_state.read_sap_set_to_watch),
write_sap_set_to_watch = ipc_set_get_non_suspended_saps(reactor_state.write_sap_set_to_watch),
hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

eh_hor_channels[upcall_handler]?
ipc_set_resume_sap(reactor_state.write_sap_set_to_watch, first_hot_sap)

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?
ipc_set_resume_sap(reactor_state.read_sap_set_to_watch, first_hot_sap)

ipc_set_size(hot_write_sap_set) > 0
ipc_set_pop_first(hot_write_sap_set, first_hot_sap),
ipc_set_suspend_sap(reactor_state.write_sap_set_to_watch, first_hot_sap),
upcall_handler = HR_get_handler(reactor_state.handler_repo,first_hot_sap),
reactor_state.reactor_in_use = false

ipc_set_size(hot_write_sap_set) == 0
handle_events_return!

ipc_set_size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

ipc_set_size(hot_read_sap_set) > 0

ipc_set_pop_first(hot_read_sap_set, first_hot_sap),
ipc_set_suspend_sap(reactor_state.read_sap_set_to_watch, first_hot_sap),
upcall_handler = HR_get_handler(reactor_state.handler_repo,first_hot_sap),
reactor_state.reactor_in_use = false

is_any_sap_hot(read_sap_set_to_watch, write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

handle_events?

Figure 4.14: Model of ThreadPool Reactor

This use of multiple automata to simulate the execution stacks is very similar to the

Reentrant Select Reactor model. The only difference is the way in which the channels

to the different automata are obtained. In the case of the Reentrant Select Reactor

model, the current stack depth is used to access the appropriate channel, since the exe-

cution is recursive in the context of the same thread. In contrast, with the TP Reactor

model, execution of handle events is in the context of different threads and hence the

thread id is used as an index to access the appropriate channels as shown above.

For example, the automaton instance reactor1 t1 uses the channel stored at location

handle events channels[THREAD1] for its communication and the thread pool thread

tp thread1 is instantiated with the same channel. This approach provides isolation

between the call stacks of different threads.

Initially, each thread in a thread pool for a reactor communicates with its own re-

actor automaton instance using the appropriate handle events channel. The reactor

automaton makes a transition from state S1 to state S2. At S2, we have to model

synchronization between the threads in a thread pool that is used to control access to

59
//Execution stacks for two threads in thread pool for REACTOR1

reactor1_t1 = TP_Reactor(THREAD1,handle_events_channels[THREAD1],

handle_events_return_channels[THREAD1],

reactor_states[REACTOR1]);

reactor1_t2 = TP_Reactor(THREAD2,handle_events_channels[THREAD2],

handle_events_return_channels[THREAD2],

reactor_states[REACTOR1]);

//Execution stacks for a single thread in thread pool for REACTOR2

reactor2_t3 = TP_Reactor(THREAD3,handle_events_channels[THREAD3],

handle_events_return_channels[THREAD3],

reactor_states[REACTOR2]);

//threads in thread pool for REACTOR1

tp_thread1 = ReactorThread(handle_events_channels[THREAD1],

handle_events_return_channels[THREAD1]);

tp_thread2 = ReactorThread(handle_events_channels[THREAD2],

handle_events_return_channels[THREAD2]);

//threads in thread pool for REACTOR2

tp_thread3 = ReactorThread(handle_events_channels[THREAD3],

handle_events_return_channels[THREAD3]);

Figure 4.15: Instantiation of ThreadPool Reactor Automaton

the reactor event demultiplexing mechanism. We use the reactor in use flag to achieve

this synchronization.

For example, consider a scenario where multiple threads in a thread pool are at state

S2 trying to gain access to the reactor event demultiplexing mechanism modeled by

the function is any sap hot. The model checker selects one reactor automaton non-

deterministically and allows it to execute the transition S2→S3. This automaton now

is designated as the leader automaton that models the leader thread, and all the other

automata which use the same reactor are then designated as being follower automata.

The leader automaton sets the reactor in use flag to true in the reactor’s state. When

the leader automaton is in state S3, the transition S2→S3 is disabled for all follower

automata, since the condition reactor in use==true is not true anymore.

After state S3, the working of the leader automaton very closely resembles that of

the Select Reactor automaton with some key differences in the transitions S5→S6 and

S8→S9. In both cases, the reactor suspends the SAP using the function ipc set suspend sap

before making an upcall to the event handler. Moreover, it resets the reactor in use

60

flag to false so that a follower thread can now gain access to the reactor. Thus we

have seen how the reactor in use flag can be used as both a critical section lock as well

as a condition variable on which the follower threads block waiting to gain control of

the reactor’s state. One of the follower threads now becomes the leader. Note that

the previous leader thread is in the process of an upcall to an event handler and the

corresponding SAP has been suspended to avoid simultaneous upcalls to the same

event handler from a different thread. The newly elected leader does not include any

suspended SAPs in its list of SAPs to watch. This filtering is done using the function

ipc set get non suspended saps.

4.4.5 Event Handler

Figure 4.16 shows the model of a simple event handler. On an upcall from the reactor,

the event handler reads data from the corresponding SAP using the function get data.

We then model computation delay in the event handler in state S2, after which the

event handler outputs some data to the same SAP from which it read. Finally, the

event handler returns from the upcall by communicating on the appropriate channel

with its reactor.

S3

S2

t<=comp_timeS1

eh_hir_channels[eh_pid]!

t>=comp_time
t=0,
put_data(in_ipc_sap,IPC_WRITEQ,10)

eh_hi_channels[eh_pid]?
t=0,
get_data(in_ipc_sap,IPC_READQ)

Figure 4.16: Event Handler

61

4.4.6 Composition of models

In this section, we give an overview of how we model a complete system by composing

models of the middleware building blocks that we talked about in this chapter. We

use a simple example, where a client sends a request to a server that uses a reactor

and an event handler to process that request and send a reply back to the client.

First we declare a set of constants to access the different global array data structures

shown in Figure 4.17. We also declare an array of Reactor State structures to keep

track of states of reactors.

const int REACTOR1 = 1;

......

const int EH1 = 1;

......

const int THREAD1 = 1;

const int THREAD2 = 2;

......

//States of reactors

Reactor_State reactor_states[MAX_REACTORS];

Figure 4.17: Composition of Models - Global Data Structures

Next, we declare a set of channels globally, as shown in Figure 4.18 so that the

different automata can communicate with each other.

//channels for communication between automata

urgent chan handle_events_channels[MAX_THREADS];

urgent chan handle_events_return_channels[MAX_THREADS];

//Event Handler handle_input and return channels

urgent chan eh_hi_channels[MAX_FLOWS*MAX_EVENT_HANDLERS];

urgent chan eh_hir_channels[MAX_FLOWS*MAX_EVENT_HANDLERS];

//Event Handler handle_output and return channels

urgent chan eh_ho_channels[MAX_FLOWS*MAX_EVENT_HANDLERS];

urgent chan eh_hor_channels[MAX_FLOWS*MAX_EVENT_HANDLERS];

//channel used for maximal progress

urgent chan dummy;

Figure 4.18: Composition of Models - Channel Declarations

62

We then instantiate the IPC SAP structures as shown in Figure 4.19. In this example,

there are two service access points connected by means of two IPC Channel automata.

The SAP on the client side is ipc sap 0 and the SAP on the server side is ipc sap 1.

//IPC_SAP structure instantiations

IPC_SAP ipc_sap_0 = {0, false, 0};

IPC_SAP ipc_sap_1 = {1, false, 0};

Figure 4.19: Composition of Models - Instantiation of SAPs

The handler repository of reactors and their wait sets must be filled in appropriately

as well and this is shown in Figure 4.20. In this example, ipc sap 1 is added to the

set of SAPs to be watched by the reactor and the handler repository is updated with

a mapping of ipc sap 1 to EH1.

int init_func()

{

//Establish handler repository for REACTOR1

//mappings <ipc_sap_1:EH1>

reactor_states[REACTOR1].handler_repo.currsize = 0;

HR_add_handler(reactor_states[REACTOR1].handler_repo,

ipc_sap_1,EH1);

//REACTOR1 should watch ipc_sap_1

ipc_set_add_member(reactor_states[REACTOR1].read_sap_set_to_watch,ipc_sap_1);

return 0;

}

Figure 4.20: Composition of Models - Event Handler Registration

Now all the different middleware models are instantiated as shown in Figure 4.21.

Two IPC channels are created - one modeling the connection from client1 to EH1 and

the other modeling the reverse connection from EH1 to client1. An event handler is

instantiated with a processing time of 10 time units and ipc sap 1 is associated with

this event handler. The event handler uses this SAP to write or read data from the

global IPC channel collection. A TP Reactor along with two threads in the thread

pool is instantiated. Note that there are separate channels for the execution stack

corresponding to the two threads. Finally, a client is instantiated with ipc sap 0 as a

parameter that can be used by the client to send requests to EH1.

63

//Instantiation of IPC_Channel automata

client1_eh1_fwd = IPC_Channel(ipc_sap_0,ipc_sap_1,0);

client1_eh1_rev = IPC_Channel(ipc_sap_1,ipc_sap_0,0);

//Instantiation of EventHandler automata

eh1 = EventHandler1(EH1, 10, ipc_sap_1, REACTOR1);

//Instantiation of thread pool reactors

reactor1_t1 = TP_Reactor(THREAD1,handle_events_channels[THREAD1],

handle_events_return_channels[THREAD1],

reactor_states[REACTOR1]);

reactor1_t2 = TP_Reactor(THREAD2,handle_events_channels[THREAD2],

handle_events_return_channels[THREAD2],

reactor_states[REACTOR1]);

//Instantiation of thread pools

tp_thread1 = ReactorThread(handle_events_channels[THREAD1],

handle_events_return_channels[THREAD1]);

tp_thread2 = ReactorThread(handle_events_channels[THREAD2],

handle_events_return_channels[THREAD2]);

//Instantiation of Client

client1 = Client(ipc_sap_0);

Figure 4.21: Composition of Models - Instantiation of Models

64

4.5 Limitations of Modeling Middleware in UP-

PAAL

We have seen how we developed models of middleware building blocks in UPPAAL

and how to compose these models to create a model of a simple application. In the

process of doing this, we have also noted some key limitations of UPPAAL, such as

the lack of maximal progress semantics. While we have been able to work around

the maximal progress problem, other limitations remain such as the lack of support

for dynamically instantiating automata which is required to model specialized event

handlers like Acceptor [92] and Connector [92] that create other event handlers during

execution. However, UPPAAL supports static instantiation, which we used to instan-

tiate the different automata during composition. Another limitation of UPPAAL is

the inability to refer to specific instances of automata within our models so that we

can directly specify a particular automaton with which to communicate. Instead, all

communication between automata have to be made explicit using a channel, which

adds a level of indirection from the perspective of a model developer. We also encoun-

tered problems collecting state space statistics in UPPAAL during exhaustive state

space exploration, with the verifyta utility stopping abruptly when doing exhaustive

exploration for a large state space. In Chapter 5, we show how the remaining limi-

tations can be resolved through adopting a more sophisticated set of modeling and

model checking capabilities not found in UPPAAL (e.g., transition control using pri-

ority rules), which are provided by the IF toolset. In spite of all these limitations in

UPPAAL, we developed our example scenarios described in Chapter 6 to demonstrate

the reusability of our modeling architecture and models.

4.6 Summary

In this chapter, we have shown how UPPAAL can be used to develop and evaluate

reusable timed automata models of basic middleware building blocks that are rei-

fied in the ACE [51] framework and commonly used in building distributed systems

middleware. We identified modeling challenges like the absence of maximal progress

semantics, and simulating two-way calls, recursive calls and thread call-stacks which

65

are not explicitly represented as abstractions in UPPAAL. We also presented solution

techniques that we developed to address these challenges. Finally, we listed a set of

limitations in UPPAAL that can be overcome by using the IF toolset for developing

our models as we describe next in Chapter 5.

66

Chapter 5

Models in the IF Toolset

In Chapter 3, we described the different steps in building and using the middleware

models that were developed in the research presented in this dissertation. In Chap-

ter 4, we focused on realizing our modeling architecture described in Section 3.2 using

UPPAAL. In this chapter, we focus on model development (step 3 in Figure 3.1) us-

ing the IF (Intermediate Format) toolset [12] [11] [10] that supports timed automata

modeling and model checking.

5.1 Realization of the Middleware Modeling Ar-

chitecture in IF

Figure 5.1 shows our realization of the modeling architecture discussed in Chapter 3

using the IF toolset [12] [11] [10]. Note that the generic architecture in Figure 3.2

again has been made more concrete in Figure 5.1, as it was for UPPAAL in Figure 4.1,

using modeling constructs in IF. For example, the foundational data structures and

operations are realized using the array, ADT, string and user-defined data-types in IF,

which we discuss in Section 5.2. Property specification is done through IF observers

and is discussed in Section 5.4. Transition control mechanisms are realized in IF using

a combination of techniques that we describe in Section 5.5 using priority rules and

observers.

We use the IF notation to specify our fine-grained models as IF processes that run in

parallel and interact through shared variables and asynchronous signals. The behavior

67

of these IF processes is represented formally in IF as timed automata with urgency [9]

and the semantics of a system modeled in IF is the Labeled Transition System (LTS)

obtained by interleaving the executions of its processes.

IPC Channel

EventHandler
EventHandler

Reactor

Reverse channel

IPC_SAPIPC_SAP Forward channel

Handler
RepositoryIPC_SAP_Set

ThreadPool

IPC_SAP

Event Handler
Transition

control
rules

Timing and
Liveness
observers

Transition
control

observers

Application
abstraction

layer

Middleware
abstraction

layer

Network/OS
abstraction

layer

Acceptor

Connector

SAP Event Demultiplexer

SAP Reader

SAP Writer

Leader/
Followers

SAP buffers - shared buffers indexed by IPC_SAP handle

Handler
Repository
(array/ADT)

IPC_SAP_Set
(array/ADT)

IF procedures/ADTs to
operate on SAP buffers,

IPC_SAP_Set,
HandlerRepository Data structures and Operations

Read buffer Write buffer

Read buffer Write buffer

Read buffer Write buffer

(array/ADT)

Figure 5.1: Realization of the Modeling Architecture using IF

We use a combination of the following features in IF to model the fundamental data

structures and operations - Abstract Data Types, IF procedures, and arrays. We have

also devised a set of strategies to reduce the state space through a set of transition

control rules, using IF’s priority rules and observers. The IF observers are also used

to specify and verify timing and liveness properties. We now discuss each of these

techniques in detail.

68

5.2 Modeling of Foundational Data structures and

Operations

In IF, the foundational data structures and operations that we discussed in Sec-

tion 3.2 can be realized using one of the following two features - (1) Abstract Data

Types (ADTs) or (2) IF procedures. Both these features enable integration of external

C++ code in IF to perform complex data transformations. For example, data trans-

formation in our models includes adding/deleting items to/from the handler repos-

itory and updating the SAP buffers, and traversing arrays or other more complex

data structures. These data transformation activities are much more easily expressed

in a language like C++ than in the IF notation. Moreover, if they are performed

within the model, such data transformation activities again increase the state space

unnecessarily without affecting the outcome of verification.

ADTs in IF. Using the ADT feature in IF, one can specify the operations (in-

terface) on an abstract data structure within the IF model, but then provide an

implementation of the operations in C++ outside the IF model. The linking of each

ADT with its implementation is done during the compilation of the IF model. An

ADT declared without an appropriate implementation will result in a model com-

pilation error. The implementation details of the ADT are not exposed in the IF

model and therefore an ADT object is treated as a black box within the IF model

thus (possibly) reducing the state space. Models in IF can then perform operations

on the ADTs using the operations specified as part of the ADT declarations within

the models in IF.

Procedures in IF. Whereas an ADT is treated as a black-box whose implemen-

tation is outside the IF models, the IF procedure feature allows one to use C++ to

perform transformations on data structures declared within an IF model. These data

structures can be passed as parameters to the procedure. Both call-by-value and

call-by-reference semantics are supported for parameter passing and return values are

also allowed. This feature differs from the ADT feature in that a procedure does not

encapsulate any data of its own whereas an ADT does. This difference is similar to

69

the difference between a class and a function in C++. Typically, with procedures the

data (on which these procedures act) is part of the state space, whereas with ADTs,

the data is not part of the state space.

IF procedures act as wrappers that can perform operations on either (1) ADT imple-

mentations of data structures outside of the IF model, or (2) array-based implementa-

tions of data structures inside the IF model. We now describe the two techniques, and

in Chapter 6 we compare them in terms of their effects on the state space. Intuitively,

one might tend to choose the ADT implementation over the procedure implementa-

tion since the former enables the modeler to leverage powerful libraries, e.g., the C++

Standard Template Library, to realize more sophisticated data structures in the IF

model. We tried this initially, but realized that using the C++ STL as part of the

ADT implementation could increase the state space significantly when compared to

a procedure-based implementation. We show results supporting this observation in

Section 6.8.1. However, for the sake of completeness, we first discuss both ADT and

procedure based implementations here.

5.2.1 Foundational Operations Using IF ADTs

Figures 5.2 and 5.3 show extracts from the model of IPC SAP buffers that is shared

among multiple IF processes. An IPC SAP is declared as an IF record (A), and

the IPC SAP Buffers collection is declared as an abstract data type (ADT) (B) in

the IF model. Two IF procedures (C and D) are used to encapsulate this ADT

based implementation. Figure 5.3 shows the ADT implementation where the two

IF procedures are realized using C++ functions (G and H), which in turn access

the IPC SAP Buffers (F) data structure realized using a C++ class. In this case,

the IPC SAP Buffers data structure is implemented as a C++ Standard Template

Library map (F) with elements of type IPC SAP Buffer (E). It should be noted that

we model the read and write buffers (E) that are associated with an IPC SAP as

integers. Since the properties that we are analyzing are not influenced by the actual

contents of the read and write buffers, it is sufficient to store only the number of bytes

contained in the read and write buffers. This helps in reducing the state space

of the models. Note that Figure 5.2 also illustrates how the calls to the underlying

70

C++ implementation (shown in Figure 5.3) to get data from (G) and put data into

(H) the read and write buffers associated with a SAP, are wrapped by IF procedures

(C) and (D). These can be called from inside the model to access and enqueue data

for a SAP. The IPCQ Type parameter (G and H) in the implementation of the C++

methods specifies the type of buffer (read or write). In the C++ IPC channel data

structure, we access the read and write buffers for a SAP in the map using the SAP’s

unique handle and then increment the write buffer counter by the number of bytes to

be written during a write operation (H) or decrement the read buffer counter by the

number of bytes to be read during a read operation (G). Parameterizing the number

of bytes to be read or written makes it easy to model the read and write OS system

calls respectively. An example of this kind of usage can be seen in the IPC channel

data structure that we describe in Section 5.3.1.

type IPC_SAP = record
 sap_handle integer;
 suspended integer;
 annotation integer;
endrecord;

type IPC_SAP_Buffers =
 abstract
 integer is_any_sap_hot(IPC_SAP_,

 IPC_SAP_Set, IPC_SAP_Set);
 endabstract;

procedure IPC_SAP_enqueue_data;
fpar inout sap_buffers IPC_SAP_Buffers,
 in sap IPC_SAP, in qtype IPCQType,
 in num_bytes integer;
returns integer;
{#
 int rc;
 //the following function is implemented in C++ outside IF model
 rc = sap_buffers.enqueue_data(sap, qtype, num_bytes);
 return rc;
#}
endprocedure;

procedure IPC_SAP_get_data;
fpar inout sap_buffers IPC_SAP_Buffers,
 in sap IPC_SAP, in qtype IPCQType,
 in num_bytes integer;
returns integer;
{#
 int rc;
 //the following function is implemented in C++ outside IF model
 rc = sap_buffers.get_data(sap, qtype, num_bytes);
 return rc;
#}
endprocedure;

A

B

C

D

Figure 5.2: Modeling IPC SAP Buffers with ADTs in IF

71

struct IPC_SAP_Buffer
{
 int readq;
 int writeq;
};
typedef std::map<int,IPC_SAP_Buffer> IPC_SAP_Buffers_Map;

class IPC_SAP_Buffers
{
 IPC_SAP_Buffers_Map buffers_map_;
 int next_avail_sap_handle_;

 int get_data(const if_IPC_SAP_type& sap,
 if_IPCQType_type qtype, int num_bytes)

 {
 IPC_SAP_Buffers_Map::iterator buffers_iter =

buffers_map_.find(sap.sap_handle);
 if (qtype == if_IPCQ_READ_constant)
 buffers_map_[sap.sap_handle].readq -= num_bytes;
 else if (qtype == if_IPCQ_WRITE_constant)
 buffers_map_[sap.sap_handle].writeq -= num_bytes;
 return num_bytes;
 }

 int enqueue_data(const if_IPC_SAP_type& sap,
if_IPCQType_type qtype, int num_bytes)

 {
 IPC_SAP_Buffers_Map::iterator buffers_iter =

buffers_map_.find(sap.sap_handle);
 if (qtype == if_IPCQ_READ_constant)
 buffers_map_[sap.sap_handle].readq += num_bytes;
 else if (qtype == if_IPCQ_WRITE_constant)
 buffers_map_[sap.sap_handle].writeq += num_bytes;
 return num_bytes;
 }

F

E

G

H

Figure 5.3: C++ implementation of IPC SAP Buffers ADT outside IF model

72

5.2.2 Foundational Operations Using IF procedures

Figure 5.4 shows the modeling of the foundational operations using IF procedures. In

contrast with the ADT implementation, in this case all operations are implemented

within the IF model. The IPC SAP (A) data structure is declared as before. In the

ADT version, the IPC Buffer (B) data structure was part of the C++ implementation

whereas here its declaration is in the IF model. The IPC SAP Buffers data structure

(C) is declared as an array of IPC SAP Buffer. The procedures used to put data (D)

into and get data (E) from a SAP buffer are defined within the IF model itself. The

SAP handle is used to access the array of buffers. The main advantage of the ADT

approach is that it makes operations like adding a new SAP or deleting an existing

one easier through the usage of C++ STL data structures like vector and map. With

the procedure approach, operations like deletion are cumbersome to implement using

a plain C-style array.

5.2.3 Use of procedure calls as guards

When using procedures to model the foundational operations, we encountered a prob-

lem that is worth pointing out - in general some procedure cannot be used as guards

in guarded transitions because those procedures could have side effects. Since each

guard is evaluated at every step of the system model’s execution to identify which

transitions are enabled, a procedure with side effects could cause the state to change

which should cause the guard to evaluate again. For example, IF does not allow the

expression shown in Figure 5.5.

The problem with disallowing the above expression is that even though we have a

procedure that does not have any side-effect, we cannot use that as a guard. This is

a major obstacle in our case, since we monitor shared variables for identifying events

in the system. For example, as we will see later in this section, the select-based

reactor needs to monitor a set of SAPs to see whether any one of them has data in its

buffer. If all the SAP buffers are empty, the reactor should block until one of them is

ready. Since the number of SAPs to watch could vary, it is not possible to write an

73

type IPC_SAP = record
 sap_handle integer;
 suspended integer;
 annotation integer;
endrecord;

type IPC_Buffer =
 record
 readq integer;
 writeq integer;
 endrecord;

type IPC_Buffer_Array = array[MAX_IPC_BUFFERS] of IPC_Buffer;
type IPC_SAP_Buffers =
 record
 num_members integer;
 members IPC_Buffer_Array;
 endrecord;

procedure IPC_SAP_enqueue_data;
fpar inout sap_buffers IPC_SAP_Buffers,
 in sap IPC_SAP, in qtype IPCQType, in num_bytes integer;
returns integer;
{#
 if (qtype == if_IPCQ_READ_constant)
 sap_buffers.members[sap.sap_handle].readq += num_bytes;
 else if (qtype == if_IPCQ_WRITE_constant)
 sap_buffers.members[sap.sap_handle].writeq += num_bytes;
 return num_bytes;
#}
endprocedure;

procedure IPC_SAP_get_data;
fpar inout sap_buffers IPC_SAP_Buffers,
 in sap IPC_SAP, in qtype IPCQType, in num_bytes integer;
returns integer;
{#
 if (qtype == if_IPCQ_READ_constant)
 sap_buffers.members[sap.sap_handle].readq -= num_bytes;
 else if (qtype == if_IPCQ_WRITE_constant)
 sap_buffers.members[sap.sap_handle].writeq -= num_bytes;

 return num_bytes;
#}
endprocedure;

A

B

C

D

E

Figure 5.4: Modeling of IPC SAP Buffers with procedures in IF

//causes IF compilation error!!!!

provided (call some_procedure(params) == 1);

//do something

Figure 5.5: Restrictions to Procedure Usage in IF

74

OR expression that includes a specific set of SAPs and hence procedures is the only

option. One possible approach is shown in Figure 5.6.

state s0;

result = call some_procedure(params);

nextstate s1;

endstate;

//unstable so that s0-s1 are considered as a

//single state for execution.

state s1 #unstable ;

provided (result = 1);

//if condition true, do something

provided (result = 0);

//if condition false, check again

nextstate s0;

Figure 5.6: Limitation with Usage of Procedures for Condition Wait

In this case, the condition is evaluated in one state and then the result is checked

in the next state to determine whether or not the condition is satisfied. The reason

for having two states is that the provided clause in IF cannot follow procedure call

expressions. If the condition is not satisfied it is evaluated again. This is equivalent to

doing a “busy wait”, polling constantly until a condition is satisfied. This approach

fails because the transition from s0 to s1 is always enabled and this could cause this

transition to be selected by the model checker any number of times which will result

in an overall state space explosion.

The solution we have devised is to use a dummy abstract data type and declare the

side-effect free procedures that we want to use as guards, as operations in the dummy

ADT. The IF compiler allows the use of ADT operations as guard expressions, since

ADTs are treated as black boxes by IF and any side-effects will be localized within

them and won’t be known to IF.

The extract in Figure 5.7 illustrates our solution.Here a dummy ADT is declared with

all the necessary operations and then the ADT is instantiated so that it is globally

accessible from all IF processes. These ADT operations can now be used as part of

provided expressions. For clarity however, in the following discussions we omit the

dummy ADT parameter as part of guard expressions.

75
type Dummy =

abstract

integer is_cond_true(Dummy, ...);

endabstract;

.....

process Global(0);

.....

//instantiate a globally accessible dummy ADT

Dummy dummy public;

.....

endprocess;

.....

provided is_cond_true(({ACE_Global}0).dummy,);

//do something

Figure 5.7: Our solution to Condition Wait in IF

5.3 Modeling Middleware Building Blocks in IF

We now describe the models of middleware building blocks that we developed in IF.

These models use the foundational data structures and operations that we described

in Section 5.2.

5.3.1 IPC Channel

An IPC channel is bidirectional. It is modeled, however, as two data-transfer au-

tomata, one for the forward direction (from the lhs-SAP to the rhs-SAP), and one

for the reverse direction (from the rhs-SAP to the lhs-SAP). The forward channel

automaton waits for data to be enqueued in the write-buffer of the lhs-SAP and

transfers it to the read-buffer of the rhs-SAP, as Figure 5.8 shows. The reverse chan-

nel automaton waits for data to be enqueued on the write buffer of the rhs-SAP

and transfers it to the read-buffer of the lhs-SAP. These forward and reverse chan-

nel automata also can be parameterized with propagation delays, if needed. These

propagation delays are implemented using transitions guarded with clock variables

in the IF model. Modeling the IPC channel as an automaton with those parameters

allows us to model different degrees of asynchrony and non-determinism introduced

by real-world communication channels.

76
process UniDir_IPC(0);
fpar src_sap IPC_SAP,
fpar dest_sap IPC_SAP,
fpar min_prop_delay integer,
fpar max_prop_delay;
………………...
var prop_delay clock;
………………...
………………...
state wait_for_data_in_src_sap;
 provided is_queue_empty(({ACE_Global}0).sap_buffers,

src_sap_, IPCQ_WRITE) <> 1;
 set prop_delay := 0;
 nextstate data_in_src_sap;
endstate;

state data_in_src_sap ;
 deadline delayable;
 when prop_delay >= min_prop_delay and prop_delay <= max_prop_delay;
 …………………
 call IPC_SAP_get_data(({ACE_Global}0).sap_buffers, src_sap_,

IPCQ_WRITE, bytes_to_transmit_);
 call IPC_SAP_enqueue_data(({ACE_Global}0).sap_buffers, dest_sap_,

IPCQ_READ, bytes_to_transmit_);
 nextstate wait_for_data_in_src_sap;
endstate;

A

C

B

D

Figure 5.8: Extracts from Channel Propagating Data between Two SAPs

The forward and reverse channel automata are instantiated when an IPC channel

is created. As Figure 5.8 shows, the IPC channel uses a clock variable (A) to keep

track of propagation delays. Blocking on a condition, such as an input queue being

empty, is represented in the model by the IF provided clause. A forward IPC channel

waits (B) on the condition that there is some data enqueued in the write buffer of

its source SAP. This is implemented using the is queue empty ADT method. Until

the condition becomes true, the IF-process modeling this channel cannot run since

none of its transitions is enabled. Once that condition becomes true, the channel

waits for a specified delay (C) if any, then gets the data from the write-buffer of

the source SAP and puts it into the read-buffer of the destination SAP (D). Note

again that we are not using actual data in the model, but instead keep track of

buffer levels by incrementing and decrementing counters for the number of bytes in

the buffers. In (D), notice that the automaton could transfer fewer bytes than the

total present in the source write-buffer indicated by the last parameter of the call

to the procedure IPC SAP enqueue data. The number of bytes transmitted can be

parameterized, allowing one to model the bandwidth of a channel dynamically to

represent real-world phenomena like flow control.

77

5.3.2 Select Reactor

Each middleware primitive is modeled so that the behavior seen when the model is

executed closely adheres to that of the actual implementation. This faithful mod-

eling of the middleware primitives in turn allows high-fidelity models of higher-level

middleware services, which are obtained by composing these primitive models, as we

discuss in more detail in Chapters 6 and 7.

procedure is_any_sap_hot;

fpar in sap_buffers IPC_SAP_Buffers,

 in read_set IPC_SAP_Set,

 in write_set IPC_SAP_Set;

returns integer;

{#

 int i;

 for (i=1; i<=read_set.num_members; ++i)

 {

 if_IPC_SAP_type sap = read_set.members[i];

 if (sap_buffers.members[sap.sap_handle].readq > 0)

 return 1;

 }

 //similarly for write set

 ……...

 return 0;

#}

endprocedure;

procedure get_hot_read_saps;

fpar in sap_buffers IPC_SAP_Buffers, in sap_read_set IPC_SAP_Set;

returns IPC_SAP_Set;

{#
 for (i=1; i<=read_set.num_members; ++i)

 {

 if_IPC_SAP_type sap = read_set.members[i];

 if (sap_buffers.members[sap.sap_handle].readq > 0)

 add_sap(hot_sap_set, sap);

 }

 return hot_sap_set;

#}

endprocedure;

procedure get_hot_write_saps;

fpar in sap_buffers IPC_SAP_Buffers, in sap_write_set IPC_SAP_Set;

returns IPC_SAP_Set;

{#

 for (i=1; i<=write_set.num_members; ++i)

 {

 if_IPC_SAP_type sap = write_set.members[i];

 if (sap_buffers.members[sap.sap_handle].writeq < MAX_BUF_SIZE)

 add_sap(hot_sap_set, sap);

 }

 return hot_sap_set;

#}

endprocedure;

A

B

C

Figure 5.9: Extracts of Foundational Operations used by Select Reactor Model

78

state start_listen ;

 provided is_any_sap_hot(({ACE_Global}0).sap_buffers, sap_read_set_,

sap_write_set_) = 1;

 hot_saps_read_set_ :=

call get_hot_read_saps(({ACE_Global}0).sap_buffers, sap_read_set_);

 hot_saps_write_set_ :=

call get_hot_write_saps(({ACE_Global}0).sap_buffers, sap_write_set_);

 nextstate dispatch_event_handlers;

….......

……...

state dispatch_event_handlers;

 provided size(hot_saps_read_set_) > 0;

 next_hot_sap := call pop_first_SAP(hot_saps_read_set_);

 event_handler := call get_handler(({Reactor}reactor_).handler_rep_,

next_hot_sap);

 output handle_input(context, next_hot_sap) to event_handler;

 nextstate wait_for_handle_input_return;

 provided size(hot_saps_read_set_) <= 0 and size(hot_saps_write_set_) > 0;

 next_hot_sap := call pop_first_SAP(hot_saps_write_set_);

 event_handler := call get_handler(({Reactor}reactor_).handler_rep_,

next_hot_sap);

 output handle_output(context, next_hot_sap) to event_handler;

 nextstate wait_for_handle_output_return;

A

B

C

Figure 5.10: Extracts from the IF Based Model for Select Reactor

Our select-based reactor model illustrated in Figures 5.9 and 5.10 uses the founda-

tional data structures and associated operations to query the I/O status of different

SAPs - e.g., whether data is ready to be read or written. As shown in Figure 5.9,

the is any sap hot procedure is used to query whether any SAP from among a set of

SAPs is ready - i.e., whether an I/O event can be performed on that SAP without

blocking. IF procedure is any sap hot (Figure 5.9 A) is used to determine whether

any SAP is ready to be read from or written to without blocking. IF procedures

get hot read saps ((Figure 5.9 B) and get hot write saps ((Figure 5.9 C) are used to

obtain the read-ready and write-ready SAPs respectively. As shown in Figure 5.10,

the Select Reactor Handle Events automaton calls (A) the is any sap hot procedure to

wait for I/O events on a set of SAPs. Once the event arrives its guard condition

becomes true and it then calls get hot read saps (B) and get hot write saps to obtain

the read-ready and write-ready SAPs respectively. For each of the “hot” SAPs, the

handler repository is accessed using the IF procedure get handler to obtain a reference

to the corresponding event handler. The handle input (Figure 5.10 B) or handle output

(Figure 5.10 C) IF signal is then sent to the event handler, depending on whether the

79

SAP is ready for reading or writing respectively. Sending these signals models the

the initiation of the respective handle input and handle output upcall dispatch actions

performed by the actual select-based reactor implementation in ACE.

5.3.3 Thread Pool Reactor

state dispatch_event_handlers;
 provided size(hot_saps_read_set_) > 0;
 next_non_suspended_hot_sap :=

call pop_first_non_suspended_sap(hot_saps_read_set_);
 event_handler :=

call get_handler(({Reactor}reactor_).handler_rep_,
 next_non_suspended_hot_sap);

 call suspend_sap(({Reactor}reactor_).sap_read_set_,
next_non_suspended_hot_sap);

 output handle_input(context,
 next_non_suspended_hot_sap) to event_handler;

 task ({Reactor}reactor_).handle_events_in_progress_ :=
({Reactor}reactor_).handle_events_in_progress_ - 1;

 task suspended_sap_ := next_non_suspended_hot_sap;
 nextstate wait_for_handle_input_return;

state wait_for_handle_input_return;
 input handle_input_return(par_context, rc);
 call resume_sap(({Reactor}reactor_).sap_read_set_,

suspended_sap_);
 endif

 nextstate done;
endstate;

A

B

C

D

E

F

G

Figure 5.11: Extracts from Thread Pool Reactor Model

Figure 5.11 shows parts of the IF model for the ACE [51] Thread Pool (TP) reac-

tor. It should be noted that there is a distinct difference between a single-threaded

reactor model illustrated in Figure 5.10 and the thread pool reactor model shown in

Figure 5.11. In the former, a single thread uses the reactor to wait on multiple I/O

channels. Once a set of SAPs becomes ready, this thread iterates through the set

of ready SAPs and dispatches upcalls to each of the corresponding event handlers

sequentially. Only after all upcalls have been dispatched, does the thread return to

the reactor to watch for I/O events again. In contrast, in the TP reactor model shown

80

in Figure 5.11, a leader thread chooses a non-suspended SAP from among the ready

SAPs. A call to the IF procedure pop first non suspended sap is made (A) to extract

this information from the set of ready SAPs. The leader thread then obtains (B) the

corresponding event handler using the get handler IF procedure. It suspends (C) this

SAP using the IF procedure suspend sap before making the upcall (D). The leader

thread then waits for the upcall to be completed (F). On completion of the upcall,

the leader thread resumes (G) the suspended SAP. Note that the IF procedures take

the reactor’s SAP set as an inout parameter and hence all modifications made in the

C++ code are reflected in the SAP set owned by the reactor.

In the TP reactor model’s implementation, a token is maintained to control access

to the reactor so that multiple threads in a thread pool take turns blocking on the

reactor. In the model, we use a state variable to control access to the reactor: the

handle events in progress state variable (E). Each thread checks this variable to make

sure that there are no other threads already in the leader role. All the follower threads

block on the condition that this variable becomes 0. In the case where multiple threads

become eligible for leadership, one thread among them is chosen non-deterministically.

5.3.4 Event Handler

For example, Figure 5.12 shows how an event (service) handler is modeled in both a

time driven and an event driven manner. The event handler waits (A) for an upcall

event from its associated reactor. In this example, the event handler gets an event

indicating that the SAP associated with the event handler is ready to be read. Once

it gets the handle input IF signal from the reactor, the event handler reads data (B)

from the SAP using the IF procedure IPC SAP get data. After the read, the event

handler spends 10 time units on its computation (C), which is modeled by means of

the “when” IF clause. The “deadline delayable” qualifier indicates that the transition

should be delayed until 10 units of time has elapsed. After that, the event handler

sends a request to another event handler using a SAP (D). The sending of the request

is modeled by writing (D) to the appropriate SAP corresponding to the input SAP

of the destination event handler, using the IF procedure IPC SAP enqueue data.

81

process Service_Handler(0);

var Reactor_ reactor;

state wait_for_reactor_upcall;

 input handle_input(par_context, par_sap);

 nextstate do_read;

endstate;

state do_read;

 call IPC_SAP_get_data(({ACE_Global}0).sap_buffers,

in_sap_, IPCQ_READ);

 nextstate do_compute;

endstate;

state do_compute;
 deadline delayable;

 when elapsed = 10;

 //send a request to to another service handler

 call IPC_SAP_enqueue_data(({ACE_Global}0).sap_buffers,

out_sap_, IPCQ_WRITE);

 nextstate wait_for_reply;

endstate;

state wait_for_reply;

 provided is_queue_empty(({ACE_Global}0).sap_buffers,

out_sap_, IPCQ_READ) <> 1;

 call IPC_SAP_get_data(({ACE_Global}0).sap_buffers,

out_sap_, IPCQ_READ);

…………..

endstate;

A

B

C

D

Figure 5.12: Extracts from the Model of a Service Handler

82

5.4 Property specifications for verification

In the IF toolset, properties to be checked can be specified by observers [12]. These

observers are also represented by timed automata and are executed at each step of

the labeled transition system (LTS) that is generated from the composed system

model before an enabled transition is selected. To facilitate specification, IF provides

observer constructs for a variety of events in a system including forking a new process,

output events, and input events. In general an observer records an abstraction of

the actions and interactions of other automata. The observer can also be used to

control the extent of the state space that is explored through the cut statement, which

cuts off selected execution paths. An observer can also be intrusive and act as an

interceptor [97] to change the system state by modifying variables or sending signals.

Examples of such observers are shown in Section 5.5, where we use an intrusive

observer to help reduce the state space.

We use IF observers [12] to specify system properties for verification. Observers can

be used in conjunction with timed transitions to detect deadline misses in the model,

as we described in Section 3.1. Figure 5.13 illustrates part of a writer process that

sends (A) a request to another process and then waits for the reply. If the reply (B)

does not arrive before a particular deadline, then there is a deadline miss (C) which we

need to verify. The observer for the deadline miss can be written using the IF instate

primitive, which triggers an observer transition when the specified process is in the

specified state, e.g., a state representing a deadline miss, or a state at which the clock

value should be checked. The observer may also perform internal state transitions,

enabling us to capture state within the observer itself. The observer illustrated in

Figure 5.13 starts monitoring events (D) when the main process ({Main}0) in the

system has completed system initialization and reaches the done state. The observer

then keeps monitoring the state of the two writer processes. If any one of the writer

processes misses its deadline, indicated by state err (E), then there was a deadline

miss and the observer moves to an error state (G). When both of the writer processes

are in their done state (F), then that means that there were no deadline misses. In

this case, the observer moves to a success state (H).

83

process WriterProc(0);

var elapsed clock;

state do_stuff;

 call IPC_SAP_enqueue_data(({ACE_Global}0).sap_buffers,

sap_, IPCQ_WRITE);

 set elapsed := 0;

 nextstate listen;

endstate;

state listen;

 provided is_queue_empty(({ACE_Global}0).sap_buffers, sap_,

IPCQ_READ) <> 1;

 call IPC_SAP_get_data(({ACE_Global}0).sap_buffers, sap_,

IPCQ_READ);

 nextstate done;

 when elapsed > rel_deadline_;

 nextstate err;

endstate;

endprocess;

cut observer deadline_miss_observer;

state init #start ;

 deadline eager;

 provided ({Main}0) instate done;

 nextstate startmonitor;

endstate;

state startmonitor;

 provided ({WriterProc}0) instate err or

({WriterProc}1) instate err;

 nextstate err;

 provided ({WriterProc}0) instate done and

({WriterProc}1) instate done;

 nextstate succ;

endstate;

state err #error ;

 cut;

 nextstate -;

endstate;

state succ #success ;

 cut;

 nextstate -;

endstate;

endobserver;

A

B

C

D

E

F

G

H

Figure 5.13: Cut Observer Based System Property Specifications

84

5.5 Issues for Modeling Concurrent Object-Oriented

Systems in IF

As we noted earlier, the primitive mechanism for modeling behavior in IF is a process.

Although our goal is to model systems having multiple communicating threads, each

of which executes actions including object method calls, the distinction between an

object and a thread is not known to the IF model checker. Essentially, we need to

express an object-oriented concurrent communicating system in terms of a process

calculus. This makes it the responsibility of the IF model developer to keep track of

this distinction in the model itself, which contributes in part to the state space. For

example, each object method call has to be simulated by forking a new IF process

representing the method call.

This is necessary especially in situations like the WaitOnReactor [103] strategy for

waiting for replies which involves recursive calls to the handle events method that is

invoked on the reactor to wait for multiple I/O events occurring on different SAPs.

Such situations motivate the need for modeling the handle events method call’s ex-

ecution using a separate IF process. Since the behavior of handle events is different

in the case of TP Reactor and Select Reactor we have two distinct IF processes for

these reactors’ handle events methods. The reactor itself is represented using a single

IF-process and it can be shared by multiple threads. Thus the reactor forks an IF

process, if necessary, to model a method call in the reactor in the context of a thread.

Two distinct automata (TP Reactor Handle Events and Select Reactor Handle Events)

are used in our model to simulate the behavior of the handle events method in the

corresponding ACE Reactor implementations.

5.5.1 Modeling Object Interactions in IF

We model both objects and threads using IF processes. For example, a method call

on an object such as an event handler, made from another object such as a reactor, is

modeled by the caller object process sending an IF signal to the callee object process.

The caller process then waits for a reply from the callee process. The reply is also

modeled as an IF signal, from the callee process back to the caller process.

85

Modeling an object as a single IF process has certain drawbacks. It is difficult to model

concurrency in such a model since there could be multiple threads calling methods

of an object. If we model an object using a single IF-process and the automaton is

in the middle of executing a method, then it may not be ready to receive any other

method invocations. This enforces an implicit serialization among threads accessing

an object, which is sufficient for modeling synchronized middleware primitives like

monitor objects [97]. However, to accommodate complex behavioral modeling within

an object method, our approach if to fork a new IF-process for each method invocation

that has a relatively complex automaton (involving multiple states) [38], as in the

case of the handle events method of the reactor.

This notion of modeling an object as a process in IF rather than having a native

construct for an object can be considered a drawback of IF for our particular purpose

of modeling distributed real-time embedded middleware. At the same time, however,

it should be noted that the original intention of IF is to model communicating pro-

cesses rather than object systems. The specific limitation for our purposes is that

there is no native concept of an object or thread in IF. Bogor [86] was designed to

support object-oriented systems, and has constructs that can express objects and

threads directly in its modeling language, but does not support timed automata.

5.5.2 Modeling Threads in IF

Since as we noted earlier IF does not have distinct native support for constructs

like threads and objects, it is the responsibility of the model developer to represent

explicitly, in the model itself, the idea of a thread of control flowing through multiple

objects as part of a chain of object method invocations. To model a distinct

thread flow of control, we developed the concept of a thread id maintained by each IF

process. The thread id is a reference (of type pid in IF) to a unique instance of an IF

process of type Thread. Note that the Thread automaton has been developed as part

of this research and it is not an in-built feature in IF. This Thread automaton serves

to record the real-world thread context under which that IF process is executing.

As a convention, any thread in the real-world should be modeled by creating a Thread

process in our models. When we model an object method invocation, the thread

86

context (represented by a unique thread id) under which that invocation is made

must be carried over from the caller to the callee object. To propagate the thread

context, we developed an IF intrusive observer, excerpts from which are shown in

Figure 5.14.

Between any two labeled transition system (LTS) steps, this observer runs and updates

the thread context of a destination process of an IF signal to be the same as the

thread context of the source process. The observer observes the output of a signal

from a source process to a destination process and updates the thread context of

the destination process to be the same as the source process. This approach has the

disadvantage that if a process sends multiple signals to other processes, then it will

be akin to having two concurrent flows of control within the same thread. In our

case, however, we use this technique for modeling thread context propagation along

object method invocations, where each method invocation has only one destination.

5.5.3 Modeling Priority Based Thread Scheduling in IF

In our model, a Thread can be instantiated with a priority that can be used to restrict

non-determinism in the model just as a thread priority (e.g., POSIX priority) is used

as a mechanism in OS thread scheduling to reduce the number of possible interleavings

of CPU instructions among threads. Each instance of the Thread automaton has a

priority associated with it. Since the Thread automaton is not in-built construct in

IF, there should be some mechanism by which we inform the model checker about the

priorities of threads so that the model checker gives preference to transitions that are

executing under the context of a higher priority thread than a lower priority thread.

We use the priority rules feature in IF to specify the priority ordering among different

threads.

When doing model exploration, the IF state space explorator selects one transition

non-deterministically from a set of enabled transitions. To reduce non-determinism,

IF priority rules can be used by the modeler to specify a preference among the IF

processes that have at least one enabled transition. Preference can be specified as a

set of rules, each of which expresses the ordering of two specific IF processes. For

87

intrusive observer ThreadId_Propagator;

var pid1 pid;

var pid2 pid;

var context Context;

var so t_if_signal;

state start_act;

match fork(pid2) in pid1;

//when a Reactor automaton forks a TP_Reactor_Handle_Events

//automaton instance, propagate the threadid from the former

//to the latter.

if pid1 instanceof Reactor and

pid2 instanceof TP_Reactor_Handle_Events then

task ({TP_Reactor_Handle_Events}pid2).threadid_ :=

({Reactor}pid1).threadid_;

endif

//when a Reactor automaton forks a Select_Reactor_Handle_Events

//automaton instance, propagate the threadid from the former

//to the latter.

if pid1 instanceof Reactor and

pid2 instanceof Select_Reactor_Handle_Events then

task ({TP_Reactor_Handle_Events}pid2).threadid_ :=

({Reactor}pid1).threadid_;

endif

nextstate -;

match output(so) from pid1 to pid2;

//when a Reactor automaton sends an IF signal (method call)

//to a Select_Reactor_Handle_Events automaton instance,

//propagate the threadid from the former to the latter.

if pid1 instanceof Reactor and

pid2 instanceof Select_Reactor_Handle_Events then

if obs_queue_length(pid2) > 0 and

obs_queue_get_first(pid2) = so then

task ({Select_Reactor_Handle_Events}pid2).threadid_ :=

({Reactor}pid1).threadid_;

endif

endif

Figure 5.14: IF Observer to Propagate Threadid

88

example, Figure 5.15 shows how we use the priority rules feature to achieve thread

scheduling in our models.

scheduler_prio: pid1 < pid2

if

//Rule1

(pid1 instanceof Reactor and pid2 instanceof Reactor and

({Reactor}pid1).threadid_ <> ({Reactor}pid2).threadid_ and

({Thread}(({Reactor}pid1).threadid_)).prio <

({Thread}(({Reactor}pid2).threadid_)).prio) or

//Rule2

(pid1 instanceof Reactor and pid2 instanceof Select_Reactor_Handle_Events

and

({Reactor}pid1).threadid_ <> ({Select_Reactor_Handle_Events}pid2).threadid_

and

({Thread}(({Reactor}pid1).threadid_)).prio <

({Thread}(({Select_Reactor_Handle_Events}pid2).threadid_)).prio) or

...

...

Figure 5.15: IF Priority Rules to Model Thread Scheduling

Rule1 states that between two automata each an instance of the IF process type

Reactor, if the thread contexts of these two automata are different, then IF should

choose the automaton whose thread priority is higher. To access an instance variable

(e.g., threadid) within an automaton in IF, we should use typed expressions like

{Reactor}pid1, {Reactor}pid2, etc. where a pid reference to a IF process is prefixed

by the appropriate type. To avoid run-time errors, the pid reference (pid1, pid2,

etc.) should be checked for the correct type before performing a “dynamic cast” to

the appropriate type by using the instanceof operator in IF. Priority rules can also

be expressed among different process classes, for example, between instances of an

IF-process P and instances of another IF-process Q (Rule2 is an example of this).

First, we access the thread context by using the threadid instance variable, which

is present in every automaton in our model. This gives us a pid reference to the

Thread automaton representing that thread context. Next, the priority of a Thread

automaton instance can be obtained by accessing the prio instance variable, which is

populated at Thread instance creation time. Therefore these rules inform the model

checker as to which process to select from a set of processes, each with at least one

enabled transition. The above rule is repeated for all pairs of process types in our

89

model because using a priority rule we can specify the ordering between only two IF

processes. Since these rules follow a specific syntax, we have developed tools that

generate the whole set of rules, taking as input the names of the different process

types in our model.

5.5.4 Modeling Run-to-Completion Semantics

In the previous section, we discussed how to model priority based scheduling in IF,

where we dealt mainly with modeling threads with different priorities. In real-time

operating systems, it is very common to use the SCHED FIFO scheduling mechanism

to control preemption between real-time threads of the same priority. We use a

similar technique in our models to control interleaving between the model execution

of two threads with the same priority. We model SCHED FIFO semantics to control

P Q

Current
Running

thread = 1

R S

Current
Running

thread = 2
Thread1

Thread2

IF-process Q blocks
here waiting on an

event. Simulation of
thread1 blocking

IF-process S blocks
here waiting on an

event. Simulation of
thread2 blocking

Both IF-processes
P and R enabled
at this point. Non-

deterministic
choice of P or R

Run-to-completion of thread1 Run-to-completion of thread2

IF-processes Q and S
enabled at this point, but Q
gets filtered out because of

priority rules. Illustrates
over-constraining of the

state space

S

Figure 5.16: Run-to-Completion Semantics for Two Threads

unnecessary interleavings. Each logical thread of control will run across multiple IF

processes until the thread blocks, and only then can another thread of control start

running. Figure 5.18 illustrates this situation for two threads of control. Each of

these threads passes through multiple objects. Thread1 flows through objects P and

Q and Thread2 flows through objects R and S. Thread1 runs to completion before

Thread2 can run, where completion means that a thread completes a phase of its

activity that is totally CPU bound. In the IF model, this translates to the notion of

90

processes in the same thread context executing in sequence until there are no enabled

transitions in the group of processes running under that thread context.

To realize the run-to-completion semantics in IF, we developed a combination of tech-

niques: (1) keeping track of the currently running thread id as part of the state space;

(2) performing thread context propagation from a caller object method invocation to

callee object method invocation (two threads could be in the same object or even the

same method but not in the same method invocation at once); and (3) using an idle

catcher to reset the currently running thread when none of the processes in our model

have any enabled transitions.

Currently running thread context. Each transition in every process in the

model updates the globally accessible state variable ({Scheduler}0).current to record

the thread context under which it is currently running. Any IF process P whose

thread context is the same as the currently running thread will get preference to any

IF process Q whose thread context is not the same as the currently running thread,

provided the threads for P and Q have the same priority. This policy can be expressed

in IF using a combination of IF priority rules.

run_to_completion: pid1 < pid2

if

(pid1 instanceof Reactor and pid2 instanceof Reactor and

({Reactor}pid1).threadid_ <> ({Reactor}pid2).threadid_ and

({Thread}(({Reactor}pid1).threadid_)).prio =

({Thread}(({Reactor}pid2).threadid_)).prio and

({Scheduler}0).current = ({Reactor}pid2).threadid_) or

(pid1 instanceof Reactor and pid2 instanceof Select_Reactor_Handle_Events

and

({Reactor}pid1).threadid_ <> ({Select_Reactor_Handle_Events}pid2).threadid_

and

({Thread}(({Reactor}pid1).threadid_)).prio =

({Thread}(({Select_Reactor_Handle_Events}pid2).threadid_)).prio and

({Scheduler}0).current = ({Select_Reactor_Handle_Events}pid2).threadid_) or

....

Figure 5.17: Priority Rules to Achieve Run-to-completion Semantics

The extract in Figure 5.17 shows an instance of this run to completion rule. The

semantics of this IF rule is that for any two processes P and Q, Q has preference

if their thread contexts are different, their thread contexts have the same priority

91

and Q has a thread context that is the same as the context of the currently running

thread whose id is stored in a globally accessible state variable ({Scheduler}0).current.

Note that if there is no currently running thread context, then we do allow non-

determinism in the system. This is because the boolean condition in the priority rules

that evaluates whether a process’ thread context is the same as the currently running

thread’s context, returns false for each process and hence there is no preference for

any particular process under the run-to-completion priority rules.

Thread context propagation. To realize run-to-completion semantics in IF, it

is not sufficient that a globally accessible state variable is updated with the current

thread id at the beginning of the action section associated with every transition. This

is because the priority rules in IF are executed in the context of the current global

state of the system. The state of a process thus must be updated with the thread

context under which it is running, before the execution of priority rules, since this is

the state that is used by the priority rules. By updating the current thread at the

beginning of a transition, this update happens after a decision is made in the model

checker as to which process to execute next from among the list of processes with

enabled transitions. This update is necessary, however, to allow non-determinism in

the system, and consequently whichever process runs first runs to completion. The

thread context propagation that we discussed earlier propagates the thread context

before the execution of priority rules since the propagation is done by an observer

that executes before any IF process and evaluation of priority rules.

Idle catcher. The combination of the two previous techniques is sufficient as long as

there is always an enabled transition in the system. However, there could be problems

when there are no enabled transitions in the system, for example when time needs

to progress in the model. Figure 5.18 illustrates such a problem, where Thread1 (at

process P) and Thread2 (at process R) are enabled at (1), where a non-deterministic

choice is made between P and R. Assuming that process P is selected to run by the

model checker, Thread1 blocks when process Q blocks at (2) waiting for some event.

Process R is then selected to run and Thread2 runs to completion at (3). Note that

the current running thread is updated at (1) and (2) to be Thread1 and then Thread2

respectively. At (3) Thread2 blocks, when S blocks waiting on some event. At (3),

the current thread is still recorded as being Thread2. As a consequence, at (4) when

92

Q and S are both enabled, only S is selected by the model checker since the current

thread is recorded as being Thread2. This results in over-constraining the state space,

in which a form of non-determinism which is quite possible and which may be relevant

to the constraints of the actual system that we are trying to model, is removed. To

avoid such over-constraining, we add an Idle Catcher process as Figure 5.18 shows.

This process has a lower preference than any other process in the model, and runs

P Q

Current
Running

thread = 1

R S

Current
Running

thread = 2
Thread1

Thread2

Current
Running

thread = 0

Idle_Catcher
process runs

1 2 3 4 5

IF-processes Q and S
enabled at this point, Non-

deterministic choice of Q or S.
Over-constraining

eliminated

Figure 5.18: Idle Catcher

only when there are no other enabled transitions in the system (3). As soon as it runs,

it resets the state variable that records the currently running thread (4). Now, when

Q and S are enabled (5) one of them is picked non-deterministically by the model

checker. The selected process then updates the currently running thread context and

runs to completion.

5.5.5 Ordering Optimizations

A common problem with model-checking is that the state space to be checked can

become intractably large. Hence, it is very important to prune out unnecessary

non-determinism in the model, and avoid state transitions that do not have a rep-

resentation in the real world, so that model-checking becomes more tractable. In

this section, we describe a combination of techniques we have employed to achieve

such state space reductions. We are particularly concerned with techniques that can

93

exploit information that is specific to a given application, such as its function call

graph or details about its run-time environment.

Because our models allow different interleavings of actions, particularly when the

models represent multiple threads of execution, it is important to distinguish inter-

leavings of actions that are relevant to the application constraints, from spurious

interleavings that could easily render the model’s state space intractable. We first

examine interleavings caused by the order in which objects are initialized or the order

in which threads waiting for a synchronization token are chosen.

System initialization. When we construct the model of a system, we first estab-

lish the static structure of the system, creating both active and passive objects, and

establish the associations between them. In IF, we use the IF process construct to

model both active and passive objects. For example, a reactor is a passive object and

a thread pool is an active object. Even though a reactor is a passive object, since

it is modeled as an IF process, within the model checker the reactor is represented

as an automaton that can run concurrently with other automata. During the static

initialization phase, it does not really matter in what order the different objects and

their associations are created. In other words, the different orders of those initializa-

tions are observationally equivalent. However, unless this information is conveyed to

the model checker, it may explore permutations of possible interleavings of actions

that result in the same application semantics. For example, an application may have

an object A that creates an instance of object C and also may have another object B

that creates another instance of C, but it does not matter to the application which

instance of C is created first. However, unless told to do otherwise, the IF model

checker may still explore which instance of C gets created first. In IF, when a process

C is forked to model object creation, it is given a unique id. The first instance of

the process can be accessed as {C}0, the second instance as {C}1 and so on. If a

process {A}0 forks a process C before another process {B}0, then the instance used

by {A}0 is {C}0 and the instance used by {B}0 is {C}1. On the other hand, if {B}0

forks C before {A}0 then {B}0 owns {C}0 and {A}0 owns {C}1. These are different

scenarios as seen by the model checker, and these application-irrelevant interleavings

during the initial phase of system structure could significantly impact the size of the

state space.

94

By constraining such interleavings, therefore we can help reduce the overall state

space. We use priority rules again to control such interleavings. During system ini-

tialization, among IF processes of the same process class, an arbitrarily selected fixed

order - e.g., ascending order of pid values - can be specified by the model developer

for resolving such non-determinism. The priority rule named init rules in Figure 5.19

is an example of a rule that controls interleavings during system initialization.

priorityrules;

init_rules: pid1 < pid2

if

({Global}0).run_mode = MODE_INIT) and

(pid1 instanceof ReaderProc and pid2 instanceof ReaderProc and

{integer}pid1 > {integer}pid2) or (pid1 instanceof WriterProc and

pid2 instanceof WriterProc and {integer}pid1 > {integer}pid2)

endpriorityrules;

Figure 5.19: Initialization Mode Priority Rule in IF

The rule in Figure 5.19 states that during system initialization, among two processes

of type ReaderProc (and similarly for WriterProc), one with a lower integer valued pid

would get preference. An IF-process P when instantiated multiple times would have

pids as {P}0, {P}1, etc. If {P}i is the pid of an IF-process P , then i is the integer

value of the pid. For example, if both {ReaderProc}0 and {ReaderProc}1 have

enabled transitions, then because of this priority rule, {ReaderProc}0 gets preference

and hence the number of interleavings is reduced.

Leader thread election. With some concurrency strategies, such as the thread

pool reactor described in Section 5.3.3, it may not matter in which order a thread

is chosen from a set of waiting threads, e.g., to become the leader thread to start

waiting for events on the reactor. If the choice of a specific thread does not have any

consequences for the safety, timing, or liveness properties of the system, then this

non-determinism can be eliminated, thus reducing the state space. We use a simple

strategy to remove non-determinism in this case: among the IF processes representing

the waiting threads, we choose the one with the lowest process id number. The extract

in Figure 5.20 shows the priority rule that enforces this.

95
leader_thread_election: pid1 < pid2

if (

pid1 instanceof TP_Reactor_Handle_Events and

pid2 instanceof TP_Reactor_Handle_Events and

({TP_Reactor_Handle_Events}pid1).reactor_ =

({TP_Reactor_Handle_Events}pid2).reactor_ and

({Reactor}({TP_Reactor_Handle_Events}pid1).reactor_).

handle_events_in_progress_ = 0 and

({Reactor}({TP_Reactor_Handle_Events}pid1).reactor_).

handle_events_thread_ <> pid1 and

({Reactor}({TP_Reactor_Handle_Events}pid1).reactor_).

handle_events_thread_ <> pid2 and

{integer}pid1 > {integer}pid2

);

Figure 5.20: Priority Rule in IF for Leader/Followers ThreadPool

5.6 Summary

In this chapter, we have shown how we used IF to develop reusable timed automata

models of basic middleware building blocks that are reified in the ACE [51] framework

and are commonly used in building distributed systems middleware. We have seen

how automata (i.e., IF processes) can be instantiated at model execution time using

the fork construct in IF. We discussed various techniques that we developed for state

space optimization as well as to model object-oriented concurrent systems in IF. In the

next chapter we show our use of the models we developed in the context of example

application scenarios that demonstrates the benefits of using our models.

96

Chapter 6

Representative examples

In chapters 4 and 5, we discussed the executable models of middleware building

blocks that we have developed using UPPAAL and IF. In this chapter, we develop

both UPPAAL and IF models of some representative scenarios that use variations

of reactor, event handler and thread pool configurations. The behaviors of these

example scenarios are described using informal analysis based on domain knowledge.

The examples that we describe here are simple examples used for the purpose of

illustrating modeling using our models described in Chapters 4 and 5 and establishing

basic concepts for the discussion of model validation in chapter 7. We will present

more sophisticated examples in the DA reactor case study in chapter 8, and the

gateway example case study in chapter 9. Although the scenarios in this chapter are

simple in concept, they serve to capture key interference issues caused by middleware

building blocks. Finally we present statistics on the costs of checking these models

and arrive at some crucial conclusions about necessary optimizations based on these

statistics.

We choose scenarios that capture the key behavioral characteristics of the elements of

our computational model discussed in Section 3.1. In this chapter, we examine these

scenarios informally using our domain knowledge and then support our examination

with traces from executing models of these scenarios. In the next chapter, we offer a

more detailed analysis based on these scenarios to check the fidelity of our IF models

against experimental observations. The purpose of developing the models for these

scenarios is twofold - (1) it allows us to debug our models using informal knowledge

that we have about the behavior of the modeled middleware in these scenarios, and (2)

it serves to evaluate key mechanisms that we use to realize our middleware modeling

97

architecture. We develop our models using both UPPAAL and IF, and show that IF

provides a better facility for obtaining execution traces and post-processing them.

6.1 Experimental Setup

Figure 6.1 shows the experimental setup that we used to model the different scenarios

in both IF and UPPAAL. This setup served two purposes - (1) it enabled reuse of

parameterized UPPAAL/IF models across different scenarios and thus helped us in

writing drivers that can be used to configure these parameterized models for the

different scenarios; (2) it enabled consistent terminology for modeling in both IF and

UPPAAL which is important when analyzing execution traces from model execution.

Flow1_EH1
Reactor1

Flow1_EH2
Reactor2

Flow1_EH3

Flow2_EH1 Flow2_EH2

Flow2_EH3

Flow3_EH1 Flow3_EH2

Flow3_EH3

lhs-
sap-

handle

rhs-
sap-

handle

IPC Channel

Client1

Client2

Client3

Figure 6.1: Execution Setup for Scenarios

The scenarios that we consider here consist of concurrent call sequences that may

span multiple event handlers, each of which is registered with a reactor. There also

98

may be multiple reactors that host these event handlers. A client originates a flow,

which is a call-chain spanning possibly multiple event handlers. The communication

between clients and event handlers and between event handlers occurs through the

IPC channels as is shown in Figure 6.1. This figure shows 3 flows, although the

number could vary among scenarios. For the sake of our discussions here, we assume

that the same event handler instance is not used by multiple flows, although this is

not inherently a restriction of our models. Each event handler has a name that is

prefixed with the flow number that uses the event handler. Each client is suffixed

with its flow number. Each event handler has an IPC SAP associated with it through

which it receives messages sent by a client or another event handler. There are three

types of event handlers that we use in our discussions - EH1, EH2 and EH3. EH3

event handlers do not depend on other event handlers for their processing. EH1

and EH2 may depend on other event handlers - based on the scenario, EH1 may

depend on EH2 and EH2 may depend on EH3 as part of their service processing.

Both EH1 and EH3 type event handlers are hosted in Reactor1, although in some

scenarios only one may be present. EH2 type event handlers are hosted in Reactor2.

A reactor watches multiple such SAPs for I/O events and then dispatches them to

the appropriate event handlers registered with it. The number of threads and the

type of reactor (select, thread pool) could vary between scenarios. Different scenarios

are realized by setting up clients and event handlers with appropriate SAPs through

which communication takes place. Table 6.1 shows the naming convention that we

use throughout the discussion of the various scenarios.

Table 6.1: Naming Conventions Used in Discussion of Scenarios
Reactor Reactor<reactor num>

EventHandler Flow<flow num> EH<eh num>

Select Reactor
handle events Reactor<reactor num> SRHE<recursion depth>

call stack

TP Reactor
handle events Reactor<reactor num> TPRHE<thread num>

call stack

IPC channel UniDir IPC <lhs SAP handle> <rhs SAP handle>

Reactor thread ReactorThread<thread num>

Reply Handler Flow<flow num> EH<eh num> RH

Client Client<flow num>

99

Since the call stack for handle events is modeled as a process, it is included in this

table. For a select reactor, the label SRHE followed by the stack depth of a nested

handle events call is used and for a thread pool reactor TPRHE is used followed by

the number of the reactor thread. Reactor threads are given numbers that are unique

across different reactor thread pools.

The following are the key steps during construction of models for the different sce-

narios: (1) creating the IPC channels, (2) creating the reactors and their threads, (3)

creating event handlers, (4) registering event handlers with the appropriate reactor,

(5) adding a set of IPC SAPs to the appropriate reactor’s I/O watch set, and (6)

establishing the connections among clients and event handlers by associating them

with the appropriate IPC SAPs.

6.1.1 Modeling the Scenarios in UPPAAL

In Chapter 4, we discussed models of basic building blocks in UPPAAL and how

these are constructed using process templates in UPPAAL. Modeling the scenarios

involved instantiating these process templates with the appropriate parameters and

then establishing communication channels between these automata. All the tem-

plate processes are instantiated in the “Process Assignments” section of an UPPAAL

project. To model the clients in the various scenarios, we used a client process (au-

tomaton) template as is shown in Figure 6.2. The client process template takes three

parameters - (1) the start time at which the client will send a request to a server,

(2) the relative deadline before which the client expects a reply back from the server,

and (3) the IPC SAP on which the request is to be sent.

For example, client1 = Client(3, 45, ipc sap 4) instantiates a client process template

which specifies that a request message be sent at time = 3 units and the relative

deadline for the reply is 45 time units. The request is to be sent on SAP 4.

Figure 6.2 also shows how we model deadline miss detection by adding two states -

Done and DeadlineMiss. Detecting deadline misses thus becomes a reachability query

in the model checker. If the client receives the reply within its deadline, then it moves

to the Done state, and if not it moves to the DeadlineMiss state. We use the query

100

DeadlineMiss

Done

S2

time <= rel_deadline

S1

global_clock <= send_time

time == rel_deadline

!is_empty(ipc_sap, IPC_READQ)
dummy?

global_clock == send_time

time = 0,
put_data(ipc_sap, IPC_WRITEQ,10)

Figure 6.2: Model of Client in UPPAAL

E3 client1.DeadlineMiss in the UPPAAL verifier to check whether there is a deadline

miss. This query asks the following - Is there any state in any path from the start

state, where client1 is in the DeadlineMiss state?

6.1.2 Modeling the Scenarios in IF

In IF, we created a test harness process that will fork the appropriate model and

observer processes for each scenario, and establish associations between clients and

SAPs as well as between event handlers and SAPs. The test harness process is

supplied with parameters specific to a scenario. For example, some parameters to the

test harness are: the type of each of the two reactors, the number of threads in each

reactor, the reply wait strategy for event handlers, the SAP on which each client/event

handler should send requests, and the SAP on which each event handler should receive

requests. This gives us a framework from which to create models for these different

scenarios while reusing as much IF code as possible across different scenarios. Since IF

does not support the concept of file includes as in C/C++, any IF model has to be self-

contained, i.e., it cannot refer to processes in other IF files. This therefore requires

duplication of the ACE building block models for each of the different scenarios.

To reduce accidental complexities that are inherent in such code duplication, we

have developed automated tools (based on GNU make) that combine the common IF

models and observers that we discussed in Chapter 5 to compose models for a specific

101

scenario. From an engineering perspective, this framework enables flexible modeling

of multiple scenarios while safely reusing as much code as possible.

The extract in Figure 6.3 shows how we instantiate the test harness to establish a

scenario where there is a single client communicating with a single event handler of

type EH1, hosted on Reactor1 which is a select reactor with a single thread. The

client sends a message to Flow1 EH1 at time = 3 units and its relative deadline for

receiving a reply back is at time = 60 units.

process Main(1);

var th_params Test_Harness_Params;

state init #start ;

task th_params.num_flows := 1;

task th_params.num_ehs := 1;

task th_params.reactor1_type := RT_SELECT;

task th_params.reactor1_tp_num := 1;

task th_params.eh_params[0].more_service := 0;

task th_params.eh_params[0].reply_wait_strat := NO_WAIT;

task th_params.eh_params[0].annotation := 0;

task th_params.eh_params[0].exec_time := 25;

task th_params.client_params[0].start_time := 3;

task th_params.client_params[0].rel_deadline := 60;

task th_params.client_params[0].eh_no_to_connect := 1;

fork Test_Harness(th_params);

nextstate done;

endstate;

Figure 6.3: IF based Test Harness

The eh params array is indexed based on the number of the event handler - 0 for EH1

type, 1 for EH2 type and 2 for EH3 type event handlers. The client params array is

indexed by the flow number.

102

6.2 Execution Traces

One advantage of using executable models is the execution/simulation traces that

are produced when we execute our models in a tool like IF or UPPAAL. These

traces carry valuable information including, in particular, clues as to what sequence

of execution steps led to a specific system state, e.g., a deadlock. This enables us to

do more principled analysis of a system rather than just an informal discussion. We

now describe the execution trace facilities available in both IF and UPPAAL and how

we do various forms of post-processing on these traces to make them suitable for our

analysis here.

6.2.1 Execution Traces in UPPAAL

In UPPAAL a property to be verified for the system model is expressed as a temporal

logic expression in the UPPAAL verifier. If a property using an existential quantifier

(E) is satisfied, then a trace is produced showing the sequence of steps leading to a

state where the property is satisfied. There could be multiple execution sequences

that could lead to a state where a property is satisfied. On the other hand, if a

property using a universal quantifier (A) is not satisfied, then a trace is produced

showing the sequence of steps leading to a state where the property is not satisfied.

In UPPAAL, there are two ways to run the verifier: (1) using the GUI, or (2) using

the verifyta command line tool that is available with the UPPAAL package. The

GUI based trace is useful for replaying execution traces and observing the execution

state of the system, but it is cumbersome to use these traces in formal discussions

because they mostly depend on visual depiction of information. On the other hand,

the verifyta command line tool produces a text-based trace that can be used in formal

discussions. We use a combination of these techniques in our discussions here based

on their appropriateness to the particular discussion.

The trace file generated by the UPPAAL GUI-based verifier uses its own proprietary

format and hence we cannot do any post processing on these traces. These traces are

used only by the UPPAAL GUI, for example to replay an execution trace. The trace

103

file generated by the verifyta tool produces a textual trace, but the format of this is

also not well defined and hence not very amenable to post-processing like what we

will see for IF. Nevertheless, we use standard Unix utilities like grep and sed to do

some post-processing to extract information that is relevant to our discussions here.

We encountered problems collecting model checking statistics in UPPAAL with the

verifyta utility in UPPAAL stopping abruptly when doing exhaustive exploration.

Hence we were not able to collect statistics for the example scenarios using UPPAAL.

However, our development of the models in UPPAAL does show the generality of our

modeling architecture.

6.2.2 Execution Traces in IF

The IF explorator provides a facility to produce an execution trace when a property

is satisfied or violated. The execution trace contains all execution steps - actions,

forks, outputs, function calls, etc. We use execution traces to explain formally the

behavior that we discuss in the four scenarios. In this section, we discuss in detail

the format of these traces and how we post-process the traces produced by IF and

make them concise for our needs.

The execution trace produced by IF is in XML format as is shown in Figure 6.4.

Each atomic step is surrounded by IFLabel start and end tags. An atomic step is a

sequence of steps associated with a single transition. Each atomic step may consist

of a sequence of steps each indicated by an XML element of type IFEvent. A task

statement in IF, e.g., assigning a value to a variable, appears as an IFEvent XML

element with the kind attribute set to IMPORT in the trace. A function call appears

as an IFEvent XML element with the kind attribute set to CALL and the value

attribute set to the name of the function.

An output statement in IF appears as an IFEvent element with the kind attribute set to

OUTPUT and the value attribute set to the IF signal with all of its actual parameters.

Trace elements of these kinds give details of the communication messages between

IF-processes. Forking a process is logged as an IFEvent element with attribute kind as

FORK. The first child pid element of the IFEvent element has the pid of the creator

104

<IfLabel>

<IfEvent kind=’IMPORT’ value=’’>

<by>

<pid name=’UniDir_IPC’ no=’5’ /></by>

</IfEvent>

<IfEvent kind=’CALL’ value=’IPC_SAP_enqueue_data’>

<by>

<pid name=’UniDir_IPC’ no=’5’ /></by>

</IfEvent>

</IfLabel>

.............

<IfEvent kind=’OUTPUT’

value=’handle_events{p1={threadid={Thread}3,parent={ThreadPool}2,

caller={ThreadPool}2},p2=3}’>

<from>

<pid name=’ThreadPool’ no=’2’ /></from>

<via>

<pid name=’Reactor’ no=’1’ /></via>

<to>

<pid name=’nil’ no=’0’ /></to>

</IfEvent>

.............

<IfEvent kind=’INPUT’

value=’handle_events{p1={threadid={Thread}3,parent={ThreadPool}2,

caller={ThreadPool}2},p2=3}’>

<by>

<pid name=’Reactor’ no=’1’ /></by>

</IfEvent>

............

<IfEvent kind=’FORK’ value=’Select_Reactor_Handle_Events’>

<process>

<pid name=’Select_Reactor_Handle_Events’ no=’0’ /></process>

<by>

<pid name=’Reactor’ no=’1’ /></by>

</IfEvent>

Figure 6.4: Trace Output from IF Model Execution

105

process and the second child pid element has the pid of the created process. We

developed post-processing tools to convert the XML based traces into a more readable

and concise format for human analysis. For example, the trace that was produced in

XML as shown in Figure 6.4 is converted to the format shown in Figure 6.5.

41: {ThreadPool}2 ---handle_events(3)---> {Reactor}1

42: {Reactor}1 forks {Select_Reactor_Handle_Events}0

Figure 6.5: Trace Output from IF Model Execution After Post-processing

This format is more readable and easier to analyze visually and thus better serves

our purpose of illustrating the sequences of events that happen during execution of

concurrent processes. For example, the trace in Figure 6.5 shows that the process

{ThreadPool}2 sends a message to the process {Reactor}1. A process in IF is denoted

by its pid {P}x, where P is the type of the process and x denotes its instance number.

The message is of type handle events and its parameter is 3. Note that here we strip

the first parameter of a message from the original XML trace. The first parameter is

used to carry context information like the caller, logical thread id, etc. This parameter

is common to all the IF messages that we use and usually is not relevant to the kind of

analysis that we perform here. Nevertheless, our post-processing tools have an option

to turn this parameter off or on since this parameter could be useful in some cases,

e.g., for debugging our models. The second line in the trace shown in Figure 6.5 shows

that a new IF process {Select Reactor Handle Events}0 was forked by a process with

pid {Reactor}1.

When many IF processes are spawned, it can be difficult to keep track of the mapping

between these processes and the real world entities that they represent. For example,

a Select Reactor Handle Events or TP Reactor Handle Events process is spawned by

the Reactor process for each handle events method call. This is done to simulate

the thread call stack associated with the method call, as we discussed in Chapters 4

and 5. In our informal discussion of these examples, we use Flow1 EH1, Flow1 EH2,

etc. to indicate event handlers. All these event handlers are modeled using a single

type of IF process called Event Handler and are instantiated with different parameters

to customize their behavior. While analyzing the execution trace, it then becomes

difficult to keep track of the mapping between the actual event handlers (Flow1 EH1,

Flow1 EH2, etc.) and the IF processes ({Event Handler}0, {Event Handler}1, etc.).

106
{UniDir_IPC}4 : DECLARE_NAME(TYPE_UNIDIR_IPC,{UniDir_IPC}4,8,9)

{Event_Handler}1 : DECLARE_NAME(TYPE_EH,{Event_Handler}1,0,2)

{ThreadPool}0 : DECLARE_NAME(TYPE_TP,{ThreadPool}0,1,0)

{Reactor}0 :DECLARE_NAME(TYPE_TPR_HE,{TP_Reactor_Handle_Events}0,1,1)

Figure 6.6: Signal to Map IF Processid to a Name

We address this problem by using a name declaration signal, examples of which are

shown in Figure 6.6. A process can declare a name by using the DECLARE NAME

IF signal. This signal has 4 parameters: (1) the type of process; (2) the pid of the

process; (3) and (4), one or two process-specific integer parameters. This event is sent

to the nil process in IF which does not have any effect other than that this output

signal appears in the execution trace. The trace in Figure 6.6 shows some processes

declaring their logical names. We now describe the four parameters and the intuition

behind each of them. In IF, there is no character string data structure, and hence we

have to resort to a different method to associate a name with a process. The type of

the process is given as the first parameter, and this helps the post-processing tool to

identify the type of the process when it encounters a DECLARE NAME signal. The

type is then used to interpret the next two parameters. The values for the parameters

are interpreted as shown in Table 6.2.

Table 6.2: Naming Convention in Post-processed Traces
Param1(p1) Param3(p3) Param4(p4) Name in trace

Reactor TYPE REACTOR Reactor# Unused Reactor<p3>

EventHandler TYPE EH Flow# EH# Flow<p3> EH<p4>

SR Handle Events TYPE SR HE Reactor# Stack depth Reactor<p3> SRHE<p4>

TPR Handle Events TYPE TPR HE Reactor# TP Thread# Reactor<p3> TPRHE<p4>

ReplyHandler TYPE RH Flow# EH# Flow<p3> EH<p4> RH
ReactorThread TYPE TP Thread# Unused ReactorThread<p3>

UnidirIPC channel TYPE UNIDIR IPC lhs-SAP handle rhs-SAP handle Unidir IPC <p3> <p4>

Client TYPE CLIENT Client# Unused Client<p3>

A # indicates an ordinal number. For example, two reactors in a scenario could be

named Reactor1 and Reactor2. A flow is a call chain that starts from a client and

possibly may span multiple reactors and event handlers. A ReactorThread is a thread

that calls the reactor event loop. A UnidirIPC channel is a unidirectional channel

that transfers data from a SAP buffer to another SAP buffer of an IPC channel. For

the SR Handle Events process, the fourth parameter is the depth of recursion of the

handle events call. This is useful for analyzing traces in the case of waiting for a reply

using the WaitOnReactor strategy.

107

After mapping the IF pids to names, the trace becomes more readable for analysis.

For example, part of a trace is shown in Figure 6.7 that uses IF pids to show the

interactions between processes and the sequence of these interactions. The same

trace after mapping IF pids to names is shown in Figure 6.8.

{TP_Reactor_Handle_Events}0 ---handle_input(2)--->{Event_Handler}0

{Select_Reactor_Handle_Events}0 ---handle_input(4)--->{Event_Handler}1

{TP_Reactor_Handle_Events}1 ---handle_input(6)--->{Event_Handler}2

{Event_Handler}2 ---handle_input_return(0)--->{TP_Reactor_Handle_Events}1

Figure 6.7: IF Trace Before Pid to Name Mapping

1: Reactor1_TPRHE1 ---handle_input(2)---> Flow1_EH1

2: Reactor2_SRHE1 ---handle_input(4)---> Flow1_EH2

3: Reactor1_TPRHE2 ---handle_input(6)---> Flow1_EH3

4: Flow1_EH3 ---handle_input_return(0)---> Reactor1_TPRHE2

Figure 6.8: IF Trace After Pid to Name Mapping

Note that during post processing this capability can be turned on or off so that the

trace without names can still be obtained if needed, e.g., for debugging our models.

Line 1 in the trace in Figure 6.8 shows that the first thread in the thread pool of

Reactor1 - a TP reactor - calls the handle input method on the Flow1 EH1 event

handler. Line 2 shows that Reactor2 - a select reactor - calls the handle input method

on the Flow1 EH2 event handler. Line 3 shows that the second thread in the thread

pool of Reactor1 calls handle input on the Flow1 EH3 event handler. Line 4 shows

that the Flow1 EH3 event handler returns from the handle input call and the flow of

control goes back to the second thread in the thread pool of Reactor1.

6.3 Scenarios

We now consider four simple but representative example scenarios. In each of these

scenarios, we vary the semantics of the reactor and event handler models to illustrate

how interference between different flows’ execution can arise for different middleware

policy and mechanism choices, and to show how in each case the particular form of in-

terference can be analyzed through model checking. Note that these scenarios capture

a small but representative set of design choices that are available when configuring the

middleware infrastructure for an application. For example, possible design solutions

108

for communication in these scenarios include two-way calls, one-way calls with dif-

ferent messaging options [75] (SYNC WITH TARGET, SYNC WITH SERVER, etc.),

Asynchronous Method Invocation [98], and Asynchronous Message Handling [24].

Our models capture the semantics of common middleware building blocks with which

these different design solutions can be realized, thus giving our approach broad ap-

plicability.

6.4 Scenario 1 - Blocking in a Single Reactor

In real-time and embedded systems, crucial system properties can involve timing con-

straints such as receiving the result of a method invocation before a relative deadline.

In this scenario, we consider a case where system timing is affected by interference

between nominally independent call sequences, when they must contend for resources

such as use of a single reactor thread. Figure 6.9 shows the setup for this scenario

in which there are two flows and in each flow a client sends a message to an event

handler of type EH1 hosted on Reactor1 and this event handler sends a reply back

to the client after doing some processing.

Client1
Flow1_EH1

Reactor1

Client2
Flow2_EH1

1 2

3 4

Figure 6.9: Scenario 1 Setup

109

Figure 6.10 shows two call sequences in which Client1 and Client2 invoke methods and

receive replies from event handlers Flow1 EH1 and Flow2 EH1 respectively. This fig-

ure shows the timelines for each of the individual call sequences - Client1→Flow1 EH1

and Client2→Flow2 EH1 - in isolation without considering the interleaving of calls.

���������	��
���

� �	����
���� ������������������ � �!��
��"� ���!���#�$�������

%�&'�)(*�+,)�	
,-
�.�	/#�

0��	/#�

Figure 6.10: Call Sequence for Scenario 1

Informal Analysis. In this scenario a single thread is used by a reactor to demulti-

plex events to its registered event handlers. Since both Flow1 EH1 and Flow2 EH1 are

deployed on the same single-threaded reactor, as shown in Figure 6.9, they can only

handle events sequentially. If the request messages from Client1 to Flow1 EH1 and

Client2 to Flow2 EH1 arrive at the server at roughly the same time, then whichever

event handler is dispatched first will delay the other event handler, potentially result-

ing in a missed deadline. The extent to which the event handlers contend for shared

resources impacts whether or not a deadline miss can occur. Using our models we

can determine (1) whether any deadline misses can occur due to interference between

the two call sequences, and (2) if a deadline miss is possible, under what conditions

it can occur. In this scenario, blocking delays are caused by the implicit serialization

caused by the single threaded reactor. Later on in scenario 3, we will see another

kind of blocking factor that is caused by the nesting of upcalls from the same reactor.

Now we state the following hypothesis based on the informal analysis above.

110

Hypothesis 1. Multiple computation flows passing through the same single threaded

reactor could interfere with each other and cause blocking delays that could result in

missed deadlines.

We now show how we can analyze this scenario using our executable formal models

in both UPPAAL and IF to evaluate the above hypothesis.

6.4.1 Formal Analysis of Scenario 1 in UPPAAL

We composed the model for Scenario 1 in UPPAAL using the models of building blocks

that we described in Chapter 4. The UPPAAL process templates are instantiated as

in Figure 6.11.

Unidir_IPC_1_2 = IPC_Channel(ipc_sap_1,ipc_sap_2,0);

Unidir_IPC_2_1 = IPC_Channel(ipc_sap_2,ipc_sap_1,0);

Unidir_IPC_3_4 = IPC_Channel(ipc_sap_3,ipc_sap_4,0);

Unidir_IPC_4_3 = IPC_Channel(ipc_sap_4,ipc_sap_3,0);

Flow1_EH1 = EventHandler(FLOW1_EH1, 25, ipc_sap_2, REACTOR1);

Flow2_EH1 = EventHandler(FLOW2_EH1, 25, ipc_sap_4, REACTOR1);

Reactor1_SRHE0 = Select_Reactor(REACTOR1,

handle_events_channels[REACTOR1],

handle_events_return_channels[REACTOR1],

reactor_states[REACTOR1]);

ReactorThread1 = ReactorThread(handle_events_channels[REACTOR1],

handle_events_return_channels[REACTOR1]);

Client1 = Client(3, 45, ipc_sap_1);

Client2 = Client(3, 45, ipc_sap_3);

Figure 6.11: Instantiating Scenario 1 in UPPAAL

Two channels are created to represent the connections Client1→Flow1 EH1 and

Client2→Flow2 EH1. Both Flow1 EH1 and Flow2 EH1 are created with compu-

tation times of 25 units. Each of them is registered with Reactor1 which is the

only reactor in this scenario. Flow1 EH1 handles events occurring in ipc sap 2 and

Flow2 EH1 handles events occurring in ipc sap 4. We use a select reactor in this

scenario to illustrate the blocking factors caused by the implicit serialization of event

dispatching that occurs in this reactor. Finally, two clients are instantiated. Each

111

client sends a request message 3 time units from the start of model execution. We

have modeled the clients so that each of them sends a request message to their re-

spective event handlers exactly when time = 3 after system initialization, thereby

achieving coordination between the client and server. Each client has a deadline of

45 time units relative to the sending of the request message before which it expects a

reply message. Client1 and Client2 send their request messages on channels ipc sap 1

and ipc sap 3 respectively.

The temporal logic expression E3 Client1.DeadlineMiss or Client2.DeadlineMiss is used

to verify whether there are any deadline misses. This query asks - Is there any state

in any path from the start state, where Client1 is in the DeadlineMiss state or Client2

is in the DeadlineMiss state? With the composed model shown above, the verifier

shows that this property is satisfied. Note that the verifier stops further state space

exploration as soon as it finds a state that satisfies this property. Figure 6.12 shows a

textual trace (using the verifyta tool) of the sequence of events that led to the above

property being satisfied.

The system model starts execution by calling the init func function (line 1) that

registers the event handlers with the appropriate reactors and adds the SAPs to the

appropriate reactor watch set. The reactor thread calls the handle events method

(lines 2-3) which starts watching SAP handles 2 and 4 for read events. After time

progresses by 3 units (line 4), Client2 sends a message (line 5) through SAP handle 3.

Note that the trace does not show the actual parameters. For example, the put data

function in line 5 does not show the actual parameter ipc sap 3 with which the Client2

automaton is instantiated. In contrast, the GUI simulator shows the automata with

the actual parameters with which they are instantiated. The unidirectional IPC

channel from SAP handle 3 to 4 transfers data (lines 6,7) from the write SAP buffer

for 3 to the read SAP buffer for 4. Client1 then sends a message and the same

sequence as above is repeated (lines 8-10). Reactor1 then unblocks (line 11) from its

wait for I/O events, since two SAP handles are ready for reading. The reactor picks

the first SAP handle (line 12) and makes an upcall to the appropriate event handler

(line 13). After receiving the upcall (line 14), the event handler Flow1 EH1 does

some CPU bound computation for 25 time units (line 15) and then writes a reply

message (line 16) to the write buffer for SAP handle 2. The message is transferred

to read buffer for SAP handle 1 by a unidirectional IPC channel (lines 17,20). The

112

1 InitProcess.S1->InitProcess.S2 { 1, tau, init_func() }

2 ReactorThread1.S1->ReactorThread1.S2 { 1, reactor_handle_events!, 1 }

3 Reactor1_SRHE0.S1->Reactor1_SRHE0.S2 { 1, handle_events?, 1 }

4 Delay: 3

5 Client2.S1->Client2.S2 { global_clock == send_time, tau, time := 0, p

5 ut_data(ipc_sap, IPC_WRITEQ, 10) }

6 Unidir_IPC_3_4.S1->Unidir_IPC_3_4.S2 { !is_empty(lhs_sap, IPC_WRITEQ)

6 , dummy?, t := 0 }

7 Unidir_IPC_3_4.S2->Unidir_IPC_3_4.S1 { t == prop_delay, tau, bytes_re

7 ad := get_data(lhs_sap, IPC_WRITEQ), put_data(rhs_sap, IPC_READQ, bytes

7 _read) }

8 Client1.S1->Client1.S2 { global_clock == send_time, tau, time := 0, p

8 ut_data(ipc_sap, IPC_WRITEQ, 10) }

9 Unidir_IPC_1_2.S1->Unidir_IPC_1_2.S2 { !is_empty(lhs_sap, IPC_WRITEQ)

9 , dummy?, t := 0 }

10 Unidir_IPC_1_2.S2->Unidir_IPC_1_2.S1 { t == prop_delay, tau, bytes_re

10 ad := get_data(lhs_sap, IPC_WRITEQ), put_data(rhs_sap, IPC_READQ, bytes

10 _read) }

11 Reactor1_SRHE0.S2->Reactor1_SRHE0.S3 { is_any_sap_hot(reactor_state.r

11 ead_sap_set_to_watch, reactor_state.write_sap_set_to_watch), dummy?, ho

11 t_read_sap_set := get_hot_read_saps(reactor_state.read_sap_set_to_watch

11), hot_write_sap_set := get_hot_write_saps(reactor_state.write_sap_set_

11 to_watch) }

12 Reactor1_SRHE0.S3->Reactor1_SRHE0.S4 { size(hot_read_sap_set) > 0, ta

12 u, pop_first_sap(hot_read_sap_set, first_hot_sap), upcall_handler := ge

12 t_handler(reactor_state.handler_repo, first_hot_sap) }

13 Reactor1_SRHE0.S4->Reactor1_SRHE0.S5 { 1, eh_hi_channels[upcall_handl

13 er]!, 1 }

14 Flow1_EH1.S1->Flow1_EH1.S2 { 1, eh_hi_channels[eh_pid]?, t := 0, get_

14 data(ipc_sap, IPC_READQ) }

15 Delay: 25

16 Flow1_EH1.S2->Flow1_EH1.S3 { t == comp_time, tau, put_data(ipc_sap, I

16 PC_WRITEQ, 10) }

17 Unidir_IPC_2_1.S1->Unidir_IPC_2_1.S2 { !is_empty(lhs_sap, IPC_WRITEQ)

17 , dummy?, t := 0 }

18 Flow1_EH1.S3->Flow1_EH1.S1 { 1, eh_hir_channels[eh_pid]!, 1 }

19 Reactor1_SRHE0.S5->Reactor1_SRHE0.S3 { 1, eh_hir_channels[upcall_hand

19 ler]?, 1 }

20 Unidir_IPC_2_1.S2->Unidir_IPC_2_1.S1 { t == prop_delay, tau, bytes_re

20 ad := get_data(lhs_sap, IPC_WRITEQ), put_data(rhs_sap, IPC_READQ, bytes

20 _read) }

21 Client1.S2->Client1.Done { !is_empty(ipc_sap, IPC_READQ), dummy?, 1 }

22 Reactor1_SRHE0.S3->Reactor1_SRHE0.S4 { size(hot_read_sap_set) > 0, ta

22 u, pop_first_sap(hot_read_sap_set, first_hot_sap), upcall_handler := ge

22 t_handler(reactor_state.handler_repo, first_hot_sap) }

23 Reactor1_SRHE0.S4->Reactor1_SRHE0.S5 { 1, eh_hi_channels[upcall_handl

23 er]!, 1 }

24 Flow2_EH1.S1->Flow2_EH1.S2 { 1, eh_hi_channels[eh_pid]?, t := 0, get_

24 data(ipc_sap, IPC_READQ) }

25 Delay: 20

26 Client2.S2->Client2.DeadlineMiss { time == rel_deadline, tau, 1 }

Figure 6.12: Scenario 1 Trace in UPPAAL

113

handle input upcall returns (lines 18-19). Client1 receives the reply (line 21) and is

done. Reactor1 then iterates to the next ready handle (line 22) and makes an upcall

(line 23) to Flow2 EH1 which in turn receives the upcall (line 24) and does some

processing (line 25) for 20 time units. At this time the deadline for Client2 expires

causing it to take a transition to the DeadlineMiss state.

In contrast to the previous query, the query - E3 client1.Done and client2.Done - forces

the UPPAAL verifier to do an exhaustive state space exploration since the verifier

finds that this property is not satisfied. This query means - Is there any state in any

path from the start state, where Client1 is in the Done state and Client2 is in the

Done state?. The exhaustive exploration output from the verifyta tool is shown in

Figure 6.13.

$ verifyta -N -d -t 1 single_reactor_bf.xml single_reactor_bf.q2

UPPAAL version 3.6 Alpha 3-pre1, Dec 2005 -- verifyta.

Compiled with g++-4.0.2 -DNDEBUG -O2 -march=pentiumpro -Wall.

Copyright (c) 1995 - 2005, Uppsala University and Aalborg University.

All rights reserved.

Options for the verification:

Diagnostic trace is on

Search order is depth first

Using conservative space optimisation

State space representation uses minimal constraint systems

Verifying property 1 at line 1

-- Property is NOT satisfied.

Figure 6.13: Scenario 1 Exhaustive Exploration in UPPAAL

6.4.2 Formal Analysis of Scenario 1 in IF

The trace in Figure 6.14 shows the sequence of steps leading to a missed deadline

for one of the clients after the expiry of its deadline of 45 time units relative to its

sending of request to an event handler registered with reactor1. The complete trace

is longer than this and a lot of the initial steps are related to construction of model

elements and their relationships. For example, creating the reactors, creating the

IPC channels, creating the event handlers, registering the event handlers with the

appropriate reactors are all part of the initial system initialization. We don’t show

this here for the sake of clarity and brevity. Instead we have already shown the static

114

structure of the system in Figure 6.9, which will provide the context for our analysis

of the trace for this scenario.

1: {Test_Harness}0 ---INIT_MODE_DONE()---> {nil}0

2: Time advanced by 3 units. Global time is 3

3: Client1 : TRACE_SAP_Buffer_Write(1,10)

4: Client2 : TRACE_SAP_Buffer_Write(3,10)

5: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

6: Unidir_IPC_3_4 : TRACE_SAP_Buffer_Transfer(3,4,10)

7: Reactor1_SRHE0 ---handle_input(2)---> Flow1_EH1

8: Time advanced by 25 units. Global time is 28

9: Flow1_EH1 : TRACE_SAP_Buffer_Write(2,10)

10: Flow1_EH1 ---handle_input_return(0)---> Reactor1_SRHE0

11: Unidir_IPC_2_1 : TRACE_SAP_Buffer_Transfer(2,1,10)

12: Client1 : TRACE_SAP_Buffer_Read(1,10)

13: Reactor1_SRHE0 ---handle_input(4)---> Flow2_EH1

14: Time advanced by 21 units. Global time is 49

15: Client2 : TRACE_DeadlineMiss()

{u’{UniDir_IPC}1’: u’Unidir_IPC_2_1’, u’{UniDir_IPC}0’:

u’Unidir_IPC_1_2’, u’{UniDir_IPC}3’: u’Unidir_IPC_4_3’,

u’{UniDir_IPC}2’: u’Unidir_IPC_3_4’, u’{Event_Handler}1’:

u’Flow2_EH1’, u’{Event_Handler}0’: u’Flow1_EH1’, u’{Reactor}0’:

u’Reactor1’, u’{Select_Reactor_Handle_Events}0’: u’Reactor1_SRHE0’,

u’{ThreadPool}1’: u’ReactorThread2’, u’{ThreadPool}0’:

u’ReactorThread1’, u’{ClientProc}0’: u’Client1’, u’{ClientProc}1’:

u’Client2’}

Figure 6.14: Scenario 1 Trace in IF

Line 1 shows that the system initialization mode is done. At time = 3 units (line

2), Client1 writes a request message (line 3) to the SAP with handle 1 and Client2

writes a request message (line 4) to the SAP with handle 3. In this example, the

lhs-SAP handle for the IPC channel from Client1 to Flow1 EH1 is 1 and the rhs-SAP

handle for the same channel is 2. In this case, we refer to the forward unidirectional

channel as 1-2 and the reverse unidirectional channel as 2-1. The channel 1-2 is used

by Client1 to send a message to Flow1 EH1 and channel 2-1 is used by Flow1 EH1

to send a message back to Client1. The data transfer is done by the two UniDir IPC

channel automata that are associated with each IPC channel. Lines 5 and 6 show

that the forward channel automata associated with the two IPC channels (1-2 and

3-4) transfer data from handles 1 to 2 and 3 to 4 respectively. Reactor1 detects the

I/O events on handles 2 and 4 and proceeds to make the upcall as shown in Line 7.

Note that even though we say that the reactor makes an upcall, the upcall itself is

done in the context of the handle events method which in the model is represented

115

as an IF process and hence this appears as Reactor1 SRHE0 in the trace. The first

upcall is made to Flow1 EH1 that is registered with the reactor to handle events on

handle 2. Flow1 EH1 does some computation that takes 25 time units and we see

time advancing by 25 time units in Line 8. Once the computation is done, Flow1 EH1

writes a reply on to handle 2 and returns control to the reactor in Line 10. In Line

11, the data is transferred from handle 2 to 1 and the Client1 reads the reply from

handle 1 in Line 12. The reactor now proceeds to make another upcall corresponding

to the read-ready handle 4 (Line 13), which tries to perform a computation for 25

time units. When time has advanced by 21 time units (Line 14) Client2 misses its

deadline (Line 15) and this causes Client2 to enter an error state which is monitored

by an observer that in turn stops further state exploration. In this example, each

client process has a relative deadline of 45 time units. Taking into account the start

time of 3 time units, at 48 time units if a client does not already get a reply back from

its corresponding event handler, then a deadline miss occurs. The time from the start

of the execution is indicated by the global time, as is shown in Line 14. After the end

of the trace, the pid-to-name mapping that is stored internally during post-processing

is shown. This is useful mostly for debugging purposes only and hence we will omit

this part for the subsequent traces.

We increased the relative deadline of the clients to 60 and observed the trace output

from execution of our model shown in Figure 6.15 which shows that there is no

deadline miss.

13: Reactor1_SRHE0 ---handle_input(4)---> Flow2_EH1

14: Time advanced by 25 units. Global time is 53

15: Flow2_EH1 : TRACE_SAP_Buffer_Write(4,10)

16: Flow2_EH1 ---handle_input_return(0)---> Reactor1_SRHE0

17: Reactor1_SRHE0 ---handle_events_return()---> ReactorThread1

18: ReactorThread1 ---handle_events(1)---> Reactor1

19: Reactor1 forks {Select_Reactor_Handle_Events}1

20: Unidir_IPC_4_3 : TRACE_SAP_Buffer_Transfer(4,3,10)

21: Client2 : TRACE_SAP_Buffer_Read(3,10)

Figure 6.15: Scenario 1 Trace in IF with Later Deadline

This trace is the same as in Figure 6.14 until Line 13. After the upcall to Flow2 EH,

time advances by 25 units and Flow2 EH1 completes its computation and writes its

reply to handle 4 (line 15) and returns control to the reactor (line 16). Now the

flow of control returns to the reactor thread (line 17) which had originally called

116

the handle events method on Reactor1. The reactor thread (ReactorThread1) con-

tinues in a loop calling handle events again on Reactor1. Note that a new Se-

lect Reactor Handle Events process is forked to represent the new handle events call

stack. The reply is transferred from handle 4 to handle 3 (line 20), which is then read

by Client2 (line 21).

To illustrate that the IF model checker explores different interleavings we show an-

other trace in Figure 6.16 that leads to no deadline misses.

13: Reactor1_SRHE0 ---handle_events_return()---> ReactorThread1

14: ReactorThread1 ---handle_events(1)---> Reactor1

15: Reactor1 forks {Select_Reactor_Handle_Events}1

16: Reactor1_SRHE0 ---handle_input(4)---> Flow2_EH1

17: Time advanced by 25 units. Global time is 53

18: Flow2_EH1 : TRACE_SAP_Buffer_Write(4,10)

19: Flow2_EH1 ---handle_input_return(0)---> Reactor1_SRHE0

20: Reactor1_SRHE0 ---handle_events_return()---> ReactorThread1

21: Unidir_IPC_4_3 : TRACE_SAP_Buffer_Transfer(4,3,10)

22: Client2 : TRACE_SAP_Buffer_Read(3,10)

Figure 6.16: A Different Scenario 1 Trace in IF with Later Deadline

In Figure 6.15, after making the first upcall the reactor makes the second upcall

without returning control back to the reactor thread. Only after the second upcall

is completed, the flow of control returns back to the reactor thread (line 17 in Fig-

ure 6.15). In Figure 6.16, the flow of control returns to the reactor thread (line 13)

after the first upcall is done. The handle events method is invoked again and an upcall

is made for the read-ready handle 4 (lines 14-16). The sequence of execution shown

after this is similar to that in Figure 6.15. The change in this execution sequence is

potentially due to the different interleavings that are possible among the following

execution steps - (1) the message from handle 1 written to handle 2, (2) the message

from handle 3 written to handle 4, and (3) the reactor coming out of its wait on

multiple I/O events. If (3) happens after (1) and (2) then the sequence of execution

looks like Figure 6.15, whereas if (3) happens between (1) and (2), the the execution

looks like Figure 6.16. In order to prove that this is indeed the case, we added a

new log event (TRACE Reactor IO Wait Done) to our model, which occurs when the

reactor unblocks from its wait on multiple I/O handles. As part of this log event we

record the read-ready and write-ready handles, to give us a clear indication that our

hypothesis above is indeed valid. This process also illustrates a methodology for how

117

to use and extend our models to support further hypotheses. Extracts from the new

traces after the addition of the new event are shown in Figure 6.17.

Interleaving 1:

5: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

6: Unidir_IPC_3_4 : TRACE_SAP_Buffer_Transfer(3,4,10)

7: Reactor1_SRHE0 : TRACE_Reactor_IO_Wait_Done({2,4,},{})

Interleaving 2:

5: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

6: Reactor1_SRHE0 : TRACE_Reactor_IO_Wait_Done({2,},{})

....(upcall to Flow1_EH1 and return control to reactor thread)

15: ReactorThread1 ---handle_events(1)---> Reactor1

16: Reactor1 forks {Select_Reactor_Handle_Events}1

17: Reactor1_SRHE0 : TRACE_Reactor_IO_Wait_Done({4,},{})

Figure 6.17: Scenario 1 Traces with New Log Event Added

In Interleaving 1 in Figure 6.17, both handles 3 and 4 are read-ready when the reactor

returns from its wait (line 7), whereas in Interleaving 2, the reactor returns from

its wait (line 6) as soon as handle 2 becomes read-ready. Only after the upcall

corresponding to handle 2 was completed and the next iteration of handle events

started (line 16) did the reactor detect the readiness of handle 4 (line 17). The

traces in Figure 6.17 thus show that the model checker explores different execution

sequences.

6.5 Scenario 2 - Multiple Reactors, WaitOnCon-

nection strategy

In addition to analyzing interference arising from direct contention between handlers

for a single resource, it is important to evaluate more complex interference scenarios

involving sequences of inter-dependent actions. In this example, we show how timing

properties of the system are affected not only by interfering call sequences, but also by

the strategy used to wait for replies from remote function calls. Consider for example

another scenario based on the setup shown in Figure 6.18 in which a call chain spans all

three handlers, with Flow1 EH1 depending on Flow1 EH2 and Flow1 EH2 depending

on Flow1 EH3.

118

Client1
Flow1_EH1

Reactor1
Flow1_EH2

Reactor2

Flow1_EH3

1 2

56

3 4

Figure 6.18: Setup for Scenario 2

Informal Analysis. Flow1 EH1 and Flow1 EH3 are registered with the same re-

actor and this reactor has a single thread. With the WaitOnConnection reply wait

strategy, the single thread is already in an upcall (to Flow1 EH1) when there is an-

other incoming request for Flow1 EH3. This is called a nested upcall. Because of

interference between the WaitOnConnection reply wait strategy, the topology of the

event handler call graph and the use of a single thread in the reactor, deadlock can

occur when the single thread in Reactor1 is already in an upcall when there is an

incoming request from Flow1 EH2 to Flow1 EH3. Figure 6.19 shows the relevant call

sequence. The deadline for Client1 is missed when no progress can be made by the

system after the request is sent from Flow1 EH2 to Flow1 EH3. We now state the

following hypothesis based on this informal analysis.

Hypothesis 2.1. Nested upcalls will cause a deadlock in the context of a single-

threaded select reactor and WaitOnConnection reply wait strategy.

A possible solution to eliminate the deadlock is to use a thread pool reactor and

increase the number of threads in the reactor so that looping calls can be handled

without deadlocking the system. The thread pool reactor uses the Leader/Followers

pattern and even if one thread from the thread pool (a follower) is busy making an

upcall to one of the event handlers, another thread (the leader) can be waiting for

I/O events. This leads to the following new hypothesis.

119

Time

deadline

Flow1_EH3Client 1Flow1_EH1Flow1_EH2

deadlock

Figure 6.19: Call sequence for Scenario 2

Hypothesis 2.2. Deadlocks with nested upcalls in the context of WaitOnConnection

reply wait strategy can be eliminated by using a thread pool reactor and increasing the

number of threads in the reactor to k + 1, where k is the number of cycles in the call

graph, assuming there are no concurrent calls to the root of the call graph.

6.5.1 Formal Analysis of Scenario 2 in UPPAAL

For Scenario 2, the UPPAAL model templates are instantiated as in Figure 6.20. In

this scenario, there are 3 bidirectional channels - Client1 to Flow1 EH1, Flow1 EH1

to Flow1 EH2 and Flow1 EH2 to Flow1 EH3. Three event handlers are instantiated,

each with a computation time of 25 time units. Flow1 EH1 and Flow2 EH2 take

two SAPs as parameters - the first SAP (third template parameter) is the SAP on

which the event handler expects its request message; the second SAP (fourth tem-

plate parameter) is the SAP with which the event handler sends further requests

to another event handler as part of the call sequence. For example, Flow1 EH1 re-

ceives request messages on ipc sap 2 and sends request messages to Flow1 EH2 on

ipc sap 3. The IPC Channel Unidir IPC 3 4 forwards this message from ipc sap 3 to

ipc sap 4, which in turn is used by Flow1 EH2 to receive its request messages. Two

reactors are instantiated with their respective UPPAAL channels for communication

120
Flow1_EH1 = EventHandler1(FLOW1_EH1, 25, ipc_sap_2, ipc_sap_3, REACTOR1);

Flow1_EH2 = EventHandler2(FLOW1_EH2, 25, ipc_sap_4, ipc_sap_5, REACTOR2);

Flow1_EH3 = EventHandler3(FLOW1_EH3, 25, ipc_sap_6, REACTOR1);

Reactor1_SRHE0 = Select_Reactor(REACTOR1,

handle_events_channels[REACTOR1],

handle_events_return_channels[REACTOR1],

reactor_states[REACTOR1]);

Reactor2_SRHE0 = Select_Reactor(REACTOR2,

handle_events_channels[REACTOR2],

handle_events_return_channels[REACTOR2],

reactor_states[REACTOR2]);

ReactorThread1 = ReactorThread(handle_events_channels[REACTOR1],

handle_events_return_channels[REACTOR1]);

ReactorThread2 = ReactorThread(handle_events_channels[REACTOR2],

handle_events_return_channels[REACTOR2]);

Client1 = Client(3, 1000, ipc_sap_1);

Figure 6.20: Scenario 2 Instantiation in UPPAAL

with other automata. Each reactor is instantiated with its corresponding state. Two

thread automata are instantiated, each of which initiates the event loop by calling

handle events on each reactor. Finally the Client automaton is instantiated with a

relative deadline of 1000 time units. Note that a disproportionately high value for the

relative deadline is chosen so that a deadline miss gives further evidence of a deadlock

and can be used to produce a trace leading to the deadline miss.

We used the query E3 Client1.Done in the UPPAAL verifier to verify whether Client1

ever gets a reply back from Flow1 EH1. This query causes the verifier to do an

exhaustive search of the state space since it finds that the property is not satisfied as

shown in Figure 6.21.

$ verifyta -N -d -t 1 woc_deadlock.xml woc_deadlock.q1

Verifying property 1 at line 1

-- Property is NOT satisfied.

Figure 6.21: UPPAAL verifyta output for Scenario 2 with 1 Thread

121

7 Client1.S1->Client1.S2 { global_clock == send_time, tau, time := 0, p

7 ut_data(ipc_sap, IPC_WRITEQ, 10) }

8 Unidir_IPC_1_2.S1->Unidir_IPC_1_2.S2 { !is_empty(lhs_sap, IPC_WRITEQ)

8 , dummy?, t := 0 }

9 Unidir_IPC_1_2.S2->Unidir_IPC_1_2.S1 { t == prop_delay, tau, bytes_re

9 ad := get_data(lhs_sap, IPC_WRITEQ), put_data(rhs_sap, IPC_READQ, bytes

9 _read) }

10 Reactor1_SRHE0.S2->Reactor1_SRHE0.S3 { is_any_sap_hot(reactor_state.r

10 ead_sap_set_to_watch, reactor_state.write_sap_set_to_watch), dummy?, ho

10 t_read_sap_set := get_hot_read_saps(reactor_state.read_sap_set_to_watch

10), hot_write_sap_set := get_hot_write_saps(reactor_state.write_sap_set_

10 to_watch) }

11 Reactor1_SRHE0.S3->Reactor1_SRHE0.S4 { size(hot_read_sap_set) > 0, ta

11 u, pop_first_sap(hot_read_sap_set, first_hot_sap), upcall_handler := ge

11 t_handler(reactor_state.handler_repo, first_hot_sap) }

12 Reactor1_SRHE0.S4->Reactor1_SRHE0.S5 { 1, eh_hi_channels[upcall_handl

12 er]!, 1 }

13 Flow1_EH1.S1->Flow1_EH1.S2 { 1, eh_hi_channels[eh_pid]?, t := 0, get_

13 data(in_ipc_sap, IPC_READQ) }

14 Delay: 25

15 Flow1_EH1.S2->Flow1_EH1.S3 { t == comp_time, tau, put_data(out_ipc_sa

15 p, IPC_WRITEQ, 10) }

16 Unidir_IPC_3_4.S1->Unidir_IPC_3_4.S2 { !is_empty(lhs_sap, IPC_WRITEQ)

16 , dummy?, t := 0 }

17 Unidir_IPC_3_4.S2->Unidir_IPC_3_4.S1 { t == prop_delay, tau, bytes_re

17 ad := get_data(lhs_sap, IPC_WRITEQ), put_data(rhs_sap, IPC_READQ, bytes

17 _read) }

18 Reactor2_SRHE0.S2->Reactor2_SRHE0.S3 { is_any_sap_hot(reactor_state.r

18 ead_sap_set_to_watch, reactor_state.write_sap_set_to_watch), dummy?, ho

18 t_read_sap_set := get_hot_read_saps(reactor_state.read_sap_set_to_watch

18), hot_write_sap_set := get_hot_write_saps(reactor_state.write_sap_set_

18 to_watch) }

19 Reactor2_SRHE0.S3->Reactor2_SRHE0.S4 { size(hot_read_sap_set) > 0, ta

19 u, pop_first_sap(hot_read_sap_set, first_hot_sap), upcall_handler := ge

19 t_handler(reactor_state.handler_repo, first_hot_sap) }

20 Reactor2_SRHE0.S4->Reactor2_SRHE0.S5 { 1, eh_hi_channels[upcall_handl

20 er]!, 1 }

21 Flow1_EH2.S1->Flow1_EH2.S2 { 1, eh_hi_channels[eh_pid]?, t := 0, get_

21 data(in_ipc_sap, IPC_READQ) }

22 Delay: 25

23 Flow1_EH2.S2->Flow1_EH2.S3 { t >= comp_time, tau, t := 0, put_data(ou

23 t_ipc_sap, IPC_WRITEQ, 10) }

24 Unidir_IPC_5_6.S1->Unidir_IPC_5_6.S2 { !is_empty(lhs_sap, IPC_WRITEQ)

24 , dummy?, t := 0 }

25 Unidir_IPC_5_6.S2->Unidir_IPC_5_6.S1 { t == prop_delay, tau, bytes_re

25 ad := get_data(lhs_sap, IPC_WRITEQ), put_data(rhs_sap, IPC_READQ, bytes

25 _read) }

26 Delay: 950

27 Client1.S2->Client1.DeadlineMiss { time == rel_deadline, tau, 1 }

Figure 6.22: UPPAAL Trace Showing Sequence Leading to Deadlock

122

The query E3 Client.DeadlineMiss is then used to see whether or not there is a deadline

miss. The property is satisfied and UPPAAL produces a trace of the sequence of

steps as shown in Figure 6.22 that led to the deadline miss. We have cut off the

initial part of the trace, which is again just the initialization phase. We start at

line 7, when Client1 sends a message through SAP handle 1 to Flow1 EH1. The

unidirectional channel transfers this data (lines 8-9) to SAP handle 2, which causes

Reactor1 to unblock (line 10) and make an upcall (lines 10-13) to Flow1 EH1, which

then performs some computation (l4) and sends a message (line 15) to Flow1 EH2

through handle 3. This message is transferred (lines 16-17) to buffers corresponding

to handle 4, which causes Reactor2 to unblock (line 18) and make an upcall (line

19-21) to Flow1 EH2. Flow1 EH2 performs some computation (line 22) and sends a

message (23) to Flow1 EH3 on handle 5. The data is transferred (line 24-25) from

the write buffer for handle 5 to the read buffer of handle 6. After this the system

goes into a state where there are no untimed transitions that are enabled and time

advances to 1000, when the Client1 automaton moves to the DeadlineMiss state.

Figures 6.23 and 6.24 show the states of the relevant automata when a deadlock oc-

curs. The UPPAAL simulator identifies this state as a deadlocked state. A deadlocked

state is one in which there are no enabled transitions. In this scenario, none of the

automata can proceed further from their respective states and hence the composed

system is deadlocked. Reactor1 SRHE0 (Figure 6.23(a)) is in state S5 waiting for the

upcall to return from Flow1 EH1. Flow1 EH1 (6.24(b)) is waiting in state S3 wait-

ing for a reply back from Flow1 EH2. Reactor2 (Figure 6.23(b))is waiting in state S5

waiting for the upcall return from Flow1 EH2. Flow1 EH2 (Figure 6.24(c))is waiting

in state S3 waiting for a reply back from Flow1 EH3. Flow1 EH3(Figure 6.24(d))

is in its start state S1, since Reactor1 never dispatched an upcall to Flow1 EH3 be-

cause the reactor is in state S1 and does not check for new I/O events on any SAPs

until the upcall to Flow1 EH1 returns. Because of the above deadlock, the client

(Figure 6.24(a)) missed its deadline and is in state DeadlineMiss.

We now provide evidence in support of Hypothesis 2.2 with the value of k = 1.

We increase the number of threads in Reactor1 to 2 by using a TP reactor with 2

threads. Figure 6.25 shows how we instantiate the TP Reactor and the associated

thread automata.

123

S8

S7

S6

S5

S4

S3S2S1

eh_hor_channels[upcall_handler]?

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?

size(hot_write_sap_set) > 0
pop_first_sap(hot_write_sap_set, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap)

size(hot_write_sap_set) == 0
handle_events_return_channels[REACTOR1]!

size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

size(hot_read_sap_set) > 0
pop_first_sap(hot_read_sap_set, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap)

is_any_sap_hot(reactor_states[REACTOR1].read_sap_set_to_watch, reactor_states[REACTOR1].write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(reactor_states[REACTOR1].read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(reactor_states[REACTOR1].write_sap_set_to_watch)handle_events_channels[REACTOR1]?

(a) Reactor1

S8

S7

S6

S5

S4

S3S2S1

eh_hor_channels[upcall_handler]?

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?

size(hot_write_sap_set) > 0
pop_first_sap(hot_write_sap_set, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR2].handler_repo,first_hot_sap)

size(hot_write_sap_set) == 0
handle_events_return_channels[REACTOR2]!

size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

size(hot_read_sap_set) > 0
pop_first_sap(hot_read_sap_set, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR2].handler_repo,first_hot_sap)

is_any_sap_hot(reactor_states[REACTOR2].read_sap_set_to_watch, reactor_states[REACTOR2].write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(reactor_states[REACTOR2].read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(reactor_states[REACTOR2].write_sap_set_to_watch)handle_events_channels[REACTOR2]?

(b) Reactor2

Figure 6.23: Scenario 2 Deadlock in UPPAAL - Reactor Automata States

124

DeadlineMiss

Done

S2
time <= 1000

S1

global_clock <= 3

time == 1000

!is_empty(ipc_sap_1, IPC_READQ)

dummy?

global_clock == 3

time = 0,
put_data(ipc_sap_1, IPC_WRITEQ,10)

(a) Client1

S3S4

S2
t<=25S1

!is_empty(ipc_sap_3, IPC_READQ)
dummy?

get_data(ipc_sap_3, IPC_READQ),
put_data(ipc_sap_2, IPC_WRITEQ,10)

eh_hir_channels[FLOW1_EH1]! t==25
put_data(ipc_sap_3, IPC_WRITEQ, 10)

eh_hi_channels[FLOW1_EH1]?

t:=0,
get_data(ipc_sap_2,IPC_READQ)

(b) Flow1 EH1

S3
S4

S2
t<=25

S1

!is_empty(ipc_sap_5, IPC_READQ)

dummy?

get_data(ipc_sap_5, IPC_READQ),
put_data(ipc_sap_4, IPC_WRITEQ,10)

eh_hir_channels[FLOW1_EH2]! t>=25
t:=0,
put_data(ipc_sap_5, IPC_WRITEQ,10)

eh_hi_channels[FLOW1_EH2]?
t:=0,
get_data(ipc_sap_4,IPC_READQ)

(c) Flow1 EH2

S3

S2

t<=25S1

eh_hir_channels[FLOW1_EH3]!

t>=25
t=0,
put_data(ipc_sap_6,IPC_WRITEQ,10)

eh_hi_channels[FLOW1_EH3]?
t=0,
get_data(ipc_sap_6,IPC_READQ)

(d) Flow1 EH3

Figure 6.24: Scenario 2 Deadlock in UPPAAL - Client and Event Handler
Automata States

125
Reactor1_TPRHE1 = TP_Reactor(THREAD1,handle_events_channels[THREAD1],

handle_events_return_channels[THREAD1], reactor_states[REACTOR1]);

Reactor1_TPRHE2 = TP_Reactor(THREAD2,handle_events_channels[THREAD2],

handle_events_return_channels[THREAD2], reactor_states[REACTOR1]);

Reactor2_TPRHE3 = TP_Reactor(THREAD3,handle_events_channels[THREAD3],

handle_events_return_channels[THREAD3], reactor_states[REACTOR2]);

Reactor_Thread1 = ReactorThread(handle_events_channels[THREAD1],

handle_events_return_channels[THREAD1]);

Reactor_Thread2 = ReactorThread(handle_events_channels[THREAD2],

handle_events_return_channels[THREAD2]);

Reactor_Thread3 = ReactorThread(handle_events_channels[THREAD3],

handle_events_return_channels[THREAD3]);

Figure 6.25: Instantiation in UPPAAL for Scenario 2 with 2 Threads

As was discussed in Chapter 4, we instantiate a separate Reactor automaton cor-

responding to each thread in the thread pool. The reactor states and UPPAAL

synchronization channels for communication are passed in as template parameters.

The thread automata are then instantiated. The sole function of these threads is to

perform a looping handle events call on the appropriate reactor.

After increasing the number of threads to 2 in Reactor1, the deadlock does not hap-

pen. We query whether the Client reaches the Done state in all interleavings using

the following query in the UPPAAL verifier - A3 client1.Done. The UPPAAL verifier

executes this query and shows the result that this property is satisfied. Figures 6.26

and 6.27 show the states of the relevant automata when Client1 automaton is in the

Done state.

Flow1 EH1 (Figure 6.27(b)) and Flow1 EH2 (Figure 6.27(c)) are in state S4, after

each one of them has received replies for their individual request messages. In partic-

ular, in state S4, Flow1 EH1 has already completed sending its reply back to Client1.

The upcall to Flow1 EH1 was handled by Reactor1 TPRHE1 (Figure 6.26(a)) which is

in state S7 waiting for the upcall to return from Flow1 EH1. The upcall to Flow1 EH3

(Figure 6.27(d)) was handled by Reactor1 TPRHE2 (Figure 6.26(b)) which is in state

S7 waiting for the upcall to return from Flow1 EH3. Flow1 EH3 (Figure 6.27(d)) is

in state S3 after sending its reply back to Flow1 EH2. This system state is in contrast

with the deadlocked state that we saw in Figures 6.23 and 6.24.

126

S3

S2

S10

S9

S8

S7

S6

S5S4

S1

size(hot_read_sap_set) == 0 and
size(hot_write_sap_set) == 0

size(hot_read_sap_set) > 0 or
size(hot_write_sap_set) > 0

reactor_states[REACTOR1].reactor_in_use == false
dummy?

reactor_states[REACTOR1].reactor_in_use = true,
read_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].read_sap_set_to_watch),
write_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].write_sap_set_to_watch),
hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

eh_hor_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap)

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap)

size(hot_write_sap_set) > 0
pop_first_sap(hot_write_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

size(hot_write_sap_set) == 0
handle_events_return_channels[THREAD1]!

size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

size(hot_read_sap_set) > 0

pop_first_sap(hot_read_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

is_any_sap_hot(read_sap_set_to_watch, write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

handle_events_channels[THREAD1]?

(a) TP-Reactor1 Thread1

S3

S2

S10

S9

S8

S7

S6

S5S4

S1

size(hot_read_sap_set) == 0 and
size(hot_write_sap_set) == 0

size(hot_read_sap_set) > 0 or
size(hot_write_sap_set) > 0

reactor_states[REACTOR1].reactor_in_use == false
dummy?

reactor_states[REACTOR1].reactor_in_use = true,
read_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].read_sap_set_to_watch),
write_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].write_sap_set_to_watch),
hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

eh_hor_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap)

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap)

size(hot_write_sap_set) > 0
pop_first_sap(hot_write_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

size(hot_write_sap_set) == 0
handle_events_return_channels[THREAD2]!

size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

size(hot_read_sap_set) > 0

pop_first_sap(hot_read_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

is_any_sap_hot(read_sap_set_to_watch, write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

handle_events_channels[THREAD2]?

(b) TP-Reactor1 Thread2

S3

S2

S10

S9

S8

S7

S6

S5S4

S1

size(hot_read_sap_set) == 0 and
size(hot_write_sap_set) == 0

size(hot_read_sap_set) > 0 or
size(hot_write_sap_set) > 0

reactor_states[REACTOR2].reactor_in_use == false
dummy?

reactor_states[REACTOR2].reactor_in_use = true,
read_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR2].read_sap_set_to_watch),
write_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR2].write_sap_set_to_watch),
hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

eh_hor_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR2].write_sap_set_to_watch, first_hot_sap)

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR2].read_sap_set_to_watch, first_hot_sap)

size(hot_write_sap_set) > 0
pop_first_sap(hot_write_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR2].write_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR2].handler_repo,first_hot_sap),
reactor_states[REACTOR2].reactor_in_use = false

size(hot_write_sap_set) == 0
handle_events_return_channels[THREAD3]!

size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

size(hot_read_sap_set) > 0

pop_first_sap(hot_read_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR2].read_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR2].handler_repo,first_hot_sap),
reactor_states[REACTOR2].reactor_in_use = false

is_any_sap_hot(read_sap_set_to_watch, write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

handle_events_channels[THREAD3]?

(c) TP-Reactor2 Thread1

Figure 6.26: Scenario 2 Deadlock in UPPAAL - TP-Reactor Automata States

127

DeadlineMiss

Done

S2
time <= 100

S1

global_clock <= 3
time == 100

!is_empty(ipc_sap_1, IPC_READQ)
dummy?

global_clock == 3

time = 0,
put_data(ipc_sap_1, IPC_WRITEQ,10)

(a) Client1

S3S4

S2 t<=10

S1

!is_empty(ipc_sap_3, IPC_READQ)

dummy?

get_data(ipc_sap_3, IPC_READQ),
put_data(ipc_sap_2, IPC_WRITEQ,10)

eh_hir_channels[FLOW1_EH1]! t==10
put_data(ipc_sap_3, IPC_WRITEQ, 10)

eh_hi_channels[FLOW1_EH1]?

t:=0,
get_data(ipc_sap_2,IPC_READQ)

(b) Flow1 EH1

S3
S4

S2
t<=10

S1

!is_empty(ipc_sap_5, IPC_READQ)

dummy?

get_data(ipc_sap_5, IPC_READQ),
put_data(ipc_sap_4, IPC_WRITEQ,10)

eh_hir_channels[FLOW1_EH2]! t>=10
t:=0,
put_data(ipc_sap_5, IPC_WRITEQ,10)

eh_hi_channels[FLOW1_EH2]?
t:=0,
get_data(ipc_sap_4,IPC_READQ)

(c) Flow1 EH2

S3

S2

t<=10S1

eh_hir_channels[FLOW1_EH3]!

t>=10
t=0,
put_data(ipc_sap_6,IPC_WRITEQ,10)

eh_hi_channels[FLOW1_EH3]?
t=0,
get_data(ipc_sap_6,IPC_READQ)

(d) Flow1 EH3

Figure 6.27: Scenario 2 in UPPAAL with No Deadlock - Client and Event Handler
Automata States

128

Figure 6.28 shows part of an execution trace that led to a state where Client1 is in

the Done state. In this trace, as one thread in Reactor1 is making an upcall (line 19)

to Flow1 EH1, there is another thread that enters the reactor (line 18) and proceeds

to wait on I/O events. This waiting thread then unblocks (lines 34-35) when there

is a message waiting on handle 6 for Flow1 EH3. The reactor then makes an upcall

(lines 36-37) to Flow1 EH3 thus eliminating the deadlock situation.

18 Reactor1_TPRHE1.S2->Reactor1_TPRHE1.S3 { reactor_state.reactor_in_use

18 == 0, dummy?, reactor_state.reactor_in_use := 1, read_sap_set_to_watch

18 := get_non_suspended_saps(reactor_state.read_sap_set_to_watch), write_

18 sap_set_to_watch := get_non_suspended_saps(reactor_state.write_sap_set_

18 to_watch), hot_read_sap_set := get_hot_read_saps(read_sap_set_to_watch)

18 , hot_write_sap_set := get_hot_write_saps(write_sap_set_to_watch) }

19 Reactor1_TPRHE2.S6->Reactor1_TPRHE2.S7 { 1, eh_hi_channels[upcall_han

19 dler]!, 1 }

........

........

34 Reactor1_TPRHE1.S4->Reactor1_TPRHE1.S5 { is_any_sap_hot(read_sap_set_

34 to_watch, write_sap_set_to_watch), dummy?, hot_read_sap_set := get_hot_

34 read_saps(read_sap_set_to_watch), hot_write_sap_set := get_hot_write_sa

34 ps(write_sap_set_to_watch) }

35 Reactor1_TPRHE1.S5->Reactor1_TPRHE1.S6 { size(hot_read_sap_set) > 0,

35 tau, pop_first_sap(hot_read_sap_set, first_hot_sap), suspend_sap(reacto

35 r_state.read_sap_set_to_watch, first_hot_sap), upcall_handler := get_ha

35 ndler(reactor_state.handler_repo, first_hot_sap), reactor_state.reactor

35 _in_use := 0 }

36 Reactor1_TPRHE1.S6->Reactor1_TPRHE1.S7 { 1, eh_hi_channels[upcall_han

36 dler]!, 1 }

37 Flow1_EH3.S1->Flow1_EH3.S2 { 1, eh_hi_channels[eh_pid]?, t := 0, get_

37 data(in_ipc_sap, IPC_READQ) }

Figure 6.28: Extracts from UPPAAL Trace Output for Scenario 2 with No Deadlock

6.5.2 Formal Analysis of Scenario 2 in IF

Figure 6.29 shows the execution trace from our IF model of Scenario 2 which was

composed from our models of basic ACE building blocks. The trace shows that

Client1 sends a message to Flow1 EH1 (lines 3-4). The Select reactor unblocks (line

5) and makes an upcall to Flow1 EH1 (line 6). After the event handler does some

computation (line 7), it sends a message to Flow1 EH2 (lines 8-9), which is handled

by Reactor2 (line 10) and an upcall is made to Flow1 EH2 (line 11). Flow1 EH2 then

129

does some further computation (line 12) and sends a request message to Flow1 EH3

(lines 13-14). Since there is no thread in Reactor1 to handle this request, none of the

transitions in the system are enabled, which causes time to advance infinitely. Since

we want to detect this deadlock situation, we fix the relative deadline of Client1 to

be 1000 (which could be any arbitrarily high value) and when this deadline expires,

we would infer that there has been a deadlock in the system.

3: Client1 : TRACE_SAP_Buffer_Write(1,10)

4: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

5: Reactor1_SRHE0 : TRACE_Reactor_IO_Wait_Done({2,},{})

6: Reactor1_SRHE0 ---handle_input(2)---> Flow1_EH1

7: Time advanced by 25 units. Global time is 28

8: Flow1_EH1 : TRACE_SAP_Buffer_Write(3,10)

9: Unidir_IPC_3_4 : TRACE_SAP_Buffer_Transfer(3,4,10)

10: Reactor2_SRHE0 : TRACE_Reactor_IO_Wait_Done({4,},{})

11: Reactor2_SRHE0 ---handle_input(4)---> Flow1_EH2

12: Time advanced by 25 units. Global time is 53

13: Flow1_EH2 : TRACE_SAP_Buffer_Write(5,10)

14: Unidir_IPC_5_6 : TRACE_SAP_Buffer_Transfer(5,6,10)

15: Time advanced by 951 units. Global time is 1004

16: Client1 : TRACE_DeadlineMiss()

Figure 6.29: IF Trace Output for Scenario 2 Leading to Deadlock

We now use two threads in Reactor1 to see whether that eliminates the deadlock.

The execution trace for this is shown in Figure 6.30. Note that instead of the Se-

lect Reactor we use the Thread Pool Reactor for Reactor1 since there are multiple

threads in Reactor1. The trace proceeds exactly as in IF Trace 5 until Line 14, ex-

cept that instead of the Select Reactor, it is the TP Reactor that makes the upcall

to Flow1 EH1.

After the request message from Flow1 EH2 reaches Reactor1 (line 14), the second

thread in the thread pool unblocks from its wait on I/O events (line 15) and makes

an upcall to Flow1 EH3 (line 16), which does some computation (line 17) and sends

a reply back to Flow1 EH2 (lines 18,20). Flow1 EH2 reads the reply (line 24) and

sends its reply back to Flow1 EH1 (lines 25,27). On obtaining this reply Flow1 EH1

reads it (line 31) and sends a reply back to Client1 (line 32,34). This trace shows that

with 2 threads, the deadlock in Scenario 2 can be avoided, thus validating Hypothesis

2.2.

130
14: Unidir_IPC_5_6 : TRACE_SAP_Buffer_Transfer(5,6,10)

15: Reactor1_TPRHE2 : TRACE_Reactor_IO_Wait_Done({6,},{})

16: Reactor1_TPRHE2 ---handle_input(6)---> Flow1_EH3

17: Time advanced by 25 units. Global time is 78

18: Flow1_EH3 : TRACE_SAP_Buffer_Write(6,10)

19: Flow1_EH3 ---handle_input_return(0)---> Reactor1_TPRHE2

20: Unidir_IPC_6_5 : TRACE_SAP_Buffer_Transfer(6,5,10)

21: Reactor1_TPRHE2 ---handle_events_return()---> ReactorThread2

22: ReactorThread2 ---handle_events(2)---> Reactor1

23: Reactor1 forks {TP_Reactor_Handle_Events}2

24: Flow1_EH2 : TRACE_SAP_Buffer_Read(5,10)

25: Flow1_EH2 : TRACE_SAP_Buffer_Write(4,10)

26: Flow1_EH2 ---handle_input_return(0)---> Reactor2_SRHE0

27: Unidir_IPC_4_3 : TRACE_SAP_Buffer_Transfer(4,3,10)

28: Reactor2_SRHE0 ---handle_events_return()---> ReactorThread3

29: ReactorThread3 ---handle_events(3)---> Reactor2

30: Reactor2 forks {Select_Reactor_Handle_Events}1

31: Flow1_EH1 : TRACE_SAP_Buffer_Read(3,10)

32: Flow1_EH1 : TRACE_SAP_Buffer_Write(2,10)

33: Flow1_EH1 ---handle_input_return(0)---> Reactor1_TPRHE1

34: Unidir_IPC_2_1 : TRACE_SAP_Buffer_Transfer(2,1,10)

35: Client1 : TRACE_SAP_Buffer_Read(1,10)

Figure 6.30: IF Trace Output for Scenario 2 with 2 Threads - No Deadlock

6.6 Scenario 3 – Multiple reactors, WaitOnReac-

tor strategy

The problem raised in Scenario 2 by the WaitOnConnection strategy, in which nesting

of calls by the single-threaded reactor leads to a deadlock preempted call chain, can

be alleviated through use of an alternative strategy for waiting for the reply from the

remote event handler, called WaitOnReactor. In this case the deadlock is alleviated

even with a single thread in the reactor.

Informal Analysis. Figure 6.31 shows the detailed sequence of events that occur on

Server1 in Scenario 2 with the WaitOnReactor reply wait strategy when Flow1 EH1

waits for a reply message from Flow1 EH2. First, the handle events method is called

(1) on the reactor by the reactor thread. The reactor waits for I/O events (1.1)

to occur on channels corresponding to Flow1 EH1 and Flow1 EH3. On arrival of

a request message from Client1, the reactor makes an upcall (1.2) to Flow1 EH1.

Flow1 EH1 sends a request message (1.3) to Flow1 EH2. After sending the request

131

��������� �
	��

�� � �
�����

� � ������������� ���
� � ���!�
" � �!	

#
$

%
�
�
�
�
�

�
&'%
�!��" � ���(�')'�
��� *

�
& �
&�"���+�, � � � � � ��-

�
& ./&'	 ��0!,
�
*���� �1����2
�
& 3(&���	 ���'� �

2(&'%'�!�
" � ���/�')'�!��� *

�
& 2(&',��
�4� � � �

25& �
&�"��!+�, � � � � � �4-

� � ���6���7����.

����0!,
�
*��
89	 �!+:�7��2
� �6����.

2/& 2(&
,����4� � � 2

2(& 3(&4%
�;�
" � ���<�')��;��� *
	9�'� ,�	=�

2<& ./&',��
�4� � � 2>	?�'�?,
	9�

.;& ./&',��
�4� � � .@	9�'�?,
	9�

�A�����B� �!	 C5%!	?����"

.<& D(&4%
�!�
" � ���<�')��!��� *
	?�'� ,�	=�

���!� �
89	 �!+:�7��2
� �6�����

./&'%'�!�
" � ���/�')'�!��� *
./& �
&�"���+�, � � � � � ��-

./& 3(&4%
�;�
" � ���<�')��;��� *
	9�'� ,�	=�

./& 2(&4,��
�4� � � .

./& E/&',
�
�4� � � �F	?���?,�	=�

Figure 6.31: Interaction diagram with WaitOnReactor strategy

132

message, Flow1 EH1 creates (1.4) a ReplyHandler and registers it with the reactor.

This ReplyHandler will be the event handler called by the reactor when the reply

arrives from Flow1 EH2. After this Flow1 EH1 calls (2) handle events on the reactor.

Note that this is a recursive call to handle events. The reactor again waits for I/O

events (2.1). When the request from Flow1 EH2 that is bound for Flow1 EH3 arrives,

the reactor unblocks and makes an upcall (2.2) to Flow1 EH3. After returning from

the upcall (2.3), the flow of control goes back to the reactor which in turn hands over

control to the caller of handle events which is Flow1 EH1. Flow1 EH1 now checks

with the reply handler to see whether the pending reply has arrived from Flow1 EH2.

Since the reply has not arrived, it calls handle events (3) again on the reactor, which

in turn waits for I/O events (3.1). When the reply finally arrives, an upcall is made

(3.2) to the ReplyHandler. The ReplyHandler stores the reply and control is returned

back (3.3) to the reactor and then to Flow1 EH1 (3.4). Now Flow1 EH1 finds that

the pending reply has arrived and the original upcall (upcall1 in Figure 6.31) has

returned (3.5) and the first handle events call (1) is completed (3.6).

From the call sequence it is clear that the deadlock in the previous example is elim-

inated, since the single thread in Reactor1 is not only waiting on I/O events on a

particular SAP handle (handle 3 in Figure 6.18), but rather waits for I/O events on

all registered interaction channels (handles 2, 3 and 6 in Figure 6.18).

6.6.1 Formal Modeling of WaitOnReactor in UPPAAL

The model composition in Scenario 3 is very similar to that in Scenario 2 using Wait-

OnConnection and single thread on Reactor1, except for the following differences:

(1) instead of a Select Reactor automaton, as shown in Figure 6.32, we use the Reen-

trant Select Reactor automaton described in Section 4.4.3 and (2) the automaton for

Flow1 EH1 is different from the previous scenarios and is shown in Figure 6.33.

The Reentrant Select Reactor automaton is used to accommodate the recursive call

to handle events in the same reactor within the context of the same thread. The

number of reactor automata that need to be instantiated depends on the depth of

the recursive call stack: here we show only two. A new reply event handler is also

instantiated to keep track of the reply received by Flow1 EH1 from Flow1 EH2. This

133

Flow1_EH1_RH = ReplyHandler(FLOW1_EH1_RH, 25, ipc_sap_3, REACTOR1);

Reactor1_SRHE0 = Reentrant_Select_Reactor(REACTOR1,

reentrant_handle_events_channels[REACTOR1][STACK0],

reentrant_handle_events_return_channels[REACTOR1][STACK0],

reactor_states[REACTOR1]);

Reactor1_SRHE1 = Reentrant_Select_Reactor(REACTOR1,

reentrant_handle_events_channels[REACTOR1][STACK1],

reentrant_handle_events_return_channels[REACTOR1][STACK1],

reactor_states[REACTOR1]);

Client1 = Client(3, 100, ipc_sap_1);

Figure 6.32: Instantiation in UPPAAL for Scenario 2 with WaitOnReactor

S5 S4

S3
S6

S2

t<=comp_timeS1

reply_obtained == 0

reply_obtained == 1
put_data(in_ipc_sap,IPC_WRITEQ,10)

reentrant_handle_events_return_channels[reactor_pid][handle_events_stack_depth]?

reentrant_handle_events_channels[reactor_pid][handle_events_stack_depth]!
reply_obtained = 0

eh_hir_channels[eh_pid]!

t==comp_time
t:=0,
put_data(out_ipc_sap, IPC_WRITEQ, 10),
handle_events_stack_depth =
 reactor_states[reactor_pid].handle_events_stack_deptheh_hi_channels[eh_pid]?

t:=0,
get_data(in_ipc_sap,IPC_READQ)

Figure 6.33: Event Handler EH1 Waiting on Reactor for Reply from EH2

134

reply handler is registered with the reactor to watch ipc sap 3, which is the SAP

through which the reply from Flow1 EH3 arrives at Server1.

After reading the request from the client, Flow1 EH1 reaches state S2. After do-

ing some computation it sends a request to Flow1 EH2 and reaches state S3. Now

Flow1 EH1 calls handle events on the reactor. Note that the current stack depth is

stored as part of the reactor’s state and this is used to access the appropriate UP-

PAAL channel to communicate with the appropriate reactor automaton. In state S4,

Flow1 EH1 waits for the handle events call to return. As part of the handle events

processing in the reactor, a reply from Flow1 EH2 to Flow1 EH1 or a request to

Flow1 EH3 also could have been processed. On return from the handle events call in

state S5, Flow1 EH1 checks whether the reply for Flow1 EH1 was obtained by the

reply handler automaton. If so, it moves to state S6 ending its wait for reply on the

reactor. If the reply is still not in, the Flow1 EH1 automaton waits for the reply on

the reactor again by moving to state S3.

The following query was verified as true by the UPPAAL verifier - A3 Client1.Done.

This means that there is one state in every path from the start state, where Client1

is in the Done state. The query E3 Client1.DeadlineMiss was verified as false by the

UPPAAL verifier. This means that there is no state in any path from the start state,

where Client1 is in the DeadlineMiss state.

E<> Client1.Done

17 Flow1_EH1.S3->Flow1_EH1.S4 { 1, reentrant_handle_events_channels[reac

17 tor_pid][handle_events_stack_depth]!, reply_obtained := 0 }

18 Reactor1_SRHE1.S1->Reactor1_SRHE1.S2 { 1, handle_events?, reactor_sta

18 te.handle_events_stack_depth++ }

.......

.......

30 Reactor1_SRHE1.S4->Reactor1_SRHE1.S5 { 1, eh_hi_channels[upcall_handl

30 er]!, 1 }

31 Flow1_EH3.S1->Flow1_EH3.S2 { 1, eh_hi_channels[eh_pid]?, t := 0, get_

31 data(in_ipc_sap, IPC_READQ) }

.......

.......

49 Reactor1_SRHE1.S4->Reactor1_SRHE1.S5 { 1, eh_hi_channels[upcall_handl

49 er]!, 1 }

50 Flow1_EH1_RH.S1->Flow1_EH1_RH.S2 { 1, eh_hi_channels[eh_pid]?, t := 0

50 , get_data(in_ipc_sap, IPC_READQ), reply_obtained := 1 }

Figure 6.34: UPPAAL verifyta output for Scenario 2 with WaitOnReactor

135

Figure 6.34 shows extracts from the trace which leads to an execution state where

Client1 is in the Done state. Several things are important to notice in that trace -

Flow1 EH1 calls handle events recursively (line 17) when it is about to wait for reply.

This enables the single thread on Reactor1 to wait on both incoming requests and

pending replies. Note that the stack depth is incremented (line 18). The upcall to

Flow1 EH3 (30-31) is handled in the context of the nested handle events call stack.

Under the context of the same call stack, the upcall to the reply handler (49-50)

is also made. This trace shows that our model of the WaitOnReactor reply wait

strategy using UPPAAL works as expected. Moreover we have formally shown that

the WaitOnReactor reply wait strategy solves the deadlock problem in Scenario 2.

6.6.2 Formal Modeling of WaitOnReactor using IF

Figure 6.35 shows extracts from the IF model of an event handler that uses the

WaitOnReactor strategy to wait for reply. To wait for a reply in this manner, a new

Reply Handler is created (A). As part of the creation parameters, the SAP on which to

wait for the reply is also passed. This reply handler (not shown) registers itself with

the reactor and waits for upcalls based on I/O events on its corresponding SAP. The

event handler then calls handle events (B) on the reactor recursively. This enables

the upcall dispatching of events destined for other event handlers including the reply

handler. After the return from the nested handle events call (C), the event handler

proceeds to check whether the pending reply has been received. The reply handler

on receiving the reply updates one of its state variables indicating that the reply was

received. The event handler checks this state variable and on receipt of the pending

reply (D) stops calling handle events. If reply has not been received (E) then the

event handler continues to call handle events recursively.

The execution trace in Figure 6.36 shows the sequence of interactions that take place

using the WaitOnReactor strategy. After Reactor1 unblocks from its I/O wait (line

5), it makes the upcall to Flow1 EH1 (line 6), which does some computation (line

7) and sends a request to Flow1 EH2 (lines 8,9). After this, Flow1 EH1 creates a

reply handler Flow1 EH1 RH (line 10) which is registered (line 11) with Reactor1 to

wait for the reply. Flow1 EH1 then makes a recursive handle events call (line 14) on

136

A

B

C

D

state wait_on_reactor;

 reply_handler_ := fork Reply_Handler(context, reactor_,
 out_sap_, flow_no_, eh_id_);
 nextstate wait_for_reply_handler_ctor_done;
endstate;

state wait_for_reply_handler_ctor_done;
 input ctor_done();
 nextstate do_handle_events;
endstate;

state do_handle_events;
 output handle_events(context, 0) to reactor_;
 nextstate wait_for_handle_events_return;
endstate;

state wait_for_handle_events_return;
 input handle_events_return(par_context);
 nextstate look_for_reply;
endstate;

state look_for_reply #unstable ;
 provided ({Reply_Handler}reply_handler_).reply_obtained_ = 1;
 kill reply_handler_;
 nextstate send_reply;

 provided ({Reply_Handler}reply_handler_).reply_obtained_ = 0;
 nextstate do_handle_events;
endstate;

E

Figure 6.35: Extracts from the IF Model for an Event Handler using
WaitOnReactor Reply Wait Strategy

137

3: Client1 : TRACE_SAP_Buffer_Write(1,10)

4: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

5: Reactor1_SRHE0 : TRACE_Reactor_IO_Wait_Done({2,},{})

6: Reactor1_SRHE0 ---handle_input(2)---> Flow1_EH1

7: Time advanced by 25 units. Global time is 28

8: Flow1_EH1 : TRACE_SAP_Buffer_Write(3,10)

9: Unidir_IPC_3_4 : TRACE_SAP_Buffer_Transfer(3,4,10)

10: Flow1_EH1 forks {Reply_Handler}0

11: Flow1_EH1_RH ---register_handler(3,Flow1_EH1_RH,EH_READ,0)--->Reactor1

12: Reactor1 ---register_handler_return()---> Flow1_EH1_RH

13: Flow1_EH1_RH ---ctor_done()---> Flow1_EH1

14: Flow1_EH1 ---handle_events(0)---> Reactor1

15: Reactor1 forks {Select_Reactor_Handle_Events}2

16: Reactor2_SRHE0 : TRACE_Reactor_IO_Wait_Done({4,},{})

17: Reactor2_SRHE0 ---handle_input(4)---> Flow1_EH2

18: Time advanced by 25 units. Global time is 53

19: Flow1_EH2 : TRACE_SAP_Buffer_Write(5,10)

20: Unidir_IPC_5_6 : TRACE_SAP_Buffer_Transfer(5,6,10)

21: Reactor1_SRHE1 : TRACE_Reactor_IO_Wait_Done({6,},{})

22: Reactor1_SRHE1 ---handle_input(6)---> Flow1_EH3

23: Time advanced by 25 units. Global time is 78

24: Flow1_EH3 : TRACE_SAP_Buffer_Write(6,10)

25: Flow1_EH3 ---handle_input_return(0)---> Reactor1_SRHE1

26: Unidir_IPC_6_5 : TRACE_SAP_Buffer_Transfer(6,5,10)

27: Reactor1_SRHE1 ---handle_events_return()---> Flow1_EH1

28: Flow1_EH1 ---handle_events(0)---> Reactor1

29: Reactor1 forks {Select_Reactor_Handle_Events}3

30: Flow1_EH2 : TRACE_SAP_Buffer_Read(5,10)

31: Flow1_EH2 : TRACE_SAP_Buffer_Write(4,10)

32: Flow1_EH2 ---handle_input_return(0)---> Reactor2_SRHE0

33: Unidir_IPC_4_3 : TRACE_SAP_Buffer_Transfer(4,3,10)

34: Reactor2_SRHE0 ---handle_events_return()---> ReactorThread2

35: ReactorThread2 ---handle_events(2)---> Reactor2

36: Reactor2 forks {Select_Reactor_Handle_Events}4

37: Reactor1_SRHE1 : TRACE_Reactor_IO_Wait_Done({3,},{})

38: Reactor1_SRHE1 ---handle_input(3)---> Flow1_EH1_RH

39: Flow1_EH1_RH ---remove_handler(3,{Reply_Handler}0)---> Reactor1

40: Reactor1 ---remove_handler_return()---> Flow1_EH1_RH

41: Flow1_EH1_RH ---handle_input_return(0)---> Reactor1_SRHE1

42: Reactor1_SRHE1 ---handle_events_return()---> Flow1_EH1

43: Flow1_EH1 : TRACE_SAP_Buffer_Write(2,10)

44: Flow1_EH1 ---handle_input_return(0)---> Reactor1_SRHE0

45: Unidir_IPC_2_1 : TRACE_SAP_Buffer_Transfer(2,1,10)

46: Client1 : TRACE_SAP_Buffer_Read(1,10)

Figure 6.36: IF Trace Output for Scenario 2 with WaitOnReactor

138

Reactor1. A new call stack, Reactor1 SRHE1, is created that blocks on I/O events.

Note that in the current state of the system, apart from handles 2 and 6, handle 3

is also included in the wait set of Reactor1 since handle 3 is the one on which the

reply from Flow1 EH2 to Flow1 EH1 is expected. The sequence of events involving

Reactor2 (lines 16-20) is the same as in IF Trace 5 and 6. Reactor1 now unblocks after

waiting on I/O events (line 21). Note that the stack depth of the handle events call is

currently 1 indicated by the 1 at the end of the name Reactor1 SRHE1. The upcall

(line 22) to Flow1 EH3 is made which does its computation and sends a reply back

(lines 23-26). Now the flow of control is returned back (line 27) to Flow1 EH1 which

marks the completion of the recursive handle events call. Flow1 EH1 now checks with

the reply handler to determine whether its reply has arrived yet. Since the reply

has not arrived yet, it recursively calls handle events (line 28) again on Reactor1.

Flow1 EH2 gets its reply from Flow1 EH3 and processes the reply and in turn sends

(lines 30-33) its own reply back to Flow1 EH1. Reactor1 unblocks and handle 3 is

hot (line 37) with the reply message sent from Flow1 EH2. The upcall to the reply

handler is made (38) which updates a boolean variable to true indicating that the

reply has been obtained, and then unregisters itself from the reactor (39,40). Control

returns to Flow1 EH1 after the handle events call (42). Flow1 EH1 ensures that the

reply has been obtained and hence does not call handle events again. Instead it sends

its reply back to Client1 (43,45).

6.6.3 Blocking Factors When Using WaitOnReactor

Even though the deadlock seen in Scenario 2 is eliminated by using the WaitOnRe-

actor strategy, this approach in turn introduces further concurrency issues that must

be evaluated. Use of this strategy could, for example, cause blocking delays in the

processing of the reply on which Flow1 EH1 is waiting. In Scenario 1, we saw the

blocking delay introduced by the reactor because of its serialization behavior. In

that case, the blocking delay was because the reactor does not attend to an incom-

ing request until the currently dispatched event handler completes its processing and

returns control back to the reactor. In this scenario, we show an example illustrating

another kind of blocking factor introduced by recursive upcalls as part of using the

WaitOnReactor strategy to wait for replies. The key difference here is that there

139

is a blocking delay in processing a reply even after the reactor has dispatched the

corresponding event handler (reply handler) that reads the reply.

The setup for Scenario 3 is shown in Figure 6.37. Here Flow1 EH2 does not depend

on any other event handler. Moreover, there is a second flow involving a call from

Client2 to Flow2 EH3. In this scenario, as shown in Figure 6.38, Client2 introduces

an interleaving call to Flow2 EH3, while Flow1 EH1 is waiting for its reply from EH2.

Because of the synchronous nature of the two-way (request-reply) calls made between

Client1, Flow1 EH1 and Flow1 EH2, and between Client2 and Flow1 EH3, if the

request from Client2 to Flow1 EH3 arrives at almost the same time as the reply from

Flow1 EH2, then Flow2 EH3 must finish and send the reply back to Client2 before

Flow1 EH1 can start processing the reply from Flow1 EH2.

Client1
Flow1_EH1

Reactor1
Flow1_EH2

Reactor2

Client2

1 2 3 4

Flow2_EH3

11 12

Figure 6.37: Setup for Scenario 3

�������

���
	���������

��� �������������� ��� ���
 "! ��� ���#!$�����%! ��� ����!&������� � ��� �'�(��

Figure 6.38: Timeline for Scenario 3

140

Figure 6.39 shows the detailed sequence of events that occurs in Server1. Until step

2.1 the sequence of steps is the same as in Figure 6.31 which we discussed at the

beginning of this section. Now let us consider the scenario where both the request

from Client2 and the reply from Flow1 EH2 arrive at Reactor1 at about the same

time. If the reply is picked up for handling first, then an upcall is made (2.2) to

the ReplyHandler, which keeps the reply in a user-space buffer for later processing

by Flow1 EH1. At this point (A), the reply is ready for processing by Flow1 EH1,

even though it cannot process the reply immediately because the thread of control

is still in the reactor which dispatches the next upcall to Flow2 EH3 to handle the

request message from Client2. After the upcall (2.4) to Flow2 EH3 returns (2.5),

the recursive handle events finishes, and control returns back (2.6) to Flow1 EH1.

Flow1 EH1 now checks (B) with the reply handler to see whether it has received the

reply from Flow1 EH2. Since the reply already has been received, Flow1 EH1 can

process the reply. Note that the time difference between when A and B occur is

considered the blocking delay for the reply from Flow1 EH2 to Flow1 EH1 and this

in turn becomes a blocking delay for Client1. It must be noted that there is a distinct

difference between this scenario and Scenario 1 as to where a pending message is

held during the blocking delay. In Scenario 1, while the reactor is processing another

upcall, the pending message is held in kernel-level buffers. In this scenario, the reply

message is stored in a user-space buffer.

6.6.4 Formal Analysis of WaitOnReactor Blocking Factor in

UPPAAL

Figure 6.40 shows extracts from instantiation of the different automata. Note that

each event handler has a processing time of 25. The reply event handler does not

have any processing time. Note that Client1 sends a request message to Flow1 EH1

at 3 time units from experiment start whereas Client2 sends a request message

to Flow2 EH3 at 53 time units. This is exactly the time at which call sequence

Flow1 EH1→Flow1 EH2 would have completed and the reply would have been sent

to Flow1 EH1.

141

��������� �
	��

�� � �
�����

� � ������������� ���
� � � �����! � �
	

"
#

$
�
�
�
�
�

�&%&$!�
�! � ���'�&(&�
���)

�!% �!%� &�
*,+ � � � � � ��-

��% ./%&	0�&12+!��)3��� �4����5
�!% 6'%���	7�!�&� �

5'%!$!�
�� � ���'�&(&�!���)

�!% 5'%8+��!�8� � � �

5'% �!%8 ��
*�+ � � � � � ��-

�� � �
��� 5

59% 5'%&+����8� � � 5

� � ���:5����;�<.

���
� � �
=0	0�
*>����5

59% 6'%&+��&��� � � .

5'% ?'%&$&�
�! � ���'��(&�
���)
	0�&�7+&	@�

A

B
59% C/%&+��!��� � � .D	0�&�7+&	@�

5'% .2%&+��!�8� � � 54	 �&�7+�	7�

�������3� �
	 E;$�	 ����

5'% F/%&$��
�� � ���'��(��2���)
	0�&�7+&	@�

G � ����H � �!I
 �� � � �

5/% J/%!+����8� � � �K	0�&� +�	@�

Figure 6.39: Blocking delay with WaitOnReactor

Flow1_EH1 = EventHandler1(FLOW1_EH1, 25, ipc_sap_2, ipc_sap_3, REACTOR1);

Flow1_EH2 = EventHandler2(FLOW1_EH2, 25, ipc_sap_4, REACTOR2);

Flow2_EH3 = EventHandler3(FLOW2_EH3, 25, ipc_sap_12, REACTOR1);

Flow1_EH1_RH = ReplyHandler(FLOW1_EH1_RH, 0, ipc_sap_3, REACTOR1);

Client1 = Client(3, 70, ipc_sap_1);

Client2 = Client(53, 100, ipc_sap_11);

Figure 6.40: Model Instantiation in UPPAAL for Scenario 3

142

We used the UPPAAL query E3 Client1.DeadlineMiss and Flow1 EH1 RH.S4 to see

whether Client1 misses its deadline in spite of Flow1 EH1 receiving its reply from

Flow1 EH2 on time (indicated by the reply handler Flow1 EH1 RH being in state

S4). The verifier finds that there is indeed a deadline miss. Extracts from the trace

are seen in Figure 6.41, showing the sequence of events that led to a deadline miss for

Client1. The idea here is to see whether the reply handler has already obtained the

reply sent from Flow1 EH2 to Flow1 EH1 (state S4 of reply handler Flow1 EH1 RH)

and Client1 still misses its deadline. Lines 39-40 show the reactor unblocking and

making an upcall when the reply from Flow1 EH2 arrives. Since the reply handler

Flow1 EH1 RH is the one that is registered to handle this reply, the upcall is made to

that event handler. Flow1 EH1 RH reads the reply from its SAP handle and returns

control back to the reactor (41-44). The reactor then proceeds to make the next

upcall (46-47) to Flow2 EH3. While Flow2 EH3 is in the middle of processing (48) ,

Client1 misses its deadline (49).

E<> Client1.DeadlineMiss and Flow1_EH1_RH.S4

39 Reactor1_SRHE1.S3->Reactor1_SRHE1.S4 { size(hot_read_sap_set) > 0, ta

39 u, pop_first_sap(hot_read_sap_set, first_hot_sap), upcall_handler := ge

39 t_handler(reactor_state.handler_repo, first_hot_sap) }

40 Reactor1_SRHE1.S4->Reactor1_SRHE1.S5 { 1, eh_hi_channels[upcall_handl

40 er]!, 1 }

41 Flow1_EH1_RH.S1->Flow1_EH1_RH.S2 { 1, eh_hi_channels[eh_pid]?, t := 0

41 , get_data(in_ipc_sap, IPC_READQ), reply_obtained := 1 }

42 Flow1_EH1_RH.S2->Flow1_EH1_RH.S3 { t >= comp_time, tau, t := 0 }

43 Flow1_EH1_RH.S3->Flow1_EH1_RH.S4 { 1, eh_hir_channels[eh_pid]!, 1 }

44 Reactor1_SRHE1.S5->Reactor1_SRHE1.S3 { 1, eh_hir_channels[upcall_hand

44 ler]?, 1 }

45 Reactor1_SRHE1.S3->Reactor1_SRHE1.S4 { size(hot_read_sap_set) > 0, ta

45 u, pop_first_sap(hot_read_sap_set, first_hot_sap), upcall_handler := ge

45 t_handler(reactor_state.handler_repo, first_hot_sap) }

46 Reactor1_SRHE1.S4->Reactor1_SRHE1.S5 { 1, eh_hi_channels[upcall_handl

46 er]!, 1 }

47 Flow2_EH3.S1->Flow2_EH3.S2 { 1, eh_hi_channels[eh_pid]?, t := 0, get_

47 data(in_ipc_sap, IPC_READQ) }

48 Delay: 20

49 Client1.S2->Client1.DeadlineMiss { time == rel_deadline, tau, 1 }

Figure 6.41: UPPAAL Trace Output for Scenario 3 Leading to a Deadline Miss

143

6.6.5 Formal Analysis of WaitOnReactor Blocking Factor in

IF

Here we present a trace that shows a deadline miss that results even when the reply

from Flow1 EH2 is ready to be processed in a user-space buffer in Server1. We also

show a trace for a deadline miss when the reply has arrived at Server1, but has not

been detected by Reactor1 yet, and hence it is still in a kernel-space buffer.

Figure 6.42 shows parts of the trace where the reply from Flow1 EH2 is processed and

stored in an user-space buffer. The trace extract begins at the the time when both the

reply from Flow1 EH2 and the request for Flow2 EH3 have arrived at Server1. The

reactor unblocks (line 27) and the two read-ready handles are 12 (corresponding to

request from Flow2 EH3) and 3 (corresponding to reply from Flow1 EH2). Reactor1

now makes an upcall to the reply handler Flow1 EH1 RH which stores the reply

in a user space buffer. Reactor1 then makes an upcall to Flow2 EH3 which starts

computation that goes beyond the deadline for Client1. Since the reply is still in the

user buffer and has not been sent to Client1, there is a deadline miss for Client1.

27: Reactor1_SRHE1 : TRACE_Reactor_IO_Wait_Done({12,3,},{})

28: Reactor1_SRHE1 ---handle_input(3)---> Flow1_EH1_RH

29: Flow1_EH1_RH ---remove_handler(3,{Reply_Handler}0)---> Reactor1

30: Reactor1 ---remove_handler_return()---> Flow1_EH1_RH

31: Flow1_EH1_RH ---handle_input_return(0)---> Reactor1_SRHE1

32: Reactor1_SRHE1 ---handle_input(12)---> Flow2_EH3

33: Time advanced by 11 units. Global time is 64

34: Client1 : TRACE_DeadlineMiss()

Figure 6.42: IF Trace for Scenario 3 Leading to Deadline Miss with Reply in User
Buffer

21: Reactor1_SRHE1 : TRACE_Reactor_IO_Wait_Done({12,},{})

22: Reactor1_SRHE1 ---handle_input(12)---> Flow2_EH3

23: Flow1_EH2 : TRACE_SAP_Buffer_Write(4,10)

24: Flow1_EH2 ---handle_input_return(0)---> Reactor2_SRHE0

25: Unidir_IPC_4_3 : TRACE_SAP_Buffer_Transfer(4,3,10)

.......

29: Time advanced by 11 units. Global time is 64

30: Client1 : TRACE_DeadlineMiss()

Figure 6.43: IF Trace for Scenario 3 Leading to Deadline Miss with Reply in Kernel
Buffer

144

In Figure 6.43, the request from Client2 arrives first at Server1 and the reactor un-

blocks immediately (line 21). The upcall is made (22-24) and after this the reply from

Flow1 EH2 arrives (line 25). This reply is stored in a kernel buffer (in our model this

is represented as being stored in the read buffer associated with that SAP). Since the

computation of Flow2 EH3 goes beyond the deadline of Client1 (line 29), there is a

deadline miss (line 30).

6.7 Scenario 4 – Multiple Reactors, Multiple threads

Informal Analysis. As we saw in Section 6.6, the deadlock scenario in Scenario 2

can be resolved by adding additional reactor threads to Reactor1. However, adding

more threads does not guarantee deadlock freedom in general. In this scenario, we

consider 3 concurrent flows, each flow representing the sequence of calls in Scenario

2: Client→EH1→EH2→EH3. We use the thread pool reactor in both servers and

the thread pools for both reactors have three threads each. Since more than one

client might call event handlers on Reactor1 concurrently as shown in Figure 6.44,

this could still lead to deadlock as is illustrated in Figure 6.45.

Client1
Flow1_EH1

Reactor1
Flow1_EH2

Reactor2

Flow1_EH3

1 2

56

3 4

Client2
Flow1_EH1 Flow1_EH2

Flow1_EH3

7 8

1112

9 10

Client3
Flow1_EH1 Flow1_EH2

Flow1_EH3

13 14

1718

15 16

Figure 6.44: Setup for Scenario 4

145

Time

deadlines

Flow1
EH2Client 1

Flow1
EH1

Flow2
EH1

deadlock

Client 2
Flow2
EH2

Figure 6.45: Timeline for Scenario 4

Hypothesis 4. Any k threads in Reactor1 can be bound by k distinct concurrent calls

to the EH1 type event handlers in Reactor1, leaving no threads to handle the call to

EH3 type event handlers and thus deadlocking each call chain.

We provide a more detailed formal analysis of this particular problem, and of alter-

native protocols to avoid it in [88]. In that research, we developed thread alloca-

tion protocols for deadlock avoidance by using the information about the call graph,

e.g., the nesting depth at each position of each nested call chain. That work is not a

contribution of this dissertation, but we use that protocol as a case study to evaluate

the approach presented in this dissertation, as is described in Chapter 8.

6.7.1 Formal Analysis of Scenario 4 in UPPAAL

We use the following query in the UPPAAL verifier to check whether there are any

deadlocks - E3 deadlock. The verifier finds that the property is satisfied and produces

a trace that leads to the deadlocked state. The trace shows a sequence of calls where

each flow is blocked at its EH2 instance waiting for a reply from its EH3 instance.

Figure 6.46 shows the three clients in the DeadlineMiss state. Figure 6.47 shows the

states of the automaton modeling a TP reactor handle events call. We are showing

only two of the 6 TP reactor automata - corresponding to 3 threads in Reactor1 and

146

DeadlineMiss

Done

S2
time <= 100

S1

global_clock <= 3
time == 100

!is_empty(ipc_sap_1, IPC_READQ)
dummy?

global_clock == 3

time = 0,
put_data(ipc_sap_1, IPC_WRITEQ,10)

(a) Client1

DeadlineMiss

Done

S2
time <= 100

S1

global_clock <= 3
time == 100

!is_empty(ipc_sap_7, IPC_READQ)
dummy?

global_clock == 3

time = 0,
put_data(ipc_sap_7, IPC_WRITEQ,10)

(b) Client2

DeadlineMiss

Done

S2
time <= 100

S1

global_clock <= 3
time == 100

!is_empty(ipc_sap_13, IPC_READQ)
dummy?

global_clock == 3

time = 0,
put_data(ipc_sap_13, IPC_WRITEQ,10)

(c) Client3

Figure 6.46: Scenario 4 Deadlock in UPPAAL - Client Automata States

147

S3

S2

S10

S9

S8

S7

S6

S5S4

S1

size(hot_read_sap_set) == 0 and
size(hot_write_sap_set) == 0

size(hot_read_sap_set) > 0 or
size(hot_write_sap_set) > 0

reactor_states[REACTOR1].reactor_in_use == false
dummy?

reactor_states[REACTOR1].reactor_in_use = true,
read_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].read_sap_set_to_watch),
write_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].write_sap_set_to_watch),
hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

eh_hor_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap)

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap)

size(hot_write_sap_set) > 0
pop_first_sap(hot_write_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

size(hot_write_sap_set) == 0
handle_events_return_channels[THREAD1]!

size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

size(hot_read_sap_set) > 0

pop_first_sap(hot_read_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

is_any_sap_hot(read_sap_set_to_watch, write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

handle_events_channels[THREAD1]?

(a) Reactor1 Thread1

S3

S2

S10

S9

S8

S7

S6

S5S4

S1

size(hot_read_sap_set) == 0 and
size(hot_write_sap_set) == 0

size(hot_read_sap_set) > 0 or
size(hot_write_sap_set) > 0

reactor_states[REACTOR1].reactor_in_use == false
dummy?

reactor_states[REACTOR1].reactor_in_use = true,
read_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].read_sap_set_to_watch),
write_sap_set_to_watch = get_non_suspended_saps(reactor_states[REACTOR1].write_sap_set_to_watch),
hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

eh_hor_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap)

eh_ho_channels[upcall_handler]!

eh_hir_channels[upcall_handler]?
resume_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap)

size(hot_write_sap_set) > 0
pop_first_sap(hot_write_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].write_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

size(hot_write_sap_set) == 0
handle_events_return_channels[THREAD1]!

size(hot_read_sap_set) == 0

eh_hi_channels[upcall_handler]!

size(hot_read_sap_set) > 0

pop_first_sap(hot_read_sap_set, first_hot_sap),
suspend_sap(reactor_states[REACTOR1].read_sap_set_to_watch, first_hot_sap),
upcall_handler = get_handler(reactor_states[REACTOR1].handler_repo,first_hot_sap),
reactor_states[REACTOR1].reactor_in_use = false

is_any_sap_hot(read_sap_set_to_watch, write_sap_set_to_watch)

dummy?

hot_read_sap_set = get_hot_read_saps(read_sap_set_to_watch),
hot_write_sap_set = get_hot_write_saps(write_sap_set_to_watch)

handle_events_channels[THREAD1]?

(b) Reactor2 Thread1

Figure 6.47: Scenario 4 Deadlock in UPPAAL - Reactor Automata States

148

S3S4

S2
t<=10S1

!is_empty(ipc_sap_3, IPC_READQ)
dummy?

get_data(ipc_sap_3, IPC_READQ),
put_data(ipc_sap_2, IPC_WRITEQ,10)

eh_hir_channels[FLOW1_EH1]! t==10
put_data(ipc_sap_3, IPC_WRITEQ, 10)

eh_hi_channels[FLOW1_EH1]?

t:=0,
get_data(ipc_sap_2,IPC_READQ)

(a) Flow1 EH1

S3
S4

S2
t<=10

S1

!is_empty(ipc_sap_5, IPC_READQ)

dummy?

get_data(ipc_sap_5, IPC_READQ),
put_data(ipc_sap_4, IPC_WRITEQ,10)

eh_hir_channels[FLOW1_EH2]!
t>=10
t:=0,
put_data(ipc_sap_5, IPC_WRITEQ,10)

eh_hi_channels[FLOW1_EH2]?
t:=0,
get_data(ipc_sap_4,IPC_READQ)

(b) Flow1 EH2

S3

S2

t<=10S1

eh_hir_channels[FLOW1_EH3]!

t>=10
t=0,
put_data(ipc_sap_6,IPC_WRITEQ,10)

eh_hi_channels[FLOW1_EH3]?
t=0,
get_data(ipc_sap_6,IPC_READQ)

(c) Flow1 EH3

Figure 6.48: Scenario 4 Deadlock in UPPAAL - Event Handler Automata States

149

3 threads in Reactor2. Each of these automata was in state S7. Each of the reactor

threads was blocked at state S7 waiting for an upcall to finish. The threads in Reac-

tor1 were waiting for the upcalls to the EH1 instances to finish whereas the threads in

Reactor2 were waiting for the upcalls to EH2 instances to finish. Figure 6.48 shows

the state of the event handlers for Flow1. States for the event handlers in Flow2

and Flow3 are not shown here since they are in similar states as the corresponding

event handlers automata for Flow1. The EH1 instances were in state S3 waiting for

reply back from their respective EH2 instances. The EH2 instances were waiting for

replies back from their respective EH3 instances. However there were no threads left

in Reactor1 to dispatch the requests from the EH2 instances destined for the cor-

responding EH3 instances. This resulted in a deadlocked state where there was no

further progress, which resulted in a deadline miss for all of the three clients.

6.7.2 Formal Analysis of Scenario 4 in IF

In this scenario, we show the execution trace to support our informal conjecture

that there could be a deadlock with nested upcalls even if we increase the number

of threads. If there are concurrent flows that execute the same call sequence, all

threads could become exhausted, as the trace in Figure 6.49 shows. The three clients

send their request messages to their respective event handlers (lines 3-5). The data

transfer is done by the unidirectional channel automata (6-8). The three threads in

the thread pool of Reactor1 successively processes the I/O events on handles 2, 8 and

14 (lines 10-14). The event handlers do their respective computations and in turn

send requests (16-17, 20-21, 24-25) to their counterparts registered with Reactor2.

The three threads in the thread pool of Reactor2 process the three ready handles

4, 10 and 16 (lines 18, 22, 26) and make upcalls to the appropriate handlers (lines

19,23,27). The event handlers in Reactor2 now make further requests to EH3 type

handlers on Reactor1 (lines 29-34). There are no reactor threads waiting on Reactor1

to detect these incoming request messages and hence there is a deadlock.

150

1: {Test_Harness}0 ---INIT_MODE_DONE()---> {nil}0

2: Time advanced by 3 units. Global time is 3

3: Client1 : TRACE_SAP_Buffer_Write(1,10)

4: Client2 : TRACE_SAP_Buffer_Write(7,10)

5: Client3 : TRACE_SAP_Buffer_Write(13,10)

6: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

7: Unidir_IPC_7_8 : TRACE_SAP_Buffer_Transfer(7,8,10)

8: Unidir_IPC_13_14 : TRACE_SAP_Buffer_Transfer(13,14,10)

9: Reactor1_TPRHE1 : TRACE_Reactor_IO_Wait_Done({2,8,14,},{})

10: Reactor1_TPRHE1 ---handle_input(2)---> Flow1_EH1

11: Reactor1_TPRHE2 : TRACE_Reactor_IO_Wait_Done({8,14,},{})

12: Reactor1_TPRHE2 ---handle_input(8)---> Flow2_EH1

13: Reactor1_TPRHE3 : TRACE_Reactor_IO_Wait_Done({14,},{})

14: Reactor1_TPRHE3 ---handle_input(14)---> Flow3_EH1

15: Time advanced by 25 units. Global time is 28

16: Flow1_EH1 : TRACE_SAP_Buffer_Write(3,10)

17: Unidir_IPC_3_4 : TRACE_SAP_Buffer_Transfer(3,4,10)

18: Reactor2_TPRHE4 : TRACE_Reactor_IO_Wait_Done({4,},{})

19: Reactor2_TPRHE4 ---handle_input(4)---> Flow1_EH2

20: Flow2_EH1 : TRACE_SAP_Buffer_Write(9,10)

21: Unidir_IPC_9_10 : TRACE_SAP_Buffer_Transfer(9,10,10)

22: Reactor2_TPRHE5 : TRACE_Reactor_IO_Wait_Done({10,},{})

23: Reactor2_TPRHE5 ---handle_input(10)---> Flow2_EH2

24: Flow3_EH1 : TRACE_SAP_Buffer_Write(15,10)

25: Unidir_IPC_15_16 : TRACE_SAP_Buffer_Transfer(15,16,10)

26: Reactor2_TPRHE6 : TRACE_Reactor_IO_Wait_Done({16,},{})

27: Reactor2_TPRHE6 ---handle_input(16)---> Flow3_EH2

28: Time advanced by 25 units. Global time is 53

29: Flow1_EH2 : TRACE_SAP_Buffer_Write(5,10)

30: Unidir_IPC_5_6 : TRACE_SAP_Buffer_Transfer(5,6,10)

31: Flow2_EH2 : TRACE_SAP_Buffer_Write(11,10)

32: Unidir_IPC_11_12 : TRACE_SAP_Buffer_Transfer(11,12,10)

33: Flow3_EH2 : TRACE_SAP_Buffer_Write(17,10)

34: Unidir_IPC_17_18 : TRACE_SAP_Buffer_Transfer(17,18,10)

35: Time advanced by 951 units. Global time is 1004

36: Client1 : TRACE_DeadlineMiss()

Figure 6.49: IF Trace for Scenario 4 Leading to Deadlock

151

6.7.3 Timing Anomaly and Solution

Even though the deadlock was verified in Section 6.7, a subtle timing anomaly in

our model was also exposed by the trace in Figure 6.49. In Line 15, we can see

that time is advanced by 25 units and in the model the execution of all three EH1

type event handlers in Reactor1 is considered complete. However, the execution of

these event handlers on a single-CPU machine would take three times that of a single

event handler, assuming that all the three event handlers have the same processing

time which is true in this example. This revealed a bug in our model that illustrates

the importance of these traces not only to provide clear insights into the interaction

between middleware building blocks, but also to help uncover bugs in the models

themselves.

The solution to the above problem was to enhance the model to incorporate the

notion of a processor as a resource that could be shared among event handlers. This

is done using the resource construct in IF. The extract in Figure 6.50 shows how the

event handler model is modified to achieve this. When the upcall is made to the event

handler, before starting computation the event handler acquires the CPU resource

and then releases it after the computation is done.

resource CPU;

.....

state do_read;

acquire CPU;

....

set elapsed := 0;

nextstate do_compute;

endstate;

state do_compute;

deadline delayable;

when elapsed = exec_time_;

.......

release CPU;

nextstate more_service_decision;

endstate;

......

Figure 6.50: Model Modifications in IF to Fix Timing Anomaly

152

The new trace is shown in Figure 6.51. Here each event handler took 25 time units

to execute and before the deadlock, the time was 153 (line 36) as opposed to 53 in

Figure 6.49.

9: Reactor1_TPRHE1 : TRACE_Reactor_IO_Wait_Done({2,8,14,},{})

10: Reactor1_TPRHE1 ---handle_input(2,1)---> Flow1_EH1

11: Reactor1_TPRHE2 : TRACE_Reactor_IO_Wait_Done({8,14,},{})

12: Reactor1_TPRHE2 ---handle_input(8,2)---> Flow2_EH1

13: Reactor1_TPRHE3 : TRACE_Reactor_IO_Wait_Done({14,},{})

14: Reactor1_TPRHE3 ---handle_input(14,3)---> Flow3_EH1

15: Time advanced by 25 units. Global time is 28

16: Flow1_EH1 : TRACE_SAP_Buffer_Write(3,10)

17: Unidir_IPC_3_4 : TRACE_SAP_Buffer_Transfer(3,4,10)

18: Reactor2_TPRHE4 : TRACE_Reactor_IO_Wait_Done({4,},{})

19: Reactor2_TPRHE4 ---handle_input(4,4)---> Flow1_EH2

20: Time advanced by 25 units. Global time is 53

21: Flow1_EH2 : TRACE_SAP_Buffer_Write(5,10)

22: Unidir_IPC_5_6 : TRACE_SAP_Buffer_Transfer(5,6,10)

23: Time advanced by 25 units. Global time is 78

24: Flow2_EH1 : TRACE_SAP_Buffer_Write(9,10)

25: Unidir_IPC_9_10 : TRACE_SAP_Buffer_Transfer(9,10,10)

26: Reactor2_TPRHE5 : TRACE_Reactor_IO_Wait_Done({10,},{})

27: Reactor2_TPRHE5 ---handle_input(10,5)---> Flow2_EH2

28: Time advanced by 25 units. Global time is 103

29: Flow2_EH2 : TRACE_SAP_Buffer_Write(11,10)

30: Unidir_IPC_11_12 : TRACE_SAP_Buffer_Transfer(11,12,10)

31: Time advanced by 25 units. Global time is 128

32: Flow3_EH1 : TRACE_SAP_Buffer_Write(15,10)

33: Unidir_IPC_15_16 : TRACE_SAP_Buffer_Transfer(15,16,10)

34: Reactor2_TPRHE6 : TRACE_Reactor_IO_Wait_Done({16,},{})

35: Reactor2_TPRHE6 ---handle_input(16,6)---> Flow3_EH2

36: Time advanced by 25 units. Global time is 153

37: Flow3_EH2 : TRACE_SAP_Buffer_Write(17,10)

38: Unidir_IPC_17_18 : TRACE_SAP_Buffer_Transfer(17,18,10)

39: Time advanced by 851 units. Global time is 1004

40: Client1 : TRACE_DeadlineMiss()

Figure 6.51: IF Trace for Scenario 4 after Timing Anomaly Fix

6.8 Model Checking Costs

In Section 5.2, we described the techniques that we can use to realize the foundational

data structures and operations in IF. Here we evaluate the impact of IF mechanisms

that we can use to realize the foundational data structures and operations on the cost

153

of model checking. This evaluation was done in the context of the scenarios described

earlier in this chapter. We also evaluated the effect of the state space optimization

techniques that we described in Chapter 5, in the context of the models for these

scenarios.

6.8.1 Impact of Data Structures in IF

In our models, we have to keep track of different data structures, for example the set

of SAP handles, the set of SAP buffers, and the registered handler repository. We

implemented these data structures using IF ADTs, arrays, and strings, and evaluated

each of these in the context of our models with respect to the time taken and the

state space required so that we could pick mechanisms that are most efficient for our

models. From the perspective of a model developer, the most convenient mechanism

for implementing these is the ADT since it offers a facility to integrate other libraries

like STL. Arrays are the least convenient since we have to keep track of the number

of elements in the array and write extra code to perform operations like deleting a

member from a set. Moreover, while doing interactive exploration, arrays are printed

with all slots shown, irrespective of how many elements are actually used in the array,

which is an inconvenience when debugging our models. IF strings are dynamic arrays

and IF internally keeps track of the number of slots that are occupied and provides

operations for insert, remove, etc. Strings in IF are not character strings; they are

rather dynamic arrays of some IF type.

Table 6.3 shows the number of states, the number of transitions, and the time taken

for an exhaustive exploration of the different scenarios using ADTs, IF strings, and

arrays. The different scenarios that we evaluated are (1) Scenario 1; (2) Scenario 2

with and without deadlock; (3) Scenario 3 with 1, 2 and 3 flows; and (4) Scenario

4 with deadlock. These exhaustive simulations were run on a Pentium 4 2.8Ghz

processor with 1GB RAM. For all the runs, we used the partial order reduction and

depth-first-search options in the IF exhaustive simulator, as was suggested by the IF

tool developers.

In the course of doing this evaluation, we found that the ADT based implementation

is expensive especially when the number of flows increases as is the case in Scenarios

154

Table 6.3: Impact of data structures in IF on state space
#1 #2(1) #2(2) #3(1) #3(2) #3(3) #4(1)
124 122 464 1046 99493 656895* 17226

ADT 129 124 465 1044 99497 656893* 17583
1s 1s 1s 1s 193s 2724s 52s

Buggy 124 122 243 1057 99493 464190* 19581
Strings 129 124 247 1058 99497 464188* 19751

1s 1s 1s 1s 122s 2241s 31s
Strings 124 122 200 228 936 2254 2362
after 129 124 204 233 963 2326 2433
bugfix 1s 1s 1s 1s 1s 4s 4s

124 122 200 228 770 1652 1897
Arrays 129 124 204 233 795 1708 1966

1s 1s 1s 1s 1s 1s 3s

3(2) and 3(3), where we have 2 flows and 3 flows respectively. Scenario 4 also has

three flows, but the state space is not as large as Scenario 3(3) even though the

number of flows is the same (3) in both cases. This is because Scenario 4 ends up in

a deadlocked state, where there is no further progress, whereas in Scenario 3(3) with

3 flows, there is no deadlock since we use WaitOnReactor strategy and this causes a

lot of interleavings that do not arise once a deadlocked state is reached.

Use caution with ADTs. One important observation is that in the context of

our models, the ADT based implementation was very expensive when compared to

other mechanisms. This was counter-intuitive because ADTs were supposed to be

treated as a black box by the IF model checker and the state won’t be exposed to the

model checker. The original idea was to realize the set of IPC SAP buffers, handler

repository, etc using ADTs so that the state of these won’t be exposed to the model

checker and hence there would be a huge savings in terms of state space. However,

our evaluation here shows that this is far from true, which re-emphasizes the need for

evaluating such mechanisms in the context of specific models.

The reason for this huge state space with ADTs can be attributed to the manner

in which the IF model checker handles ADTs. The value of an abstract data type

for the model checker is an uninterpreted bitstring and different bitstrings denote

different values. Since our abstract types have values which are C++ STL objects

155

(vector, map, etc.), the same semantic object e.g., a list or map, gets represented

twice or more in memory (using different pointers, for instance). These multiple

copies are not identified as being equal by IF even if we provide the compare function

in the C++ implementation for the ADTs as required by IF. This is because before

comparing, the IF model checker takes a blind hash of the value of the type and it

compares only the collision lists of the hash key. Different bitstrings gives different

hash codes, and this results in the same state being stored multiple times.

For example, assume we have a C/C++ type T. To obtain a hash value on it, IF

model checker converts it (via a cast to char*) to a char[n] where n = sizeof(T) and

then it takes a sum of its contained characters. IF does not look at the ’semantics’

of that type. Instead it uses its internal representation as a char string. Hence two

distinct copies of the same list of values e.g., (1,2,3) implemented by using linked lists

will lead to different hash codes because the hash code is computed depending on the

value of the pointer to the next element and not on the value of the next element.

With the model using arrays for implementing the foundational data structures, there

is a huge savings in state space. We initially thought that using IF strings (dynamic

arrays) should not result in a huge increase in state space. But the results were

surprising since the state space size was close to that of ADTs. We reported this

to the IF developers and they informed us that there was a bug with the IF strings

implementation. After we obtained the bug fix for IF strings, we executed our models

again and found the state space to be close to those of the array-based models. This

again shows the need to evaluate different mechanisms carefully in the context of

scenarios like the ones discussed in this chapter, and to ensure that the results are

suitable for each specific use case. The IF string based models have state space sizes

close to those of the array-based models, and IF strings provide more facilities for

the model developer than plain arrays, e.g., insertion and deletion of elements, and

printing only the “occupied” slots in an array rather than the whole array. Hence we

chose to use IF strings as the basic mechanism for modeling the foundational data

structures and operations for our further experiments.

156

6.8.2 Impact of State Space Optimization in IF

For each scenario, we ran the exhaustive simulation with and without the state space

optimization strategies described in Section 5.5. The purpose of this evaluation is

to measure the impact on the state space when we apply each of the strategies. We

first ran the exhaustive simulation with no priority rules at all. We then incremen-

tally applied each of the following state space optimizations - (1) initialization mode

optimization which reduce the number of interleavings during system initialization

where the static structure of the system is established; (2) run mode priority rules

where we give preference to the client processes over any other process and give

the IPC channels preference over all other processes except the client processes; (3)

leader/followers ordering rules where the thread with a lower pid gets preference; and

(4) run-to-completion rules which reduce number of interleavings by using the con-

cept of a logical thread and each thread running to completion before another thread

at the same priority can start running. These techniques are described in detail in

Section 5.5. The results are summarized in Table 6.4.

Table 6.4: Impact of State Space Optimization
#1 #2(1) #2(2) #3(1) #3(2) #3(3) #4(1)

58936 195608 822191* 414427 718701* 583389* 558235*
No prio 215490 889862 2767830* 1692412 2201384* 2271425* 1637672*
rules 38s 185s 2100s* 410s 3360s* 15744s* 6351s*
Init Mode 678 89 7695 1569 75779 531419* 555287*
Prio 1297 98 25917 3786 228219 2081548* 1628964*
Rules 1s 1s 7s 1s 117s 3682s* 5700s
Run Mode 69 82 566 555 4054 14581 11459
Prio 74 87 934 1106 8845 31857 30230
Rules 1s 1s 1s 1s 5s 28s 24s
LF rules 69 82 566 555 4085 16702 2966

74 87 934 1106 8915 36396 7596
1s 1s 1s 1s 5s 33s 5s

SchedFifo 124 122 200 228 936 2254 2362
Prio 129 124 204 233 963 2326 2433
Rules 1s 1s 1s 1s 1s 4s 4s

With no state space optimization, the state space is huge. In some cases marked with

asterisks, the exploration did not stop, but after around 4 hours, the progress became

extremely slow. We reported this problem to the IF developers.

157

With the introduction of the initialization mode optimization, there was a significant

drop in the state space in some cases. For example, in Scenario 1, the number of states

went from 58,936 to 678. This shows that the initialization rules are very important,

especially since the initialization phase is used to set up only the static relationships

in the system and hence does not affect the outcome in any way. However, the

initialization rules did not always reduce the state space, for example as was seen in

Scenario 4 and Scenario 3(3). This is because these scenarios use multiple flows and

thus multiple threads and hence the number of interleavings at simulation time is still

huge.

We then added the run mode priority rules. With the run mode priority rules there

are ordering optimizations that cause a Client with a lower IF pid number to execute

when multiple Client processes become eligible. Since Scenario 1 involves multiple

clients, these rules enable some reduction in the state space. In contrast since Scenario

2 does not involve multiple flows, there is not much reduction in the state space. For

Scenario 2(2) the state space is reduced since there are multiple threads in Reactor1

and the number of interleavings caused by this is controlled by using ordering opti-

mizations. For Scenarios 3 and 4 also, the state space is reduced because of ordering

optimizations. Note that for Scenarios 3 with 3 flows and Scenario 4, the run time

ordering optimizations results in significantly reduced state space. This is because

the number of flows and hence the number of threads in this scenario are higher.

We then added the leader follower priority rule. With Scenarios 1 and 2 (1), there

was no reduction at all. The reason is that these do not have any TP reactors and

hence the leader follower priority rule does not apply. Scenario 2(2) does use a TP

reactor for reactor1. But there is still no reduction in state space. This is because the

choice of which IF process gets access to the reactor is decided in the initialization

phase itself and there is no necessity for the leader/follower priority rule to be applied

at execution time. Scenario 3(1) has two select reactors and single threads on each of

those and hence the L/F prio rule is not applicable and hence there was no reduction

in state space. Interestingly, for Scenarios 3(2) and 3(3), there was a slight increase

in the state space with the addition of the L/F priority rules. These scenarios have

only select reactors and hence the L/F prio rules should not apply. With Scenario 4,

there are 2 TP reactors and hence the L/F rules reduced the interleavings, resulting

in state space reduction.

158

We then add the run-to-completion rules (SCHED FIFO rules). With Scenario 1 and

2, there is a slight increase in the state space. This is because these sets of rules

have some overhead - (1) maintaining the current logical thread, (2) use of observers

to propagate thread ids, and (3) the idle catcher process. As a result, the potential

benefits of these rules would be more useful when there is a lot more concurrency in

the model or the exploration does not stop because of a deadlock state, as was seen

in Scenario 3 where the state space was reduced from 16702 to 2254 by the use of

these rules.

We see from these results that the initialization mode ordering optimization reduces

the state space more significantly than the other optimization strategies. When con-

currency in the system increases as in the number of flows or the number of threads

in a reactor, the run mode priority rules, the L/F rules and the run-to-completion

rules provide benefits. The results described above highlights the need to evaluate the

impact of different state space reduction strategies in the context of representative

scenarios.

6.9 Summary

In this chapter we have shown how our models of middleware building blocks can be

used to compose models of simple applications and verify their timing and liveness

properties using model checking. We demonstrated the utility of our models in for-

mally analyzing different middleware configurations and their effects. We showed how

execution traces from a model checker help us pinpoint the reason for the satisfaction

or violation of an application property. A set of post-processing tools was discussed,

which greatly aids the debugging of models as well as making it more suitable for

a human reader. Finally, we presented results on the effective usage of appropriate

data structures in IF and the benefits of using the techniques that we developed for

state space optimization.

159

Chapter 7

Model validation

In Chapter 6, we discussed the executable models of representative scenarios that

we have developed using UPPAAL and IF. In that chapter we discussed in detail the

traces produced by running simulations of these models. We showed the importance of

these traces and how they can be extended for post-processing. The discussions about

the traces in that chapter were mainly based on domain expertise. In this chapter, we

evaluate the fidelity of these models by running actual experiments with these scenar-

ios using the actual ACE building blocks and compare the traces produced by these

runs against the ones produced by the simulation. We log events at various points

in the kernel, middleware, and application layers using DSUI/DSKI [13] instrumen-

tation points. We then generate a timeline produced by post-processing DSUI/DSKI

events and then compare this against a timeline produced by post-processing the out-

put from the corresponding simulation. This establishes a general and reproducible

methodology for validation of different middleware configurations using our models.

7.1 Experimental Setup

All the modeling experiments were run using IFx 2.0 (Dec 13, 2005) on a 2.8GHz

Pentium 4 with 2GB RAM running RedHat 9 with a 2.4.32 kernel. All empirical

experiments were run on a 1.4GHz Pentium 3 with 1GB RAM and running Fedora 2

with a LibeRTOS 2.6.12 kernel.

160

We enhanced our models to output log events that closely resemble that of the

DSUI/DSKI instrumentation points so that we can effectively compare the simu-

lation and actual runs. For each experiment, we identified a set of operating system

handles associated with event handlers, and for each of these handles we measured the

delay between the time when a message was ready to be read on that handle and the

time when an event handler actually started processing that message (handle input).

A socket layer DSKI instrumentation point (EVENT SOCK DEF READABLE DSKI

event) was used to log an event whenever a buffer of bytes was enqueued into a

socket queue (this instrumentation point is in the kernel/sock.c: sock def readable

function of the Linux 2.6.12 kernel). This function is called by the network-protocol-

specific (e.g., TCP/UDP/Unix-sockets) code after enqueueing bytes into a socket

queue. This measure increases the accuracy of our measurements when compared

to the alternative approach where we might measure the interval between the time

when the message was sent by a client and the same message read by an event han-

dler. The problem with the latter approach is that the actual delay may also include

the propagation delay of the message, which might skew measurement of the actual

blocking delay that is caused by interleaving calls to the same reactor.

To enable correlation between the EVENT SOCK DEF READABLE DSKI event and

user space DSUI events, we record the socket handle identifier along with the appro-

priate DSUI events (e.g., HANDLE INPUT in an event handler). We also modified

the kernel for these experiments to include the socket handle as part of the socket

data structure in the kernel so that this information is available during logging of

the DSKI event and can be used during post processing to correlate kernel and user

events.

For each empirical experiment, we used the DSUI/DSKI event stream and converted

it into a timeline. Similarly for each modeling experiment we converted the trace

from IF into a timeline. We then compared the two timelines to compare (1) the

sequence of events that happened in each of the two cases and (2) the time at which

each event happened in each case. In generating both timelines, we start the logical

time for the timeline when a client sends a request to an event handler for the first

time. For each empirical experiment, we mapped the OS handles to logical handles so

that the two timelines would have the same handle numbers for each of the different

connections shown in Figure 6.1 in Chapter 6.

161

7.2 Model Validation for Scenario 1

For Scenario 1, we increased the relative deadline of each client so that there would

not be a deadline miss. This helped us in generating a complete timeline without the

simulation’s exploration getting cut off on a deadline miss by a client. We randomly

chose one simulation trace that led to a successful completion (both clients receive

replies back before their individual deadlines). The timelines from the simulation (left

side) and actual runs (right side) are shown in Figure 7.1.

1: 0: BEFORE_CLIENT_SEND_REQUEST(2)

2: 0: EVENT_SOCK_DEF_READABLE(4)

3: 0: BEFORE_CLIENT_SEND_REQUEST(1)

4: 0: EVENT_SOCK_DEF_READABLE(2)

5: 0: HANDLE_INPUT_BEGIN(2)

6: 25: EVENT_SOCK_DEF_READABLE(1)

7: 25: AFTER_CLIENT_RECV_REPLY(1)

8: 25: HANDLE_INPUT_BEGIN(4)

9: 50: EVENT_SOCK_DEF_READABLE(3)

10: 50: AFTER_CLIENT_RECV_REPLY(2)

1: 0 : BEFORE_CLIENT_SEND_REQUEST(2)

2: 0 : EVENT_SOCK_DEF_READABLE(4)

3: 0 : BEFORE_CLIENT_SEND_REQUEST(1)

4: 0 : EVENT_SOCK_DEF_READABLE(2)

5: 0 : HANDLE_INPUT_BEGIN(2)

6: 25 : EVENT_SOCK_DEF_READABLE(1)

7: 25 : AFTER_CLIENT_RECV_REPLY(1)

8: 25 : HANDLE_INPUT_BEGIN(4)

9: 51 : EVENT_SOCK_DEF_READABLE(3)

10: 51 : AFTER_CLIENT_RECV_REPLY(2)

Figure 7.1: Comparison of Timelines - Scenario 1

In the following discussions we use line numbers and L is used to refer to the left

side trace and R is used to refer the right side trace. From the two timelines, we can

see that the model reflects the actual system closely. Both clients send their requests

(L1-4, R1-4) at (logical) time 0. Handles 2 and 4 become read-ready and Reactor1

unblocks and the reactor makes an upcall (L5, R5). A computation is performed for

25ms and after this the event handler sends a reply back (L6-7, R6-7) to the client.

An upcall is made for the ready-ready handle 4 (L8-10, R8-10) and a reply is sent

back to the appropriate client.

7.2.1 Co-Engineering of Model and Software

The traces produced by the model and actual execution in Figure 7.1 are equivalent

with respect to the following - (1) requests from both Client1 and Client2 reach

Server1 at the same logical time, (2) the reactor at Server1 sees both handles 2 and

4 as read-ready, (3) the reactor at Server1 sequentially dispatches the requests to the

appropriate event handlers, (4) the order of upcalls is the same in both the model

and actual execution - the upcall corresponding to handle 2 is dispatched before the

162

upcall corresponding to handle 4 and (5) the blocking factor for the request in handle

4 is 25 time units in both cases.

Even though the above equivalence between the model and the actual software con-

firms the qualitative fidelity of our models, the above traces still reveal some important

quantitative differences. For example, jitter in the execution time in the actual im-

plementation causes the difference seen in the timeline between the model and actual

implementation (see L9,R9). Since logical time in the model execution is controlled

by the model checker, there is no jitter in the model execution unless jitter is explicitly

introduced in the model.

7.2.2 Blocking Delay

Figure 7.1 shows that some of the requests from clients suffer blocking delays. For

example, from the simulation results in Figure 7.1, we see that Client2’s request

reaches handle 4 (L7) at time 0, but that HANDLE INPUT BEGIN is called on the

appropriate event handler only at time 25 (L17). The empirical result also reflects

this (R10, R22). This blocking delay is caused by interference among flows using the

same reactor.

We conducted further experiments to analyze the effect of this blocking delay using

empirical results from running experiments with 4 flows. The clients synchronize

on a barrier before sending requests and this is repeated. From the results shown in

Figure 7.2 it can be seen that the blocking delay at a particular socket handle depends

on the number of interleaving calls concurrently passing through the reactor. The

blocking delays for the different handles are 0, 25, 50 and 75 ms.

We then used the same number of flows in our model. We modeled a barrier syn-

chronizer and had the clients send their requests after unblocking from the barrier

synchronizer. We randomly chose one trace that led to a success state where all

clients received their reply back within their deadlines. We then computed blocking

delays based on the timelines that we showed earlier.

163

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

It
e
ra

ti
o
n
s

Blocking delay (msec)

Handle 6
Handle 8
Handle 2
Handle 4

Figure 7.2: Scenario 1 Blocking Factor from Actual Timeline

164

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80

It
e
ra

ti
o
n
s

Blocking delay (msec)

Handle 8
Handle 2
Handle 4
Handle 6

Figure 7.3: Scenario 1 Blocking Factor from Simulation Timeline

165

From the results shown in Figure 7.3, we can see that the blocking delay varies for

a single handle. This shows that the model checker tries out different interleavings

as a result of which the same handle suffers different blocking delays because of the

arrival patterns of the requests at a reactor and the time when a reactor unblocks.

7.3 Model Validation of Scenario 2

Figure 7.4 compares the simulation and actual timelines for a sequence leading to

a deadlock in Scenario 2. In this case according to the timelines, at time 25, after

its processing, the event handler sends a request on handle 3 (L4, R4). The request

reaches Reactor2 and handle 4 becomes readable (L5, R5). Reactor2 makes an upcall

(L6, R6) and the event handler after performing a computation for 25 units sends a

request (L7, R7) to Flow1 EH3 which is hosted in Reactor1. Handle 6 becomes ready

to read (L8, R8), but the single thread in Reactor1 is blocked on an upcall and hence

there is a deadlock.

1: 0: BEFORE_CLIENT_SEND_REQUEST(1)

2: 0: EVENT_SOCK_DEF_READABLE(2)

3: 0: HANDLE_INPUT_BEGIN(2)

4: 25: BEFORE_EH_SEND_REQUEST(3)

5: 25: EVENT_SOCK_DEF_READABLE(4)

6: 25: HANDLE_INPUT_BEGIN(4)

7: 50: BEFORE_EH_SEND_REQUEST(5)

8: 50: EVENT_SOCK_DEF_READABLE(6)

1: 0 : BEFORE_CLIENT_SEND_REQUEST(1)

2: 0 : EVENT_SOCK_DEF_READABLE(2)

3: 0 : HANDLE_INPUT_BEGIN(2)

4: 25 : BEFORE_EH_SEND_REQUEST(3)

5: 25 : EVENT_SOCK_DEF_READABLE(4)

6: 25 : HANDLE_INPUT_BEGIN(4)

7: 51 : BEFORE_EH_SEND_REQUEST(5)

8: 51 : EVENT_SOCK_DEF_READABLE(6)

Figure 7.4: Comparison of Timelines - Scenario 2 Deadlock

1: 0: BEFORE_CLIENT_SEND_REQUEST(1)

2: 0: EVENT_SOCK_DEF_READABLE(2)

3: 0: HANDLE_INPUT_BEGIN(2)

4: 25: BEFORE_EH_SEND_REQUEST(3)

5: 25: EVENT_SOCK_DEF_READABLE(4)

6: 25: HANDLE_INPUT_BEGIN(4)

7: 50: BEFORE_EH_SEND_REQUEST(5)

8: 50: EVENT_SOCK_DEF_READABLE(6)

9: 50: HANDLE_INPUT_BEGIN(6)

10: 75: EVENT_SOCK_DEF_READABLE(5)

11: 75: AFTER_EH_RECV_REPLY(5)

12: 75: EVENT_SOCK_DEF_READABLE(3)

13: 75: AFTER_EH_RECV_REPLY(3)

14: 75: EVENT_SOCK_DEF_READABLE(1)

15: 75: AFTER_CLIENT_RECV_REPLY(1)

1: 0 : BEFORE_CLIENT_SEND_REQUEST(1)

2: 0 : EVENT_SOCK_DEF_READABLE(2)

3: 0 : HANDLE_INPUT_BEGIN(2)

4: 26 : BEFORE_EH_SEND_REQUEST(3)

5: 26 : EVENT_SOCK_DEF_READABLE(4)

6: 26 : HANDLE_INPUT_BEGIN(4)

7: 52 : BEFORE_EH_SEND_REQUEST(5)

8: 52 : EVENT_SOCK_DEF_READABLE(6)

9: 52 : HANDLE_INPUT_BEGIN(6)

10: 78 : EVENT_SOCK_DEF_READABLE(5)

11: 78 : AFTER_EH_RECV_REPLY(5)

12: 78 : EVENT_SOCK_DEF_READABLE(3)

13: 78 : AFTER_EH_RECV_REPLY(3)

14: 78 : EVENT_SOCK_DEF_READABLE(1)

15: 78 : AFTER_CLIENT_RECV_REPLY(1)

Figure 7.5: Comparison of Timelines - Scenario 2 No Deadlock

166

We now compare timelines for Scenario2 with a TP reactor for Reactor1 and two

threads in the thread pool for Reactor1. Figure 7.5 shows the timelines whose obser-

vational equivalence we discuss now. As soon as either handle 2 or handle 6 is ready,

the leader thread in Reactor1 unblocks and is ready to dispatch the event handler

associated with that handle. Flow1 EH1 now sends a request (L4, R4) that reaches

handle 4 (L5, R5). This request is dispatched by Reactor2 (L6, R6) to Flow1 EH2,

which in turn sends a request (L7, R7) to Flow1 EH3 on Reactor1 and this makes

handle 6 readable (L8, R8). The leader thread in Reactor1 now unblocks and handles

the request to Flow1 EH3. In this case also, the jitter in the actual execution causes

the timing difference between the actual execution and model execution.

7.4 Model Validation for Scenario 3

1: 0: BEFORE_CLIENT_SEND_REQUEST(1)

2: 0: EVENT_SOCK_DEF_READABLE(2)

3: 0: HANDLE_INPUT_BEGIN(2)

4: 25: BEFORE_EH_SEND_REQUEST(3)

5: 25: EVENT_SOCK_DEF_READABLE(4)

6: 25: HANDLE_INPUT_BEGIN(4)

7: 50: BEFORE_EH_SEND_REQUEST(5)

8: 50: EVENT_SOCK_DEF_READABLE(6)

9: 50: HANDLE_INPUT_BEGIN(6)

10: 75: EVENT_SOCK_DEF_READABLE(5)

11: 75: AFTER_EH_RECV_REPLY(5)

12: 75: EVENT_SOCK_DEF_READABLE(3)

13: 75: HANDLE_INPUT_BEGIN(3)

14: 75: AFTER_EH_RECV_REPLY(3)

15: 75: EVENT_SOCK_DEF_READABLE(1)

16: 75: AFTER_CLIENT_RECV_REPLY(1)

1: 0 : BEFORE_CLIENT_SEND_REQUEST(1)

2: 0 : EVENT_SOCK_DEF_READABLE(2)

3: 0 : HANDLE_INPUT_BEGIN(2)

4: 25 : BEFORE_EH_SEND_REQUEST(3)

5: 25 : EVENT_SOCK_DEF_READABLE(4)

6: 25 : HANDLE_INPUT_BEGIN(4)

7: 51 : BEFORE_EH_SEND_REQUEST(5)

8: 51 : EVENT_SOCK_DEF_READABLE(6)

9: 51 : HANDLE_INPUT_BEGIN(6)

10: 76 : EVENT_SOCK_DEF_READABLE(5)

11: 77 : AFTER_EH_RECV_REPLY(5)

12: 77 : EVENT_SOCK_DEF_READABLE(3)

13: 77 : HANDLE_INPUT_BEGIN(3)

14: 77 : AFTER_EH_RECV_REPLY(3)

15: 77 : EVENT_SOCK_DEF_READABLE(1)

16: 77 : AFTER_CLIENT_RECV_REPLY(1)

Figure 7.6: Comparison of Timelines - Scenario 3 No Deadlock

We now proceed to compare timelines for Scenario3 with a Select reactor for Reactor1

and Reactor2 and Flow1 EH1 using the WaitOnReactor strategy to wait for reply.

We start our discussion from the point where Flow1 EH1 has completed its compu-

tation (L4, R4) and sends a request to Flow1 EH2. After the request is sent, the

thread comes back and blocks on the reactor waiting for the reply. After Flow1 EH2

finishes its computation (L7, R7), the request sent to Flow1 EH3 reaches handle 6

(L8, R8). The upcall completes and the reply path continues all the way back to

Flow1 EH1. When the reply to Flow1 EH1 arrives (L12, R12) on handle 3, the same

thread unblocks to process that reply and makes an upcall to the reply handler (L14,

167

R14). In this case also, the jitter in the actual execution causes the timing difference

between the actual execution and model execution.

7.5 Model Validation for Scenario 4

Figure 7.7 shows a timeline comparison between a model simulation and an actual im-

plementation of Scenario 4. The right side shows an actual execution sequence leading

to a deadlock and the left side shows one of the simulation sequences that is similar to

the actual execution sequence, which also leads to a deadlock. In the simulation run,

handles 2, 8 and 14 are dispatched by Reactor1 one after the other (LR7,8,11) and

handles 4, 10 and 16 are dispatched by Reactor2 (LR14,19,22). The event handlers

complete their computation in the following sequence - Flow1 EH1 (L9), Flow2 EH1

(L12), Flow1 EH2 (L15), Flow3 EH1 (L17), Flow2 EH2 (L20), Flow3 EH2 (L23).

After this the system is deadlocked.

1: 0 : BEFORE_CLIENT_SEND_REQUEST(3)

2: 0 : EVENT_SOCK_DEF_READABLE(14)

3: 0 : BEFORE_CLIENT_SEND_REQUEST(1)

4: 0 : EVENT_SOCK_DEF_READABLE(2)

5: 0 : BEFORE_CLIENT_SEND_REQUEST(2)

6: 0 : EVENT_SOCK_DEF_READABLE(8)

7: 1 : HANDLE_INPUT_BEGIN(2)

8: 1 : HANDLE_INPUT_BEGIN(8)

9: 25 : BEFORE_EH_SEND_REQUEST(3)

10: 25 : EVENT_SOCK_DEF_READABLE(4)

11: 25 : HANDLE_INPUT_BEGIN(14)

12: 50 : BEFORE_EH_SEND_REQUEST(9)

13: 50 : EVENT_SOCK_DEF_READABLE(10)

14: 50 : HANDLE_INPUT_BEGIN(4)

15: 75 : BEFORE_EH_SEND_REQUEST(5)

16: 75 : EVENT_SOCK_DEF_READABLE(6)

17: 100 : BEFORE_EH_SEND_REQUEST(15)

18: 100 : EVENT_SOCK_DEF_READABLE(16)

19: 100 : HANDLE_INPUT_BEGIN(10)

20: 125 : BEFORE_EH_SEND_REQUEST(11)

21: 125 : EVENT_SOCK_DEF_READABLE(12)

22: 125 : HANDLE_INPUT_BEGIN(16)

23: 150 : BEFORE_EH_SEND_REQUEST(17)

24: 150 : EVENT_SOCK_DEF_READABLE(18)

1: 0 : BEFORE_CLIENT_SEND_REQUEST(3)

2: 0 : EVENT_SOCK_DEF_READABLE(14)

3: 0 : BEFORE_CLIENT_SEND_REQUEST(1)

4: 0 : EVENT_SOCK_DEF_READABLE(2)

5: 0 : BEFORE_CLIENT_SEND_REQUEST(2)

6: 0 : EVENT_SOCK_DEF_READABLE(8)

7: 1 : HANDLE_INPUT_BEGIN(2)

8: 1 : HANDLE_INPUT_BEGIN(8)

9: 26 : BEFORE_EH_SEND_REQUEST(3)

10: 26 : EVENT_SOCK_DEF_READABLE(4)

11: 27 : HANDLE_INPUT_BEGIN(14)

12: 52 : BEFORE_EH_SEND_REQUEST(9)

13: 52 : EVENT_SOCK_DEF_READABLE(10)

14: 53 : HANDLE_INPUT_BEGIN(4)

15: 78 : BEFORE_EH_SEND_REQUEST(5)

16: 78 : EVENT_SOCK_DEF_READABLE(6)

17: 104 : BEFORE_EH_SEND_REQUEST(15)

18: 104 : EVENT_SOCK_DEF_READABLE(16)

19: 104 : HANDLE_INPUT_BEGIN(10)

20: 130 : BEFORE_EH_SEND_REQUEST(11)

21: 130 : EVENT_SOCK_DEF_READABLE(12)

22: 130 : HANDLE_INPUT_BEGIN(16)

23: 156 : BEFORE_EH_SEND_REQUEST(17)

24: 156 : EVENT_SOCK_DEF_READABLE(18)

Figure 7.7: Comparison of Timelines - Scenario 4 Deadlock

The variation between model and actual execution times is again because of the jitter

in computation times of the event handlers.

168

7.6 Summary

In this chapter, we validated the accuracy of our models by comparing timeline traces

from execution of our models to DSKI/DSUI traces from running actual implemen-

tations of the different scenarios. We showed that timeline traces from the model

execution closely reflect the traces from actual execution, which demonstrated the

fidelity of our models.

169

Chapter 8

Case Study 1 - Deadlock

Avoidance Protocol

In Chapter 6 we saw how the WaitOnConnection strategy could cause deadlocks even

if we increased the number of threads in the reactor thread pool. In complementary

research [88], we have developed thread allocation protocols for deadlock avoidance

that exploit information about the application’s call graph, e.g., the depth of nesting

at each position of each call chain. Although the design and proof of correctness

of the protocol itself is not a contribution of this dissertation, we use this protocol

as a case study not only to use model checking to verify our implementation of the

protocol is sound, but also to do further analysis on the blocking delays introduced

by the protocol. The modeling and implementation of the DA protocol, described in

Section 8.2, are therefore contributions of this dissertation.

8.1 Overview of Deadlock Avoidance Protocols

Deadlock avoidance protocols are hybrid techniques that use both static call graph

analysis and run-time protocol code to prevent deadlocks from happening. Most of

these protocols are based on annotations of the call-graphs. A call graph in the con-

text of this dissertation is a finite tree with each node containing a 2-tuple consisting

of a event handler and a reactor. A node (e, r) describes that the event handler e is

dispatched by reactor r. An edge from (e1, r1) to (e2, r2) denotes that event handler

e1, in the course of its execution may invoke e2 in reactor r2.

170

The outcome of the static call graph analysis is a set of integer annotations to each

node in a call graph, spanning possibly multiple event handlers registered possibly

with multiple reactors. The annotations are maps from nodes in the call-graphs to the

natural numbers. These annotations are static in the sense that they do not change

during the execution of the system, and are shared among all the threads in a thread

pool reactor. The annotations can be chosen using different algorithms [88, 89], which

balance efficiency and correctness according to application-specific criteria. Once the

annotations are assigned, the run-time implementation of the protocol is used to grant

or delay dispatching of events within a reactor, to avoid deadlock.

Flow1_EH1:
Reactor1

Flow1_EH2:
Reactor2

Flow1_EH3:
Reactor1

3(2) 2(1) 1(1)

Flow2_EH1:
Reactor1

Flow2_EH2:
Reactor2

Flow2_EH3:
Reactor1

3(2) 2(1) 1(1)

Flow3_EH1:
Reactor1

Flow3_EH2:
Reactor2

Flow3_EH3:
Reactor1

3(2) 2(1) 1(1)

Figure 8.1: Call graph annotations as per DA protocol

Intuitively, the annotation provides a measure of the resources - threads in our case -

needed to complete the task corresponding to the node. Two annotations are consid-

ered in [88, 89]: height and local height. Height of a node in a call graph is the usual

height of a node in a tree. Local height only takes into account nodes in the same

reactor. The local height for a non-leaf node (e : r) is one greater than the maximum

of local heights for all descendants of (e, r), which are registered with the same reac-

tor r. For example, Figure 8.1 shows the height annotations and local height height

annotations (enclosed in brackets) for Scenario 4.

The run-time aspect of a DA protocol involves executing an entry section before a

reactor makes an upcall to an event handler and executing an exit section after the

171

upcall is completed. A set of state variables is used to keep track of the protocol

state. The types of the state variables depend on the specific protocol. One example

of such a state variable is the number of available threads - threads that are not doing

upcalls to event handlers - in the reactor.

BASIC-P Protocol. The fundamental idea behind protocol BASIC-P is to check

whether an incoming call has available all the resources that it can potentially need [88].

A reactor state variable is used to keep track of the threads currently available in the

reactor. In the protocol entry section access is granted only if the number of resources

indicated by the annotation function at that node is less than or equal to the num-

ber of threads available. When access is granted, the number of currently available

threads is decremented by one, reflecting that a thread has been allocated.

8.2 Modeling and Implementation of DA Proto-

cols

To model the deadlock avoidance protocol in the context of our thread pool reactor

model, we first need to understand the different steps that take place during the

delivery of an upcall in a thread pool reactor using the leader/followers pattern. We

now describe these steps in the context of the ACE TP reactor and in the process

explain how we implemented the deadlock avoidance protocol in the ACE TP reactor

so that we could use this implementation to verify the results from our model and

validate them with empirical results using this implementation. The DA protocol

implementation in the ACE TP reactor, and its modeling and analysis using IF, are

additional contributions of this dissertation.

8.2.1 Implementation of DA Protocols

We now describe our implementation of the deadlock avoidance protocol discussed

in [88] in the context of the ThreadPool (TP) reactor [97] in ACE [51]. The ACE

TP reactor uses the Leader-Followers [97] pattern to share the same reactor instance

172

among multiple threads in a thread pool. The Leader-Followers pattern has several

benefits [97]: (1) it reduces the number of context switches when delivering upcalls

since the I/O operation takes place in the same thread context as the event handler

upcall; (2) it increases throughput by sharing the workload among multiple worker

threads; and (3) it supports long-running service handlers by allowing such a handler

to run in the context of one thread in the thread pool while another thread from

the same pool waits on the reactor to demultiplex and dispatch other concurrent I/O

events.

Figure 8.2 shows how we implemented support for deadlock avoidance (DA) protocols

in the context of the ACE TP Reactor, without incurring meaningful overhead for use

cases that do not use a DA protocol (as we show empirically in Section 8.2.3) . The

additional components that we have introduced to the existing reactor framework in

ACE to support DA protocols are shown with a shaded background in Figure 8.2. We

now summarize the sequence of events and actions that occur in the TP reactor, and

indicate where we have added deadlock avoidance protocol support in this context:

Leader

Followers

token

1

Event Handler

Ready Handle Set

Suspended Handle Set

Wait Handle Set

TP_Reactor
with DA
protocol

Deadlock avoidance
entry protocol hook

Deadlock avoidance
exit protocol hook

Annotations
table

Event Demultiplexer

2

3

4

6

7

grab token upcall

release
token

suspend upcall
handle

5DA protocol
entry

I/O event

DA protocol
exit

8
join
followers

Figure 8.2: Thread Pool Reactor with Deadlock Avoidance

173

1. A shared token is used to control access to the reactor. One of the threads from

the thread pool acquires the token and becomes the leader thread. This thread

then waits in the reactor for I/O events. All the other threads are then follower

threads waiting for an opportunity to gain access to the reactor.

2. When an I/O event occurs, the leader thread unblocks from waiting on the

reactor’s event demultiplexer. The leader thread now has the list of I/O channel

handles that are ready for dispatching to their associated handlers.

3. The leader thread then iterates through the list of ready handles and selects

an I/O handle to dispatch as a method upcall parameter to the event handler

associated with that handle (according to the associations stored in the reactor’s

handler repository at that time). Before dispatching the upcall, the leader

thread suspends the I/O handle associated with the upcall. This is done so

that the event handler is not called again in the context of another thread in

case the handle becomes ready again while the upcall is already in progress.

4. The leader thread releases the token it has been holding. Consequently, one of

the waiting follower threads acquires this token and becomes the leader, hence

gaining access to the reactor.

5. The former leader thread now executes the deadlock avoidance protocol. In or-

der to impose as few changes to the existing ACE reactor framework as possible,

we used the template method design pattern [29] to introduce hook methods

before and after the upcall is made. We then added a new class to ACE called

Deadlock Free TP Reactor that overrides those hook methods according to the

DA protocol. The call graph annotations for the DA protocol are stored within

the Deadlock Free TP Reactor, as a table with an annotation for each of the

handlers registered with it. The number of available threads in the thread pool

is also stored as a state variable in the Deadlock Free TP Reactor. Based on

the specific DA protocol, this state variable is incremented and decremented in

the protocol’s post-upcall and pre-upcall hook methods respectively, and cer-

tain I/O handles other than the upcall handle may be suspended. For example

in the BASIC-P protocol [88], all handles whose annotations are less than the

number of currently available threads in the thread pool are suspended. By

default, these hook method implementations are empty methods that can be

174

inlined out by an optimizing compiler and hence incur little or no overhead as

is quantitatively demonstrated in Section 8.2.3.

6. The upcall is made to the event handler.

7. The post-upcall hook method is called, in which the handles that were sus-

pended in the pre-upcall hook method are resumed so that the reactor can

demultiplex events for these handles (including the handle associated with the

upcall that was just completed).

8. The former leader thread then joins the group of follower threads in the thread

pool waiting to acquire the token for access to the reactor.

8.2.2 Modeling DA Protocol Support using IF

Figure 8.3 shows extracts from the model of a specific DA protocol in the context

of the TP reactor model that we discussed in Section 5.3.3. (A) and (B) show the

entry and exit protocols respectively. The model shown here implements the BASIC-

P protocol [88]. The entry protocol decrements the number of available threads by 1.

It then uses the IF procedure disallow saps to suspend all the SAPs whose call graph

annotations are less than the number of available threads. After the upcall to the

appropriate event handler, control returns back to the reactor. Based on the return

value, the reactor may deregister the handler, resulting in removal of the handler

from the handler repository, or it may resume the SAP that was suspended before

the upcall. The exit protocol is then executed. The number of available threads is

incremented by 1 and disallow saps is called again to go through the reactor SAP wait

set and suspend/resume SAPs based on the new state.

8.2.3 Deadlock Avoidance Protocol Overhead

We conducted empirical evaluations of the overhead of the deadlock avoidance proto-

col whose implementation was discussed in detail in Section 8.2.1. Our experimental

setup is illustrated in Figure 8.4. We used an ACE thread pool reactor watching a set

175

state dispatch_event_handlers;

 provided size(hot_saps_read_set_) > 0;

 next_non_suspended_hot_sap :=

 call ISS_pop_first_non_suspended_sap(hot_saps_read_set_);

 event_handler :=

 call HR_get_handler(({Reactor}reactor_).handler_rep_,

 next_non_suspended_hot_sap);

 call ISS_suspend_sap(({Reactor}reactor_).sap_read_set_,

next_non_suspended_hot_sap);

 output handle_input(context,

 next_non_suspended_hot_sap) to event_handler;

 task ({Reactor}reactor_).handle_events_in_progress_ :=

 ({Reactor}reactor_).handle_events_in_progress_ - 1;

 task suspended_sap_ := next_non_suspended_hot_sap;

task ({Reactor}reactor_).avail_threads_ :=
 ({Reactor}reactor_).avail_threads_ - 1;

call ISS_mark_deny_set(({Reactor}reactor_).sap_read_set_,

({Reactor}reactor_).avail_threads_);

 nextstate wait_for_handle_input_return;

state wait_for_handle_input_return;

 input handle_input_return(par_context, rc);

 call ISS_resume_sap(({Reactor}reactor_).sap_read_set_,

suspended_sap_);

 task ({Reactor}reactor_).avail_threads_ :=

({Reactor}reactor_).avail_threads_ + 1;

 call ISS_mark_deny_set(({Reactor}reactor_).sap_read_set_,

({Reactor}reactor_).avail_threads_);

 task ({Reactor}reactor_).state_changed_flag_ := 1;

 nextstate done;

endstate;

A

B

Figure 8.3: Extracts from the IF Model for TP Reactor with Deadlock Avoidance

176

of ACE Pipes with only one thread in the thread pool. We used a unique event han-

dler corresponding to each of the pipes. The event handlers do not make any remote

function calls, hence the height annotation for each of the event handlers according to

the protocol is 1. This is sufficient for measuring the overhead of the protocol imple-

mentation within the thread pool reactor because even if the height annotations are

different, the mechanisms (the hook functions discussed in Section 8.2.1) for protocol

execution are still the same.

ACE_Pipe

ACE_Pipe

ACE_TP_Reactor

EventHandler1

EventHandler2

Bootstrap
write

write

write

upcall

upcall

read

read
1

2
3

4

Figure 8.4: DA Protocol Experiment Setup

To bootstrap the experiment, we wrote a constant-sized buffer of bytes to each of the

pipes (1). The reactor demultiplexed the events to the appropriate event handlers.

On an upcall (2) from the reactor, each event handler read (3) from one end of the

pipe and wrote (4) to the other end of the same pipe. In other words, each event

handler “fed” itself data. This setup makes it easy to increase the number of event

handlers and see the direct effect of that increase on the protocol execution time,

since the number of event handlers alone determines the time taken by the reactor to

suspend a set of event handlers before making an upcall. We ran these experiments

on a Pentium 3 1.4Ghz machine with 1GB RAM. For all of the experiments, we

used ACE version 5.4.7, the KUSP Libertos [25] Linux 2.6.12 based kernel, and the

Data Streams Kernel Interface (DSKI) [71] and Data Streams User Interface (DSUI)

frameworks for instrumentation and processing of collected data.

177

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

Overhead (usec)

No DA protocol
2 EHs
5 EHs

10 EHs
15 EHs
20 EHs
25 EHs

Figure 8.5: DA Protocol Overhead

178

Figure 8.5 shows the overhead of protocol execution for 2, 5, 15, 20 and 25 event

handlers, each with an annotation of 1 and a single thread in the thread pool. As we

expected, the time taken was shown to be linear in the number of event handlers, since

the protocol implementation suspends all event handlers except one before making

an upcall to that event handler. It is significant that without a deadlock avoidance

protocol there was no measured overhead, which was our original goal in making the

default protocol hook functions empty methods which can be inlined away by an

optimizing compiler resulting in little or even no overhead for use cases that don’t

use a deadlock avoidance protocol.

8.3 Model Checking Deadlock Avoidance Proto-

cols

In this section, we use model checking to verify whether the deadlock avoidance

protocol indeed avoids the deadlock seen in Scenario 4 in Chapter 6. We briefly

summarize the problem using the trace shown in Figure 8.6.

3: Client1 : TRACE_SAP_Buffer_Write(1,10)

4: Client2 : TRACE_SAP_Buffer_Write(7,10)

5: Client3 : TRACE_SAP_Buffer_Write(13,10)

6: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

7: Unidir_IPC_7_8 : TRACE_SAP_Buffer_Transfer(7,8,10)

8: Unidir_IPC_13_14 : TRACE_SAP_Buffer_Transfer(13,14,10)

9: Reactor1_TPRHE1 : TRACE_Reactor_IO_Wait_Done({2,8,14,},{})

10: Reactor1_TPRHE1 ---handle_input(2)---> Flow1_EH1

11: Reactor1_TPRHE2 : TRACE_Reactor_IO_Wait_Done({8,14,},{})

12: Reactor1_TPRHE2 ---handle_input(8)---> Flow2_EH1

13: Reactor1_TPRHE3 : TRACE_Reactor_IO_Wait_Done({14,},{})

14: Reactor1_TPRHE3 ---handle_input(14)---> Flow3_EH1

15: Time advanced by 25 units. Global time is 28

.....

.....

40: Client1 : TRACE_DeadlineMiss()

Figure 8.6: IF Trace Showing Deadlock in Scenario 2 with No DA Protocol

All the three clients send their requests at the same time (lines 3-5) and the requests

reach Reactor1 at the same time (lines 6-8). The three threads in Reactor1 each make

179

an upcall to the appropriate event handler (9-14). Since each of the EH1 type event

handlers use the WaitOnConnection reply wait strategy, none of these threads is in

the reactor waiting on I/O events. As a result any requests from EH2 type event

handlers to EH3 type event handlers are not handled, resulting in a deadlock.

8.3.1 Model Verification of DA with BASIC-P

We ran the Scenario 4 model after incorporating the BASIC-P protocol into the TP

reactor model. We kept track of the number of available threads in the reactor, and

event handlers that had annotations greater than the currently available threads were

suspended. To illustrate further the utility of the simulation traces, we now describe

another bug in our models that we encountered while running this experiment, and

how we fixed it.

Debugging our model using traces. Even after we incorporated the BASIC-P

protocol in our model, the model predicted that there would be deadline misses. To

find the problem, we added a few more debug IF signals in our model, one of which

is TRACE Reactor Wait Set that takes as a parameter the SAP wait set of a reactor.

This signal is used to find the set of SAPs that is suspended. Figure 8.7 shows a trace

obtained after we added that signal.

In Line 11, notice that the SAP handle 2 is suspended (suspended=1) before making

an upcall to Flow1 EH1. With the BASIC-P deadlock avoidance protocol, handles 8

and 14 should also be suspended since their annotations using local heights (3) are

greater than the number of currently available threads (2 since one thread is in an

upcall) in the reactor. However in Line 11, we notice that the SAP handles 8 and

14 are not suspended. Moreover, in Line 11 we notice that the annotations are 0 for

all event handlers. On further inspection, we traced the problem to our test driver

where the annotations were never set to those shown in Figure 8.1. Once we set

the annotations for the different event handlers, we were able to verify using model

checking that there were no deadlocks. The new trace is shown as two parts - one in

Figures 8.8 and the other in 8.9.

180

......

3: Client1 : TRACE_SAP_Buffer_Write(1,10)

4: Client2 : TRACE_SAP_Buffer_Write(7,10)

5: Client3 : TRACE_SAP_Buffer_Write(13,10)

6: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

7: Unidir_IPC_7_8 : TRACE_SAP_Buffer_Transfer(7,8,10)

8: Unidir_IPC_13_14 : TRACE_SAP_Buffer_Transfer(13,14,10)

9: Reactor1_TPRHE1 : TRACE_Reactor_IO_Wait_Done({2,8,14,},{})

10: Reactor1_TPRHE1 ---handle_input(2)---> Flow1_EH1

11: Reactor1_TPRHE1 : TRACE_Reactor_Wait_Set({

{sap_handle=2,suspended=1,annotation=0},

{sap_handle=6,suspended=0,annotation=0},{sap_handle=8,suspended=0,

annotation=0},{sap_handle=12,suspended=0,annotation=0},{sap_handle=14,

suspended=0,annotation=0},{sap_handle=18,suspended=0,annotation=0},})

12: Reactor1_TPRHE2 : TRACE_Reactor_IO_Wait_Done({8,14,},{})

13: Reactor1_TPRHE2 ---handle_input(8)---> Flow2_EH1

14: Reactor1_TPRHE2 : TRACE_Reactor_Wait_Set({

{sap_handle=2,suspended=1,annotation=0},

{sap_handle=6,suspended=0,annotation=0},{sap_handle=8,suspended=1,

annotation=0},{sap_handle=12,suspended=0,annotation=0},{sap_handle=14,

suspended=0,annotation=0},{sap_handle=18,suspended=0,annotation=0},})

15: Reactor1_TPRHE3 : TRACE_Reactor_IO_Wait_Done({14,},{})

.......

.......

Figure 8.7: IF Trace Revealing a Bug in Our Model

181

3: Client1 : TRACE_SAP_Buffer_Write(1,10)

4: Client2 : TRACE_SAP_Buffer_Write(7,10)

5: Client3 : TRACE_SAP_Buffer_Write(13,10)

6: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,10)

7: Unidir_IPC_7_8 : TRACE_SAP_Buffer_Transfer(7,8,10)

8: Unidir_IPC_13_14 : TRACE_SAP_Buffer_Transfer(13,14,10)

9: Reactor1_TPRHE1 : TRACE_Reactor_IO_Wait_Done({2,8,14,},{})

10: Reactor1_TPRHE1 ---handle_input(2)---> Flow1_EH1

11: Reactor1_TPRHE1 : TRACE_Reactor_Wait_Set({

{sap_handle=2,suspended=1,annotation=3},

{sap_handle=6,suspended=0,annotation=1},

{sap_handle=8,suspended=2,annotation=3},

{sap_handle=12,suspended=0,annotation=1},

{sap_handle=14,suspended=2,annotation=3},

{sap_handle=18,suspended=0,annotation=1},})

12: Time advanced by 25 units. Global time is 28

13: Flow1_EH1 : TRACE_SAP_Buffer_Write(3,10)

14: Unidir_IPC_3_4 : TRACE_SAP_Buffer_Transfer(3,4,10)

15: Reactor2_TPRHE4 : TRACE_Reactor_IO_Wait_Done({4,},{})

16: Reactor2_TPRHE4 ---handle_input(4)---> Flow1_EH2

17: Reactor2_TPRHE4 : TRACE_Reactor_Wait_Set({

{sap_handle=4,suspended=1,annotation=2},

{sap_handle=10,suspended=0,annotation=2},

{sap_handle=16,suspended=0,annotation=2},})

18: Time advanced by 25 units. Global time is 53

19: Flow1_EH2 : TRACE_SAP_Buffer_Write(5,10)

20: Unidir_IPC_5_6 : TRACE_SAP_Buffer_Transfer(5,6,10)

21: Reactor1_TPRHE2 : TRACE_Reactor_IO_Wait_Done({6,},{})

22: Reactor1_TPRHE2 ---handle_input(6)---> Flow1_EH3

23: Reactor1_TPRHE2 : TRACE_Reactor_Wait_Set({

{sap_handle=2,suspended=1,annotation=3},

{sap_handle=6,suspended=1,annotation=1},

{sap_handle=8,suspended=2,annotation=3},

{sap_handle=12,suspended=0,annotation=1},

{sap_handle=14,suspended=2,annotation=3},

{sap_handle=18,suspended=0,annotation=1},})

24: Time advanced by 25 units. Global time is 78

25: Flow1_EH3 : TRACE_SAP_Buffer_Write(6,10)

26: Flow1_EH3 ---handle_input_return(0)---> Reactor1_TPRHE2

27: Unidir_IPC_6_5 : TRACE_SAP_Buffer_Transfer(6,5,10)

28: Reactor1_TPRHE2 : TRACE_Reactor_Wait_Set({

{sap_handle=2,suspended=1,annotation=3},

{sap_handle=6,suspended=0,annotation=1},

{sap_handle=8,suspended=2,annotation=3},

{sap_handle=12,suspended=0,annotation=1},

{sap_handle=14,suspended=2,annotation=3},

{sap_handle=18,suspended=0,annotation=1},})

Figure 8.8: IF Trace Showing DA Protocol Avoiding Deadlock - Part 1

182
29: Reactor1_TPRHE2 ---handle_events_return()---> ReactorThread2

30: ReactorThread2 ---handle_events(2)---> Reactor1

31: Reactor1 forks {TP_Reactor_Handle_Events}6

32: Flow1_EH2 : TRACE_SAP_Buffer_Read(5,10)

33: Flow1_EH2 : TRACE_SAP_Buffer_Write(4,10)

34: Flow1_EH2 ---handle_input_return(0)---> Reactor2_TPRHE4

35: Unidir_IPC_4_3 : TRACE_SAP_Buffer_Transfer(4,3,10)

36: Reactor2_TPRHE4 : TRACE_Reactor_Wait_Set({

{sap_handle=4,suspended=0,annotation=2},

{sap_handle=10,suspended=0,annotation=2},

{sap_handle=16,suspended=0,annotation=2},})

37: Reactor2_TPRHE4 ---handle_events_return()---> ReactorThread4

38: ReactorThread4 ---handle_events(4)---> Reactor2

39: Reactor2 forks {TP_Reactor_Handle_Events}7

40: Flow1_EH1 : TRACE_SAP_Buffer_Read(3,10)

41: Flow1_EH1 : TRACE_SAP_Buffer_Write(2,10)

42: Flow1_EH1 ---handle_input_return(0)---> Reactor1_TPRHE1

43: Unidir_IPC_2_1 : TRACE_SAP_Buffer_Transfer(2,1,10)

44: Client1 : TRACE_SAP_Buffer_Read(1,10)

45: Reactor1_TPRHE1 : TRACE_Reactor_Wait_Set({

{sap_handle=2,suspended=0,annotation=3},

{sap_handle=6,suspended=0,annotation=1},

{sap_handle=8,suspended=0,annotation=3},

{sap_handle=12,suspended=0,annotation=1},

{sap_handle=14,suspended=0,annotation=3},

{sap_handle=18,suspended=0,annotation=1},})

46: Reactor1_TPRHE1 ---handle_events_return()---> ReactorThread1

47: ReactorThread1 ---handle_events(1)---> Reactor1

48: Reactor1 forks {TP_Reactor_Handle_Events}8

49: Reactor1_TPRHE3 : TRACE_Reactor_IO_Wait_Done({8,14,},{})

50: Reactor1_TPRHE3 ---handle_input(8)---> Flow2_EH1

51: Reactor1_TPRHE3 : TRACE_Reactor_Wait_Set({

{sap_handle=2,suspended=2,annotation=3},

{sap_handle=6,suspended=0,annotation=1},

{sap_handle=8,suspended=1,annotation=3},

{sap_handle=12,suspended=0,annotation=1},

{sap_handle=14,suspended=2,annotation=3},

{sap_handle=18,suspended=0,annotation=1},})

52: Time advanced by 25 units. Global time is 103

53: Flow2_EH1 : TRACE_SAP_Buffer_Write(9,10)

54: Unidir_IPC_9_10 : TRACE_SAP_Buffer_Transfer(9,10,10)

55: Reactor2_TPRHE5 : TRACE_Reacor_IO_Wait_Done({10,},{})

56: Reactor2_TPRHE5 ---handle_input(10)---> Flow2_EH2

57: Reactor2_TPRHE5 : TRACE_Reactor_Wait_Set({

{sap_handle=4,suspended=0,annotation=2},

{sap_handle=10,suspended=1,annotation=2},

{sap_handle=16,suspended=0,annotation=2},})

58: Time advanced by 25 units. Global time is 128

Figure 8.9: IF Trace Showing DA Protocol Avoiding Deadlock - Part 2

183

All three clients send requests to the corresponding EH1 type event handlers (lines

3-5) and these requests are transferred to the peer SAPs by the unidirectional IPCs

(6-8). The leader thread on Reactor1 unblocks (line 9) and we can see that three

handles (2, 8 and 14) are read-ready. The leader thread now makes the upcall to

handle 2. Because of the BASIC-P protocol code execution, we can now see that

in Line 11, the reactor wait set has handles 8 and 14 suspended. This is because

the event handlers associated with handles 8 (Flow2 EH1) and 14 (Flow3 EH1) each

have an annotation of 3 and this is less than the number of currently available threads

(2) in the reactor. The protocol code does not suspend handles 6 and 12 since their

annotations each have a value 1, which is less than the number of currently available

threads. The protocol code assigns the value of 2 to the suspended state variable

whereas the leader thread assigns a value of 1 to the same variable before making an

upcall. This helps us in distinguishing between these two cases of suspending a handle.

Flow1 EH1 now completes execution (line 12) and makes a further call (line 13-14) to

Flow1 EH2. The leader thread on Reactor2 unblocks (line 15) and makes an upcall

(line 16) to event handler Flow1 EH2 that is associated with handle 4. Note that in

line 17, even after the protocol code runs, none of the other handles are suspended

since their annotations (2 for both handles 10 and 16) are not greater than the number

of currently available threads which is 2. Flow1 EH2 completes execution (line 18)

and makes a further request (lines 19-20) to Flow1 EH3. The current leader thread

in Reactor1 now unblocks (line 21) and makes an upcall (line 22) to Flow1 EH3.

Since there is still one more thread currently available in Reactor1, handles 12 and

18 are not suspended because their annotations each have the value 1. Flow1 EH3

now completes execution (line 24), sends reply back (line 25) to Flow EH2 and then

the flow of control is returned (line 26) to Reactor1. The protocol exit code runs

and line 28 shows the state of the wait set for Reactor1 after this. Handles 8 and 14

still remain suspended because their annotations are still greater than the number of

currently available threads and handle 6 that was suspended before the upcall is now

resumed. Flow1 EH2 now reads the reply (line 32) from Flow1 EH3, sends its own

reply back (line 33) to Flow1 EH1 and returns control (line 34) to Reactor2. After

execution of protocol exit code (line 36), none of the handles are resumed since none

were suspended (see line 17) by the protocol entry code. Handle 4 that was suspended

before the upcall by the leader thread is now (line 36) resumed. Flow1 EH1 receives

its reply back (line 41) from Flow1 EH2 and sends its own reply (line 42-44) back

184

to Client1. The protocol exit code in Reactor1 executes and the wait set is shown

in line 45. Handles 8 and 14 are resumed by the protocol exit code and handle 2 is

resumed by the reactor thread. A reactor thread on Reactor1 now unblocks (line 49)

because handles 8 and 14 are still read-ready. The upcall is made to Flow2 EH1 and

the protocol entry code in Reactor1 suspends handles 2 and 14 and the sequence of

steps repeats for handles 8 and 14.

We ran a full simulation with 3 flows and observed that there were no deadlocks

(90108 states, 93465 transitions, 178 seconds).

8.4 Deadlock Avoidance Blocking Delays

From the simulation traces of successful completion of Scenario 4 without any dead-

locks, we picked a trace at random, generated its timeline and calculated the blocking

factors on the various input handles. Figure 8.10 shows the blocking delays according

to the model.

According to the model, handles 8 and 14 suffer a blocking delay of 75 and 150

respectively. The blocking delay was because of the suspension of these handles by

the BASIC-P protocol entry code when an upcall is made.

Figure 8.11 shows the blocking factors from a run of an actual implementation. Han-

dles 8 and 14 suffer blocking delays of approximately 75ms and 150ms respectively.

This shows the accuracy of our models in terms of predicting the timing delays suf-

fered due to blocking at the reactor, which in turn was introduced as part of the

enforcement of the DA protocol.

185

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140 160

It
e
ra

ti
o
n
s

Blocking delay (msec)

Handle 10
Handle 12
Handle 14
Handle 16
Handle 18
Handle 2
Handle 4
Handle 6
Handle 8

Figure 8.10: Scenario 4 blocking delay Prediction from a Model Execution Trace

186

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140 160

It
e
ra

ti
o
n
s

Blocking delay (msec)

Handle 2
Handle 4
Handle 6
Handle 8

Handle 10
Handle 12
Handle 14
Handle 16
Handle 18

Figure 8.11: Empirical confirmation of Scenario 4 blocking delay

187

8.5 Summary

In this chapter, we demonstrated the reusability of our models in the context of

verification of a deadlock avoidance protocol. We showed how our models uncovered

blocking factors introduced by the DA protocol in spite of the success of the protocol

in avoiding deadlocks. We described how we implemented the DA protocol in the

context of the ACE TP Reactor and empirically measured the performance overhead

of the protocol. We observed that our implementation introduces negligible overhead

for use cases which do not use the DA protocol.

188

Chapter 9

Case Study 2 - Application

Gateway

While the previous chapters dealt with examples that we created to illustrate the

benefits of our modeling techniques and their applicability to new mechanisms like the

DA protocol reactor, in this chapter we model an existing example that is distributed

with the ACE framework. This case study serves the following purposes - (1) it

illustrates the reusability of our models and (2) it serves as an illustrative example

of realistic systems1, where we identify a gap between high level models and actual

design and implementation of systems. We illustrate how our low-level models detect

the two forms of interference that we discussed in Chapter 1. We show that these

forms of interference cannot be captured by high-level system models such as RMA

and DREAM and show how middleware-level modeling helps us evaluate different

middleware-level design alternatives in the presence of these forms of interference.

Finally, we compare the predictions made by our models with empirical results from

actual execution of the system.

1Although customers of Riverace (a consulting company that helps to maintain ACE and provides
commercial support for a number of ACE-based systems) could not share the details of their use
cases with us, Steve Huston, the CEO of Riverace, confirmed that the Gateway example is a suitable
exemplar of such applications.

189

9.1 Overview of Application-level Gateway

We provide a brief overview of the gateway example here, and the reader is referred to

[93, 94] for a complete description of this example. The underlying idea of a gateway

is the mediator pattern [29] that allows cooperating peers to interact without having

to know about each other. A peer that takes the role of a publisher publishes events

to the gateway. The gateway forwards these events to peers that take the role of

consumers and are subscribed to receive those events. Figure 9.1 shows the software

architecture of a gateway and its associated peers.

The gateway and peers use the Acceptor [97] and Connector [97] patterns to estab-

lish connections. Once the connections are established, communication takes place

between the various service handlers as is shown in Figure 9.1. A service handler in

the supplier publishes events (1) to the gateway which are then received by a Supplier

Handler in the gateway. There is a unique Supplier Handler corresponding to each

supplier. This Supplier Handler forwards the event to a set of Consumer Handlers

corresponding to consumers that are subscribed to events from the supplier that sup-

plied the event. The event forwarding is based on a routing table that keeps track

of the current subscriptions. The Consumer Handlers then forward the event to the

corresponding consumers. The gateway and its peers use a Reactor [91, 90, 97] to lis-

ten to incoming messages from multiple socket endpoints. The Acceptor, Connector

and the service handlers are registered with the reactor.

For our purposes here, we made a slight extension to the functionality of the basic

gateway. Before forwarding an event to a consumer, the gateway performs some

value-added service specific to that consumer. This is quite common in a real-world

gateway, for example, a stock quote supplied by a quote supplier is broadcast to

different subscribers and based on the subscription level of the quote subscriber,

the gateway may collect and then forward more information on the stock like its

performance history.

190

Reactor
Supplier
Handler

Consumer
Handler

Connector Acceptor

Routing
Table

Gateway

Acceptor

Connector

Reactor

Data
Handler

Acceptor

Connector

Reactor

Data
Handler

Supplier Consumer

1

2

3

Figure 9.1: Software Architecture of a Gateway

191

We developed two variations of the Gateway with the same basic functionality of event

propagation from suppliers to consumers, with the suppliers being consumer agnostic.

The two variations show how application constraints (e.g., for real-time predictability,

reliability) drive the middleware configuration which in turn affects the timing and

liveness properties of the system. The two variations are (1) a Gateway used in

the context of an application with real-time requirements; and (2) a Gateway with

reliability requirements used in the context of an application with a control-push-data

pull model.

In (1) the requirement is that deadlines for event delivery should be met and in (2) the

requirement is that the gateway should send an acknowledgment to a supplier for each

event that was published by the supplier. This acknowledgment should happen after

all the subscribed consumers have received the published event. In (2) the application

uses a control-push-data-pull model in which the supplier publishes a “data available”

event to the gateway, the gateway forwards it to the subscribed consumers. The

consumers then make a remote call to the supplier to get the actual data. The

control-push-data-pull model is widely used, e.g., in DRE systems in the avionics

mission computing domain [32, 30, 43]. Apart from illustrating the interference effects

arising from the sharing of resources at the middleware layer, these two scenarios are

representative of how middleware needs to be designed/configured appropriately to

meet different QoS requirements of applications. Our models help the middleware

designer/configurator to use a formal basis upon which to choose the appropriate set

of middleware configurations.

9.2 Real-time Gateway

In this section, we consider the usage of the Gateway in the context of a real-time

application. We consider a scenario using the gateway example, where there is a peri-

odic supply of events from two suppliers. Table 9.1 shows the suppliers and consumers

and the periods for the suppliers. Events from S1 are forwarded to consumers C1 and

C2 and events from S2 are forwarded to C2 and C3. Note that C2 receives events

from both S1 and S2. The deadlines for the arrival of these events at the consumers

192

Table 9.1: Periodic Tasks in the Gateway Example
Supplier Period Value add Relative Consumer

service deadline
S1 100ms 20ms 100ms C1,C2
S2 50ms 10ms 50ms C2,C3

is the same as the period of the supplier that supplies the events. The value-add

computation for the events supplied by S1 takes 20ms and that for S2 takes 10ms.

9.2.1 High Level Modeling Using RMA

During high level modeling, we try to determine whether the application described

by Table 9.1 is schedulable under the given parameters. Typically for a periodic

system like this, Rate Monotonic Analysis (RMA) [64, 58, 15, 62, 99] is used to

determine whether sharing the same CPU among tasks leads to any timing violations.

RMA uses a computation model which uses a “task” as its basis. A “task” is an

abstraction of a computation that requires the CPU, and each task has a period and

deadline associated with it. We now model the real-time application using the RMA

computation model. Assuming that there is a constant propagation delay from the

suppliers to the gateway, the events arrive at the gateway at regular intervals. Under

the RMA model, the gateway can thus be considered to be a periodic system with 2

periodic tasks. We now do a schedulability analysis to determine whether the CPU

resource on the gateway endsystem can be scheduled between the two information

flows.

According to RMA, the feasible utilization bound [64, 58, 15] for tasks with harmonic

periods is 100%. This means that if the combined utitization of all the tasks taken

together is less than 100%, then the system is guaranteed to be schedulable. In

the above example, we have the combined utilization = 20*2/100 + 10*2/50 = 0.80

(80%). Note that we multiply the 20ms and 10ms value-added service execution times

by 2 to account for the execution time for each consumer. Since the total utilization

is well below the utilization bound, the system is guaranteed to be schedulable if the

higher frequency task is given a higher priority. Ignoring variation in propagation

193

delays, this means that if the consumers should also receive events at a periodic rate

and there should be no deadline misses.

9.2.2 Design and Implementation

Having done a high-level analysis, we now proceed to implementing the gateway

using the architecture in Figure 9.1. There are several design choices [97] available.

The purpose here is to show that different design choices impact the application in

different ways and to show how our models help the designer in identifying design

choices that are free from hazards like deadline misses. If these design choices are

not taken into consideration during modeling, then some of the assumptions made

during high-level modeling may be violated. Note that in the RMA analysis, we

only considered the sharing of resources at the hardware level and did not consider

the sharing of resources that could take place at the middleware level. This lack

of sufficient detail in the high-level model in turn may lead to a violation of system

timing properties during system execution, unless we use a sufficiently detailed model

to capture the effects of various design choices thereby guiding the designer to make

the appropriate choice.

We modeled the gateway example using the models described in Chapter 5. We

modeled the connection establishment phase using acceptor and connector models,

which are specialized event handlers used in the gateway example to create service

handlers and then populate them with the SAP handles that represent a connection.

Once connections have been established, the two suppliers start publishing data on

a periodic basis. We kept a log of when each supplier sent a message and when that

message reached the consumer. If the elapsed time exceeds the deadline for that

message, then there is a deadline miss. As soon as there was a deadline miss we stop

the state space exploration using an IF cut observer.

194

9.2.3 Evaluating Design Alternatives

Design 1: Single Reactor Thread.

Under this design choice, shown in Figure 9.2(a), there is an I/O thread that waits

on socket events using a reactor. When an event arrives from a supplier, the reactor

makes an upcall to the appropriate supplier handler which then forwards the event to

the appropriate consumer handlers. The consumer handlers send these events to the

consumers in the context of the I/O thread itself. Note that the value-added service

is also done in the context of the I/O thread.

A simulation using a single thread in the gateway indicated deadline misses. Fig-

ure 9.3(a) shows a timeline trace generated from post-processing the IF output trace

showing the sequence of events that led to a deadline miss. At the start, the two

suppliers respectively send messages, that are received by the gateway reactor which

makes an upcall to the supplier handler corresponding to supplier S1. The supplier

handler forwards the event to the consumer handlers corresponding to C1 and C2.

Since there is only one thread, the forwarding of events is done sequentially. In this

case, the supplier handler for S1 forwards the message to the consumer handler cor-

responding to C1. The consumer handler for C1 does some value-added service for

20 time units and then forwards the event to the consumer C1 which receives the

message sent by supplier S1 at time 20. The S1 supplier handler in the gateway then

forwards the message from supplier S1 to the gateway consumer handler correspond-

ing to consumer C2. The value-added service is performed for this consumer and then

the event is forwarded to C2, which receives the message at time=40. The gateway

reactor now makes an upcall to the S2 supplier handler and the sequence is repeated

for the message from S2 which is received by C2 at time=50. Note that at time 50,

supplier S2 fires again sending a message. However the gateway is still in the middle

of processing the first message sent by S2. Consumer C3 receives the first message

sent by S2 at time=60. Since the deadline for receiving this message is 50, a deadline

miss is detected.

The model execution trace shows that the deadline miss occurred because of a priority

inversion that occurred at the reactor in the gateway. The priority inversion occurred

195

Supplier

Supplier
Handler

Supplier
Handler

Consumer
Handler

Consumer
Handler

Reactor Consumer

(a) Gateway Implementation Using a Single Thread

Supplier
Supplier
Handler

Supplier
Handler

Consumer
Handler

Consumer
Handler

Reactor

Consumer

Reactor

LO

HI

(b) Gateway Implementation Using Reactor Priority Lanes

Supplier
Supplier
Handler

Supplier
Handler

Consumer
Handler

Consumer
Handler

Reactor

Consumer

Reactor

LO

HI

LO

HI

(c) Gateway Implementation Using Dispatch Lanes

Figure 9.2: Gateway design alternatives

196

�����

� �� �� �� �� 	�
� �� ��

�����
���

��

���

��

�������������

�������������

��

������������������

!�"#�$�������������"����������

%�����"�������%�$�������������"��

$��&�����"����"�������

(a) Timeline With Single Reactor Single
Thread

S2-
C2

0 10 20 30 40 50 60 70 80

S2-
C3

S1-C1 S1-C2

Priority inversion.
High priority message from S2
waiting for low priority message
processing to get done

S1, S2 S2

S2-
C2

S2-
C3

(b) Timeline With Reactor Priority Lanes

S2-
C2

0 10 20 30 40 50 60 70 80

S2-
C3

S1-C1
S1-
C2

Priority inversion avoided.
High priority message from S2
given preference over low priority
message from S1

S1, S2 S2

S2-
C2

S2-
C3

S1-
C2

(c) Timeline With Reactor Priority Lanes and
Dispatch Lanes

Figure 9.3: Timelines from Model Execution

197

because of the sequential nature of the reactor upcalls. Message from S1 was processed

first and then the message from S2 was processed. This resulted in a blocking delay

for the message from S2. The blocking delay is the time it took for the value-added

processing for the message from S1, which in the above example was 40 time units

(20 time units each for C1 and C2). This trace thus shows that the enforcement of

the high-level RMS model is not achieved using this design approach.

Design 2: Reactor Priority Lanes

To eliminate the priority inversion due to blocking at the reactor in Design 1, we

now use separate reactor/thread pair to handle I/O events corresponding to the two

suppliers. This design [80, 77] has been used in avoiding priority inversions in real-

time ORBs like TAO. Under this design, shown in Figure 9.2(b), there is an I/O

thread and reactor per rate group. Each I/O thread waits on socket events using

a different reactor. When an event arrives from a supplier, the appropriate reactor

(HI or LO) makes an upcall to the appropriate supplier handler which then forwards

the event to the appropriate consumer handlers. The consumer handlers send these

events to the consumers in the context of the I/O thread itself. Note that the value-

added service is also done in the context of the I/O thread. To protect the same

event handler (for example the consumer handler for C2) from concurrent upcalls

from different reactor threads, access to the event handlers is synchronized.

We again modeled the gateway, using this design choice. Even though there were

no deadline misses, the model execution trace showed a priority inversion because

of blocking at the synchronized event handler corresponding to consumer C2. Fig-

ure 9.3(b) shows a timeline trace generated from post-processing the IF output trace

showing the sequence of events that leads to a priority inversion. At the start, the two

suppliers respectively send messages, that are received by the corresponding reactors

which make upcalls to the supplier handlers. Note that there is no priority inversion

at the I/O layer because of the priority isolation achieved by separation of I/O han-

dling for the events from the two suppliers. However the model execution trace shows

that a priority inversion occurs at the synchronized consumer handler corresponding

to consumer C2. This occurs because the value-added service corresponding to the

event from S1 being forwarded to C2 is done by the synchronized consumer handler

198

for C2. This results in the second event from S2 (released at time = 50) waiting for

access to this consumer handler which is being used for the event processing for the

event from S1 to C2. Even though this priority inversion does not result in a deadline

miss in this example, it may lead to one under other conditions and thus should be

eliminated.

Design 3: Reactor Lanes and Dispatch Lanes.

To eliminate the priority inversion due to blocking at the synchronized event han-

dler in Design 2, we now use a separate worker thread to forward the events to the

consumer. Under this design, a consumer handler hands over an event to an active

object [61, 97], which has its own thread of execution. The events are forwarded to

the consumer under the context of the active object thread. The synchronization at

the event handler in Design 2 is still there, but the value added service itself is not

done within the event handler and is instead done by the active object thread.

To achieve priority isolation for the event dispatching by the active object threads,

we use simplified Kokyu [34, 63, 33, 18, 31, 30] based priority lanes for dispatching.

In the above example, there are two tasks each with a different period. The number

of lanes are based on the number of rate groups - 2 lanes in the above example, since

we have two rate groups (100ms and 50ms).

Our model execution traces indicated no deadline misses or priority inversion as is

shown in Figure 9.3(c). Note that in this case, we stop the trace at 100 time units.

This trace is sufficient to demonstrate absence of these hazards since the hyper-

period for the above tasks is 100ms after which the same sequence of events repeat.

In this model, we assigned priorities to the lane threads according to RMS. The lane

corresponding to the rate group for 100ms was given a lower priority than that for

50ms. As a result, the S1-C2 event processing by the low priority active object thread

is preempted (at time=50 units) by the S2-C2 event processing by the high priority

active object thread.

199

Feedback to higher level model. We now take the blocking factor information

obtained from the analysis in Section 9.2.3 and use it to refine the original RMA anal-

ysis. Since we have blocking delays, we use RMA analysis with blocking factors [15].

For two tasks (T1,C1,B1) and (T2,C2,B2), where T is the period, C is the compu-

tation time and B is the blocking delay and T1<T2, the tasks are guaranteed to be

schedulable if C1/T1 + B1/T1 <= 1 and C1/T1 + C2/T2 + B2/T2 <= 1 (for har-

monic periods). In our example with C1=20, T1=50, B1=40 and C2=40, T2=100,

B2=20, these equations are not satisfied and hence schedulability using RMS is not

guaranteed. This analysis shows how the information obtained from our middleware

models can be fed back to higher level models, thus enabling more faithful analysis.

9.2.4 Empirical Validation

Figure 9.4 shows that our models reflect the actual implementation closely. We im-

plemented the three design alternatives that we discussed earlier and populated our

models with the execution timing information from the actual runs. The priority in-

version and deadline misses predicted by the models showed up in the actual runs also

thus demonstrating the validity of our models. Moreover, we populated the models

with execution times from the actual runs and then generated timeline traces from the

resulting model execution. The timelines from the model execution trace resembled

the timelines from actual execution trace very closely, demonstrating the fidelity of

our models.

Figure 9.4 shows the timelines generated from actual and model execution. Fig-

ure 9.4(a) shows that in actual execution also, there is a scenario where a priority

inversion occurs at time=0, when the single reactor thread dispatches a message from

S1, whereas the message from S2 is waiting to be processed. After populating the

model with actual execution timing, the model execution resembles the actual ex-

ecution very closely. Figure 9.4(b) shows that in actual execution also, there is a

scenario where a priority inversion occurs at time=50, when the high priority reactor

thread is blocked on the shared consumer handler that forwards messages to consumer

C2. Even though there is a message from supplier S2 (higher priority) waiting to be

processed, the value added service for the message from supplier S1 to consumer C2

200

continues till time=69. Figure 9.4(c) shows that these two priority inversions do not

occur in actual execution with the addition of the dispatch lanes.

9.3 Reliable Gateway with Control-Push-Data-Pull

Our discussion so far has concentrated on one form of interference - blocking delays

caused by the single threaded reactor in the Gateway or by the synchronized event

handler. This form of interference cannot be detected by higher-level computational

models such as those offered by RMA (or even DREAM [66]), since these techniques

provide computation models that do not allow direct representation of the middleware

elements whose sharing causes this interference. In contrast, the blocking delays

can be captured by our computational model by virtue of its inclusion of lower-

level middleware building blocks. We now illustrate the second form of interference

that our models capture - exhaustion of reactor threads - using an application with

reliability requirements. This example reemphasizes the fact that such interference

can be captured effectively by including lower-level middleware building blocks in our

analysis.

In this scenario, the application uses an event propagation model called “control-

push-data-pull”. In this model, the supplier publishes a “data-available” event to the

gateway and the gateway forwards it to the subscribed consumers. The consumers

then make a remote call to the supplier to get the actual data. The control-push-

data-pull model is widely used in DRE systems. Note that the data availability event

(control-push) flows through the gateway whereas the request from the consumer to

the supplier (data-pull) takes place outside of the gateway through a remote call.

Apart from the control-push-data-pull model, the application also has a reliability

requirement - every event that is published by a supplier must be acknowledged

by the gateway and every event received by a consumer from the gateway must be

acknowledged by that consumer. Once the gateway receives acknowledgments from

all the consumers for an event, it sends an acknowledgment back to the supplier. Note

that the basic functionality of the gateway is still intact since the suppliers need not

keep track of the consumers. However the additional requirements of reliability and

201

� �� �� �� �� �� �� �� 	�

���
�
�

���
���

�

��

�

��

�

��

�

��

��

�� ���

���
���

�

��

�

��

�

��

�

��

�� ����

��

��

�� �� 	�

	�

������

�����

(a) Timeline With Single Reactor Single Thread

� �� �� �� �� �� �� �� 	�

���
�
�

�

��

�

��

���
���

�

��

�

��

�� �	

�� ���

��

�

��

�

��

���
���

�

��

�

��

�� �	 ��

�	

�	

��

��

������

�����

(b) Timeline With Reactor Priority Lanes

� �� �� �� �� �� �� �� 	�

���
�
�

���
���
���

�

��

�

��

���

�� �	

���

��

�� ���

�� ��

���
���
���

�

��

�

��

���

�� �	

���

��

�� ��

������

�����

(c) Timeline With Reactor Priority Lanes and Dispatch Lanes

Figure 9.4: Comparision of Actual and Model Execution Timelines

202

control-push-data-pull semantics require us to devise new strategies at the middleware

level of the gateway implementation. We discuss one such strategy, which is the reply

wait strategy which we described in Chapters 1 and 6. For the purposes of the

discussion and subsequent modeling and experimentation, we focus on the use of this

strategy in the middleware layer and at the suppliers.

To wait for an acknowledgment from the gateway after publishing an event, a supplier

could use either the WaitOnConnection or the WaitOnReactor strategy. We now

analyze the impact of these two choices on the liveness of the system. We have

illustrated in Chapter 6 that the WaitOnConnection strategy can result in deadlock

when there is a circular call-chain and that the WaitOnReactor strategy prevents this

deadlock by means of a recursive call to the reactor event loop. We now illustrate

this in the context of the Gateway example and hence we do not show the timelines

and instead show only the relevant events without any timestamps.

We enhanced both our low-level models and our implementation of the Gateway

example in ACE by making suitable modifications to accommodate the new require-

ments of reliability. In the following discussion, we consider a single-threaded reactor

implementation of the gateway, where the reactor thread is responsible for demulti-

plexing event dispatches among connections from suppliers and also for forwarding

the events to consumers. We also assume the suppliers and consumers have single-

threaded reactors.

9.3.1 Reply Wait Using WaitOnConnection

Using the WaitOnConnection reply wait strategy resulted in a deadlock. An informal

analysis shows that this was caused by a nested call-chain, where the supplier waits

for an acknowledgment from the gateway which in turn waits for an acknowledgment

from the consumer, which in turn waits for data from the supplier. Since there is only

one thread in the supplier, this results in a deadlock. We verified the above hypothesis

by running an exhaustive simulation of our executable model and the model checker

shows the sequence of events that led to the deadlocked state.

203

Figure 9.5 shows the interaction trace generated after post-processing the output trace

from the IF model checker. For clarity, we again do not show the system initialization

phase where connections between gateway and suppliers/consumers are established,

since it does not affect the outcome of verification. The trace shows that the two

suppliers published their respective events (lines 3,5) which are then transported

(lines 4,6) by the IPCC automata to the appropriate SAP buffers on which the reactor

in the gateway was listening. The gateway reactor unblocked (line 7) and made the

upcall (lines 8-11) to the appropriate event handler. The event handler corresponding

to S1 forwarded (lines 12-13) the event to the consumer handler for C1 which then

performed (lines 14-22) the value-added service and forwarded (line 23) the event to

the consumer C1. The reactor in the consumer unblocked (line 25-26) and made an

upcall (27-28) and finally the consumer received (line 29) the event. The consumer

then sent (line 30) a request to the supplier and after this no transitions were enabled

and time advanced to a large preset number (10000) indicating a deadlock.

2: {Main}0 ---INIT_MODE_DONE()---> {nil}0

3: {Supplier_Data_Handler}0 ---SUPP_SEND_EVENT(1,1)---> {nil}0

4: Unidir_IPC_17_16 : TRACE_SAP_Buffer_Transfer(17,16,10)

5: {Supplier_Data_Handler}1 ---SUPP_SEND_EVENT(2,1)---> {nil}0

6: Unidir_IPC_20_19 : TRACE_SAP_Buffer_Transfer(20,19,10)

7: Reactor1_SRHE0 : TRACE_Reactor_IO_Wait_Done({16,19,},{})

8: Reactor1_SRHE0 ---SELECT_REACTOR_AFTER_SELECT({16,19,},{})---> {nil}0

9: Reactor1_SRHE0 ---SELECT_REACTOR_BEFORE_UPCALL()---> {nil}0

10: Reactor1_SRHE0 ---handle_input(16,7)---> {Supplier_Connxn_Handler}0

11: {Supplier_Connxn_Handler}0 ---GW_SUPP_HNDLR_HANDLE_INPUT(1,1)---> {nil}0

12: {Supplier_Connxn_Handler}0 ---forward_event({size=10,supp_id=1,event_num=1,cons_id=1})

---> {Consumer_Connxn_Handler}0

13: {Supplier_Connxn_Handler}0 ---GW_SUPP_HNDLR_FWD_EVT_TO_CONS_HNDLR(1,1,1)---> {nil}0

14: {Consumer_Connxn_Handler}0 ---GW_CONS_HNDLR_VALUE_ADD_SVC_SLICE_BEGIN(1,1,1)---> {nil}0

15: Time advanced by 10 units. Global time is 11

16: {Consumer_Connxn_Handler}0 ---EXEC_SLICE_SO_FAR(10)---> {nil}0

17: {Consumer_Connxn_Handler}0 ---GW_CONS_HNDLR_VALUE_ADD_SVC_SLICE_DONE(1,1,1)---> {nil}0

18: {Consumer_Connxn_Handler}0 ---GW_CONS_HNDLR_VALUE_ADD_SVC_SLICE_BEGIN(1,1,1)---> {nil}0

19: Time advanced by 10 units. Global time is 21

20: {Consumer_Connxn_Handler}0 ---EXEC_SLICE_SO_FAR(20)---> {nil}0

21: {Consumer_Connxn_Handler}0 ---GW_CONS_HNDLR_VALUE_ADD_SVC_SLICE_DONE(1,1,1)---> {nil}0

22: {Consumer_Connxn_Handler}0 ---GW_CONS_HNDLR_VALUE_ADD_SVC_END(1,1,1)---> {nil}0

23: {Consumer_Connxn_Handler}0 ---GW_CONS_HNDLR_FWD_EVT_TO_CONS(1,1,1)---> {nil}0

24: Unidir_IPC_22_23 : TRACE_SAP_Buffer_Transfer(22,23,10)

25: Reactor3_SRHE0 : TRACE_Reactor_IO_Wait_Done({23,},{})

26: Reactor3_SRHE0 ---SELECT_REACTOR_AFTER_SELECT({23,},{})---> {nil}0

27: Reactor3_SRHE0 ---SELECT_REACTOR_BEFORE_UPCALL()---> {nil}0

28: Reactor3_SRHE0 ---handle_input(23,3)---> {Consumer_Data_Handler}0

29: {Consumer_Data_Handler}0 ---CONS_GOT_EVENT(1,1,1)---> {nil}0

30: Unidir_IPC_2_1 : TRACE_SAP_Buffer_Transfer(2,1,1)

31: {Idle_Catcher}0 ---IDLE_CATCHER_RUNS()---> {nil}0

32: Time advanced by 9979 units. Global time is 10000

Figure 9.5: Model Execution Trace with WaitOnConnection

204

A very short extract from the state space exploration output from IF is shown in

Figure 9.6, which shows the final states of the relevant automata when the deadlock

occurred. Note that the supplier S1 ({Supplier Data Handler}0) was waiting for the

acknowledgment from the gateway, consumer C1 ({Consumer Data Handler}0) was

waiting for reply from the supplier S1 and the gateway ({Consumer Connxn Handler}0)

was waiting for an acknowledgment from the consumer C1.

{Supplier_Data_Handler}0 {}

@wait_for_ack_on_conn {....state variables.....}

{Consumer_Data_Handler}0 {}

@wait_for_reply {....state variables.....}

{Consumer_Connxn_Handler}0 {}

@wait_for_ack_from_consumer {....state variables.....}

Figure 9.6: Relevant States at Deadlock with WaitOnConnection

We also verified that the deadlock existed in the actual implementation by imple-

menting the WaitOnConnection reply wait strategy. The post-processed DSUI trace

is shown in Figure 9.7. The trace shows that once consumer C1 received the first

message there was no further progress, indicating a deadlock.

1: SUPP_SEND_EVENT(S2,M1)

2: SUPP_SEND_EVENT(S1,M1)

3: GW_SUPP_HNDLR_HANDLE_INPUT(S1,M1)

4: GW_SUPP_HNDLR_FWD_EVT_TO_CONS_HNDLR(S1,M1,C1)

5: GW_CONS_HNDLR_VALUE_ADD_SVC_BEGIN(S1,M1,C1)

6: GW_CONS_HNDLR_VALUE_ADD_SVC_END(S1,M1,C1)

7: GW_CONS_HNDLR_FWD_EVT_TO_CONS(S1,M1,C1)

8: CONS_GOT_EVENT(S1,M1,C1)

Figure 9.7: Actual Execution Trace with WaitOnConnection

9.3.2 Reply Wait Using WaitOnReactor

Using the WaitOnReactor reply wait strategy eliminates the deadlock that arose due

to loops in the call-chain. An informal analysis shows that the supplier while waiting

for an acknowledgment from the gateway waits on its reactor rather than on a specific

connection. This enables the remote request from a consumer to be processed even

while the supplier is waiting for the acknowledgment from the gateway. We verified

205

the above hypothesis by running an exhaustive simulation of our executable model

and the exhaustive simulation never produced a deadlock.

Figure 9.8 shows extracts from the interaction trace with the WaitOnReactor strat-

egy. For clarity reasons, we again do not show the entire trace. Instead we show

the complete sequence for one published event and all other events follow a similar

sequence. The trace is similar to the one for the WaitOnConnection strategy until

the consumer C1 got (line 39) an event and sent a request to the supplier S1 and

waited for a reply. The sent request reached (line 40) the supplier which was waiting

on its reactor. The reactor unblocked (line 41) and made an upcall to handle (lines

42-44) the request from the consumer. The supplier then sent a reply which is then

carried (line 47) to the consumer, which then received (line 53) the reply. The con-

sumer then sent an acknowledgment to the gateway which is received (line 56) by the

gateway. The sequence of events - (1) forwarding by the gateway to the consumer, (2)

the consumer sending a request to the supplier, (3) the consumer receiving the reply

and then (4) sending an acknowledgment to the gateway - is repeated (lines 60-98)

for consumer C2. After this the gateway sent an acknowledgment to the supplier S1

(lines 102-110). The above sequence of interactions is then repeated for the message

from supplier S2 (not shown). This trace shows that the WaitOnReactor strategy

eliminated the deadlock arising from the loop in the call-chain.

We also verified that the WaitOnReactor strategy eliminated deadlock in the case

of actual execution. A portion of the post-processed DSUI trace from the actual

execution is shown in Figure 9.9. This trace shows the complete sequence of events

until supplier S1 receives an acknowledgment from the gateway. This same sequence

is repeated for supplier S2, which we have not shown here. The trace shows that

supplier S1 received (line 9) the request sent to it by C1 since S1 was waiting on

the reactor instead of a connection. There is no deadlock in this case as opposed

to the deadlock seen when using the WaitOnConnection strategy to wait for the

reply. Because of the WaitOnReactor strategy, each message sent by the suppliers is

acknowledged (line 20) by the gateway without causing a deadlock.

206

............................

39: {Consumer_Data_Handler}0 ---CONS_GOT_EVENT(1,1,1)---> {nil}0

40: Unidir_IPC_2_1 : TRACE_SAP_Buffer_Transfer(2,1,1)

41: Reactor2_SRHE1 : TRACE_Reactor_IO_Wait_Done({1,},{})

42: Reactor2_SRHE1 ---SELECT_REACTOR_AFTER_SELECT({1,},{})---> {nil}0

43: Reactor2_SRHE1 ---SELECT_REACTOR_BEFORE_UPCALL()---> {nil}0

44: Reactor2_SRHE1 ---handle_input(1,1)---> {Consumer_Request_Handler}0

45: {Consumer_Request_Handler}0 ---SUPP_RECVD_REQ_FROM_CONS()---> {nil}0

46: {Consumer_Request_Handler}0 ---handle_input_return(1)---> Reactor2_SRHE1

47: Unidir_IPC_1_2 : TRACE_SAP_Buffer_Transfer(1,2,1)

48: Reactor2_SRHE1 ---SELECT_REACTOR_AFTER_UPCALL()---> {nil}0

49: Reactor2_SRHE1 ---handle_events_return()---> {Supplier_Data_Handler}0

50: {Supplier_Data_Handler}0 ---handle_events(1)---> Reactor2

51: Reactor2 forks Reactor2_SRHE1

52: Reactor2_SRHE1 ---SELECT_REACTOR_BEFORE_SELECT()---> {nil}0

53: {Consumer_Data_Handler}0 ---CONS_RECVD_DATA_FROM_SUPP()---> {nil}0

54: {Consumer_Data_Handler}0 ---handle_input_return(0)---> Reactor3_SRHE0

55: Unidir_IPC_23_22 : TRACE_SAP_Buffer_Transfer(23,22,1)

56: {Consumer_Connxn_Handler}0 ---GW_RECVD_ACK_FROM_CONS()---> {nil}0

............................

60: {Supplier_Connxn_Handler}0 ---GW_SUPP_HNDLR_FWD_EVT_TO_CONS_HNDLR(1,1,2)---> {nil}0

............................

81: {Consumer_Data_Handler}1 ---CONS_GOT_EVENT(1,1,2)---> {nil}0

............................

87: {Consumer_Request_Handler}0 ---SUPP_RECVD_REQ_FROM_CONS()---> {nil}0

............................

95: {Consumer_Data_Handler}1 ---CONS_RECVD_DATA_FROM_SUPP()---> {nil}0

............................

98: {Consumer_Connxn_Handler}1 ---GW_RECVD_ACK_FROM_CONS()---> {nil}0

............................

102: Unidir_IPC_16_17 : TRACE_SAP_Buffer_Transfer(16,17,1)

103: Reactor2_SRHE1 : TRACE_Reactor_IO_Wait_Done({17,},{})

104: Reactor2_SRHE1 ---SELECT_REACTOR_AFTER_SELECT({17,},{})---> {nil}0

105: Reactor2_SRHE1 ---SELECT_REACTOR_BEFORE_UPCALL()---> {nil}0

106: Reactor2_SRHE1 ---handle_input(17,1)---> {ACK_Handler}0

107: {ACK_Handler}0 ---handle_input_return(1)---> Reactor2_SRHE1

108: Reactor2_SRHE1 ---SELECT_REACTOR_AFTER_UPCALL()---> {nil}0

109: Reactor2_SRHE1 ---handle_events_return()---> {Supplier_Data_Handler}0

110: {Supplier_Data_Handler}0 ---SUPP_RECVD_ACK_FROM_GW()---> {nil}0

Figure 9.8: Model Execution Trace with WaitOnReactor

207
1: SUPP_SEND_EVENT(S2,M1)

2: SUPP_SEND_EVENT(S1,M1)

3: GW_SUPP_HNDLR_HANDLE_INPUT(S1,M1)

4: GW_SUPP_HNDLR_FWD_EVT_TO_CONS_HNDLR(S1,M1,C1)

5: GW_CONS_HNDLR_VALUE_ADD_SVC_BEGIN(S1,M1,C1)

6: GW_CONS_HNDLR_VALUE_ADD_SVC_END(S1,M1,C1)

7: GW_CONS_HNDLR_FWD_EVT_TO_CONS(S1,M1,C1)

8: CONS_GOT_EVENT(S1,M1,C1)

9: SUPP_RECVD_REQ_FROM_CONS(S1)

10: CONS_RECVD_DATA_FROM_SUPP(C1)

11: GW_RECVD_ACK_FROM_CONS(C1)

12: GW_SUPP_HNDLR_FWD_EVT_TO_CONS_HNDLR(S1,M1,C2)

13: GW_CONS_HNDLR_VALUE_ADD_SVC_BEGIN(S1,M1,C2)

14: GW_CONS_HNDLR_VALUE_ADD_SVC_END(S1,M1,C2)

15: GW_CONS_HNDLR_FWD_EVT_TO_CONS(S1,M1,C2)

16: CONS_GOT_EVENT(S1,M1,C2)

17: SUPP_RECVD_REQ_FROM_CONS(S1)

18: CONS_RECVD_DATA_FROM_SUPP(C2)

19: GW_RECVD_ACK_FROM_CONS(C2)

20: SUPP_RECVD_ACK_FROM_GW(S1)

Figure 9.9: Actual Execution Trace with WaitOnReactor

9.4 Summary

In this chapter, we demonstrated the flexibility and reusability of our models in the

context of modeling the two variants of an existing example of an application-level

gateway that is distributed in the source tree of the ACE framework. We demon-

strated how gaps could exist between high level models and actual implementations.

We showed how such gaps can be narrowed by using our middleware level models in

analyzing the effects of different strategies at the middleware level.

208

Chapter 10

Conclusions and Future Work

This dissertation has concentrated on investigating the necessity and feasibility of in-

cluding formal middleware models to perform more faithful analysis of DRE systems

behavior. While current approaches for modeling middleware focus largely on easing

the task of assembling, deploying and configuring middleware and middleware-based

applications, we have shown that a more formal basis for correct middleware con-

struction and configuration in the context of individual applications is helpful. Our

approach, presented in Chapter 3, is designed to address that concern.

A combination of computational models and techniques should be used to analyze

DRE system properties. Static analysis is cheaper than model checking, for example,

RMA analysis is cheaper and works for a lot of predominantly time-driven systems.

However, when we implement systems using middleware building blocks there is of-

ten accidental complexity involved when making design choices, as we showed in the

gateway example in Chapter 9. This accidental complexity can be analyzed by devel-

oping models that include the middleware also. Another example we showed was the

deadlock avoidance protocol described in Chapter 8. This protocol was proven else-

where [88, 89] to avoid deadlock and we demonstrated that both using model checking

and empirical verification also. The accidental complexity in that example was the

blocking factor introduced by the protocol, which was revealed by our models.

The examples presented in Chapters 6, 8 and 9 illustrate a variety of ways in which

evaluating timing and liveness properties can be complicated by different combina-

tions of middleware mechanisms. In practice, the range of complicating factors is

much larger than even these examples show, which motivates both our development

209

of reusable mechanism-level models and our composition-based model checking ap-

proach for analysis of entire systems. For example, different applications will natu-

rally exhibit (1) different dependency topologies between event handlers; (2) various

strategies for concurrency, scheduling, event demultiplexing, and other crucial mech-

anisms; (3) alternative strategies for handlers relinquishing control during blocking

actions, such as WaitOnConnection and WaitOnReactor; and (4) multiple additional

on-line protocols, e.g., for deadlock avoidance, real-time admission control, or secu-

rity authorization. Furthermore, the constraints each application places on timing

and other properties will alter the criteria by which system timeliness and liveness

are evaluated.

Deadlock avoidance protocols guarantee deadlock freedom under certain conditions,

and in some cases analysis can be used to determine a number of threads in each

reactor that would avoid deadlock without use of a run-time deadlock avoidance

protocol. Model checking then can be used to verify whether there are any deadline

misses in the system resulting from a variety of blocking factors. The results of our

simulations and experiments presented in Chapter 6 motivate the need for detailed

modeling of low-level middleware mechanisms, and evaluation of those models through

model checking tools. With or without additional protocols, our models can be used

for model checking behavior of systems built using the middleware primitives we

have modeled. Therefore, the results of our evaluations support our contention that

modeling and analysis should be done as an integral part of the system design and

engineering process. Significant further work is needed to make this vision a reality in

the DRE middleware domain, but the work presented in this dissertation motivates

the suitability and viability of that approach.

In Chapters 4 and 5, we identified several engineering challenges associated with

modeling middleware and presented solutions addressing those challenges. These

techniques can be used as a guide when modeling concurrent object middleware using

an appropriate formalism. The state space exploration results shown in Table 6.3 in

Chapter 6 showed that caution must be exercised in choosing features offered by the

modeling tool. In particular, the choices must be evaluated in the context of the

application that is being modeled.

210

In the research presented in this dissertation, we have focused on creating models

for combinations of middleware mechanisms and evaluating them with the model

checking tools UPPAAL and IF [12]. Our long term objective is to add further rigor

to the model-based approaches to middleware development currently being pursued

by the systems research community, and to provide high-fidelity composable models

of foundational middleware building blocks to the formal methods community.

10.1 Summary of Contributions

In summary, this dissertation makes the following contributions to research on model-

driven middleware, benefiting both the middleware development community and the

formal modeling community:

1. A computational model and a modeling architecture based on timed automata

for a core subset of the middleware building blocks that are reified in the

ACE [51] framework.

2. Concrete engineering challenges and solutions for modeling concurrent object

middleware using UPPAAL and IF.

3. Composable and reusable models of commonly used middleware building blocks.

4. A variety of examples that illustrate the composability and flexibility of our

executable models.

5. Tracing tools and techniques that help debugging and analysis of models.

10.2 Future Work

The goal of our research is to address the problem of evaluating real-world complex

middleware environments, while preserving both rigor in analysis and tractability in

applying our approach to real world systems. To meet that goal our future work will

focus on developing an ever-expanding set of robust, modular, and composable models

211

of middleware building blocks, and integrating those models within model-integrated

computing tool sets such as those described in Chapter 2. We will also continue our

work on formally verified efficient protocols [88], along with the other optimizations

described in Chapter 5 to both expand the expressive power and reduce the burden

of model checking. Since our models are executable models, they can be used to

run guided simulations to verify specific scenarios in cases where exhaustive state

space exploration of all possible scenarios is intractable. Future research directions

of interest include the following topics.

Trace equivalence. As the complexity of the models increases with respect to

concurrency and non-determinism, the number of trace sequences generated by the

model checker may grow exponentially. Partitioning the traces into different equiv-

alence classes based on specific equivalence criteria will greatly help to make the

exploration of the model output tractable as well as to give significant insights into

how to reduce the complexity of the models themselves.

Inclusion of jitter in models. During the case studies that we discussed in this

dissertation, we noticed that there is often some degree of temporal jitter during

execution of actual implementations whereas during model execution there is no jitter.

This is because the model runs under virtual time which is controlled by the model

checker. It is possible to include jitter as part of the model thus making the models

explore all possible execution paths taking execution jitter also into consideration.

Initial results show that inclusion of jitter increases the state space tremendously.

We want to investigate this further to analyze its effects, and to understand the

trade-offs between fidelity and tractability that these initial results imply.

Use of middleware models in adaptive system reconfiguration. Mission-

critical computing systems pose numerous research challenges including but not re-

stricted to satisfaction of functional as well as multiple QoS requirements, resilience

to hardware and software failures, and multi-level reconfiguration of the system to

address different requirements that could change dynamically. With the increasing

use of middleware in DRE systems, one of the key challenges is how to reconfigure

212

the middleware services adaptively but safely. A variety of formal techniques are of

potential use to verify that the system conforms to expected behavior in the face of

dynamically changing environment. A promising area of research would be to in-

vestigate the usage of executable middleware models in formally reasoning about the

impact of dynamically and/or statically reconfiguring the middleware services, on the

functionality and QoS of the system.

Modeling of OS primitives. Though this is a different domain than the middle-

ware domain that was the focus of this dissertation, many of the results and modeling

techniques from this research appear to be applicable to modeling the operating sys-

tem domain as well. Dr. Douglas Niehaus of the University of Kansas, is developing

composable and executable formal models of operating systems primitives. There is

further scope for research in the applicability of group scheduling [5] techniques in

model checking to reduce the state space.

Tools support. Automatic model transformation from higher level models (like the

component model in ESML described in Chapter 2) to our computation model, using

e.g., graph transformations and from our computation model to timed automata again

using further model transformation. The idea is that the high level model could be

annotated with the deployment details, e.g., threads, reactors, reply wait strategies,

select/tp-reactors. The annotations could be done in one stage and then an analysis

stage could traverse the model and collect middleware or platform level details and

convert them to a middleware computational model.

Low-level component models. Another promising direction of future work would

be to investigate imperative component models like Koala, which connect components

together with “requires” and “provides” ports. These connections represent method

bindings. The interaction between the components is primarily sequential. It would

be potentially useful to investigate such component models to see whether they pro-

vide (or could be extended to provide) sufficient facilities to model the middleware

elements that we dealt with in this dissertation. We believe that our work here would

be able to provide the necessary behavioral semantics to the “components” in such

213

static component models, just as CADENA complements CCM, which is mainly a

static component model, by enabling the user to provide additional behavioral de-

scriptions of components.

Generative programming. Another area of research is whether light-weight com-

ponent models can be used to assemble applications using a substrate like ACE. The

strong supporting factor for this is that there are classes in ACE that are re-used

across different applications and these classes interact and “connect” in similar man-

ner. There are already pattern languages that catalog such interactions. Depending

on the definition of a component, we may or may not be able to classify such stitch-

ing together of lower level components as a component model, but the same ideas

of declarative assembly of components that are found in higher component models

could possibly be realized for the assembly of lower-level implementation framework

components using generative programming techniques like the C++ static template

meta-programming. This technique could be potentially applicable and relevant to

application-driven customization of middleware (like nORB or MicroQoSCORBA or

UBI-Core) which is another active area of research.

214

References

[1] Labelled Transition System Analyzer. http://www.doc.ic.ac.uk/~jnm/book/
ltsa/LTSA.html.

[2] Ptolemy II: Heterogeneous Concurrent Modeling and Design in Java, Vol
I. http://ptolemy.eecs.berkeley.edu/papers/05/ptIIdesign1-intro/ptIIdesign1-
intro.pdf, 2005.

[3] A. D. McKinnon and D. Bakken and J. Shovic. MicroQoSCORBA: A Re-
flective, QoS-Enabled, Configurable MicroCORBA With CASE Support. In
Proceedings of the Second Workshop on Real-time and Embedded Distributed
Object Computing. OMG, June 2001.

[4] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[5] Tejasvi Aswathanarayana, Venkita Subramonian, Douglas Niehaus, and
Christopher Gill. Design and performance of configurable endsystem scheduling
mechanisms. In Proceedings of 11th IEEE Real-time and Embedded Technology
and Applications Symposium (RTAS), 2005.

[6] Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons,
Aniruddha Gokhale, and Douglas C. Schmidt. A Platform-Independent Com-
ponent Modeling Language for Distributed Real-time and Embedded Systems.
In Proceedings of the 11th Real-time Technology and Application Symposium
(RTAS ’05), pages 190–199, San Francisco, CA, March 2005. IEEE.

[7] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on
uppaal. In SFM, pages 200–236, 2004.

[8] Greg Bollella, James Gosling, Ben Brosgol, Peter Dibble, Steve Furr, David
Hardin, and Mark Turnbull. The Real-time Specification for Java. Addison-
Wesley, 2000.

[9] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling Urgency in
Timed Systems. In COMPOS, pages 103–129. Springer-Verlag LNCS 1536,
1997.

215

[10] M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier.
IF: A Validation Environment for Timed Asynchronous Systems. In Proceedings
of CAV’00, 2000.

[11] M. Bozga, S. Graf, Il. Ober, and L. Mounier. IF-2.0: A validation environment
for Component-Based Real-time Systems. In Proceedings of CAV’02. Springer-
Verlag LNCS 2404, 2002.

[12] M. Bozga, S. Graf, Il. Ober, Iul. Ober, and J. Sifakis. The IF Toolset. In
Formal Methods for the Design of Real-time Systems. Springer-Verlag LNCS
3185, 2004.

[13] B. Buchanan, D. Niehaus, D. Dhandapani, R. Menon, S. Sheth, Y. Wijata, and
S. House. The data stream kernel interface. Technical Report ITTC-FY98-
TR11510-04, Information and Telecommunication Technology Center, Univer-
sity of Kansas, 1998.

[14] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture—A System of Patterns.
Wiley & Sons, New York, 1996.

[15] Giorgio C. Buttazzo. Hard Real-time Computing Systems. Kluwer Academic
Publishers, Norwell, Massachusetts, 1997.

[16] G. J. Chaitin. Register allocation and spilling via graph coloring. In SIGPLAN
’82: Proceedings of the 1982 SIGPLAN symposium on Compiler construction,
pages 98–101. ACM Press, 1982.

[17] Kai Chen, Janos Sztipanovits, and Sherif Abdelwahed. A semantic unit for
timed automata based modeling languages. In Proceedings of 12th IEEE Real-
time and Embedded Technology and Applications Symposium (RTAS), 2006.

[18] Christopher D. Gill et al. Applying Adaptive Real-time Middleware to Address
Grand Challenges of COTS-based Mission-Critical Real-time Systems. In Pro-
ceedings of the 1st IEEE International Workshop on Real-time Mission-Critical
Systems: Grand Challenge Problems, November 1999.

[19] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 1999.

[20] Alberto Coen-Porisini, Matteo Pradella, Matteo Rossi, and Dino Mandrioli. A
formal approach for designing corba-based applications. ACM Trans. Softw.
Eng. Methodol., 12(2):107–151, 2003.

[21] G. Coulson and S. Baichoo. Implementing the CORBA GIOP in a High-
Performance Object Request Broker Environment. ACM Distributed Computing
Journal, 14(2), April 2001.

216

[22] Dionisio de Niz and Raj Rajkumar. Time weaver: a software-through-models
framework for embedded real-time systems. In LCTES ’03: Proceedings of the
2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded
systems, pages 133–143, New York, NY, USA, 2003. ACM Press.

[23] William Deng, Matthew B. Dwyer, John Hatcliff, Georg Jung, Robby, and
Gurdip Singh. Model-checking Middleware-based Event-driven Real-time Em-
bedded Software. Department of Computer Science, Technical Report SAnToS-
TR2003-2, Department of Computing and Information Sciences, Kansas State
University, 2003.

[24] Mayur Deshpande, Douglas C. Schmidt, Carlos O’Ryan, and Darrell Brunsch.
Design and Performance of Asynchronous Method Handling for CORBA. In
Proceedings of the 4th International Symposium on Distributed Objects and Ap-
plications, Irvine, CA, October/November 2002. OMG.

[25] Douglas Niehaus, et al.. Kansas University Real-time (KURT) Linux. www.

ittc.ukans.edu/kurt/, 2004.

[26] Gregory Duval. Specification and verification of an object request broker. In
ICSE ’98: Proceedings of the 20th international conference on Software engi-
neering, pages 43–52, Washington, DC, USA, 1998. IEEE Computer Society.

[27] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby. Building
Your Own Software Model Checker Using the Bogor Extensible Model Checking
Framework. In CAV, pages 148–152, 2005.

[28] Gabor Madl and Sherif Abdelwahed and Gabor Karsai. Automatic Verification
of Component-Based Real-time CORBA Applications. In The 25th IEEE Real-
time Systems Symposium (RTSS’04), Lisbon, Portugal, December 2004.

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-
ing, MA, 1995.

[30] Christopher Gill, Douglas C. Schmidt, and Ron Cytron. Multi-Paradigm
Scheduling for Distributed Real-time Embedded Computing. IEEE Proceed-
ings, Special Issue on Modeling and Design of Embedded Software, 91(1), Jan-
uary 2003.

[31] Christopher D. Gill, Ron Cytron, and Douglas C. Schmidt. Middleware Schedul-
ing Optimization Techniques for Distributed Real-time and Embedded Systems.
In Proceedings of the 7th Workshop on Object-oriented Real-time Dependable
Systems, San Diego, CA, January 2002. IEEE.

217

[32] Christopher D. Gill, Jeanna M. Gossett, David Corman, Joseph P. Loyall,
Richard E. Schantz, Michael Atighetchi, and Douglas C. Schmidt. Integrated
Adaptive QoS Management in Middleware: An Empirical Case Study. Journal
of Real-time Systems, 24, 2005.

[33] Christopher D. Gill, Fred Kuhns, David L. Levine, Douglas C. Schmidt,
Bryan S. Doerr, Richard E. Schantz, and Alia K. Atlas. Applying Adaptive
Real-time Middleware to Address Grand Challenges of COTS-based Mission-
Critical Real-time Systems. In Proceedings of the 1st IEEE International
Workshop on Real-time Mission-Critical Systems: Grand Challenge Problems,
November 1999.

[34] Christopher D. Gill, David L. Levine, and Douglas C. Schmidt. The Design and
Performance of a Real-time CORBA Scheduling Service. Real-time Systems,
The International Journal of Time-Critical Computing Systems, special issue
on Real-time Middleware, 20(2), March 2001.

[35] Patrice Godefroid. Model Checking for Programming Languages using Verisoft.
In Symposium on Principles of Programming Languages, pages 174–186, 1997.

[36] Aniruddha Gokhale, Krishnakumar Balasubramanian, Jaiganesh Balasubrama-
nian, Arvind S. Krishna, George T. Edwards, Gan Deng, Emre Turkay, Jeffrey
Parsons, and Douglas C. Schmidt. Model Driven Middleware: A New Paradigm
for Deploying and Provisioning Distributed Real-time and Embedded Applica-
tions. The Journal of Science of Computer Programming: Special Issue on
Model Driven Architecture, 2005 (to appear).

[37] Aniruddha Gokhale, Balachandran Natarajan, Douglas C. Schmidt, Andrey
Nechypurenko, Jeff Gray, Nanbor Wang, Sandeep Neema, Ted Bapty, and Jeff
Parsons. CoSMIC: An MDA Generative Tool for Distributed Real-time and
Embdedded Component Middleware and Applications. In Proceedings of the
OOPSLA 2002 Workshop on Generative Techniques in the Context of Model
Driven Architecture, Seattle, WA, November 2002. ACM.

[38] Susanne Graf, Ileana Ober, and Iulian Ober. Model-checking UML models
via a mapping to communicating extended timed automata. In Proceedings of
SPIN’04, 2004.

[39] Jeffrey Gray, Ted Bapty, and Sandeep Neema. Handling Crosscutting Con-
straints in Domain-Specific Modeling. Communications of the ACM, pages
87–93, October 2001.

[40] Y. Gu, Y. Li, and D. Towsley. On integrating fluid models with packet simula-
tion. In Proceedings of IEEE Infocom 2004, 2004.

218

[41] Zonghua Gu and Kang Shin. Model-Checking of Component-Based Real-time
Embedded Software Based on CORBA Event Service. In Proceedings of the
International Symposium on Object-Oriented Real-time Distributed Computing
(ISORC). IEEE/IFIP, 2005.

[42] David Harel and Eran Gery. Executable Object Modeling with Statecharts.
IEEE Computer, 30(7):31–42, July 1997.

[43] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The Design
and Performance of a Real-time CORBA Event Service. In Proceedings of
OOPSLA ’97, pages 184–199, Atlanta, GA, October 1997. ACM.

[44] John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh
Prasad. Cadena: An Integrated Development, Analysis, and Verification Envi-
ronment for Component-based Systems. In Proceedings of the 25th International
Conference on Software Engineering, Portland, OR, May 2003.

[45] T. Henzinger, C. Kirsch, R. Majumdar, and S. Matic. Time safety checking
for embedded programs. In Proc. Second International Workshop on Embedded
Software (EMSOFT), LNCS. Springer Verlag, 2002.

[46] Thomas A. Henzinger and Christoph M. Kirsch. The embedded machine: pre-
dictable, portable real-time code. SIGPLAN Not., 37(5):315–326, 2002.

[47] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. In Pro-
ceedings of the ninth international conference on Architectural support for pro-
gramming languages and operating systems, pages 93–104. ACM Press, 2000.

[48] Ron Hitchens. Java NIO. O’Reilly, 2002.

[49] Gerald J. Holtzman. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997.

[50] Institute for Software Integrated Systems. The ACE ORB (TAO).
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[51] Institute for Software Integrated Systems. The ADAPTIVE Communication
Environment (ACE). www.dre.vanderbilt.edu/ACE/, Vanderbilt University.

[52] Jeff Kramer Jeff Magee. Concurrency: State Models and Java Programs. Wiley,
2000.

[53] Moataz Kamel and Stefan Leue. Formalization and validation of the General
Inter-ORB Protocol (GIOP) using PROMELA and SPIN. In Int. Journal on
Software Tools for Technology Transfer. Springer–Verlag, 2000.

219

[54] Gabor Karsai, Sandeep Neema, Arpad Bakay, Akos Ledeczi, Feng Shi, and
Aniruddha Gokhale. A Model-based Front-end to ACE/TAO: The Embedded
System Modeling Language. In Proceedings of the Second Annual TAO Work-
shop, Arlington, VA, July 2002.

[55] N. Kaveh. Model checking distributed objects design. In Proceedings of the 23rd
International Conference on Software Engeneering (ICSE-01), pages 793–794,
Los Alamitos, California, May12–19 2001. IEEE Computer Society.

[56] Raymond Klefstad, Douglas C. Schmidt, and Carlos O’Ryan. The Design of a
Real-time CORBA ORB using Real-time Java. In Proceedings of the Interna-
tional Symposium on Object-Oriented Real-time Distributed Computing. IEEE,
April 2002.

[57] Raymond Klefstad, Douglas C. Schmidt, and Carlos O’Ryan. Towards Highly
Configurable Real-time Object Request Brokers. In Proceedings of the In-
ternational Symposium on Object-Oriented Real-time Distributed Computing
(ISORC), Newport Beach, CA, March 2002. IEEE/IFIP.

[58] Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael González
Harbour. A Practitioner’s Handbook for Real-time Analysis: Guide to Rate
Monotonic Analysis for Real-time Systems. Kluwer Academic Publishers, Nor-
well, Massachusetts, 1993.

[59] Arvind S. Krishna, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt.
Model-Driven Techniques for Evaluating the QoS of Middleware Configurations
for DRE Systems. In Proceedings of the 11th Real-time Technology and Appli-
cation Symposium (RTAS ’05), pages 180–189, San Francisco, CA, March 2005.
IEEE.

[60] R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Behav-
ioral Pattern for Concurrent Programming. In Proceedings of the 2nd Annual
Conference on the Pattern Languages of Programs, pages 1–7, Monticello, Illi-
nois, September 1995.

[61] R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Be-
havioral Pattern for Concurrent Programming. In James O. Coplien, John
Vlissides, and Norm Kerth, editors, Pattern Languages of Program Design 2.
Addison-Wesley, Reading, Massachusetts, 1996.

[62] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In Proceedings of the 10th
IEEE Real-time Systems Symposium (RTSS 1989), pages 166–171. IEEE Com-
puter Society Press, 1989.

220

[63] David L. Levine, Christopher D. Gill, and Douglas C. Schmidt. Dynamic
Scheduling Strategies for Avionics Mission Computing. In Proceedings of the
17th IEEE/AIAA Digital Avionics Systems Conference (DASC), November
1998.

[64] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real-time Environment. JACM, 20(1):46–61, January 1973.

[65] Jie Liu, Xiaojun Liu, and Edward A. Lee. Modeling Distributed Hybrid Systems
in Ptolemy II. In Proceedings of the American Control Conference, June 2001.

[66] Gabor Madl and Sherif Abdelwahed. Model-based analysis of distributed real-
time embedded system composition. In EMSOFT ’05: Proceedings of the 5th
ACM international conference on Embedded software, pages 371–374, New York,
NY, USA, 2005. ACM Press.

[67] Gabor Madl, Sherif Abdelwahed, and Douglas C. Schmidt. Verifying distributed
real-time properties of embedded systems via graph transformations and model
checking. International Journal of Time-Critical Computing Systems, 2005.

[68] Manuel Roman. Ubicore: Universally Interoperable Core. www.ubi-core.com.

[69] Manuel Roman and Roy H. Campbell and Fabio Kon. Reflective Middleware:
From Your Desk to Your Hand. IEEE Distributed Systems Online, 2(5), July
2001.

[70] Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale. Generators for
Synthesis of QoS Adaptation in Distributed Real-time Embedded Systems. In
Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Pro-
gramming and Component Engineering (GPCE’02), Pittsburgh, PA, October
2002.

[71] D. Niehaus. Improving Support for Multimedia System Experimentation and
Deployment. In Workshop on Parallel and Distributed Real-time Systems, San
Juan, Puerto Rico, April 1999. Also appears in Springer Lecture Notes in Com-
puter Science 1586, Parallel and Distributed Processing, ISBN 3–540–65831–9,
pp 454–465.

[72] Object Management Group. Model Integrated Computing PSIG.
http://mic.omg.org.

[73] Object Management Group. Lightweight CCM RFP, realtime/02-11-27 edition,
November 2002.

[74] Object Management Group. Real-time CORBA Specification, 1.1 edition, Au-
gust 2002.

221

[75] Object Management Group. The Common Object Request Broker: Architecture
and Specification, 3.0.2 edition, December 2002.

[76] DARPA Information Exploitation Office. Model-Based Integration of Embed-
ded Software (MoBIES). www.darpa.mil/ixo/mobies.asp.

[77] Carlos O’Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spivak, Jeff Parsons,
Irfan Pyarali, and David Levine. Evaluating Policies and Mechanisms for Sup-
porting Embedded, Real-time Applications with CORBA 3.0. In Proceedings of
the 6th IEEE Real-time Technology and Applications Symposium, Washington
DC, May 2000. IEEE.

[78] OSEK Consortium. OSEK/VDX communication specification.
http://www.osek-vdx.org, 2004.

[79] Patrice Godefroid. Software model checking: the VeriSoft approach. Technical
Report Technical Memorandum ITD-03-44189G, Bell Labs, 2003.

[80] Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang, Vishal
Kachroo, and Aniruddha Gokhale. Using Principle Patterns to Optimize Real-
time ORBs. IEEE Concurrency Magazine, 8(1), 2000.

[81] Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron. Techniques for Enhancing
Real-time CORBA Quality of Service. IEEE Proceedings Special Issue on Real-
time Systems, 91(7), July 2003.

[82] John Regehr, Alastair Reid, Kirk Webb, and Jay Lepreau. Composable Exe-
cution Environments. www.cs.utah.edu/flux/papers/cee-flux-tn-02-02/,
2002.

[83] Alastair Reid and John Regehr. Task/Scheduler Logic: Reasoning about
Concurrency in Component-Based Systems Software. www.www.cs.utah.edu/

~regehr/papers/tsl/tsl-pdf.pdf, 2002.

[84] Ricardo Santos Marques, Fancoise Simonot-Lion. Design-Patterns based devel-
opment of an automotive middleware. In Proceedings of the 6th IFAC Inter-
national Conference on Fieldbus Systems and their Applications (FeT 2005),
2005.

[85] Ricardo Santos Marques, Fancoise Simonot-Lion. Guidelines for the develop-
ment of a communication middleware for automotive applications. In Proceed-
ings of the 3rd Workshop on Object-oriented Modeling of Embedded Real-Time
Systems (OMER3 2005), 2005.

222

[86] Robby and Matthew Dwyer and John Hatcliff. Bogor: An Extensible and
Highly-Modular Model Checking Framework. In In the Proceedings of the
Fourth Joint Meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2003), Helsinki, Finland, September 2003. ACM.

[87] Manuel Roman, M. Dennis Mickunas, Fabio Kon, and Roy H. Campbell.
LegORB and Ubiquitous CORBA. In Reflective Middleware Workshop.
ACM/IFIP, April 2000.

[88] Cesar Sanchez, Henny B. Sipma, Venkita Subramonian, Christopher Gill, and
Zohar Manna. Thread Allocation Protocols for Distributed Real-time and Em-
bedded Systems. In 25th IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE ’05), oct 2005.

[89] Cesar Sanchez, Henny B. Sipma, Venkita Subramonian, Christopher Gill, and
Zohar Manna. On Efficient Distributed Deadlock Avoidance for Real-time and
Embedded Systems. In 20th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’06), April 2006.

[90] Douglas C. Schmidt. The Object-Oriented Design and Implementation of the
Reactor: A C++ Wrapper for UNIX I/O Multiplexing (Part 2 of 2). C++
Report, 5(7), September 1993.

[91] Douglas C. Schmidt. The Reactor: An Object-Oriented Interface for Event-
Driven UNIX I/O Multiplexing (Part 1 of 2). C++ Report, 5(2), February
1993.

[92] Douglas C. Schmidt. Acceptor and Connector: Design Patterns for Actively and
Passively Initializing Network Services. In Workshop on Pattern Languages of
Object-Oriented Programs at ECOOP ’95, Aarhus, Denmark, August 1995.

[93] Douglas C. Schmidt. A Family of Design Patterns for Application-level Gate-
ways. The Theory and Practice of Object Systems (Special Issue on Patterns
and Pattern Languages), 2(1), 1996.

[94] Douglas C. Schmidt. Applying a Pattern Language to Develop Application-
level Gateways. In Linda Rising, editor, Design Patterns in Communications.
Cambridge University Press, 2000.

[95] Douglas C. Schmidt and Stephen D. Huston. C++ Network Programming,
Volume 1: Mastering Complexity with ACE and Patterns. Addison-Wesley,
Boston, 2002.

223

[96] Douglas C. Schmidt and Stephen D. Huston. C++ Network Programming, Vol-
ume 2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, Reading,
Massachusetts, 2002.

[97] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects, Volume 2. Wiley & Sons, New York, 2000.

[98] Douglas C. Schmidt and Steve Vinoski. Introduction to CORBA Messaging.
C++ Report, 10(10), November/December 1998.

[99] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized Rate Monotonic Schedul-
ing Theory: A Framework for Developing Real-time Systems. Proceedings of
the IEEE, 82(1), January 1994.

[100] David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable
Component-Based Avionics System. In Proc. of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

[101] James Snell and Ken MacLeod. Programming Web Applications with SOAP.
O’Reilly, 2001.

[102] John A. Stankovic, Hexin Wang, Marty Humphrey, Ruiquing Zhu, Ramasubra-
maniam Poornalingam, and Chenyang Lu. VEST: Virginia Embedded Systems
Toolkit. In Proceedings of the IEEE Real-time Embedded Systems Workshop,
London, UK, December 2001. IEEE.

[103] Venkita Subramonian and Christopher Gill. A Generative Programming Frame-
work for Adaptive Middleware. In Hawaii International Conference on System
Sciences, Software Technology Track, Adaptive and Evolvable Software Systems
Minitrack, HICSS 2004, Honolulu, HW, January 2004. HICSS.

[104] Venkita Subramonian, Guoliang Xing, Christopher Gill, and Ron Cytron. The
design and performance of special purpose middleware: A sensor networks case
study. Technical Report WUCSE-2003-06, Computer Science and Engineering
Department, Washington University in St.Louis, 2003.

[105] Venkita Subramonian, Guoliang Xing, Christopher Gill, Chenyang Lu, and Ron
Cytron. Middleware specialization for memory-constrained networked embed-
ded systems. In Proceedings of 10th IEEE Real-time and Embedded Technology
and Applications Symposium (RTAS), 2004.

[106] Janos Sztipanovits and Gabor Karsai. Model-Integrated Computing. IEEE
Computer, 30(4):110–112, April 1997.

[107] TimeSys. TimeWiz. www.timesys.com, 2002.

224

[108] Emre Turkay, Aniruddha Gokhale, and Bala Natarajan. Addressing the Middle-
ware Configuration Challenges using Model-based Techniques. In Proceedings
of the 42nd Annual Southeast Conference, Huntsville, AL, April 2004. ACM.

[109] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Christopher D. Gill,
Balachandran Natarajan, Craig Rodrigues, Joseph P. Loyall, and Richard E.
Schantz. Total Quality of Service Provisioning in Middleware and Applications.
The Journal of Microprocessors and Microsystems, 27(2):45–54, mar 2003.

[110] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. An Overview of
the CORBA Component Model. In George Heineman and Bill Councill, ed-
itors, Component-Based Software Engineering. Addison-Wesley, Reading, Mas-
sachusetts, 2000.

[111] Martin Fowler with Kendall Scott. UML Distilled—A Brief Guide to the Stan-
dard Object Modeling Language, 2nd Edition. Addison-Wesley, Boston, 2000.

225

Vita

Venkita Subramonian

Date of Birth May 17, 1970

Place of Birth Trivandrum, India

Degrees B.S. Computer Science, July 1991, University of Kerala, Trivan-

drum, India

M.S. Computer Science, May 2000, University of Missouri,

Rolla, USA

Book

Chapters

Venkita Subramonian and Christopher Gill, “Middleware

Design and Implementation for Networked Embedded

Systems”, in Embedded Systems Handbook (Richard Zu-

rawski, ed.), CRC Press, Florida, 2005, Chapter 30, pp.

1-17.

Publications Venkita Subramonian, Gan Deng, Christopher Gill, Jaiganesh

Balasubramanian, Liang-Jui Shen, William Otte, Dou-

glas Schmidt, Andy Gokhale, and Nanbor Wang, “The

Design and Performance of Component Middleware for

QoS-enabled Deployment and Configuration of DRE

Systems”, Elsevier Journal of Systems and Software,

Special Issue on Component-Based Software Engineer-

ing of Trustworthy Embedded Systems, 2006.

Cesar Sanchez, Henny Sipma, Venkita Subramonian and

Christopher Gill, “On Efficient Distributed Deadlock

226

Avoidance for Real-Time and Embedded Systems”, Pro-

ceedings of the 20th IEEE International Parallel & Dis-

tributed Processing Symposium (IPDPS), April 2006.

Venkita Subramonian and Christopher Gill, “Towards In-

tegrated Model-Driven Verification and Empirical Val-

idation of Reusable Software Frameworks for Auto-

motive Systems”, Proceedings of Automotive Software

Workshop, March 2006.

Cesar Sanchez, Henny Sipma, Venkita Subramonian and

Christopher Gill, “Thread Allocation Protocols for Dis-

tributed Real-Time and Embedded Systems”, 25th IFIP

WG 6.1 International Conference on Formal Techniques

for Networked and Distributed Systems (FORTE), Oc-

tober 2005.

Tejasvi Aswathanarayana, Venkita Subramonian, Dou-

glas Niehaus and Christopher Gill, “Design and Perfor-

mance of Configurable Endsystem Scheduling Mecha-

nisms”, 11th IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium (RTAS), March 2005.

Venkita Subramonian, Liang-Jui Shen, Christopher Gill

and Nanbor Wang, “The Design and Performance of

Dynamic and Static Configuration Mechanisms in Com-

ponent Middleware for Distributed Real-Time and Em-

bedded Systems”, 25th IEEE International Real-Time

Systems Symposium (RTSS), December 2004.

Nanbor Wang, Christopher Gill, Douglas Schmidt and

Venkita Subramonian, “Configuring Real-time Aspects

in Component Middleware”, Distributed Objects and

Applications (DOA), Oct 2004.

Venkita Subramonian, Boris Klaydman and Christopher

Gill, “Towards Formal Construction of Middleware for

227

Distributed Real-Time and Embedded Systems”, Pro-

ceedings of the Monterey Workshop on Software Engi-

neering Tools: Compatibility and Integration, Oct 2004.

Venkita Subramonian, Guoliang Xing, Christopher Gill,

Chenyang Lu and Ron Cytron, “Middleware Special-

ization for Memory-Constrained Networked Embedded

Systems”, 9th IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium (RTAS), May 2004.

Xiaorui Wang, Huang-Ming Huang, Venkita Subramo-

nian, Chenyang Lu and Christopher Gill, “CAMRIT:

Control-based Adaptive Middleware for Real-time Im-

age Transmission”, 9th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), May

2004.

Venkita Subramonian and Christopher Gill, “A Gener-

ative Programming Framework for Adaptive Middle-

ware”, 37th Hawai’i International Conference on Sys-

tem Sciences (HICSS), January 2004. Won the Best

Paper Award in the Software Technology Track.

Michael Frisbie, Douglas Niehaus, Venkita Subramonian

and Christopher Gill, “Group Scheduling in Systems

Software”, Workshop on Parallel and Distributed Real-

Time Systems (WPDRTS), April 2004.

Christopher Gill, Venkita Subramonian, Jeff Parsons, Huang-

Ming Huang, Stephen Torri, Douglas Niehaus, and Dou-

glas Stuart, “ORB Middleware Evolution for Networked

Embedded Systems”, Eighth IEEE International Work-

shop on Object-oriented Real-time Dependable Systems

(WORDS), January 2003.

May 2006

Short Title: Principled Composition of Middleware Subramonian, D.Sc. 2006

	Timed Automata Models for Principled Composition of Middleware
	Recommended Citation
	Timed Automata Models for Principled Composition of Middleware

	tmp.1468963809.pdf.rUdqa

