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Chapter 1

Introduction

1.1 Motivation

In 2004, nearly two-thirds of the world’s Internet users spoke a language other than

English as their primary language (see Table 1.1), and nearly one-third of the pages

available on the World Wide Web were written in a language other than English

[40]. As the amount of multilingual content available on the Internet and in private

storage systems increases, efficiently finding useful and relevant information becomes

a growing problem.

Table 1.1: Internet Users by Language, 2004 [39]
Native Internet Percent of

Language Users (Millions) Internet Users
English 287.5 35.64%
Chinese 102.6 12.71%
Japanese 69.7 8.64%
Spanish 65.6 8.13%
German 52.9 6.55%
Korean 29.9 3.70%
French 28.0 3.47%

Portuguese 25.7 3.18%
Italian 24.3 3.01%
Russian 18.5 2.29%

Malaysian 13.6 1.69%
Dutch 13.5 1.67%
Arabic 10.5 1.30%
Polish 9.5 1.18%
Other 55.3 6.85%
Total 807.1

A system capable of quickly identifying the primary languages and character encod-

ings used in text documents can ease many problems associated with the growing
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amounts of multilingual data. The primary use of this system is for language-based

forwarding and data routing, such as technical support e-mail messages in a large

international organization. Such a system could also be used as a preprocessor for

document classification services that must know the language and encoding of char-

acters in order to determine the semantic meaning of a text document. Moreover, the

system could label documents in a large database or remove documents in unwanted

languages from a data stream.

Although modern microprocessors continue to steadily increase in performance, they

are not increasing as fast as the data rate of backbone networks. As the limits of

Moore’s Law are reached in the next ten years, the gap between the rate at which

data needs to be processed and the rate at which a microprocessor can process data

will increase further.

In contrast, reconfigurable logic can process network traffic at rates much faster than

what is achievable with microprocessor-based systems. Systems created from Field-

Programmable Gate Arrays (FPGAs) are flexible, since they can be easily modified to

provide new functionality. They can be programmed with highly customized hardware

circuits to drastically outperform microprocessor-based systems.

1.2 Thesis Objectives

This thesis set out to create an algorithm and hardware architecture to perform

identification of languages1 with the following objectives in mind:

• Create a language identification algorithm that is simple, fast and accurate.

• Enable the system to be trained on a minimal amount of labeled data.

• Create a software tool to demonstrate the functionality of this algorithm.

• Allow parameters within the software tool to be changed.

• Track changes in the algorithm’s performance as these parameters are altered.

• Evaluate algorithmic optimizations for language identification.

1Unless otherwise specified, the terms “language identification,” “identification of languages,”
and similar phrases will be used to describe the simultaneous identification of both a document’s
language and its character encoding.
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• Create a hardware system that performs this language identification algorithm.

• Ensure that the system is synthesizable in a wide variety of reconfigurable hard-

ware devices.

• Design the system so that languages and encodings can be added or removed

without affecting the architecture itself.

• Create the architecture in a modular fashion so that it can be easily augmented

for additional functionality.

1.3 Thesis Outline

This thesis begins with a background of character encodings, their history, and their

use with various languages. A brief examination of existing algorithms used for lan-

guage identification, along with their respective strengths and shortcomings, is pro-

vided.

The design of the HAIL system is presented and the design tradeoffs incorporated to

implement it in reconfigurable hardware are described. The descriptions are accom-

panied by results of experiments that affect HAIL’s performance and motivate design

decisions.

The final section details an implementation of HAIL that was created for the Field-

programmable Port eXtender (FPX) platform. A brief introduction to the platform

and infrastructure components that were utilized in the design precedes a detailed

description of the system’s architecture and results obtained with this implementa-

tion.

Appendices are provided for reference. Appendix A identifies the location of HAIL’s

source files and instructions for creating an implementation. Appendix B describes

the HAIL software tool and other software created to support HAIL. Appendix C

discusses the laboratory configuration used to test the system. Appendix D provides

additional figures. Appendix E contains a list of acronyms used throughout this

thesis.
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Chapter 2

Background

To understand the context of this project and the difficulties of the work, this section

provides relevant background material. First, a description of character encodings and

their use to represent text in different languages is presented. Second, a summary

of related work on language and character encoding identification is provided with

explanations regarding benefits and drawbacks. Third, relevant concepts from proba-

bility, statistics and machine learning are explained. Finally, a description of multiple

implementation platforms is presented with their advantages and disadvantages.

2.1 Character Encodings

Character encodings assign numeric values to characters (letters, numbers, and sym-

bols) so that computers can represent text in natural languages. Approximately

250 character encodings have been registered with the Internet Assigned Numbers

Authority (IANA) [75], the organization that also regulates Internet Protocol (IP)

addresses and top-level domains.

Identifying the character encoding of a document is a necessary part of language

identification. Many encodings are in common usage, and most languages can be

represented with more than one character encoding. While the character encoding of

a document is sometimes stated within the document itself, there is no reliable stan-

dard between differing document formats for expressing this information. Therefore,

explicit labels cannot be expected and will not be used for purposes of language and

character set identification.

The purpose of this section is to clarify character encodings and to illustrate how the

number of encodings complicates the issue of language identification.
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2.1.1 ASCII

Many modern character encodings are extensions of the American Standard Code

to Information Exchange (ASCII), which was a standard finalized in 1968 under the

name ANSI X3.4 [31]. ASCII uses seven bits to encode 128 characters, 95 of which

are printable and 33 of which are used primarily for control purposes.

Among the printable characters, only the uppercase and lowercase forms of the Latin

alphabet’s 26 letters can be represented with ASCII. As computers became more

widespread and diverse, the need to represent more printable letters was realized.

2.1.2 Extended ASCII

“Extended ASCII” is a term loosely used to describe a wide variety of character

encodings. Encodings referred to as extended ASCII use eight bits to encode 256

characters, the first 128 of which are the characters from the original ASCII standard.

Many extended ASCII character encodings have been created over time.

ISO 8859 Character Encodings

One of the most popular extended ASCII character encodings is the International

Organization for Standardization 8859 (ISO 8859) series [4]. ISO 8859 is a set of

fifteen different eight-bit encodings that together can represent text in many different

languages. Ten of these encodings are variations on the Latin alphabet; the other five

include encodings for the Cyrillic, Arabic, Greek, Hebrew and Thai alphabets.

The most prevalent of these character encodings is ISO 8859-1, often referred to as

Latin 1. It is used to represent characters in western European languages [55], includ-

ing Albanian, Basque, Catalan, Danish, Dutch, English, Finnish, French, German,

Greenlandic, Icelandic, Irish, Italian, Latin, Norwegian, Portuguese, Scottish, Spanish

and Swedish.

Other Extended ASCII Character Encodings

When the first IBM PCs became available in the early 1980s, the ISO 8859 standard

had not yet been created. IBM and Microsoft created their own character encoding,



6

Code Page1 437 (CP437), for use on the operating system for IBM PCs (PC-DOS)

[29]. This encoding added some characters used in non-English languages and a large

number of basic symbols and graphics. It replaced many of the existing ASCII control

characters with simple graphics.

As the use of IBM PCs spread, CP437 was augmented with over fifteen other code

pages; some of these were updates of CP437 that were compatible with the Video

Graphics Array (VGA) computer display standard. Other code pages replaced some

of the characters in CP437 with those relevant to languages of other regions.

As Microsoft Windows began to replace PC-DOS (and its open-market companion,

MS-DOS) on most personal computers, the use of IBM code pages became less com-

mon. Today, they are used primarily to provide legacy support. In place of the IBM

code pages, Microsoft encouraged the use of its own line of character encodings [52]

which includes ten extended ASCII code pages. While most of these encodings are

very similar to various ISO 8859 encodings, they are not exactly the same. Each

encoding adds printable symbols to a range of 32 characters that is unused by the

ISO 8859 encodings. Most Microsoft encodings rearrange a few of the characters in a

way that makes them incompatible with the corresponding ISO 8859 code pages [29].

A variety of other extended ASCII character encodings exist [29]. Apple, Adobe and

Hewlett-Packard developed their own character encodings; although they are used

less frequently than ISO 8859 and Windows code pages, the are still encountered

on occasion. Other character encodings are targeted towards specific regions of the

world. For instance, the set of Kod dla Obmena i obrabotki Informacii (KOI) character

encodings [30] is used extensively in countries where the Cyrillic alphabet is prevalent.

The Vietnamese Standard Code for Information Interchange (VISCII) encoding [33]

is used for Vietnamese.

2.1.3 Double-Byte Character Encodings

While most of the world’s languages can fit all of their symbols within a single byte,

this is not the case for a few East Asian languages, namely Chinese, Japanese and

Korean. These languages use thousands of different characters (called ideographs). A

single byte can encode no more than 256 different combinations. On the other hand,

double-byte character encodings allow for up to 65,536 combinations.

1“Code page” is used by some as a synonym for “character encoding.”
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The first of these East Asian character encodings, Japanese Industrial Standard (JIS)

X 0208, was created in 1976 [32]. This encoding contains the three alphabets used in

the Japanese language, as well as letters from the Latin, Cyrillic and Greek alphabets.

It supports a maximum of 8,836 symbols, but has since been expanded by JIS X 0212

which added space to define 8,836 more symbols.

JIS X 0208 was followed by a Chinese encoding called Guojia Biaozhun (GB) 2312.

GB 2312 is structured similar to the original Japanese encoding in that it supports a

maximum of 8,836 symbols.

2.1.4 Unicode

As previously suggested, there were many standards for character encodings that

developed as computers gained popularity through the 1970s and 1980s. To reduce

the problems caused by hundreds of incompatible character encodings, a non-profit

organization called the Unicode Consortium [78] was formed in 1991. The consortium

created the Unicode Standard which assigns a unique number to every character used

in writing.

Unicode has been adopted by Apple, HP, IBM, Microsoft, Oracle, Sun and numerous

other companies. It is also the underlying encoding of many standards such as XML

and Java [78]. It can represent text in thousands of languages and dozens of scripts,

both modern and historic [77].

The Unicode Standard in itself, however, is not a character encoding. In fact, the stan-

dard defines three different encodings, or Unicode Transformation Formats (UTFs)

[76]: UTF-8, UTF-16, and UTF-32. All three can represent every character in the

Unicode standard. The primary differences are detailed below:

• UTF-8 represents every ASCII character with a single byte; however, characters

beyond ASCII require a variable number of bytes.

• UTF-16 stores most characters using two bytes, but represents a number of

uncommon characters with four bytes.

• UTF-32 stores all Unicode characters in four bytes. The advantage is that all

bytes are represented in a fixed amount of space. The disadvantage is that

UTF-32 requires more space than the other two encodings in most situations.
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Another type of encoding, UTF-7, is frequently used to transfer e-mail messages.

UTF-7 is used to encode other Unicode formats into an ASCII text representation

since many e-mail protocols forbid the transmission of data outside of the 7-bit ASCII

range. However, it is rarely used by computers to store data internally.

2.2 Existing Language Identification Algorithms

To date, several mechanisms for computer-based language identification have been

developed.

2.2.1 Dictionary-building

An obvious method of language identification is dictionary-building as outlined in a

patent written by by Paulsen, et al. [44]. The process of dictionary-building extracts

whole words from a set of training data. These words are stored in a data structure

called a word frequency table (WFT). This table contains a list of the most common

words found in the set of training documents and applies optional frequency-based

weights to each word.

Once the system is trained with a sufficient amount of data, the algorithm can identify

languages in documents by using table lookup operations. Words in a data stream are

extracted and looked up in the table. If a word is found, a counter for the appropriate

language(s) is incremented. Once the entire document is processed, the language can

be discerned by examining the highest language counter.

The authors of the patent argue that their algorithm is superior to others because it

requires fewer table lookups than other existing methods (see Section 2.2.2). They

suggest that only the most common words in a particular language must be stored.

A limitation is that the algorithm is dependent upon knowledge of the underlying

character encoding. For example, while the byte sequence 247 161 is interpreted

as non-alphabetic symbols in many Windows and ISO 8859 encodings, it is a valid

Chinese ideograph in the GB 2312 character encoding. Thus, the language identifica-

tion engine must be aware of the encoding scheme before determining the language.

Although some documents are labeled with their character encoding, this is not al-

ways the case. Different document formats identify their encoding at different points

within the file and can use a variety of different labels to represent the encoding.
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2.2.2 N-Gram Frequency Analysis

The analysis of patterns of exactly N successive characters, known as n-grams, is an

effective method for language identification. N-gram based methods for the identifi-

cation of languages have been developed by various authors, including Schmitt [66]

and Huffman [42]. Damashek [34, 35] and Cavnar [23] broadened the use of n-grams

by using them as the basis of topic identification algorithms.

Schmitt’s language identification algorithm is a typical n-gram based classification

method. Schmitt’s method makes use of trigrams – sequences of three successive

characters. This method extracts every trigram within a document and compares the

extracted patterns with those in a pre-established library of trigrams.

Once all of the trigrams within a document have been looked up, the number of

extracted trigrams that represent each language is divided by the total number of

trigrams within the document. If this ratio exceeds a threshold for a particular

language of interest, the document is classified as belonging to that language.

In general, using n-grams is more flexible than a dictionary-based method. While a

word-counting algorithm is dependent on knowledge of the character encoding so that

word boundaries can be determined, n-grams are not. N-grams can be sampled at

every byte offset within a document, overlapping not only letters but also numbers and

symbols. Due to this advantage, n-grams are the underlying language-identification

method used by HAIL.

2.3 Probability and Statistics

Principles from probability and statistics are used in several areas throughout this

paper. A brief overview of relevant probabilistic and statistical principles is outlined

below.

2.3.1 Linear Regression

Linear regression [53] is a technique that fits a line to a set of observed data points.

Once an equation representing the best-fitting line is determined, values for which

no data is available can be estimated by solving the equation for a particular value

of the independent variable. The following equations demonstrate the process of
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approximating a line to a set of data points. Derivations for the following equations

can be found in [53].

b1 =
n

∑n
i=1 xiyi − (

∑n
i=1 xi)(

∑n
i=1 yi)

n
∑n

i=1 x2
i − (

∑n
i=1 xi)2

(2.1)

The slope b1 of a line created to fit data points can be calculated with Equation 2.1.

In the equation, xi and yi are respectively the independent and dependent coordinates

of the observed data points. n is the number of observed data points used to estimate

the regression line.

b0 = ȳ − b1x̄ (2.2)

Once the slope is found, the vertical intercept b0 can be calculated with Equation 2.2.

b1 is the slope obtained in Equation 2.1 while x̄ and ȳ are respectively the average

independent and dependent coordinates of the data points.

ŷ = b0 + b1x (2.3)

The slope b1 and vertical intercept b0 are used in Equation 2.3, the slope-intercept

formula frequently used to represent linear equations. ŷ indicates that the value of

the dependent variable is being estimated rather than calculated exactly.

2.3.2 Bayes’ Theorem

Bayes’ Theorem [6] is used to calculate the conditional probability of a variable, A,

given another variable, B. This conditional probability is expressed mathematically

as P (A | B) and is typically referred to as the posterior probability.

The theorem assumes that one already knows the probability of B given A, P (B | A),

the probability of A, P (A) (also known as the prior probability), and the probability

of B, P (B). Thus, it is typically applied when P (B | A), P (A), and P (B) are

easily observed, while P (A | B) is difficult to observe. Conventionally, the theorem

is represented with the following equation:
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P (A | B) =
P (B | A)P (A)

P (B)
(2.4)

To exemplify Bayes’ theorem, consider the following statement: “Thirty percent of

dogs provided to American animal shelters are purebred” [65]. This can be expressed

as “The probability of a dog being purebred given that it was provided to an American

animal shelter is 0.3” or P (B | A) = 0.3. While this statistic can be confirmed easily

by studying American animal shelters, it is much more difficult to measure P (A | B)

or “The probability that a dog was provided to an American animal shelter given that

it is purebred”. In addition to P (B | A), one must also know P (A), “The probability

that a dog is purebred” and P (B), “The probability that a dog is provided to an

American animal shelter.” Both of these values are also easily obtained through

studying dog owners. Together with P (B | A), the values can be used to calculate

the probability that a dog is provided to an American animal shelter given that it is

purebred.

2.3.3 Naive Bayes Classifiers

Statistical classification is a process in which items are labeled as belonging to one

of numerous groups. This grouping is based upon statistical analysis of the features

that appear in items to be classified and the features that appear in a training set,

which contains already-labeled items. HAIL is a statistical classifier; it assigns labels

(languages) to items (documents) based on a training set of documents for which the

language is already known.

A naive Bayes classifier is a method for statistical classification. Such a classifier

is “naive” because it assumes characteristics within an item are independent of one

another. With some exceptions (see Section 3.2.3), HAIL operates under these as-

sumptions and is therefore a naive Bayes classifier.

As an example, consider a naive Bayes, n-gram based language identification system.

If the system were requested to identify the language of a document containing the

word there, it might extract the n-grams ther and here. The presence of here given the

presence of ther immediately before it may be a strong indicator that the document is

written in English. However, a naive Bayes classifier would independently determine

the probability that ther and here appear in various languages and give no weight to

the fact that they occurred together.
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2.4 Data Clustering

Data clustering (“clustering”) [64] is a process in which items in a data set are par-

titioned into subsets, called clusters. Items judged to be similar are placed into the

same clusters. The measure of similarity is based upon a distance metric which must

be defined for the set of data in question. The difference between classification (de-

fined in the previous section) and clustering is that during classification, items are

compared to data obtained from a training set; during clustering, items are compared

to one another.

Clustering is an extensively studied topic. Several subtypes of clustering have been

defined, and many different algorithms have been developed. Details of clustering

relevant to this thesis are outlined below.

2.4.1 Expectation Maximization

An expectation maximization (EM) algorithm [36] is an iterative approach designed

to estimate optimal parameters in a system; frequently, EM is applied as as clustering

algorithm. EM involves the manipulation and observation of known variables, while

attempting to maximize a function of unknown variables, called latent variables.

The expectation maximization process involves two repeated stages: The expectation

step, in which the present state of the system is evaluated, and the maximization step,

in which the state is changed so that the function of the latent variables is increased.

In EM clustering, P (B | A) represents the probability that the set of data, B, fits

into the current set of cluster assignments, A. However, in a clustering problem, one

wants to determine P (A | B) or the probability that the current cluster assignments

fit the set of data. While P (B | A) is easily calculated from the values of the data

points and the properties of the cluster assignments, P (A | B) is not easily observed.

Recall that Bayes’ Theorem (Equation 2.4) can be used to find the value of P (A | B)

when P (B | A), P (A), and P (B) are known. Expectation maximization is linked to

Bayes’ Theorem because the probability P (B | A) that the data fits into the cluster

assignments is much simpler to observe than the probability P (A | B) that the cluster

assignments fit the data.
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The formula representing Bayes’ Theorem also contains the terms P (A) and P (B).

Literally, P (A) represents the probability that a particular feasible clustering assign-

ment will occur, independent of the data set. P (B) represents the probability that a

particular feasible data set will occur. Given a set of possible clusterings and possible

data points, P (A) and P (B) are constant. Thus, Bayes’ Theorem could be expressed

as

P (A | B) = K ∗ P (B | A) (2.5)

K is a positive constant equal to the quotient of P (A) and P (B). Based on this

equation, P (A | B) and P (B | A) are proportional; an increase or decrease in the

latter will respectively increase or decrease the value of the former term. Therefore,

regardless of the value of K, maximizing the value of P (B | A) will also maximize

the value of P (A | B).

Therefore, in order to maximize the function of the latent variables one needs only

to maximize a function of the known variables. In clustering, maximization can be

achieved by repeatedly changing the cluster assignment in a way that makes the data

fit the clusters more closely and evaluating the properties of the clusters. In time,

the clusters will reach a state in which no single change to the cluster assignment will

increase the probability of the data fitting the clusters.

2.4.2 Simulated Annealing

Simulated annealing (SA) [45] is an approach utilized to find the optimal state of a

system. The process is inspired by annealing, a metallurgical process in which a ma-

terial is heated so that atoms are forced to move about randomly. As the temperature

of the material decreases, the atoms have a better chance of configuring themselves

to a lower-energy form than their initial state. Materials with lower internal energy

are larger and have fewer defects than ones with higher energy.

In HAIL, simulated annealing is applied to the expectation maximization algorithm.

Without simulated annealing, the EM algorithm can force the system into a state

that is more optimal than nearby states, but less optimal than other possible config-

urations. Such a state is called a local optimum. SA increases the chance that the

system will enter a globally optimal state.
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Consider the discussion of EM and clustering outlined above. In the maximization

step, changes to the clusters are allowed if and only if they increase the probability

that the data fits the clusters. This will cause the overall cluster configuration to

improve, but it may converge on a locally optimal clustering.

SA changes this rule by incorporating a parameter referred to as the “temperature.”

Initially, the temperature is set to a high value. When the temperature is high,

changes in the clustering are allowed to can worsen the probability that the data fits

the clusters. As the iteration count increases, the temperature is decreased. At lower

temperatures, changes in the clustering that worsen the probability may still occur,

but the amount by which the probability can be worsened is reduced. As time passes,

the temperature is reduced to 0. At this point, only changes in the clustering that

improve the probability are allowed.

Due to the random nature of changes in the probability when the temperature is high,

SA provides a chance for the system to move past a local optimum and increases the

chance that it converges on the global optimum. However, it is by no means a

guarantee that an optimal solution will be found.

2.5 Implementation Medium

Language and character encoding identification can be performed on a variety of

platforms, ranging from general-purpose processors to customized integrated circuits.

The strengths and weaknesses of various platforms are discussed below.

2.5.1 General Purpose Processors

General purpose processors (GPPs) are the heart of servers, desktop, and notebook

computers. The typical GPP is designed to integrate within a system of memory,

disk drives, and I/O devices.

Although flexible, GPPs do not achieve high performance for language identification.

This is due to the serial execution of tasks via a stream of instructions which does

not make use of inherent parallelism within language identification algorithms.

GPPs are particularly ill-suited for the problem of language identification. Modern

GPPs rely on a cache to improve memory throughput, and therefore, performance.
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However, caches only offer a significant performance improvement when the program

under execution exhibits temporal locality, a property in which individual memory

locations are accessed repeatedly in a short amount of time, or spatial locality, in

which memory locations that are close to one another are accessed within a short

amount of time of each other.

When documents are processed by a language identification algorithm, the data within

the documents is typically accessed sequentially; this is an example of spatial locality.

However, once document data is processed, it is not revisited. Thus, there is little

temporal locality within the documents. Furthermore, the data within a document

must be looked up inside a table or other data structure to identify the language(s)

associated with the data. These lookups are independent of one another, and therefore

exhibit poor temporal and spatial locality.

A large cluster of GPPs could match the performance of other implementation plat-

forms, but would be more costly, require more space, and consume more power.

2.5.2 Network Processors

Network processors, such as the Intel IXP 2400 and 2800 [43], contain a single GPP

used for control purposes, as well as a number of small, specialized microprocessors,

often referred to as microengines.

The IXP 2800 contains sixteen microengines. Each microengine has a large number

of general-purpose and specialized registers and hardware support for switching be-

tween eight threads of execution. Engines share interfaces to external static random

access memory (SRAM) and synchronous dynamic random access memory (SDRAM).

The microengines in the IXP 2800 support a limited version of the C programming

language and can efficiently execute programs of a few kilobytes in size.

Despite their advantages, network processors still perform tasks by a serial execution

of instructions. While they do have some optimizations for hardware-accelerated

processing of streaming data, they do not have explicit hardware support to accelerate

the processing of data for language identification.
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2.5.3 Application-Specific Integrated Circuits

An application-specific integrated circuit (ASIC) is a customized device designed to

perform a specialized task at high rates and/or low power consumption. If a system’s

design specification is rigid and will never change, and if the product is targeted

towards a very large number of consumers, an ASIC is the ideal solution.

However, an ASIC has drawbacks. First, the generation of the mask used to produce a

set of ASICs has a large non-recurring expense (NRE) measured in millions of dollars

[46]. In order to cover the NRE, the system must either have a large target audience

or sell chips at excessively high prices. Second, the high price of manufacturing ASICs

means that post-production changes are virtually impossible.

As a result, an ASIC is not the optimal choice of technology for performing language

identification.

2.5.4 Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) allow for the creation of customized, high-

speed, and flexible hardware circuits. FPGAs contain a matrix of configurable logic

blocks (CLBs) that consist of look-up tables (LUTs) for the implementation of combi-

national logic and small memory elements, and flip-flops for the creation of registers,

sequential logic, and pipelines. Most FPGAs also contain blocks of low-latency ran-

dom access memory (RAM).

When creating a circuit for implementation in an FPGA, a hardware designer can

use a hardware-description language (HDL) such as VHDL or Verilog to create a

representation of the circuit. He or she can then use tools to compile and simulate the

design, synthesize the circuit into a low-level register-transfer level (RTL) description,

and map the design into the CLBs on the target FPGA.

FPGAs achieve slower clock rates than ASICs because of extra routing delays in the

reconfigurable fabric. However, they do have several important advantages. First,

creating FPGA circuits does not require the hardware designer to pay large mask

creation and fabrication costs. Second, new functions can easily be added to FPGAs,

since their CLBs can be reprogrammed many times. FPGAs are ideal for designs

with production targets up to tens of thousands of units, and systems that require

flexibility and modifications in functionality. The HAIL algorithm presented in this
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paper has been implemented in FPGA technology, because it can take advantage of

reconfigurability.
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Chapter 3

The HAIL Algorithm

The crux of the HAIL project is a language-identification algorithm that can be imple-

mented in reconfigurable hardware. This chapter describes the algorithm’s objectives,

an overview of the algorithm, various algorithmic parameters that can be altered, and

experiments performed to achieve optimal performance by altering these parameters.

3.1 Introduction

At the highest level, HAIL is a variation of existing n-gram based language identi-

fication methods such as those developed by Schmitt [66] and Huffman [42]. HAIL

contains many optimizations for implementation in reconfigurable hardware. Some

of these optimizations, such as the use of only one n-gram size (Section 3.2.1), are

straightforward. Others, such as the trend register (Section 3.2.3) and data clustering

to simplify the layout of memory (Section 3.3), are novel. This section provides an

overview of the objectives that drove HAIL’s design and a high-level summary of the

algorithm’s functionality.

3.1.1 Algorithm Objectives

Several objectives were identified during the creation of the HAIL algorithm.

The first of these objectives is to provide high throughput. Numerous software al-

gorithms have been developed for the purpose of language identification; most are

capable of achieving high levels of accuracy for documents as small as a few dozen

characters in size. While there is little room for improvement in accuracy, these

methods typically require large amounts of processing time. Most existing algorithms

cannot process more than a few megabytes of data per second on a modern personal
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computer or server. As stated earlier, there is a use for systems capable of performing

language identification rapidly.

The second objective is accuracy. Most existing language identification algorithms

are capable of highly accurate operation. If a language identification algorithm is

extremely fast yet comparatively inaccurate, it is of limited interest to those interested

in language identification. To be of significant use, a new algorithm should be as

accurate as possible.

The third objective is latency, or the amount of data that must be analyzed in order

to conclusively identify a document’s language. This metric is particularly important

when processing streaming network data, since documents are broken into packets

which can be quite small. Ideally, the identification of a document’s language should

occur during the first packet so that the entire document can be handled uniformly

by any further processing being performed.

The fourth objective is efficient implementation in hardware. For instance, although

floating point mathematics are used in many existing language identification algo-

rithms, units to perform floating point operations consume a large amount of FPGA

resources. HAIL does not rely on floating point mathematics, and can therefore fit

into lower-end FPGAs for which a floating point unit is not feasible. Furthermore,

if placed into a modern FPGA, HAIL will require only a small percentage of FPGA

resources and allow other components to be integrated in the same device.

The final objective of the algorithm is flexibility. HAIL has been implemented on the

Field-Programmable Port eXtender (FPX), an open platform developed at Washing-

ton University in St. Louis. However, this chapter contains few platform-specific

details; the algorithm can easily be implemented on a variety of systems. The only

requirements for an implementation of HAIL are an FPGA of sufficient size and one

or more banks of memory, such as SRAM, capable of high-throughput random access

lookups. Optionally, one or more banks of SDRAM can be used to store the state of

documents in the event that they are interleaved with one another as in streaming

network data.
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3.1.2 Algorithm Overview

Before the process of language identification can begin, HAIL must be trained. Train-

ing data is a set of documents in which the language and character encoding are

already known. Once training data is obtained, the following steps are performed:

1. Extract fixed-length sequences of n bytes (n-grams) at every byte offset within

the training documents.

2. Use a hash function to transform each n-gram into a value that will serve as a

memory address.

3. Calculate the frequency at which each hashed n-gram appears in documents of

a given language.

4. Cycle through each hashed n-gram. In each language, subtract the average

frequency at which the hashed n-gram appears across all languages. This serves

to eliminate tenuous affiliations between languages and n-grams.

5. Perform the slot clustering operations outlined in Section 3.3.

6. Load memory bank(s) with the results of slot clustering operations.

Once memory has been loaded, HAIL can begin identifying the languages of docu-

ments. As data enters the system, the circuit extracts n-grams from the data stream.

The n-grams are hashed using the same hash function from step 2.

These hash values are used as memory addresses; the corresponding addresses are read

and numerical language identifiers that represent language and character encoding

pairs are output. These language identifiers use a counting scheme (Sections 3.2.3

and 3.3) to find the language or languages that best match the document.

3.2 Algorithmic Analysis

The following section evaluates various design choices made during the design of

HAIL to create an algorithm that follows the constraints detailed in Section 3.1.1.

The trade-offs and optimizations for hardware implementation were analyzed through

experiments performed with software used to simulate the hardware implementation

of HAIL.
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In each section, a new trade-off or optimization is described and justified. Experi-

ments used to test the validity of the design decision(s) are presented with figures

and analysis. The primary metrics used to measure the effects of design decisions are

accuracy (the percentage of documents correctly classified) and latency (the average

number of bytes that must be sampled before the algorithm’s final decision on a doc-

ument’s language is reached). Other metrics relating to the efficiency of a hardware

implementation will be presented as needed.

During the experiments that were performed, it was assumed that certain algorith-

mic parameters were independent from one another. A change in a parameter does

not alter the effects of parameters from which it is independent. Specifically, the

parameters adjusted in each of the following sections are assumed to be independent

from parameters in other sections, but not independent from parameters within the

same section. Following this assumption, each of the following sections adjust one

or two parameters while keeping all others constant. In each subsequent section, the

optimal parameters determined in previous sections are applied. Table 3.1 lists the

parameters applied in subsequent sections.

Table 3.1: Parameters applied during algorithmic analysis
N-Gram Address Memory Trend Permanent

Section Length Bits Width Depth Counters
3.2.1 Varied 19 Unlimited No trend Unlimited
3.2.2 5 Varied Varied No trend Unlimited
3.2.3 5 19 4 Varied Varied
Final 5 19 4 3 16

All experiments presented in this section were performed on data in 34 languages.

Details on the data set are shown in Section A.2. Unless otherwise noted, results pre-

sented in this section are the averages of 50 runs which each use a different randomly-

selected training set of 20 KB of data from each language. Documents used in the

experiments averaged 500 bytes in length.

3.2.1 N-Gram Size

Software-based language identification algorithms typically attempt to process data

as accurately as possible within a “reasonable” amount of time. Unlike HAIL, such al-

gorithms do not attempt to operate at multiple Gigabits per second. They frequently

extract and analyze multiple lengths of n-grams within a document. In order for

HAIL to analyze multiple lengths of n-grams, a system must either contain numerous
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parallel memory banks (which requires a fairly complex platform) or must perform

multiple lookups into the same memory bank at each byte offset (which requires a

large amount of time). HAIL makes use of only one n-gram length for language identi-

fication. When the system processes data, it extracts n-grams of a predefined length,

hashes them into a memory address and looks them up in the system’s memory.

Table 3.2: Letter Frequencies in English, French, German, and Spanish [58]
English French German Spanish

Letter Frequency Frequency Frequency Frequency
A 8.151% 8.147% 6.506% 12.529%
E 13.105% 17.564% 16.693% 13.676%
M 2.536% 2.990% 3.005% 3.150%
N 7.098% 7.322% 9.905% 6.712%
R 6.832% 6.291% 6.539% 6.873%
S 6.101% 8.013% 6.754% 7.98%
X 0.166% 0.350% 0.022% 0.221%

The choice of n-gram length can drastically impact the system’s performance. Shorter

n-grams typically appear frequently in multiple languages. Consider Table 3.2 which

shows the frequency of occurrence for seven letters (n-grams of length one) in English,

French, German, and Spanish. While some letters are useful for distinguishing these

languages from one another, many others are not. For instance, the frequency of the

letter A could be used to distinguish German from Spanish, English, and French.

However, the frequency of occurrence of the letter A in English and French is nearly

identical and not useful for distinguishing English documents from French documents.

The usefulness of single-byte n-grams grows when comparing unrelated languages,

especially languages that are represented with different character encodings. As will

be shown below, using these n-grams is much more accurate than randomly guessing

the language; however, there are other lengths of n-grams that achieve much higher

accuracy.

At the other extreme, long n-grams are also relatively inaccurate. As the n-gram

length increases, the number of possible n-grams increases exponentially. In addition

to this, the probability of occurrence for each individual n-gram decreases. Two

consequences ensue. First, n-grams encountered during normal operation are less

likely to have been seen during the training of the system. Second, many languages

contain short words that occur frequently and are very useful for identifying the

language in question. In English, examples include the, and, for, this, and that. Long

n-grams will contain these words, but such n-grams also contain surrounding bytes.

There are a large number of n-grams that can be formed with the addition of these
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surrounding bytes and reduce the frequency of any individual n-gram occurring in a

language.
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Figure 3.1: The effect of n-gram size on accuracy of language identification

Experiments were performed using HAIL simulation software to observe the effect of

changing the n-gram length from one byte to ten bytes. Figures 3.1 and 3.2 present

the most relevant portion of these results. Full results for the experiments are shown

in Figures D.1 and D.2.

Figure 3.1 shows the change in accuracy as the n-gram size is altered from three to

eight bytes. Accuracy jumps sharply between 3-grams and 4-grams, then increases

slowly to a peak when 5-grams are used. The accuracy declines slowly when 6- and 7-

grams are used, then plummets significantly when using 8-grams. This is consistent

with prior analysis that short and long n-grams are inferior to those of a medium

length.
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Figure 3.2: The effect of n-gram size on latency of language identification

Another measure of a design decision’s effectiveness is latency, which was defined in

Section 3.1.1. Figure 3.2 shows the effect of n-gram size on latency. The average

latency, measured in bytes, is higher for large and small n-grams. This is to be ex-

pected; as stated earlier, when shorter n-grams are used, confusion can exist between

similar languages. When longer n-grams are used, hash collisions and words not en-

countered during training increase and a good evaluation of the language is difficult

to make.

Because of these reasons, it comes as no surprise that 5-grams, in addition to resulting

in the highest accuracy, also result in the lowest latency. 4-grams have a marginally

higher latency, although the differences in latency between other lengths of n-grams

are more pronounced.

It should be pointed out that the differences in accuracy and latency between 4-

grams and 5-grams are so small that they are probably insignificant. While it is
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likely that either length could be used, available data indicates that 5-grams offer a

slight advantage; therefore, they will be used in the remainder of experiments during

this chapter.

3.2.2 Memory Configuration

The FPGA implementation of HAIL makes use of low-latency random access mem-

ory such as SRAM to store the languages associated with n-grams found during

training. Many varieties of SRAM can be accessed every clock cycle, allowing for

high throughput when processing on high-speed streaming data. However, SRAM

has a significantly lower capacity than higher-latency memory technologies such as

SDRAM. Due to the small memory space, hash collisions can become a common

occurrence and steps must be taken to mitigate the effects of the collisions.

Many software-based hash mechanisms resolve hash collisions through techniques

such as chaining or open addressing [28]. In a chaining system, each location in a

hash table references a linked list of all items that hash to the location in question.

Collisions are resolved by stepping through the linked list until the relevant item is

found or the end of the list is reached. In an open addressing system, collisions are

resolved by searching through alternate locations in the hash table until the relevant

item is found or an unused memory location is encountered. The alternate locations

are determined by a probing sequence, which dictates the next address to search when

a collision occurs.

A drawback of chaining is that memory size is not fixed; typically, memory for linked

lists is dynamically allocated and can thusly be indefinitely large. This becomes a

problem when using relatively small memory elements such as SRAM. A drawback

of both chaining and probing is that the worst-case lookup time is O(n), where n

is the number of items stored in the hash table. When performing rapid processing

on streaming data, it is desirable to perform tasks in O(1 ), or a constant amount of

time.

Pursuant to this constraint, HAIL does not use these collision resolution mechanisms

in the hash table used to store the languages of n-grams. All n-gram language lookups

are implemented by performing a single hash function over the n-gram and using the

resulting hash to reference memory. Without a collision resolution mechanism, other

measures must be taken to minimize the accuracy loss caused by hash collisions.
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Another drawback of the reconfigurable hardware implementation is memory width.

Experiments in the previous section assumed that memory was infinitely wide. While

this assumption can be made in software by using a wide two-dimensional array to

store all languages associated with a hashed n-gram, such an assumption cannot be

made in an efficient hardware implementation. For purposes of throughput, each

hashed n-gram can only be looked up a limited number of times in memory. Since

physical memory banks are limited in width, only a limited amount number of lan-

guage identifiers can be stored at each memory location.

For purposes of implementing HAIL on a wide variety of platforms, only a small

number of memory banks are assumed to be available. Memory width could effectively

be indefinite by incorporating a large number of parallel memory banks; however, this

can be complex and limit HAIL’s implementation to highly specialized platforms.

Experiments in the remainder of this section assume strict constraints on the amount

of memory available to an implementation of HAIL in reconfigurable hardware. It is

assumed that time and resources are limited to the extent that each hashed n-gram

can be looked up only once in a bank of memory. The bank of memory simulated in the

experiments is the SRAM available on the Field-Programmable Port eXtender (FPX),

the platform on which HAIL is implemented in Chapter 4. This 2.25 Megabyte SRAM

bank contains 19 address and 36 data lines, resulting in 524,288 memory locations

that are 36 bits wide.

If language identifiers are 9 bits in size (allowing for 511 possible language/character

encoding pairs while leaving zero to indicate “no language”), the width of SRAM

allows four identifiers to be stored at a single memory location. An experiment was

performed to establish which of the following three configurations would produce the

highest accuracy and lowest latency:

1. Hash n-grams to a 19-bit address, and read four language identifiers from mem-

ory that correlate to the hash.

2. Hash n-grams to a 20-bit address. Use 19 bits to read up to four language iden-

tifiers from memory, and use the remaining bit to select two language identifiers

that correlate to the hash.

3. Hash n-grams to a 21-bit address. Use 19 bits to read up to four language

identifiers from memory, and use the remaining 2 bits to select the identifier

that correlates to the hash.
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The advantage of configuration 1 is increased tolerance of hash collisions and n-

grams common to multiple languages. This configuration can accommodate up to

four situations in which different n-grams used in different languages hash to the

same value, or situations in which a particular n-gram is common in more than one

language.
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Figure 3.3: The effect of memory configuration on accuracy of language identification

The advantage of configuration 3 is a reduction in the total number of hash collisions,

as it provides four times as many addresses as configuration 1. However, this con-

figuration cannot resolve hash collisions or n-grams common to multiple languages;

only the language most strongly associated with a hashed n-gram can be stored in a

memory location.

Configuration 2 is a compromise, as it can resolve two collisions or n-grams common

to multiple languages while providing twice as many addresses as configuration 1.
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In accordance with Table 3.1, the experiments to investigate the effect of these con-

figurations used an n-gram length of five bytes, no trend depth and an unlimited

amount of permanent counters (the latter two terms are explained in Section 3.2.3).
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Figure 3.4: The effect of memory configuration on latency of language identification

Figure 3.3 shows the effect of memory configuration on the accuracy of language iden-

tification. As seen in the chart, the greatest accuracy is achieved using configuration

2. However, this result is so close to that of configuration 1 that differences between

the two are likely insignificant. Configuration 3, on the other hand, is significantly

inferior in accuracy.

Figure 3.4 shows the effect of memory configuration on latency. Lowest latency is

achieved with configuration 1, while the highest latency is achieved with configuration

3. The difference between configurations 1 and 2 is fairly small. However, this

difference is much more pronounced than that shown between the two configurations

in Figure 3.3.



29

99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

100

2 6 10 14 18 22 26 30 34

Number of Languages

A
cc

ur
ac

y 
(P

er
ce

nt
)

19 address bits, 4 entries per address

20 address bits, 2 entries per address

21 address bits, 1 entry per address

Figure 3.5: The effect of number of languages and memory configuration on accuracy
of language identification

The relatively poor performance of configuration 3 makes the case that, for this

particular application, added tolerance for hash collisions is more important than a

somewhat larger memory space. If more languages were introduced to the system,

the amount of training data to be stored in the hash table would increase. This would

naturally lead to more hash collisions. The similar performances of configurations 1

and 2 may be caused because hash collisions are not prevalent enough to warrant

tolerance for more than two collisions to a particular location.

Figure 3.5 partly verifies this speculation. Configuration 3 mirrors the other two

configurations for approximately eight languages or fewer. At this point, its accuracy

falls off significantly from the previous two configurations. While the amount of data

available does not show one of the other two configurations falling away from the
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other, it is not unreasonable to speculate that such an occurrence may happen when

more languages are added.

The experiment that generated Figure 3.5 involved 33 experimental runs. Each run

differed in the number of languages used, a value that was varied from two to 34.

Languages in each run were chosen at random and training was performed. The HAIL

software was then run three times, each time using a different memory configuration.

The process was repeated 100 times for each differing number of languages, resulting in

9,900 total runs of the HAIL software. Results from each combination of trend depth

and number of languages were averaged, producing 99 data points; three different

memory configurations, each analyzed from two to 34 languages.

Based on results obtained in this section and speculation based on Figure 3.5, it was

assumed that configuration 1 holds an advantage over other configurations. Thus,

configuration 1 will be applied during the remainder of this chapter.

3.2.3 Counting and Trend Establishment

A language identification system could require one counter for each language recog-

nized by the system. If such a system recognized several hundred languages, it would

require several hundred counters. In order to sort or to find the largest value among

these counters, a number of comparisons no less than the total number of counters

must be performed.

In a hardware implementation, a large number of comparisons can be performed in

parallel; however, this can consume a significant portion of resources on an FPGA.

Alternatively, a hardware implementation can perform the required comparisons seri-

ally. This alternative is inappropriate for hardware intended to operate as quickly as

possible on streaming data, since comparing hundreds of counters can require several

hundred to several thousand clock cycles.

Another difficulty that arises from maintaining hundreds of counters is the amount

of context information that must be associated with each document. When perform-

ing language identification on a medium such as streaming network data, it can be

expected that packets containing data from multiple documents will be interleaved

with one another. In order to analyze entire documents, information on the state of

each document must be maintained when processing the packets of other documents.

Maintaining several hundred counters implies that several hundred counters must be



31

stored when processing other documents. Not only does this require a large amount

of memory, but the time spent reading from and writing to memory can be significant.

An optimization has been created that drastically reduces the number of counters

needed to track languages. It was observed that only a handful of counters are

needed to classify a document into one of many languages.

This process is carried out by a trend register, which is used to track successive

n-grams that represent the same language. As hashed n-grams are looked up in

memory and the corresponding language identifiers are output, the trend register

counts consecutive appearances of the same language. Once this counter reaches

a particular threshold (referred to as the trend depth), the language in question is

granted access to one of several “permanent” counters. From that point onward, all

occurrences of that language will increment the corresponding permanent counter.

The relatively small number of permanent counters drastically reduces the amount of

hardware resources required.

It should be noted that the addition of this trend register system implies that HAIL

is not a purely naive Bayes classifier, which was described in Section 2.3.3. Since the

trend register is based on the assumption that n-grams closely associated with a given

language tend to occur close together, it adds an element to HAIL that is not naive

Bayesian in nature. However, once a language creates a sufficiently large trend, all

future occurrences of the language in question are treated in the fashion of a naive

Bayes classifier.

The trend depth is a design optimization that was determined experimentally. If

the trend register threshold is set too low, the permanent counters can be affected

by noise or the results of hash collisions. If the threshold is set too high, the true

language of a document may not ever be granted access to a permanent counter.

The number of permanent counters is another experimentally-determined design op-

timization. If too few permanent counters are used and and large amounts of noise

and/or hash collisions are present, the true language of a document may not gain

access to a permanent counter. If too many permanent counters are used, accuracy

and latency do not suffer; however, the sort time and resource reductions granted by

the trend register are depreciated.

Due to the close relationship between trend depth and the number of permanent

counters, it was not assumed that these two parameters are independent. In fact,

the number of permanent counters required is dependent on the trend depth; as the
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trend depth is increased, the threshold for granting access to a permanent counter

increases and the number of required permanent counters decreases.

The nature of the trend register system requires a different experimental configuration

from that of the previous two sections. The benefit of a trend register system is not

fully realized without a large number of languages. However, the corpus of data

available for the experiments performed in this chapter contains only 34 languages.

While a certain number of permanent counters may be suitable for 34 languages and a

particular trend depth, that number of permanent counters may be insufficient for 511

languages. Therefore, the change in the number of permanent counters required as

the number of languages is altered must be recorded and used to predict the number

of permanent counters required at 511 languages.

To achieve this, 33 experimental runs were performed. Each run differed in the

number of languages used, a value that was varied from two to 34. Languages in

each run were chosen at random and training was performed. The HAIL software

was then run five times, each time using a different trend depth (which was varied

from one to five consecutive n-grams). The process was repeated 100 times for each

differing number of languages, resulting in 16,500 total runs of the HAIL software.

Results from each combination of trend depth and number of languages were averaged,

producing 165 data points: five different trend depths, each analyzed from two to 34

languages.

Once these data points were obtained, linear regression (see Section 2.3.1) was used

to fit a line to the 33 data points representing each trend depth. The equation for

each line was used to predict data points for each trend depth when the number of

languages is increased to 511.

A new metric is presented in Figure 3.6. It is an estimate of the number of permanent

counters required for a particular configuration when 511 languages are used. The

metric is obtained by observing the permanent counters and noting when, on average,

the actual language of a document is granted access to a permanent counter. A value

of one indicates that the actual language is, on average, the first to be granted a

permanent counter within a document; likewise, a value of five indicates that the

actual language is typically the fifth to be granted access to a permanent counter.

The metric can therefore provide a good estimate of the number of permanent counters

required for a particular configuration.

Figure 3.6 shows a clear difference between different configurations. While a trend

depth of one n-gram (effectively no trend register) would on average require over 18
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Figure 3.6: The effect of trend depth on permanent counters required, estimated at
511 languages

permanent counters, this number drops off sharply as the trend depth is increased.

A trend depth of five consecutive n-grams requires under four permanent counters.

While a particular trend depth may lend itself to a small number of permanent

counters, lower resource utilization is fairly meaningless if accuracy and latency are

significantly compromised. Therefore, linear regression was also used to predict these

two metrics for different trend depths when 511 languages are used.

Figure 3.7 shows the accuracy of each trend depth from one to five, based on the

estimation of data points at 511 languages. Note that a trend depth of five, while

requiring a very small number of permanent counters in Figure 3.6, is less accurate

than shorter trend depths by a relatively large margin.
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Figure 3.7: The effect of trend depth on accuracy of language identification, estimated
at 511 languages

As seen in the figure, a configuration using a trend depth of three consecutive n-

grams provides the highest accuracy. However, like several other charts throughout

this chapter, this result is very close to other observations and is not significantly

higher than trend depths of one, two or four consecutive n-grams.

Figure 3.8 illustrates the latency, projected at 511 languages, as the trend depth is

altered from one to five consecutive n-grams. The latency follows a general upward

trend, with the exception of a trend depth of one; this is due to the threshold being

set so low that many languages are granted access to permanent counters, making it

simpler for other languages to gain leads in their counts. For larger trend depths, la-

tency increases because of the higher threshold needed for any language to be granted

a permanent counter.
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Figure 3.8: The effect of different HAIL configurations on latency of language identi-
fication, estimated at 511 languages

Trend depths of two and three consecutive n-grams are clearly superior in terms of

latency. Based on the results, a depth of two maintains a slight advantage. Again,

this is a trivial difference and the respective latencies are obviously very similar.

Choosing an optimal trend depth based on these results is not an entirely clear deci-

sion. However, it is worth noting that a trend depth of three was, in the experiments,

the most accurate; it required under two permanent counters more than a trend depth

of five (the optimal depth in terms of permanent counters); and it was virtually tied

for the lowest latency. Based on these observations, a trend depth of three will be

used in subsequent sections of this paper.

Choosing a number of permanent counters to use is also not a simple conclusion that

can be derived from these results. While Figure 3.6 showed that five permanent coun-

ters (rounded up from 4.47) is sufficient in the average case, it is obvious that some
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documents will require more counters. In subsequent sections, 16 permanent counters

will be used. This value is significantly larger than the average of 4.47 and can be

expected to accommodate a wide variety of documents. Furthermore, comparing the

counters to determine the largest can be done with only fifteen comparisons. This can

be performed with only four levels of comparators by comparing adjacent counters

and propagating the larger counter to the next level of comparators until the largest is

found. Conceptually, this is very similar to a single-elimination tournament bracket.

Notes on Linear Regression

Linear regression, applied throughout this section to estimate data points when 511

languages are used, works best when a series of data points is roughly linear. When

a set of data follows a nonlinear distribution, linear regression cannot be expected to

provide accurate results.

Figures D.3, D.4 and D.5 show the changes in permanent counters required, accuracy

and latency as the number of languages is adjusted from two to 34. As seen in

Figure D.3, the number of permanent counters required appears to grow in a less-

than-linear fashion. This is evidenced by the thick straight lines placed on the chart;

a line constructed to closely fit the first half of the data points moves above the

second half of data points. (This does not appear true for trend depths of four and

five, although the curves may be only locally linear.) If these less-than-linear trends

continue through 511 languages, the estimates shown in Figure 3.6 are not entirely

accurate. Rather, they would be upper bounds on the average number of permanent

counters required.

Figure D.5 is very similar. The curves, other than that for a trend depth of one,

appear to be less-than-linear. This would imply that latency figures in Figure ?? are,

again, upper bounds. Figure D.4 is an exception to the previous two graphs. The

curves appear to oscillate evenly in a small range about the straight line plotted on

the graph. If this linear tendency holds, the results in Figure 3.7 can be taken as

reasonably accurate.
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3.3 Assignment of Memory Slots

Using the trend register system, problems arise when a trend depth of three consec-

utive n-grams is coupled with four language identifiers per memory location.1 This

requires a significant amount of parallel and sequential logic, such as:

• Stage 1: Compare each of the language identifiers exiting memory to the

languages in each of the 16 permanent counters to see if the languages are

already represented.

• Stage 2: Increment permanent counters corresponding to languages that are

already represented. Send languages that are not currently represented to the

trend register.

• Stage 3: Perform 32 comparisons of language identifiers between memory slots

at different stages of the trend register.

• Stage 4: Perform 64 comparisons between the outputs of Stage 3 to identify

trends of three n-grams representing the same language.

• Stage 5: Identify and select the 0 to 4 languages from Stage 4 that formed a

trend.

• Stage 6: Compare each language from Stage 5 to the languages in each of the

16 permanent counters to see if any counters are unused. Also check if any of

these languages have become represented in the permanent counters during the

time that has elapsed since Stage 1 was performed.

• Stage 7: If space is available in the permanent counters and the languages

have not become represented in the permanent counters during the time that

has elapsed since Stage 1 was performed, populate the permanent counters

with the newly-discovered trends.

Figure 3.9 illustrates Stage 3 of the aforementioned process and demonstrates the

number of comparisons that must be made between different languages within the

trend register system. Language identifiers in the first and last stages of the trend

register must be compared to four other language identifiers, while those in the second

stage must be compared to eight other language identifiers.

1Each memory location in the SRAM device being simulated is 36 bits wide. Up to four 9-bit
language identifiers are packed into every memory location. For clarity, a 9-bit section within a
memory location will be referred to as an memory slot.
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The figure does not illustrate the extra logic needed to shift each language identifier

through different stages of the trend register as additional n-grams are processed. It

also does not illustrate the comparisons in Stage 4 needed to identify complete trends

(such as the trends formed by German and Dutch language identifiers in the figure)

or the many comparisons to permanent counters carried out in Stages 1 and 6.

Within an FPGA, there are a limited number of logic components as well as a finite

amount of interconnect available to transmit information between components. Per-

forming the seven-stage process described above requires a significant amount of both

logic and interconnect and in modern FPGAs would be infeasible to carry out in a

small pipeline, much less a single clock cycle.

This problem is exacerbated if more than one n-gram is processed in any given clock

cycle (see Section 4.3.2). Figure 3.10 illustrates a scenario in which two n-grams are

processed simultaneously. Since the language identifiers associated with each n-gram

must be compared with the preceding two sets of language identifiers, the number of

comparisons required in the aforementioned process is increased significantly.

3.3.1 Slot Mapping

Figure 3.11 illustrates a situation in which language identifiers, if they are associated

with a hash value, always appear in the same memory slot. As shown in the figure,
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the Eng (English) language identifier only appears in the first memory slot, the Dut

(Dutch) language identifier only appears in the fourth memory slot, and so forth. In

this situation, searching for a trend requires only a comparison of language identifiers

originating from the same memory slot.
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Figure 3.11: Searching for a trend
when language identifiers can appear
in only one memory position, with no
data loss
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Figure 3.12: Searching for a trend
when language identifiers can appear
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To simplify the process of identifying trends, it was decided that a system such as this

must be enacted; that is, whenever a language identifier appears in a memory location,

it will always appear in the same memory slot. To this end, a mapping of languages

to memory slots must be created. However, such a system will invariably cause some

data loss. Figure 3.12 illustrates the same situation as Figure 3.11, except Urd (Urdu)

and Ara (Arabic) were mapped to the same memory slot as Ger (German) and Dut

(Dutch). In cases such as this, the language identifiers more closely associated with

a particular hash value will be stored in the corresponding memory location, while

those less closely associated will not appear.

Due to the inevitable data loss, the mapping of language identifiers to slots must

be carefully created. For instance, the Spanish and Portuguese languages are closely

related [62] and will likely be associated with many of the same hash values. If they

were mapped to the same memory slot, a large amount of loss would occur. Thus,

the mapping should work to minimize the amount of data loss.

Figure 3.13 shows a model of memory if a mapping algorithm were not applied. In

this simplified example, overlap between any two languages can be calculated as the

number of times that a particular language identifier appears whenever a second
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Figure 3.13: Layout of memory before language slot mapping

language language identifier appears in the same memory location. The layout of

memory in the figure creates three categories of language pairings:

1. Language pairs which overlap twice: Dutch and English, English and

French, English and German, German and Russian, Italian and Spanish.

2. Language pairs which overlap once: Danish and Dutch, Danish and Eng-

lish, Danish and German, Danish and Russian, Danish and Swedish, Dutch and

German, Dutch and Russian, English and Italian, English and Russian, English

and Spanish, English and Swedish, French and German, French and Italian,

French and Spanish, French and Swedish, German and Swedish, Italian and

Russian, Russian and Spanish.

3. Language pairs which never overlap: Danish and French, Danish and

Italian, Danish and Spanish, Dutch and French, Dutch and Italian, Dutch and

Spanish, Dutch and Swedish, French and Russian, German and Italian, German

and Spanish, Italian and Swedish, Russian and Swedish, Spanish and Swedish.

The optimal assignment of languages to memory slots would ensure that language

pairs in categories 1 and 2 are never assigned to the same memory slot, while language

pairs in category 3 are freely assigned to the same memory slots. If this is not possible,

language pairs in category 2 could be assigned to the same memory slots, but as

infrequently as possible. Language pairs in category 1 should be assigned to the same

memory slot as a last resort.
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Figure 3.14: Layout of memory after language slot mapping

Figure 3.14 shows a possible mapping of languages to memory slots. As shown,

most assignments (German and Italian, Dutch and Spanish, Dutch and Swedish,

Spanish and Swedish, Danish and French) are chosen from category 3 presented above.

However, there was no feasible position in which to place Russian without choosing

at least one language pair from category 2. In Figure 3.14, Russian and English are

assigned to the same memory slot, despite the fact that they both appeared in memory

address 0 in Figure 3.13. In the figure, English was placed in this slot (note the slot

containing the word English that is not written in boldfaced text). In practice, the

decision as to which language is placed in a conflicting slot must be made based on

the language more strongly associated with the particular memory address.

While a good assignment of languages to memory slots was found easily in the afore-

mentioned example, the situation is more complex in practice. The SRAM device

utilized in Chapter 4 contains 524,288 memory locations, and the current implemen-

tation of HAIL supports as many as 511 languages. Some overlap between every

language is all but assured, and some data loss will occur. An exhaustive method to

find the best assignment of languages to memory slots is not feasible.

The number of assignments of languages to memory slots can be calculated as Stirling

numbers of the second kind [24]. The formula for a Stirling number of the second

kind, which calculates the number of ways n elements can be divided into k sets, is

given in Equation 3.1.
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S(n, k) =
1

k!

k−1∑

i=0

(−1)i


 k

i


 (k − i)n (3.1)

For this particular problem, there can be multiple values of k. That is, the 511 possible

languages can be split into one set (in which all of the languages are assigned to one

memory slot) to as many as four sets. Thus, to calculate all possible sets, Equation

3.1 must be calculated four times, varying k from one to four. In practice, however,

any feasible solution (for four or more languages) will achieve the least amount of

overlap by spreading languages across all four memory slots.

If 34 languages (the number used in experiments throughout this chapter) are used,

there are approximately 1.23 ∗ 1019 ways to assign the languages to four memory

slots. If 511 languages are used, there are approximately 1.87 ∗ 10306 ways to assign

the languages to memory slots. Even if one billion assignments of 34 languages to

four memory slots could be examined per second, it would require approximately

390 years to evaluate all of them. This figure grows to 5.94 ∗ 10289 years when 511

languages are used.

Therefore, if slot mapping is going to be performed, a non-exhaustive approach must

be used.

3.3.2 Slot Clustering

A solution that makes use of data clustering (see Section 2.4) was used to create low-

overlap memory slot mappings. The clustering process takes place during training and

uses the principle of expectation maximization to arrive at an memory slot mapping

that provides low overlap in a reasonable amount of time.

During the training process (outlined in Section 3.1.2), a two-dimensional array is

built containing the frequency at which every hashed n-gram appears in each lan-

guage. For every hashed n-gram, the average frequency is subtracted from each

language’s respective frequency for the n-gram. This serves to eliminate weak asso-

ciations between languages and n-grams.

The overlap between all languages in this two-dimensional array is then calculated.

Overlap between two languages is calculated as the sum of frequencies, in both lan-

guages, across all hashed n-grams where both languages have a presence. Figure 3.15
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Figure 3.15: Calculating overlap between languages

shows a brief example in which overlap is calculated among four languages. (The ex-

amples shown in Figures 3.13 and 3.14 presented a simplified version of this process.)

To calculate the overlap between English and French, for example, the frequencies for

English and French are summed in all locations where both frequencies are greater

than zero. In this case, frequencies at memory locations 1, 3, and 4 are not added

because one or both of the frequencies are zero.

Once overlap between all languages is computed, the clustering process begins. This

is done by expectation maximization (see Section 2.4.1), a repeated process of “expec-

tation” (evaluating the present state of the system) and “maximization” (changing

the state of the system in order to move it closer to its optimal state).

Initially, languages are assigned at random to the memory slots. The total overlap

among all slots is calculated by summing overlap between all languages in each slot,

then summing the results from each slot. This is the “expectation” step as it is an

evaluation of total overlap, which is the parameter to be optimized using expectation

maximization. The lowest possible total overlap is preferable, as it will reduce the

data loss when languages are assigned to memory slots.
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This is followed by the “maximization” step. One language identifier moved at ran-

dom to a different memory slot. The expectation step is performed again to determine

if the change was acceptable. If not, the system is returned to its previous state; if

the change was acceptable, the new state replaces the previous state. The cycle of

expectation and maximization steps is repeated for a fixed number of iterations.

The acceptability of a change, as alluded to in the previous paragraph, is determined

through the process of simulated annealing (see Section 2.4.2). While a standard

expectation maximization process will always converge to the nearest local optimum

by only allowing beneficial changes during the maximization step, simulated annealing

allows changes during early stages of the process that move the system away from

an optimal state. This is performed in order to provide a chance to bypass a local

optimum and converge on a global optimum.
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Figure 3.16: An example of the clustering process

Figure 3.16 illustrates a simple example of the clustering operations described above.

The figure should be read left-to-right, then top-to-bottom. This example uses the

language data from Figure 3.15. In the first step, the languages are randomly assigned

to memory slots (the example uses only two slots) and the overlap between languages

in each slot is calculated.

In the second step, Danish was chosen at random and moved to another memory slot.

The presence of Danish and Russian in the same slot increases the overlap. However,
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such changes are allowed to some extent during the clustering process because of

simulated annealing.

In the third step, French was randomly chosen and moved to the second memory

slot. The three languages in the second slot provide the worst total overlap score yet.

However, the overlap is only marginally worse than in the second step. Again, such

a change can be allowed because of simulated annealing.

In the final step, Russian was randomly chosen to be moved to the first memory slot.

This is the best total score achieved at this point and in this case, it is the global

optimum. While this state could have been reached in only one step by moving

French from its original assignment to the second memory slot, the random nature of

expectation maximization does not guarantee a timely convergence towards a local

optimum. Furthermore, the addition of simulated annealing does not guarantee that

the global optimum will be found; it merely improves the chance.
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Figure 3.17: Loading memory after clustering is performed

Figure 3.17 provides a continuation of Figures 3.15 and 3.16. Once languages are

assigned to particular memory slots, memory can be loaded with the appropriate

language identifiers. At each memory location, a memory slot is populated with the

language that has been assigned to the slot and is associated more strongly with the

memory location than other languages in its slot.
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Not only does this cause some data loss, but it also means that the languages stored

at every memory location are not necessarily the languages that are associated most

strongly with the memory location; rather, they are the languages from their memory

slot that are most strongly associated with the memory location.

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

2 6 10 14 18 22 26 30 34

Number of Languages

P
er

m
an

en
t C

ou
nt

er
s 

R
eq

ui
re

d

Figure 3.18: The number of permanent counters required as the number of languages
is adjusted from two to 34

The nature of language slot clustering changes the definition of “permanent counters”

discussed in Section 3.2.3. In practice, comparing four parallel trend registers to the

languages associated with sixteen different counters is logic-intensive and not suitable

for a high-speed implementation in FPGAs, most notably in older FPGA devices.
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To reduce the amount of required logic further, the implementation using slot cluster-

ing still uses sixteen permanent counters, which was decided in Section 3.2.3. How-

ever, these counters are divided so that the trend register associated with each mem-

ory slot receives its own four “private” permanent counters. These counters can be

populated only with language identifiers from the corresponding memory slot.

This still appears to provide enough counters. Figure 3.18 estimates the number of

permanent counters required per memory slot as the number of languages is increased

from two to 34. Once six or more languages are used, the number of permanent

counters required increases, albeit very slowly. Through linear regression to 511

languages, it was estimated that, on average, 1.26 permanent counters are required per

SRAM slot in order to ensure that the true language is granted access to a permanent

counter. Maintaining four permanent counters per slot may be excessive for most

documents, but it is still implemented easily and useful for accurately identifying

outlier documents which may require more permanent counters.

The compromises presented throughout this section are of course less than optimal.

However, after slot clustering is performed, a memory configuration with 19 address

bits and up to four entries per address remains highly accurate and low in latency.

Results for accuracy and latency are presented below.

3.3.3 Summary

Figure 3.19 compares the accuracy of different HAIL configurations presented in this

chapter when 34 languages are used. The highest accuracy was achieved in Section

3.2.1, in which memory was unlimited in width. However, adjusting to the real-world

constraint of a fixed memory width in Section 3.2.2 decreased accuracy noticeably.

Curiously, accuracy increased in Section 3.2.3. This may be due to unexpected ben-

efits conferred by the trend register. For instance, without a trend register, words

not encountered during training can hash to a populated memory location and cause

inaccurate data to be counted. This can skew results. The trend register system guar-

antees that hash collisions such as these are not counted unless the same language

identifier appears in several successive hashed n-grams.

Another benefit of the trend register is to eliminate the effect of words and phrases

that have been adopted outside their native language. For instance, the phrase coup

d’état is occasionally encountered in the English language despite being French in
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Figure 3.19: Accuracy of HAIL as additional constraints are applied

origin. A trend register helps to minimize the effect of words and phrases such as

this, provided that they are used sparingly.

Adding clustering to the trend register system decreases accuracy by a small amount.

This is to be expected, as once clustering is introduced, language identifiers at each

memory location are only indicative of the best language identifier for each slot.

However, it should be noted that using slot clustering remains more accurate than

only storing one language identifier at each memory location (refer to Figure 3.3 in

Section 3.2.2). This is significant because storing only one language identifier at each

memory location is the only way to avoid the use of slot clustering in a trend register

system. Therefore, the use of slot clustering is more accurate than the alternative.

Figure 3.20 compares the latency of the same configurations displayed in Figure 3.19.

The latency is seen increasing steadily as more constraints are added. This is un-

derstandable; in figures provided throughout this chapter, a decrease in accuracy is



49

8.04 8.36

10.83

12.17

0

2

4

6

8

10

12

14

Unlimited
Memory Width

Constrained
Memory Size

Trend Register
System

Slot Clustering

Constraints Applied

L
at

en
cy

 (
B

yt
es

)

Figure 3.20: Latency of HAIL as additional constraints are applied

often (but not always) accompanied by an increase in latency. This is because a less

accurate configuration is likely to experience more “confusion” and thus take longer

to arrive at a conclusion when compared to a more accurate configuration.

The increase in latency between the second and third configurations (despite corre-

sponding to an increase in accuracy in Figure 3.20) can be explained by the nature

of the trend register system. This system makes it more difficult for a language to

be granted a counter. A threshold of several consecutive n-grams representing the

same language must be reached. Without a trend register, the correct language can

be counted as soon as it is encountered.

Despite the various constraints applied, however, the latency increased by only a little

over four bytes from the first configuration that was evaluated to the last.
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Chapter 4

HAIL Implementation

An implementation of HAIL has been created for the Field-programmable Port eXten-

der (FPX) [48, 49], an open hardware platform developed at Washington University

in St. Louis. The FPX is used extensively to process streaming network data. Several

applications have been developed for use on the FPX, including firewalls [50], Bloom

filters [37] and regular-expression matching engines [54] for deep packet inspection,

and routers for enforcing quality-of-service (QOS) on high-speed networks [84].

As the name implies, the FPX was originally created to “extend” ports within a

network switch by being placed between the switch’s line card interface and switch

fabric. In this configuration, the FPX can expand the utility of the switch by providing

various functions.

While the implementation of HAIL has been implemented on this particular platform,

HAIL is certainly not limited to use only on the FPX. The design is suitable for

implementation on a wide variety of platforms.

4.1 The FPX Platform

The FPX platform consists of several main devices: The Reprogrammable Applica-

tion Device (RAD), the Network Interface Device (NID), three banks of Zero-Bus

Turnaround (ZBT) SRAM, two banks of SDRAM, and two Universal Test and Op-

erations Physical Interface for ATM (UTOPIA) [2] network interfaces.

The RAD is a Xilinx Virtex XCV2000E-8 FPGA that serves as the primary com-

ponent of the FPX. Application modules such as HAIL are loaded into the RAD in

order to perform data processing. The RAD is connected to two 2.25 MB banks of
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ZBT SRAM devices that provide low-latency memory access and two 64 MB banks

of SDRAM that provide high-volume data storage.

Figure 4.1: The Field-programmable Port eXtender (FPX)

The NID is a second FPGA that routes data between the RAD and the FPX’s two

external interfaces. It also programs the RAD’s FPGA bitfile. The NID is a Xilinx

Virtex XCV600E FPGA. The NID is connected to a bank of ZBT SRAM for buffering

the bitfile that programs the RAD.

Data travels between the RAD, NID, and UTOPIA interfaces in Asynchronous Trans-

fer Mode (ATM) cells [56]. ATM defines 53-byte cells as a basic data encapsulation

unit, and can be used to transmit IP packets [47, 41]. An ATM cell contains a 5-byte

header and 48 bytes of payload data. The header includes a Virtual Path Interface

(VPI) and Virtual Circuit Interface (VCI) to route data between destinations. These

two pieces of header information are used by the NID to route data.

The function of the NID hardware is remotely controlled over a network with a pro-

gram called the Networked Configurable Hardware Administrator for Reconfiguration

and Governing via End-systems (NCHARGE) [71]. NCHARGE sends commands that

configure VPI and VCI routing within the NID, program the RAD, and check the

status of the system.

A photograph of an FPX is shown in Figure 4.1. The RAD is the large device in the

middle of the board, while the NID is directly below and to the right of it. Two of
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the SRAMs are on either side of the RAD, while the third is adjacent to the NID.

The two SDRAM banks are attached to the bottom of the card.

Multiple FPX cards can be stacked, as shown in Figure 4.2, and configured so that

data is processed by each FPX platform and transmitted to the next card in the stack.

A stacked configuration of FPX platforms can be used to implement systems contain-

ing multiple modules. Details of the components within this stacked configuration

are discussed in Section 4.2.

Figure 4.2: Stacked FPX cards performing multi-card processing

4.2 VHDL Infrastructure

Several infrastructure components have been created for use within the RAD. Each

component has been created using the Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language (VHDL). The relevant components include a wrapper

for TCP flow processing and a communication wrapper.

4.2.1 TCPLite Wrapper

Studies show that 85% of all packets on the Internet [68] make use of the Transmission

Control Protocol (TCP) [57]. The protocol is used for the reliable transmission of

data across a network link. It contains mechanisms for reliable re-transmission of

lost packets and for reordering out-of-order packets. An ordered stream of packets
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transferred via TCP is referred to as a flow. A flow can be uniquely identified by a

combination of the packets’ source IP address, destination IP address, source port,

and destination port.

A TCP processor was developed for use in the FPX platform [67]. This circuit is

implemented on a dedicated FPX card and provides ordered delivery of TCP packets

within a flow. It bundles TCP packet data together with flow state information

and transmits the package to a second FPX card, which implements an application

such as HAIL. This application card uses a module called the TCPLite wrapper to

separate flow state information from packet data and provide both pieces of data to

the application circuit.

The flow state information provided to the application circuit includes a flow identifier.

The flow identifier is created from a hash of a TCP packet’s source and destination

addresses and ports, and is used to uniquely identify a flow. Application circuits

can use this flow identifier as an index to memory that stores flow-specific state

information.

4.2.2 Communication Wrapper

A module called the communication wrapper was developed to simplify communica-

tion between stacked FPX modules, as well as between FPX modules and remote

software hosts [5]. This component groups related ATM cells together and provides a

stream of data and control signals to the application circuit that is free of ATM cell

headers.

For communication with external software hosts, the communication wrapper works in

conjunction with a separate FPX card which implements a circuit called the reporting

module. When packets are received from hosts, the reporting module uses the packet’s

destination port to determine which FPX card should receive the packet data. It then

strips off the packet headers and sends only the payload portion to the recipient card

using one or more ATM cells.

Likewise, an FPX card can send data to a host via the reporting module. It transmits

the data payload through the communication wrapper to the reporting module, which

uses the ATM cell headers to determine which FPX card sent the data. It then

prepends a packet header to the payload and sends it to the appropriate remote host.



54

4.3 Architecture
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Figure 4.3: Architecture of the HAIL implementation for the FPX platform

The implementation of HAIL on the FPX platform is based upon the algorithm

outlined and evaluated in Chapter 3. The circuit makes use of the TCPLite and com-

munication wrappers outlined in Section 4.2. The use of these wrappers is important

for abstracting the underlying protocols used to transport data on a network and

between FPX modules. The use of these two components requires a second FPX to

perform TCP processing and a third FPX to communicate with control software.

The two SRAM banks present on the FPX are used to store hash tables containing the

languages best associated with each hashed n-gram. Each SRAM bank is programmed

with an identical copy of the hash table.

The circuit also makes use of off-chip SDRAM to store intermediate flow state infor-

mation. Since the FPX is designed to process streaming network traffic, it can be

expected that packets from numerous TCP flows will be interleaved. The state of
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components that process each flow, as well as the intermediate counts of n-grams in

different languages, are stored in SDRAM after processing each packet that is not the

final packet within a TCP flow. The process of storing data from one TCP flow and

retrieving that of another is often referred to as a context switch.
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Figure 4.4: Routes for data and control propagation in HAIL

The overall architecture of the HAIL implementation can be seen in Figure 4.3. Net-

work data passes through the incoming TCPLite wrapper and is first buffered in

a FIFO queue. It is then streamed through the n-gram extractor, hash unit, and

count and score unit for processing. The result of processing is sent to the outbound

TCPLite wrapper and/or the report generator.

The HAIL circuit contains a separate data path for the processing of control data.

This data passes through the incoming communication wrapper and is buffered into

a queue contained within the control processor. If necessary, the control processor

requests the use of SRAM. Once granted access, the control processor writes data to

off-chip SRAM.
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The flow of data in and out of the FPX card implementing HAIL is shown in Figure

4.4. Network data enters the NID via one of the two UTOPIA interfaces on the FPX

card. The NID then transmits the data to the RAD. HAIL, which is loaded into the

RAD, processes the data and sends it back to the NID, which then forwards the data

to a UTOPIA interface. Control data also enters the system through a UTOPIA

interface, and is sent to HAIL by the NID. Per-flow reports generated by HAIL are

sent to the NID and the propagated to a UTOPIA interface. A detailed description

of the different architectural components is presented below.

4.3.1 Input Buffer and Control Unit
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Figure 4.5: The input buffer and control unit

The input buffer and control unit (Figure 4.5) are the first two components in HAIL’s

data path. They are highly intertwined, as the control unit’s finite state machines

(FSMs) govern the reading and writing of the FIFO queues in the input buffer unit.
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The input buffer unit contains three different queues: The data buffer, the flowstate

buffer, and the control buffer. HAIL’s data buffer in this implementation is forty bits

wide and stores several signals arriving from the front end of the TCPLite wrapper.

These signals include the 32-bit packet data field, a 4-bit mask indicating which

bytes within the packet data should be processed, a signal indicating when valid

TCP payload data is present in the data field, and bits marking the start of the IP

packet, the start of the IP packet’s payload, and the end of the packet.

The flowstate buffer is thirty-five bits wide and stores TCP state information that

the TCPLite wrapper transmits during the first several clock cycles of packet data.

The signals stored inside this buffer include a 32-bit flow state signal which contains

the TCP flow ID, a bit indicating whether the packet uses the TCP protocol, and

bits indicating whether or not the packet is the first or last within the corresponding

TCP flow.

An input state machine uses a ten-bit counter to track the amount of packet data

written into the data buffer. When the end-of-packet bit arrives, the state machine

writes this counter into the control buffer. This serves two purposes. First, if the

control FIFO contains any data, there is at least one full packet stored inside the

data buffer for processing. Second, the control unit uses the counter to determine

how many times it must read from the data FIFO in order to read out all of the

packet data.

The control unit also maintains an output state machine that manages aspects of

reading from the buffers. Once it detects that an entire packet is buffered inside the

data buffer, the state machine reads the information stored within the flowstate buffer.

Once this data is read, the state machine examines the “is TCP” bit to determine

whether or not the packet is a TCP packet. If so, the state machine also examines

the new flow bit to determine whether the packet is the first in the corresponding

TCP flow.

If the packet does use the TCP protocol but is not the first packet in the corresponding

flow, the output state machine uses the packet’s Flow ID as an SDRAM address. Data

at the corresponding SDRAM location is read into a set of state registers and then

passed to the appropriate processing units. If the packet does not use the TCP

protocol or if it is the first packet in the corresponding flow, the aforementioned state

registers are cleared and then propagated to the processing units.

Once the flowstate information is sent to the processing units, the output state ma-

chine begins reading packet data from the data buffer. The state machine first reads



58

the stored counter from the control buffer. Once read, the state machine reads the

entire packet out of the data buffer. As data exits the buffer, the state machine per-

forms two functions: It sends the entire packet to the outbound TCPLite wrapper so

that it can be propagated to other processing modules or to an outbound network

link, and it sends the payload of the packet to be processed for language identifica-

tion. The state machine can detect and parse the payload portion of packets that

use the TCP or UDP protocols; if a packet does not use either of those protocols,

the packet is simply sent to the outbound TCPLite wrapper and not processed for

language identification.

Once the packet has been processed, one of two actions can take place. If the packet

uses the TCP protocol, and it is not the final packet in the corresponding flow,

intermediate state information is written to SDRAM for later retrieval. If the packet

uses the UDP protocol or is the last packet of a TCP flow, state information is not

written to SDRAM. Instead, the final results of language identification for the TCP

flow or UDP packet are sent to the report generator module (Section 4.3.6). The

report generator packages the results and sends them to a software program running

on a remote host.

4.3.2 N-Gram Extractor
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Figure 4.6: The n-gram extractor and hash unit

The first unit in the language identification operation is the n-gram extractor, shown

in Figure 4.6. This unit scans the incoming data stream and extracts n-grams within

it.
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The FPX can send and receive up to four bytes of data per clock cycle. It also contains

two banks of off-chip SRAM, which are used to store the languages associated with

n-grams. These banks can each be accessed once per clock cycle. When data streams

through the FPX at the maximum rate, it is not possible to extract n-grams at every

byte offset. Rather, if data enters the system every clock cycle then only half of

the n-grams can be looked up in SRAM for language identification. The effects of

sampling only one half of the n-grams in a document are shown at the end of this

section.

The n-gram extractor is implemented as a seven-entry shift register. As data enters

the system, it is shifted into this register. As this occurs, an equal amount of data is

shifted out. Bytes entering the shift register are marked as valid for inclusion as part

of an n-gram. Once the register contains enough bytes to form one to two n-grams,

they are extracted from the register for further processing. As n-grams are extracted

from the register, their first and second bytes are marked as invalid for inclusion in

other n-grams. This enforces consistency in extracting only every second n-gram.

An example of the shift register’s operation is shown in Table 4.1. In this example, the

phrase Hello World enters the register, up to four bytes at a time, over the course

of several clock cycles. A total of four n-grams are extracted as the phrase passes

through the register. The Valid Bytes column indicates valid bytes for inclusion in

an n-gram with a “1”, and invalid bytes with a “0”. As n-grams are extracted, their

first and second bytes are marked as invalid.

Table 4.1: Operation of n-gram extractor on sample payload Hello World
Clock Incoming Register Valid Extracted
Cycle Data Contents Bytes N-Grams

1 Hell 0000000

2 o Wo Hell 0001111 Hell

3 rld ello Wo 0111111 llo , o Wo

4 o World 0011111 Worl

5 o World 0000111

As illustrated in Figure 4.6, the shift register interfaces with off-chip SDRAM. At

the end of a TCP packet that is not the final packet in its flow, valid bytes may still

be present in the register. This is illustrated in the final clock cycle shown in Table

4.1. The data stream has passed through the shift register, but the letters “rld” are

still valid for inclusion in future n-grams. If the phrase Hello World was part of a

larger data stream, and the remainder of the stream was contained in future TCP

packets, the “rld” would be stored in SDRAM. When more TCP packets from the
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flow arrived, the contents of the register could be loaded from SDRAM for processing

of n-grams beginning with these letters.

Data Subsampling

As mentioned above, platform constraints require the FPX implementation of HAIL

to sample only half of the n-grams in a document. This has a small but non-negligible

effect on the performance of HAIL.
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Figure 4.7: The effect of subsampling on accuracy of language identification

Figure 4.7 shows that sampling half of the n-grams has a small effect on accuracy. The

“Sampling Jump” on the x-axis indicates the ratio of n-grams sampled in a document;

1/j (where j represents the sampling jump) is the ratio of n-grams sampled.

In systems that contain fewer and/or slower memory banks than the FPX platform,

HAIL remains fairly viable. In the experiments performed on 34 languages, a 99%
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rate of accuracy is achievable even when only 1/8 of the n-grams can be sampled.

However, reducing the sampling ratio beyond this point causes a rapid drop-off in

accuracy.
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Figure 4.8: The effect of subsampling on latency of language identification

Figure 4.8 shows the effect of the sampling ratio on latency. Unfortunately, decreasing

the sampling ratio from 1 to 1/2 causes an approximately 6-byte increase in latency.

The increase in latency as the sampling jump is raised further is roughly linear.

An increase in latency is an inevitable side effect of reducing the number of n-grams

sampled. As shown in the figure, the average latency for sampling every n-gram

is 11.42 bytes. Thus, an average of 11.42 different n-grams can be sampled if the

n-grams that begin at each of these bytes are extracted. If every other n-gram is

sampled, an average of only 5.72 n-grams can be extracted in the same amount of

data.
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The average latency for sampling every other n-gram is 17.32 bytes. Sampling half

of the n-grams beginning at each of these bytes allows an average of 8.66 n-grams

to be extracted. Therefore, when sampling every other n-gram, fewer n-grams are

required. Increasing the size of the jump further decreases the average number of

n-grams required to arrive at a result; an average of 8.19 n-grams must be sampled

when 1/3 of the n-grams are extracted, and an average of only 6.92 n-grams need to

be sampled when 1/10 of the n-grams are sampled.
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Figure 4.9: An approximation of n-grams in a document with 50 n-grams

This result is certainly counter-intuitive. One might assume that the number of n-

grams required to identify a document’s language would remain constant or even grow

as the sampling jump was increased. To help explain this, an experiment was run

to evaluate patterns of “good” n-grams (those that hash to a value containing the

correct language identifier for a document) and “bad” n-grams (those that hash to a

value that does not contain the correct language identifier for a document).

After creating a training set and then analyzing approximately 2,000 documents, three

pieces of information were found. First, when good n-grams appear, they appear, on

average, in a series of 6.77 sequential good n-grams. Second, when bad n-grams

appear, they appear, on average, in a series of 3.36 bad n-grams. Finally, the first

good n-gram appears, on average, as the 2.24nd n-gram in a document.

For simplicity of demonstration, these three figures were rounded from 6.77 to seven,

3.36 to three, and 2.24 to two. Figure 4.9 shows the breakdown of a hypothetical
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document, which follows these figures, into a series of n-grams. White boxes repre-

sent good n-grams, while gray boxes represent bad n-grams. Boxes containing an X

represent n-grams that would be analyzed if only every other n-gram was sampled.

The figure is meant to be read left-to-right, top-to-bottom.

Examining the boxes in the figure will show that the first good n-gram is the second

n-gram in the example document, that there are five streaks of bad n-grams with an

average length of three, and there are five streaks of good n-grams with an average

length of seven.

Processing the document if every n-gram is sampled reveals that, on the 10th byte of

the document, the correct language will be granted a permanent counter (assuming

a trend depth of three is used, as in Section 3.2.3). This corresponds to the 10th

n-gram that was sampled.

On the other hand, processing the document by sampling every other n-gram reveals

that the correct language will be granted a permanent counter on the 13th byte of

the document. This corresponds to only the seventh n-gram that was sampled.

Obviously, this is not always the case. If the second group of bad n-grams (corre-

sponding to the fourth through seventh n-grams in the document) were pushed back

by one n-gram, then sampling every n-gram would yield a permanent counter for the

correct language after only four n-grams. In the average case, however, this example

appears to be accurate.

There is another factor related to this observation, as well. Since bad n-grams appear

in relatively short streaks, sampling every n-gram is likely to pick up on trends of

incorrect language identifiers more frequently than sampling every other n-gram.

Figure 4.10 validates this claim. As the figure shows, a sampling jump of one n-gram

begins to require (albeit slightly) more counters than a sampling jump of two n-grams.

This means it is more common for an incorrect language to be granted a permanent

counter first when sampling every n-gram compared to sampling every other n-gram.

4.3.3 Hash Unit

The hash units (shown previously in Figure 4.6) are used to reduce n-grams to 19-bit

SRAM addresses. The hash units each perform a cyclic redundancy check (CRC),
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Figure 4.10: The number of permanent counters required for different sampling jumps
as the number of languages is adjusted from two to 34

which is a hash function typically used by computer systems in error detection. Fun-

damentally, a CRC is calculated by treating the input data as an integer and dividing

it by another binary value, referred to as a generator polynomial. The generator

polynomial must be one bit longer than the CRC that will be created, and its most

significant and least significant bits must be equal to 1. The remaining bits may be

any combination of 0s and 1s. The remainder of this division operation becomes the

CRC. Details on the calculation of CRCs are provided in [61].

A commonly-used CRC generator polynomial is defined in the standard for detecting

errors in data transmitted over Ethernet links [69]. This polynomial is shown below

in three common forms: binary (Equation 4.1); hexadecimal (Equation 4.2), in which

the most significant bit is omitted because a generator polynomial’s most significant

bit is always 1; and in polynomial form (Equation 4.3).
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G(x) = 1 0000 0100 1100 0001 0001 1101 1011 0111 (4.1)

G(x) = 0x04C11DB7 (4.2)

G(x) = x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 +x8 +x7 +x5 +x4 +x2 +x+1 (4.3)

CRCs are particularly well-suited for implementation in hardware because they are

calculated using modulo 2 binary arithmetic. This is a binary arithmetic system

in which addition, subtraction, and multiplication are performed without carrying.

Thus, addition and subtraction are performed by the exclusive-OR (XOR) of individ-

ual bits. Modulo 2 binary division is performed as a series of subtractions; therefore,

a CRC can be performed as a series of simple XOR operations.

HAIL’s hash units use the generator polynomial defined by the Ethernet standard.

When n-grams are extracted from the shift register, they are sent to the hash units;

each hash unit performs a pipelined CRC operation, operating on one byte of an

n-gram each clock cycle1. The CRC hashes the n-grams into a 32-bit output, which

is then truncated to 19 bits and used as an SRAM address.

The addresses generated by the hash units are used to read SRAM. Each SRAM

location is 36 bits in width and contains four nine-bit language identifiers. Each of

these identifiers represents the language from the corresponding slot (refer to Section

3.3 for the definition and assignment of slots) which contains the highest frequency

of n-grams that map to the SRAM address. Once read from SRAM, the individual

language identifiers are separated and sent to the count and score unit.

4.3.4 Count and Score Unit

Each clock cycle, up to two 36-bit values are passed to the count and score unit

from SRAM. The count and score unit separates the four 9-bit language identifiers

from these values, passes them to the individual trend units, performs the trend and

counting operations described in Section 3.2.3, and determines the language that best

matches the document.

Figure 4.11 illustrates the general architecture of the count and score unit. Incoming

36-bit values are split into their four 9-bit language identifiers and dispatched to the

1The CRC function used in HAIL was created with the Easics CRC tool [38], which automatically
generates a synthesizable CRC implementation in VHDL based on a user-specified input width and
generator polynomial.
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Figure 4.11: Architecture of the count and score unit

trend units. Languages appearing in a particular SRAM position are always passed

to the same trend unit, as explained in Section 3.3.

Each individual trend unit (shown in Figure 4.12) maintains its own trend register and

set of permanent counters. When language identifiers enter a trend unit, they are first

compared to the permanent counters. If one or both of the language identifiers match

a language stored in a permanent counter, the corresponding counter or counters are

incremented appropriately.

If there is no match, the language identifiers are sent to the trend register and a variety

of actions can occur. A distinction is made between the first language identifier and

the second language identifier; the first language identifier corresponds to the n-gram

that was extracted earlier in the data stream than the second. There are several

actions that can be taken based on the values of the incoming language identifiers,

the value of the current trend, and the value inside the trend register itself.

1. If both language identifiers are set to 0 (indicating no language), nothing occurs.
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2. If one of the two language identifiers is valid (greater than 0) and the language

matches the current trend, increment the value inside the trend register. If this

causes the trend register to reach its threshold, find a permanent counter for

the language.

3. If one of the two language identifiers is valid and the language does not match

the current trend, reset the value inside the trend register to 1 and set the

current trend to the incoming language.

4. If both language identifiers are valid, equal to each other and match the current

trend, add 2 to the value inside the trend register. If this causes the trend

register to reach its threshold, find a permanent counter for the language.

5. If both language identifiers are valid, equal to each other and do not match the

current trend, reset the value inside the trend register to 2 and set the current

trend to the incoming languages.

6. If both language identifiers are valid and not equal to each other, the first

incoming language is equal to the current trend and would cause the trend

register to reach its threshold, find a permanent counter for the first language.

Reset the value inside the trend register to 1 and set the current trend to the

second incoming language.

7. If both language identifiers are valid and not equal to each other, and either

the first language is not equal to the current trend or its presence would not

cause the trend register to reach its threshold, reset the value inside the trend

register to 1 and set the current trend to the second incoming language.

In steps 2, 4 and 6 the process of finding a permanent counter for a language is

mentioned. This process is straightforward. The set of permanent counters inside the

trend unit is probed. The first unused permanent counter is assigned to the language

that has caused the trend register to reach its threshold, and the value inside the

trend register is moved inside the permanent counter.

Each permanent counter is ten bits in width and can count to a maximum value of

1,023. When a counter’s maximum value is reached, the counter saturates, meaning

that it remains fixed at the maximum value rather than rolling back to zero.

If all of the permanent counters are already used, then the language is simply dis-

carded. However, this situation should rarely affect the circuit’s identification of the

best language associated with the document; given the figures presented earlier for
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Figure 4.12: Architecture of a single trend unit

the number of permanent counters required, the document’s language is typically

found very early in the document.

At the end of each packet, counters and their associated languages are sent to the

pipelined comparator chain shown in Figure 4.11. The comparator chain performs

c − 1 comparisons in log2 c clock cycles, where c is the total number of permanent

counters in the trend units. This is performed simply by comparing pairs of counters

in each clock cycle and propagating the larger of the two counters to the next stage of

the pipeline. The language with the largest counter is sent to the TCPLite wrapper

for use by other modules, if appropriate.

Other data is also sent from the count and score unit at the end of each packet.

If the packet was the last in its corresponding TCP flow, the counters and their

corresponding languages are sent to the report generator (see Section 4.3.6), which

packages the data into a packet and sends it to a remote host. If the packet was not

the last in its corresponding TCP flow, the counters, their corresponding languages,

the trend register and the current trend are sent to SDRAM. This data, along with



69

the shift register from Section 4.3.2, is stored and later retrieved when the next packet

from the corresponding TCP flow arrives.

4.3.5 Control Processor and SRAM Programmer

The SRAM lookup tables and various flags within the HAIL circuit can be pro-

grammed remotely over a network by sending control packets into the system. These

control packets are processed by the reporting module discussed in Section 4.2.2 and

the payloads are forwarded to the HAIL module. The communication wrappers parse

these payloads and provide the data, as well as various control signals, to the control

processor shown in Figure 4.13.
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Figure 4.13: Architecture of the control processor and SRAM programmer

The control processor consists of two buffers, two finite state machines, and supporting

logic. As data enters the module from the communication wrapper, it is buffered

inside the module’s data buffer. Once an entire control packet’s payload is stored

inside the data buffer, the input state machine writes a counter into the control

buffer. This counter indicates the size of the control packet payload written into the

data buffer.

The output state machine monitors the status of the control buffer. If the control

buffer is not empty, an entire packet has been stored inside the data buffer. At this

point, the output state machine will read the control buffer to determine the size

of the packet stored inside the data buffer. It then reads the specified amount of

information from the data buffer and performs the appropriate action.
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The action taken by the output state machine is determined by the opcode, which

is contained within the first 32-bit word of the control packet payload. Currently,

only three opcodes are used: 0x1, which indicates that the packet contains SRAM

locations to be programmed; 0x2, which enables the report generator (see Section

4.3.6); and 0x3, which disables the report generator. The report generator is enabled

by default. The two relevant packet payload formats are shown in Figures 4.14 and

4.15, respectively.

The packet to program SRAM is variable length. After the opcode field, it contains

between one and 180 (the maximum number that will fit within a packet sent to the

reporting module) address/data pairings. As shown in Figure 4.14, the packet consists

of one 32-bit data word containing a 19-bit address and four data bits, followed by a

second 32-bit word containing thirty-two data bits. The data being written to SRAM

must be split across two 32-bit words because the data written to each SRAM location

is 36 bits wide. The most significant bit of each 9-bit language identifier is stored

within the field labeled Hi Bits, while the least significant bit of each 9-bit language

identifier is stored within the fields labeled Slot [0-3] lo bits. When the first

32-bit word is read from the data buffer, the address and the four most-significant

bits are stored in the address register. When the second 32-bit word is read, the four

language identifiers are assembled and sent to SRAM alongside the address.

31 03

Hi bits

27 23 18 15 7

Reserved Address

OpPad

Slot 0 lo bits Slot 1 lo bits Slot 2 lo bits Slot 3 lo bits

Hi bits Reserved Address

Slot 0 lo bits Slot 1 lo bits Slot 2 lo bits Slot 3 lo bits

31 03

Hi bits

27 23 18 15 7

Reserved Address

OpPad

Slot 0 lo bits Slot 1 lo bits Slot 2 lo bits Slot 3 lo bits

Hi bits Reserved Address

Slot 0 lo bits Slot 1 lo bits Slot 2 lo bits Slot 3 lo bits

Figure 4.14: Packet format to program SRAM

The packet to toggle report generation is fixed at one 32-bit word, which contains the

opcode. Four bits are currently allocated for the opcode, but this size can be easily

increased if needed to expand the number of options.
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Figure 4.15: Control packet to set and disable hardware control bits

4.3.6 Report Generator

In addition to providing the highest-scored language identifier to the outbound TC-

PLite wrapper, HAIL can also provide a detailed summary to a remote software host.

At the conclusion of a TCP flow or UDP packet (as UDP does not define flows in

its protocol specification), the circuit can output language identification and statisti-

cal data to the report generator (Figure 4.16), which is not to be confused with the

reporting module described in Section 4.2.2.
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Figure 4.16: Architecture of the report generator

When the TCP flow or UDP packet terminates, several pieces of data are sent to

the report generator. The source and destination IP addresses and ports of the flow

or packet are sent from the control unit, and the sixteen language identifiers and

counters are sent from the count and score unit. This data is sent in parallel, and is

initially placed in registers for storage. Once the data is received, it is streamed into

a data buffer, 32 bits at a time. The data is packed in the order and format used to

transmit it in packet form; the exact packet format is shown in Figure 4.17.

Once all of the information is stored in the data buffer, a single bit is written to

the control buffer for control purposes. Unlike with the input buffer and control cell
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Figure 4.17: Packet format sent by report generator

buffer, a counter does not need to be written to the control buffer; the length of the

packet payload is fixed at nineteen 32-bit words. The presence of a bit in this buffer

triggers the output state machine to begin reading from the data buffer and into the

outbound communication wrapper. The communication wrapper splits this data into

ATM cells and sends it to the reporting module, which attaches an IP, UDP, and

reporting header before sending the packet to a remote software host.

4.4 System Implementation

The architecture described in this chapter was implemented in VHDL, synthesized,

placed, and routed for the Xilinx XCV2000E-8 FPGA found on the FPX platform.

This section describes the results and other relevant details.

4.4.1 Implementation Results

The FPX implementation of HAIL, along with infrastructure components used for

communication and memory access, consumed 29.5% of the four-input lookup tables,

24.5% of the flip-flops, and 53.1% of the Block RAMs available within the FPGA. De-

tails of the device utilization are shown in Table 4.2. The circuit achieves a maximum

clock frequency of 87.53 MHz.
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Table 4.2: HAIL device utilization on Xilinx XCV2000E-8
Component Look-up Flip Block

Name Tables Flops RAMs
Input Buffer and Control Unit 1,696 2,217 24

N-Gram Extractor 503 294 0
Hash Units 505 348 0

Count and Score Unit 2,182 1,244 0
Control Processor 274 257 10
Report Generator 661 633 3
Top Level Logic 1,072 310 0
HAIL Subtotal 6,893 5,303 37
SRAM Controllers 199 271 0

SDRAM Controllers 1,362 1,520 8
TCPLite Wrapper 1,277 912 21

Communication Wrapper 1,014 898 19
Infrastructure Subtotal 3,852 3,601 48

Grand Total 10,745 8,904 85
Total Available 36,400 36,400 160

Percent 29.5% 24.5% 53.1%

This implementation consumes less than one third of the logic elements and slightly

over half of the memory available on the Virtex XCV2000E-8. The HAIL circuit itself,

not counting infrastructure components, uses under one fifth of the logic elements and

slightly over one fifth of the memory elements available.

The low resource utilization has two implications. First, the implementation of HAIL

is small enough so that other processing functions can be carried out within the same

FPGA. Appendix C shows a configuration that contains optional processing modules

on other FPX cards; provided that the optional processing modules use few enough

resources, they could in fact be implemented on the same FPGA.

A second implication of the resource utilization is that HAIL can be implemented

in virtually any modern FPGA. At the time of writing, the Virtex XCV2000E-8 is

several years old and contains fewer resources than many current FPGAs. Thus, most

modern FPGAs should be capable of utilizing the HAIL circuit.

4.4.2 Throughput

The throughput of the system is a function of average packet size, clock rate, packet

processing overhead and bytes processed per clock cycle. To calculate throughput, the

number of packets per second must first be calculated as in Equation 4.4. In the HAIL
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implementation for the FPX, the clock rate is 8.0 ∗ 107, four bytes are processed per

clock cycle (as stated in Section 4.3.2), and the packet processing overhead is 31 clock

cycles. The overhead includes time required to read state information and determine

appropriate actions for each packet, as well as time required to store TCP context

information in and retrieve TCP context information from SDRAM. The overhead

cannot be overlapped with packet data processing.

Packets

Second
=

Clock Rate
Packet Size

Bytes per Clock
+ Overhead

(4.4)

The throughput in Gigabits per second can be calculated from the number of packets

per second that can be processed for the given average packet size. The figure is

multiplied by eight to convert bytes to bits and divided by 1.0 ∗ 109 to convert bits

to Gigabits.

Gigabits

Second
=

Packets
Second

∗ Packet Size ∗ 8

1.0 ∗ 109
(4.5)

Because the number of packets processed per second changes with the average packet

size, throughput also changes with average packet size. Figure 4.18 shows the change

in throughput as the average packet length is altered from 0 to 1500 bytes. The

horizontal line between 2 and 3 Gigabits per second represents the bandwidth of a

fully-utilized OC-48 fiber optic network link. The Virtex XCV2000E-8 implementa-

tion is capable of processing at this capacity when the average packet length is greater

than approximately 985 bytes.

In addition to providing throughput for the Virtex XCV2000E-8 (part of the Xilinx’s

Virtex-E FPGA series), Figure 4.18 also shows throughput figures for the same HAIL

architecture if it were implemented on a Virtex-II and Virtex-4 FPGA. Based on

the approximate maximum clock frequencies of the circuit if implemented on these

FPGAs, the systems could process at OC-48 capacity when the average packet length

is greater than 192 and 86 bytes, respectively. More detail on these FPGA devices is

provided in Section 4.4.3.

For comparison, the HAIL software used throughout much of this thesis was config-

ured in the same way as hardware and timed for 500-byte documents. On average, the

software processed 500-byte documents at a rate of 0.0128 Gigabits per second (ap-

proximately 1.60 Megabytes per second) when documents are pre-loaded into memory.
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Figure 4.18: HAIL circuit throughput as a function of average packet size

It processed these documents at an average rate of 0.00892 Gigabits per second (ap-

proximately 1.12 Megabytes per second) when documents were loaded from a hard

disk. These results were obtained on a personal computer with an AMD Athlon 64 X2

Dual Core Processor 4200+ clocked at 2.21 GHz and one Gigabyte of DDR SDRAM.

4.4.3 Next-Generation FPGAs

The Xilinx Virtex XCV2000E-8 FPGA used on the FPX platform belongs to Xilinx’s

Virtex-E series of FPGAs, which were first introduced in 1998. Since that time,

Virtex has released new FPGAs in the series, including the Virtex-II in 2001 and the

Virtex-4 in 2004 [79].
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While the Virtex XCV2000E-8 is among the largest and most powerful FPGAs in its

family [83], it is a relatively old device that has been surpassed by newer technolo-

gies. While lower-end versions of newer devices contain fewer logic elements and less

memory than the FPGA used on the FPX, the Virtex XCV2000E-8 is inferior in both

logic and memory to no fewer than three varieties of the Virtex-II and nine varieties

of the Virtex-4 [80].

The most logic-dense variety of Virtex-4, the XC4VLX200, contains 4.64 times as

many logic elements and 9.45 times as much on-chip memory as the Virtex XCV2000E-

8 [83, 80]. Other varieties of the Virtex-4 sacrifice logic and memory for embedded

digital signal processors and PowerPC microprocessors that provide added function-

ality [80].

Table 4.3: Estimated HAIL clock frequencies on Virtex series FPGAs
Device FPGA Maximum
Name Series Frequency Throughput

XCV2000E-8 Virtex-E 87.53 MHz 2.59 Gbps
XC2V8000-6 Virtex-II 147.9 MHz 4.37 Gbps

XC4VLX200-12 Virtex-4 LX 219.1 MHz 6.47 Gbps

Table 4.3 shows a comparison in clock rate between the version of HAIL currently

implemented on the Virtex-E and the approximate maximum clock rate if the same

architecture were implemented in Virtex-II and Virtex-4 LX series FPGAs. The

clock rates provided for the latter two FPGAs were approximated by Synplify Pro,

an FPGA synthesis tool created by Synplicity [72]. Implemented in the Virtex-4 LX,

the clock rate and maximum throughput are nearly tripled.

In addition to next-generation FPGAs, improvements to HAIL can also be achieved

through newer memory technology [3]. The size of available SDRAM devices has

increased, allowing for support of a larger number of TCP flows. Newer SDRAM

technology is also available, including Dual Data Rate (DDR) SDRAM which allows

a burst of two contiguous memory locations to be read or written in the same clock

cycle. This would eliminate time from the context switch overhead since memory

reads and writes could be performed in half as many clock cycles.

Newer SRAM technology is available as well. First, larger banks of SRAM than

what is found on the FPX are commercially available. A larger address space would

cause fewer hash collisions and therefore improvements in both accuracy and latency.

Furthermore, newer SRAM technology is available, such as Quad Data Rate (QDR)

SRAM which allows bursts of two contiguous memory locations to be read and written

in the same clock cycle. This would increase the number of language identifiers
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that could be associated with each hashed n-gram. By storing up to eight language

identifiers in consecutive SRAM addresses, all eight could be read in a single clock

cycle. This would provide a modest improvement in accuracy and latency. The

drawback of this would be that each hashed n-gram would require data to be stored

two contiguous memory locations, halving the effective address space.

The combination of newer FPGAs and newer memory technology could also have

a particularly profound effect on HAIL: The elimination of the trend register and

memory slot clustering schemes. Recall that the trend register was created to reduce

hardware resources, to reduce the amount of time required to perform context switches

and to reduce the amount of SDRAM that must be reserved for each TCP flow. The

memory slot clustering was an effort to ease the amount of logic required by a trend

register system that spanned multiple SRAM positions.

With significantly larger and faster FPGAs, maintaining large numbers of on-chip

counters and comparators becomes a much more trivial task. Furthermore, larger

SDRAM devices can cause an increase the amount of data allotted to each TCP flow

while supporting the same overall number of flows. Finally, faster SDRAM devices

can reduce the time required to perform context switches of large amounts of data.

With these three challenges overcome, the elimination of the trend register system is

possible.
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Chapter 5

Conclusion

In 2004, those who spoke English as their first language constituted only one-third

of Internet users, and approximately one-third of all web pages were written in a

language other than English. As the number of non-English speakers and web pages

increases, several problems arise. A system capable of rapidly and accurately identi-

fying the primary language used in documents traveling over network links can prove

useful in a variety of tasks, including language-based forwarding and routing, as a

preprocessor for document classification, as a system for labeling records, and as a

means of removing unwanted documents from a data stream.

The problem of language identification is not trivial. Most languages can each be

represented with numerous character encodings. While there is a migration towards

the Unicode standard, a great deal of applications still use older single- and double-

byte encodings. To complicate the situation, documents are not always labeled with

their respective character encoding. When documents are labeled, the encoding can

be represented in numerous ways and at different locations throughout the document

depending on the application that created the document. Therefore, a useful method

for language identification requires knowledge of both character encodings and the

languages themselves.

5.1 Summary of Approach

HAIL, the algorithm developed in this thesis for the hardware-accelerated identifica-

tion of languages and character encodings, is based on existing n-gram based methods

for language identification. The algorithm must be trained on sets of data in each lan-

guage and character encoding pair of interest. During the training process, n-grams

of one length are extracted from each document and hashed.
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Once training is complete, the algorithm cycles through the hashed n-grams and

determines the frequency at which each hashed n-gram appears in each language.

However, constraints of memory devices mandate that only four language identifiers

can appear in each memory location. Although storing the best four languages asso-

ciated with each hashed n-gram would be the ideal configuration of memory, it causes

problems.

The problem is caused primarily due to a system based on a “trend register”. This

system requires several consecutive n-grams representing the same language to appear

before the language is counted. While the system confers benefits to the hardware

implementation, attempting to search for trends across four positions within memory

creates implementation problems of its own.

This problem was solved by using data clustering to ensure that language identi-

fiers for a particular language always appear in the same position within SRAM.

Consequently, language identifiers stored at each memory location do not necessarily

represent the languages best associated with each n-gram. Rather, they represent the

best languages from their position within memory associated with each n-gram.

Despite the tradeoffs required for hardware implementation including using only one

length of n-gram, scoring documents by a simple counting of language identifiers,

using a simple hash table without collision resolution, not maintaining counters for

every language and character encoding pair, using clustering to force language iden-

tifiers into less-than-optimal arrangements within memory and not sampling every

n-gram, the implementation of HAIL achieved accuracy in excess of 99.8% during

experiments. Furthermore, language identification typically occurred after sampling

less than 18 bytes of a document’s text.

5.2 Contributions

Several contributions were made through the work culminating in this thesis. First

and foremost is HAIL itself, which is a novel algorithm designed for identifying lan-

guages and character encodings in reconfigurable hardware. The second was the cre-

ation of a functional circuit in FPGA hardware that carries out the HAIL algorithm

exactly as described in this document. As demonstrated in this thesis, the algorithm

is highly accurate, capable of identifying a document’s language and character encod-

ing from up to 511 language and encoding pairs, and doing so after sampling only a
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small amount of data. Furthermore, the current hardware implementation achieves a

maximum throughput above that of a fully utilized OC-48 network link.

Other contributions can be found in the nuances of the HAIL algorithm. The first is

the trend register system used primarily to reduce the amount of hardware resources

required in the algorithm’s implementation. This technique could be extended to

other classification tasks, such as identifying a document’s author or meaning, or

distinguishing between different file types.

The second is the use of an expectation maximization algorithm to assign language

identifiers to particular positions within memory in order to minimize the number

of comparisons. While this specific use is not particularly useful outside of a trend

register-based system, this unconventional use of expectation maximization indicates

that the method may prove useful in other problems regarding memory configuration.

5.3 Future Work

There are areas in which future work on HAIL can be performed. First, the circuit

developed for the Virtex XCV2000E-8 FPGA could be ported to more modern FP-

GAs. As shown previously, newer FPGAs yield drastically higher clock rates and can

increase throughput well beyond the maximum achieved on the FPGA used currently.

On a related note, newer memory technologies can also provide advantages. Higher-

throughput SDRAM can decrease the time required to perform context switches.

Larger SDRAM devices can increase the number of TCP flows supported by the

system. Larger SRAM devices can reduce the number of hash collisions, improving

latency and accuracy. Furthermore, higher-throughput SRAM can allow more lan-

guages to be associated with each n-gram to further improve accuracy and latency.

The combination of larger FPGAs and larger, faster SDRAM can also eliminate the

need for the trend register system described in this thesis.

HAIL would also benefit from a larger corpus of multilingual documents. In the

experiments performed throughout this thesis, data in only 34 languages and six

different character encodings was available. Testing HAIL with more languages would

be highly desirable, as in its current form it can support up to 511 languages and

character encoding pairs. While some projections were made in this thesis as to how

additional languages would affect HAIL, experimental evidence would be preferred.

This does not, however, hinder an FPGA implementation. For instance, if further
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experimentation revealed that a different length of n-gram was more appropriate for a

larger (or different) set of languages, changing the n-gram length is trivial in difficulty

and simple to re-implement for an FPGA.
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Appendix A

HAIL Files

Source files for the implementation of HAIL can be found in the HAIL project within

the Reconfigurable Network Group’s Concurrent Versions System (CVS) repository

or within the Reconfigurable Network Group’s internal web page at the following

URL:

http://www.arl.wustl.edu/projects/fpx/fpx_internal/HAIL/hail.tar.gz

Upon downloading this file, decompress and extract it using the tar archiving utility

[60] . A folder called HAIL will be extracted, which contains files needed to run the

HAIL software and create a HAIL implementation for the FPX platform.

A.1 Directory Structure

The structure of the HAIL project is shown in Figure A.1. It contains five directories

and multiple subdirectories. The vhdl directory contains all of the VHDL source files

for the project. Subdirectories within vhdl contain files that implement the TCPLite

wrapper, communication wrapper, SRAM controller, and SDRAM controller. The

sim directory contains files needed for simulating the design in digital verification

software such as ModelSim [51]. It contains two subdirectories: The Testbench di-

rectory contains files required for simulation, while the work directory is used to store

compiled VHDL source files. The syn directory contains a project file for synthe-

sizing the VHDL design with Synplicity tools [72]. It contains a subdirectory called

language app, which holds files needed to build the FPGA with Xilinx ISE tools [82].

The software directory contains source files for the HAIL simulation software. It

contains a subdirectory called control which contains source files for software that

communicates with the FPX circuit implementing HAIL. Both sets of software tools
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are described in detail in Appendix B. Finally, the corpus directory contains the

data files used for experiments throughout this thesis.

root

vhdl sim syn software

backend

work Testbench

MemMod

SRAM_
Controller

TCP_Lite
SDRAM_
Controller

Comm
Wrapper

corpus

control

root

vhdl sim syn software

backend

work Testbench

MemMod

SRAM_
Controller

TCP_Lite
SDRAM_
Controller

Comm
Wrapper

corpus

control

Figure A.1: The structure of the HAIL project directory

A detailed list of the all important data and source files within the directories are

displayed in a structured list below.

• vhdl: This directory contains VHDL files for the implementation of HAIL de-

scribed in Section 4.3. Relevant contents are listed below.

– input buffer.vhd: This file contains the VHDL implementation of the

input buffer and control unit described in Section 4.3.1.

– ngram crc.vhd: This file contains an implementation of the Ethernet

CRC, which is shown in Equations 4.1, 4.2, and 4.3. It takes as input

an extracted n-gram, performs the CRC, and outputs a 19-bit SRAM ad-

dress.

– ngram hasher.vhd: This file contains the VHDL model of the shift register

discussed in Section 4.3.2 and instantiates the two n-gram hash units.
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– sram reader.vhd: This file contains a simple pipeline to propagate control

signals while SRAM is being read. From a functional standpoint, it is

effectively part of the hash unit described in Section 4.3.3.

– trend register.vhd: This file contains the VHDL implementation of a

single trend register, which is described in Section 4.3.4.

– count score unit.vhd: This file instantiates four trend registers and con-

tains the VHDL implementation of the comparator chain detailed in Sec-

tion 4.3.4.

– language module.vhd: This is a file that instantiates the n-gram extrac-

tor, SRAM reader, and trend/score units and ties their signals together.

– control processor.vhd: This file contains the VHDL model of the con-

trol processor and SRAM programmer described in Section 4.3.5.

– report generator.vhd: This file contains the VHDL implementation of

the report generator detailed in Section 4.3.6.

– fifo AxB.vhd: There are several different VHDL files implementing FIFO

queues used in the design as buffers. In the actual file names, A and B are

numbers; A represents the depth of the FIFO, and B represents the width of

the FIFO, in bits. FIFOs were created using the Xilinx CORE Generator,

part of the Xilinx ISE package.

– rad.vhd: This is the top-level VHDL file for the HAIL implementation.

It connects the input and output pins of the FPGA to signals within the

circuit.

– TCP Lite: This subdirectory contains VHDL files needed to implement the

TCPLite wrapper, which was described in Section 4.2.1.

– CommWraper: This subdirectory contains VHDL files needed to implement

the communication wrapper, which was described in Section 4.2.2.

– SDRAM Controller: This subdirectory contains VHDL files needed to im-

plement the controller for SDRAM, which holds flow-specific state infor-

mation.

– SRAM Controller: This subdirectory contains the VHDL file needed to

implement the controller for SRAM, which contains n-gram tables.

• sim: This directory contains files that can be used to simulate the implementa-

tion of HAIL using digital verification software such as Modelsim [51]. Relevant

contents are listed below.
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– INPUT CELLS.DAT: This file contains control packet data used to program

SRAM during simulation. The data was created from the set of documents

in the Corpus path.

– INPUT CELLS LC.DAT: This file contains network traffic to run through the

simulation.

– Makefile: This is a script used to compile the VHDL files and simulate

the HAIL design. It is described in detail in Section B.5.

– work: This directory is used to store the results of compiling the VHDL

source files.

– Testbench: This path contains VHDL files needed to read INPUT CELLS.DAT

and INPUT CELLS LC.DAT, and to create output files during simulation.

∗ MemModel: This path contains files needed to simulate the SRAM and

SDRAM modules connected to the FPX.

• syn: This directory contains files needed to implement HAIL on an FPGA.

– language app.prj: This is a project file for Synplicity, required to syn-

thesize the HAIL design.

– Makefile: This is a script used to synthesize and build the HAIL design.

It is described in detail in Section B.5.

– language app: This directory contains files needed for building the HAIL

FPGA implementation using Xilinx ISE tools.

∗ *.edn: All .edn files contain synthesized descriptions of FIFOs created

using the Xilinx CORE Generator. These are used during the building

of the FPGA implementation.

∗ bitgen.ut: This is a constraint file used during the building of the

FPGA implementation.

∗ fpx.ucf: This file contains a mapping of pins on the FPGA to top-

level signals inside the rad.vhd file contained in the vhdl path. It is

used during the building of the FPGA implementation.

• software: This directory contains source files for the HAIL software implemen-

tation, which is described in detail in Appendix B.

– hail.cpp: This file contains directory parsing and hash functions shared

by several different HAIL software components.

– hail config.cpp: This file contains functions for the HAIL software con-

figuration tool, detailed in Section B.1.
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– hail main.cpp: This is the top-level file for the HAIL simulation program,

detailed in Section B.3. It contains functions to read command-line options

and create output.

– hail xml.cpp: This file reads data from a file containing the output of the

HAIL configuration program.

– hail train.cpp: This file contains functions needed for training the HAIL

system.

– hail ngram.cpp: This file reads data from a file containing the results of

training to use during experiments.

– hail test.cpp: This file contains functions needed for simulating the be-

havior of HAIL in software.

– hail modelsim.cpp: This file outputs the results of training to INPUT -

CELLS.DAT, one of the two input files used by the aforementioned ModelSim

simulation.

– hail parser.cpp: This file contains functions for the document parsing

tool, detailed in Section B.2.

– Makefile: This is a script used to compile the source files in this directory.

It is described in detail in Section B.5.

– control: This directory contains source files for software that communi-

cates with the FPX implementation of HAIL.

∗ catcher.c: This file contains the main program that spawns threads

for the control program and calls functions to receive packets from

hardware.

∗ convertXML.c: This file calls functions to convert binary data received

from the hardware into XML files.

∗ hail.c: This file receives data sent to the control software from the

FPX implementation of HAIL and dispatches it to other functions.

∗ hail config rd.c: This is an XML parser that is used to load SRAM

on the FPX implementation of HAIL. It reads data from the file de-

scribed in Section B.6.2.

∗ hail output rd.c: This is an XML parser that converts the control

software’s XML output files (see Section B.6.4) into delimited files for

easy importation into a spreadsheet.

∗ hailXML.c: This file contains functions called by convertXML.c.

∗ hardware.c: This file contains functions that check for the presence

of files required to load SRAM on the FPX.
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∗ loadtable.c: This file calls functions to send data from the appro-

priate configuration files to hardware.

∗ monitor.c: This file contains functions to keep track of metrics such

as the number of packets received.

∗ utils.c: This file contains miscellaneous functions to perform tasks

such as computing flow identifiers and converting a string of hexadec-

imal characters to a decimal integer.

∗ queue.c: This file performs functions related to a queuing mechanism

that distributes data to the HAIL output processing functions. It can

also distribute data to other processing functions if necessary.

∗ sendHail.c: Functions in this file are called from loadtable.c and

send data to load SRAM on the FPX implementation of HAIL.

∗ sendRM.c: This file contains functions to check the status of the re-

porting module.

∗ server.c: This file contains functions to receive UDP packets from the

reporting module and place the message into the appropriate queue.

∗ signal.c: This file contains functions to handle a Ctrl-C (kill) signal

by closing all sockets and queues and querying the reporting module

for a final set of metrics.

∗ Makefile: This is a script used to compile the source files in this

directory. It is described in detail in Section B.5.

• corpus: This directory contains the text documents used in the experiments

described in this thesis.

– corpus.tar.gz: This is a compressed archive file containing the docu-

ments used for experiments. The files within the archive are organized by

language into subdirectories.

A.2 Corpus

The 1.7 MB of files in the corpus directory are divided into 34 different subdirectories.

Each subdirectory is named with the language of the documents contained within it.
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Table A.1: Languages and character encodings used in data set
Character Character

Language Encoding Language Encoding
Albanian ISO 8859-1 Malaysian ISO 8859-1
Arabic ISO 8859-1 Nepali UTF-8

Bulgarian Windows 1251 Norwegian ISO 8859-1
Czech ISO 8859-1 Pashto UTF-8
English ISO 8859-1 Persian UTF-8
Estonian ISO 8859-1 Polish Windows 1250
French ISO 8859-1 Portuguese ISO 8859-1
German ISO 8859-1 Romanian Windows 1250
Greek ISO 8859-7 Russian ISO 8859-5
Hausa ISO 8859-1 Serbian ISO 8859-1
Hindi UTF-8 Spanish ISO 8859-1

Indonesian ISO 8859-1 Swedish ISO 8859-1
Italian ISO 8859-1 Tamil UTF-8
Kazakh UTF-8 Thai UTF-8
Kirundi ISO 8859-1 Turkish ISO 8859-1
Kyrgyz UTF-8 Urdu UTF-8

Lithuanian ISO 8859-1 Uzbek UTF-8

Table A.2: Source of languages used in data set
Language Source Language Source
Albanian LDC ECI/MCI [25] Malaysian LDC ECI/MCI
Arabic LDC English/Arabic [26] Nepali BBC Nepali [14]

Bulgarian BBC Bulgarian [7] Norwegian LDC ECI/MCI
Czech LDC ECI/MCI Pashto BBC Pashto [15]
English LDC ECI/MCI Persian BBC Persian [16]
Estonian LDC ECI/MCI Polish BBC Polska [17]
French LDC ECI/MCI Portuguese LDC ECI/MCI
German LDC ECI/MCI Romanian BBC Romanian [18]
Greek LDC ECI/MCI Russian LDC ECI/MCI
Hausa BBC Hausa [9] Serbian LDC ECI/MCI
Hindi BBC Hindi [10] Spanish LDC ECI/MCI

Indonesian BBC Indonesia [11] Swedish LDC ECI/MCI
Italian LDC ECI/MCI Tamil BBC Tamil [19]
Kazakh BBC Kazakh [12] Thai BBC Thai [20]
Kirundi BBC Great Lakes [8] Turkish LDC ECI/MCI
Kyrgyz BBC Kyrgyz [13] Urdu BBC Urdu [21]

Lithuanian LDC ECI/MCI Uzbek BBC Uzbek [22]
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Appendix B

HAIL Software

Before the VHDL implementation of HAIL was written, a simulation of the hardware’s

functionality, along with several other supporting programs, were created in in the

C++ programming language.

Rather than performing analysis on live network data, the HAIL software operates

on files stored on a hard disk or other storage media. This decision was made to allow

a degree of control over the data to be analyzed. If experiments are performed on

data in which the true language is known, then the true language can be compared

to the output of HAIL to determine the accuracy of the algorithm. By measuring the

accuracy as it responds to various parameter modifications, an optimal configuration

can be determined. Indeed, this is the process used during the configuration of

parameters detailed in Chapter 3.

The following sections detail the operation of the HAIL simulation software, as well

as the programs designed to support it. Before executing any of these programs, they

must be downloaded and compiled as previously described in Appendix A, and the

directory must be switched to software.

B.1 HAIL Software Configuration

The HAIL simulation software must read the names and languages of training and

testing files from an XML configuration file. This file can be quite large and must

follow a particular format. A HAIL configuration program has been created to au-

tomatically generate this XML file from a simple input file. This program can be

executed with the command ./hail config. There are several options that can be

specified at the command line as flags. All of these are optional, and detailed below:
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• -r textfile: This flag is used to specify the text file used as input by the

configuration program. The textfile parameter must be the path of an input

file formatted as described below. If not specified, this parameter will be set to

hailtrain.txt.

• -d directory: This flag is used to specify the directory in which to place files

to be used for the experiment. The directory parameter specifies this path;

if it does not exist, it will be created. Any files existing in this path before

program execution will be deleted. If not specified, this parameter will be set

to ./Documents.

• -o output: This flag is used to specify the file output by the configuration

program. The output parameter specifies this file, which will be an XML file

used as input by the language identification program. If not specified, this

parameter will be set to hailconfig.xml.

The file accepted as input by this program must consist of a series of lines, which are

each formatted as follows:

[Path] [Language] [Encoding] [Kilobytes] [Identifier]

The Path parameter must be a directory that contains files in a particular lan-

guage/character encoding pair. The Language and Encoding parameters specify the

respective language and character encoding of the files in this directory. These para-

meters can be any combination of letters, numbers, and symbols except for spaces.

The Kilobytes parameter indicates the number of kilobytes of data from this path

that will be used as training. All data in this path that is not used for training will

be used for testing. Finally, the Identifier parameter must be a positive integer

that acts as a language ID for the aforementioned language and character encoding

pair. Currently, the identifier must be a positive integer between 1 and 511; any

modification to the range of language identifiers will require a change in the code.

B.2 Text Partitioning Tool

For purposes of evaluating optimal parameters for the language identification, certain

types of documents are inappropriate. Extremely long documents provide a very

large number n-gram samples, so that the language and character encoding are almost

certain to be correctly identified. Conversely, extremely short documents provide only
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a few n-gram samples, and are quite difficult to identify correctly. When attempting

to gauge optimal parameters, medium-length documents are more useful.

A text partitioning tool was created to break a set of documents into documents

of roughly equal length. The program works by combining all documents within a

directory into one large string, then evenly splitting the string to create documents of

a user-specified size. The text partitioning tool can be executed with the command

./hail parse. Two command-line options must be specified at runtime, and are

detailed below:

• -p path: This option specifies the path containing files to be parsed. The path

parameter must be a valid path containing documents to be parsed.

• -s size: This option specifies the size of the partitions to create. The size

parameter must be a positive integer, representing the desired size of the parti-

tioned documents, in bytes.

All files in the directory specified by path will be moved into a directory with the

same name as path, except the suffix old will be appended. The files output by the

partitioning tool are guaranteed to be at least size bytes in length. If the total size

of the input files is not evenly divisible by size, the size of the files will be increased

slightly to accommodate the remaining data.

Note that the text partitioning tool does not split files across sentence or word bound-

aries; thus, many of the files created by the text partitioning tool will contain frag-

ments of words and/or incomplete sentences at the beginning and end. This has no

effect on language identification, as HAIL simply examines fixed-length portions of

data; it does not rely on the structure of sentences or boundaries of words.

B.3 Language Identification Software

The HAIL simulation software executes the same algorithm performed by the HAIL

hardware described in Chapter 4. However, many parameters of the software can be

changed via command line options. This degree of flexibility is not possible using the

HAIL hardware.
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The software version of HAIL can be executed with the command ./hail. There are

several options that can be specified at the command line as flags. Most of these flags

are optional, although some are required. The options are detailed below:

• -r: This flag causes the program to train HAIL before performing any tests.

The files used for training are obtained from the file specified with the -i option,

which is outlined below. The option to train HAIL is disabled by default.

• -s: This flag causes the program to perform an experiment on the testing set

listed in the file specified with the -i option. The option to perform a test is

disabled by default. Either -r, -s, or both must be specified in order for the

software to run.

• -m: This flag is used to output training results in a form usable by the VHDL

testbench for ModelSim simulations of HAIL.

• -n size: This flag is used to set the length of n-grams used in training and/or

testing. The parameter size must be a positive integer, and specifies the length

of n-grams in bytes. This parameter will affect both training and testing. If not

specified, size will be set to 5.

• -w width: This flag is used to specify the width of the n-gram lookup table.

The parameter width must be a positive integer, and specifies the width of the

table measured in the number of n-grams stored at each memory location. This

parameter will affect both training and testing. If not specified, width will be

set to 4.

• -j jump: This flag is used to specify the number of n-grams sampled. The

parameter jump must be a positive integer, and specifies the size of the “jump”

taken by the parser after sampling an n-gram. Consequently, 1/jump is the

ratio of n-grams that will be sampled. This parameter will only affect testing.

If not specified, jump will be set to 2.

• -t trend: This flag is used to specify the depth of the trend register. The para-

meter trend must be a positive integer, and specifies the number of sequential

n-grams from one language that must appear before a language is granted a

permanent counter. This parameter will only affect testing. If not specified,

trend will be set to 3.

• -c counter: This flag is used to specify the number of permanent counters in

the system. The parameter counter must be a positive integer, and specifies
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the number of counters used by each SRAM slot. Consequently, width*jump

is the total number of counters used by the system. This parameter will only

affect testing. If not specified, counter will be set to 4.

• -i inputfile: This flag is used to specify the HAIL configuration file. The pa-

rameter inputfile must be the path of an XML file created by the hail config

program described in Section B.1. This parameter will affect both training and

testing. If not specified, inputfile will be set to hailconfig.xml.

• -f ngramfile: This flag is used to specify the n-gram file. The parameter

ngramfile must be a file name. During training, the n-gram lookup table is

output to this file (which is created if it does not exist); during testing, the

n-gram lookup table is read from it. If not specified, ngramfile will be set to

ngram.xml.

• -o outputfile: This flag is used to specify the output file. The parameter

outputfile must be a file name. During testing, the results of file processing

is stored in this file, which is created if it does not exist. If not specified,

outputfile will be set to output.xml.

B.4 Control Software

The control software is, in fact, three distinct programs: The pingRM program, which

configures the reporting module; the catcher program, which sends data to configure

the FPX applications and receives their output; and the convertXML director, which

converts binary output from the applications into XML files.

These programs were created to accommodate any FPX application with any output

format. This section will only describe how to configure HAIL and supporting in-

frastructure circuits (the TCP processor and reporting module mentioned in Section

4.2). To execute these programs, one must first switch to the control subdirectory

within the software path.

The pingRM program is used to ensure that the reporting module is active and informs

the module of what ports to use. It is executed with the following command:

./pingRM [applications]

The applications parameter is the list of applications that are being used. The

ports associated with each application must be hard-coded into the pingRM source



94

files. In order to configure the reporting module for the TCP processor and the HAIL

circuit, the following command must be issued:

./pingRM HT

In this command, H represents HAIL while T represents the TCP processor.

The catcher program is used to send data, such as HAIL’s hash table, to the indi-

vidual FPX applications. It is executed with the following format:

./catcher -c configDir -o outputDir

In this command, configDir is the directory containing data files that are to be

parsed and sent to the FPX applications. This directory must exist and contain all

necessary files. outputDir is the directory into which binary output from the catcher

will be placed. This directory must also exist.

The final program, convertXML, is used to convert the catcher’s binary output into

XML files which can be read easily by programs designed to parse text data. It is

executed with the following command:

./convertXML -h directory

The directory parameter is the directory from which binary data is read (this will

typically be the outputDir of the catcher) and to which XML data is written. The

format of this XML data is shown in Section B.6.4.

B.5 Makefiles

The HAIL project contains numerous scripts for the compiling of software, creation

of hardware simulations and building of hardware. These scripts are in the form of

makefiles [59]. A total of four makefiles are located inside the HAIL project. The

location of each makefile and the commands performed by each are listed below.

In order for the scripts to execute properly, various tools must be installed on the

computer system. These tools include the aforementioned make utility, a C++ com-

piler such as G++ [74], ModelSim [51], Synplify Pro [73] and Xilinx ISE [81]. For

functions in the control directory, additional software is also required:
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To program bitfiles onto the FPX cards in this stacked configuration, the Networked

Configurable Hardware Administrator for Reconfiguration and Governing via End-

systems (NCHARGE) must be properly installed on the system [71]. NCHARGE is a

software program designed to communicate with the NID device on the FPX platform

and can perform a variety of tasks such as configuring routing between interfaces on

the card, checking the status of the FPX and programming bitfiles onto the RAD.

NCHARGE can be compiled and run on Unix and Linux platforms, as well as on

Windows platforms through Cygwin, “a Linux-like environment for Windows” [63].

In order to perform experiments with data stored on a disk rather than life network

traffic, tcpreplay [70] must be installed. This is an open-source tool that allows

captured network traffic to be re-sent on a network link.

• /software: This makefile is used to compile the various programs described in

Sections B.1 through B.3.

– make config: This command will compile the HAIL configuration pro-

gram described in Section B.1.

– make parse: This command will compile the text partitioning tool de-

scribed in Section B.2.

– make hail: This command will compile the language identification soft-

ware described in Section B.3.

– make all: This command will compile the HAIL configuration program,

text partitioning tool and language identification software.

– make clean: This command will clean the software directory of compiled

programs and various temporary files.

– /software/control: This makefile is used to compile the various pro-

grams described in Section B.4.

∗ make catcher: This command will compile the catcher, the part of

the control software that sends data to program SRAM tables on HAIL

and receives information from the system.

∗ make convertXML: This command compiles a program to convert bi-

nary data received from the hardware system into XML files.

∗ make pingRM: This command compiles a program to configure the

reporting module.

∗ make clean: This command will clean the catcher directory of com-

piled programs and various temporary files.
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• /sim: This makefile is used to compile the VHDL source files described in

Section A.1 and to perform simulations of hardware.

– make compile: This command will compile VHDL source files in the vhdl

directory so that simulations of hardware can be performed.

– make sim: This command will simulate the compiled VHDL design with

ModelSim. Input for programming the SRAM tables will be read from

INPUT CELLS.DAT while input for language identification will be read from

INPUT CELLS LC.DAT.

– make clean: This command will clean the vhdl and sim directories of

compiled VHDL and various temporary files.

• /syn: This makefile is used to synthesize, place and route the VHDL source

files in the vhdl directory to create a bitfile for loading into the FPGA.

– make build: This command will use Synplicity to synthesize the VHDL

source files, then place and route the synthesis output using Xilinx soft-

ware.

B.6 XML file formats

XML files are used to store data used by different software components. XML was

used as a storage format because it is a well-defined standard that provides an easy-

to-read structure and because tools exist to parse XML data [27].

Four XML files are used by the HAIL software tools. The first, hailconfig.xml, is

output by the HAIL software configuration program (Section B.1). This file contains

a list of training and testing files to be used by the language identification software de-

scribed in Section B.3. It also contains a list that maps numerical language identifers

to specific language and character encoding pairs.

The second XML file, called ngram.xml, is output after training is performed by the

language identification software. It is used by both the testing portion of the language

identification software as well as the control software. It contains a list of memory

locations and the language identifiers stored at each one. Omitted memory addresses

are implied to contain no language identifiers.

The third XML file, output.xml, is output after testing is performed by the language

identification software. It contains details of the testing run, a mapping of language
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identifiers to specific language and character encoding pairs, and lists indicating which

files were classified correctly and incorrectly during testing.

The fourth XML file format is output by the control software described in Section

B.4. As the FPX implementation of HAIL outputs data on a flow-by-flow basis, it

is received by the control software and output into an XML file. One file is created

per TCP flow (or UDP packet) and contains information about the flow or packet,

as well as the languages identified during the processing of the document.

The structure of each XML file is detailed below.

B.6.1 hailconfig.xml

The hailconfig.xml file is the output of the HAIL configuration software detailed

in Section B.1. The first line is an XML declaration which identifies the version

of XML used in the file, the character encoding, and notes that the file contains

no external dependencies. The second line contains data indicating that the file is

a HAIL configuration file and was generated by version 1.5 of HAIL (the version

described in this thesis).

Subsequent sections identify the mapping of numerical language identifiers to lan-

guage and character encoding pairs, a list of files to be used for training and a list of

files to be used for testing in software. File paths shown in the example are relative

to the path in which the software was executed.

An example of the file format for the hailconfig.xml file follows.

<?xml version=“1.0” encoding=“utf-8” standalone=“yes”?>

<HAILFile>

<MetaData File Type=“HAIL” version=“1.5”/>

<Mapping num = “2”>

<identifier language=“Indonesian” encoding=“ISO8859-1”>12</identifier>

<identifier language=“Thai” encoding=“UTF-8”>31</identifier>

</Mapping>

<TrainFiles num = “2”>

<file identifier=“12”>../corpus/indonesian iso8859/file 1.fil</file>
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<file identifier=“31”>../corpus/thai utf8/file 3.fil</file>

</TrainFiles>

<TestFiles num = “3”>

<file identifier=“12”>../corpus/indonesian iso8859/file 2.fil</file>

<file identifier=“31”>../corpus/thai utf8/file 1.fil</file>

<file identifier=“31”>../corpus/thai utf8/file 2.fil</file>

</TestFiles>

</HAILFile>

B.6.2 ngram.xml

The ngram.xml file is the output of training performed by the software detailed in

Section B.3. It contains the same XML declaration and meta data tag as the other

XML files presented in this section.

The remainder of the file contains a list of data to be placed in the hash table used

to store the languages associated with n-grams. This section is prefaced with a tag

indicating the number of address bits in the hash table and the number of language

identifiers stored at each memory location.

The file then indicates the language identifiers stored at each position in each hash

table location. The language identifier 0 is reserved to indicate that no language was

suitable to be stored at that memory location. Memory locations not listed in this

section of the file can be assumed to contain 0 at every location.

An example of the file format for the ngram.xml file follows.

<?xml version=“1.0” encoding=“utf-8” standalone=“yes”?>

<NGramFile>

<MetaData File Type=“HAIL” version=“1.5”/>

<Memory addressbits=“19” width=“4”>

<location address=“1”>

<slot0>0</slot0>

<slot1>12</slot1>
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<slot2>0</slot2>

<slot3>0</slot3>

</location>

<location address=“9”>

<slot0>0</slot0>

<slot1>12</slot1>

<slot2>0</slot2>

<slot3>31</slot3>

</location>

</Memory>

</NGramFile>

B.6.3 output.xml

The output.xml file is the output of testing performed by the software detailed in

Section B.3. It contains the same XML declaration and meta data tag as the other

XML files presented in this section.

The file also contains information about the software test, including the n-gram size

used, the ratio of n-grams sampled, the number of slots per memory address, the

trend depth and the number of permanent counters per memory slot. It also contains

information about the files used during training and testing, including the number

of languages used in the test, the number of training files and the number of testing

files. The file also contains a summary of the results from the testing, including

the latency, number of files correctly classified, number of files incorrectly classified

and overall accuracy. The mapping of language and character encoding pairs to

numeric language identifiers is also provided, so that the file can be read without the

supporting hailconfig.xml file.

The remainder of the file includes a list of the files that were incorrectly classified

along with their actual language identifiers and the language they were identified as.

Following this is a list of correctly-classified files along with their language identifiers.

An example of the file format for the output.xml file follows.

<?xml version=“1.0” encoding=“utf-8” standalone=“yes”?>
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<HAILResultFile>

<MetaData File Type=“HAIL” version=“1.5”/>

<Run>

<NGramSize>4</NGramSize>

<SamplingRatio>1.000000</SamplingRatio>

<MemoryWidth>4</MemoryWidth>

<TrendDepth>2</TrendDepth>

<CountersPerSlot>4</CountersPerSlot>

</Run>

<FileData>

<NumLanguages>2</NumLanguages>

<NumTrainFiles>2</NumTrainFiles>

<NumTestFiles>3</NumTestFiles>

</FileData>

<ResultSummary>

<AverageTime>9.709959</AverageTime>

<NumberCorrect>2</NumberCorrect>

<NumberIncorrect>1</NumberIncorrect>

<Accuracy>66.666667</Accuracy>

</ResultSummary>

<Mapping num = “2”>

<identifier language=“Indonesian” encoding=“ISO8859-1”>12</identifier>

<identifier language=“Thai” encoding=“UTF-8”>31</identifier>

</Mapping>

<Incorrect num = “1”>

<file trueid=“12” hailid=“0”>../corpus/indonesian iso8859/file 2.fil</file>

</Incorrect>

<Correct num = “2”>

<file trueid=“31” hailid=“31”>../corpus/thai utf8/file 1.fil</file>

<file trueid=“31” hailid=“31”>../corpus/thai utf8/file 2.fil</file>

</Correct>
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</HAILResultFile>

B.6.4 Hardware output format

The control software detailed in Section B.4 receives data from the report generator

found in the FPGA implementation of HAIL. The software can output XML files for

each TCP flow (or UDP packet) received from the system. These files contain the

same XML declaration and meta data tag as the other XML files presented in this

section.

The files also contain flow statistics that can be used to uniquely identify the TCP

flow, including the source and destination IP addresses and the source and destination

ports.

The files also contain the contents of the permanent counters at the time that the

flow terminated. The counters are simply output in the order that they are accessed

by the FPGA circuit and are therefore not sorted into any order. The information

provided includes both the language identifier associated with the counter and the

final value of the counter.

An example of the file format for these files follows. While the hardware implemen-

tation presented in this thesis uses more than two permanent counters, the example

shows only two permanent counters for simplicity.

<?xml version=“1.0” encoding=“utf-8” standalone=“yes”?>

<HAILOutputFile>

<MetaData File Type=“HAIL” version=“1.5”/>

<FlowStatistics>

<SourceIP>128.252.153.79</SourceIP>

<DestIP>72.14.203.104</DestIP>

<SourcePort>4815</SourcePort>

<DestPort>80</DestPort>

</FlowStatistics>

<FlowLanguages>

<language id=“0”>
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<identifier>0</identifier>

<counter>0</counter>

</language>

<language id=“1”>

<identifier>12</identifier>

<counter>234</counter>

</language>

</FlowLanguages>

</HAILOutputFile>
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Appendix C

Laboratory Configuration

An FPX card implementing HAIL can be placed within a GVS-1000, a chassis created

by Global Velocity, Inc. [1] to store two stacks of FPX cards. The bottom cards in

each stack are connected by a backplane that sits at the bottom of the GVS-1000

unit. A photograph of the GVS-1000, with several stacked FPX cards, is shown in

Figure C.1.

Figure C.1: The GVS-1000 containing stacked FPX cards

Using the GVS-1000, HAIL can be combined with the TCP processor and reporting

module described in Sections 4.2.1 and 4.2.2, respectively. In the left-hand stack,

the TCP processor receives data from a line card connected to a network link; it

performs operations to deliver in-order TCP packets to HAIL, which receives the

data and processes it for language identification.
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Figure C.2: Configuration of HAIL inside the GVS-1000

In the right-hand stack, the reporting module receives control data from a software

host and sends the data to HAIL for programming SRAM and control bits. The

reporting module also forwards the outputs of HAIL’s report generator (see Section

4.3.6) through this line card interface. Optional FPX modules for further processing

can be inserted between HAIL and the reporting module. In this configuration, HAIL

inserts the best language identifier for a TCP flow into each packet from the flow.

The stacked configuration is illustrated in Figure C.2.

The control software described in Section B.4 must be used in order to configure the

cards placed inside the GVS-1000. Rather than requiring a user to enter all commands

manually, a script called hailscript is provided within the control directory inside

the HAIL distribution. This script performs a series of NCHARGE commands to place

HAIL and the TCP processor on the FPX cards inside the GVS-1000, configures the

reporting module, loads the hash table on the HAIL circuit and starts the catcher

program.
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Before running hailscript, the appropriate hardware must be configured. First, a

computer must be configured with the software tools listed in Section B.5. Second,

circuits must be loaded into a GVS-1000 as shown in Figure C.2. (The current script

assumes that no “optional processing” cards alluded to in the figure will be in place.)

Third, a network interface on the computer must be connected to the appropriate

line card as seen in Figure C.2 via an appropriate type of network link. Finally, the

second line card in the GVS-1000 must either be connected to a network tap (to

process live data) or to a second network interface on a computer (to process stored

data sent via tcpreplay).

C.1 HAIL script contents

This section explains the contents of hailscript in detail. Comments are provided

to explain the function of each line in the script.

Kill all NCHARGE processes currently running.

killall ncharge

Launch an NCHARGE process for communicating with reporting module. 192.168.50.2

is the default IP address of the line card in the GVS-1000.

ncharge -i 192.168.50.2 -p 0 -s 6 -r &

Launch a process for communicating with HAIL.

ncharge -i 192.168.50.2 -p 0 -s 1 -r &

Launch a process for communicating with TCP processor.

ncharge -i 192.168.50.2 -p 0 -s 0 -r &

Load the reporting module bitfile into the appropriate FPX. basic send is a pro-

gram that sends commands to FPX cards via NCHARGE processes running in the

background.

basic send 0.6 c rm.bit

Configure the FPX card that will be loaded with HAIL to receive commands on VCI

0x24.

basic send 0.0 e 2a
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Configure the FPX card that will be loaded with HAIL to propagate data on VCI

0x28 onward.

basic send 0.1 t 0 28 1 0 0 0

Configure the FPX card that will be loaded with HAIL to propagate data on VCI

0x35, which is control data for programming SRAM and setting flags in hardware,

to the appropriate RAD input. VCI 0x35 is also used for output from the report

generator; this command sends that data downwards.

basic send 0.1 t 0 35 2 0 0 0

Configure the FPX card that will be loaded with HAIL to propagate data on VCI

0x39, which is network data from the TCP processor, to the appropriate RAD input.

basic send 0.1 t 0 39 0 3 0 0

Configure the FPX card that will be loaded with HAIL to propagate data on VCI

0x2B, which is output from the TCP reserializer, downwards.

basic send 0.1 t 0 2B 0 0 0 0

Load the HAIL bitfile into the appropriate FPX.

basic send 0.1 c language app.bit

Configure the FPX card that will be loaded with the TCP processor to receive com-

mands on VCI 0x22.

basic send 0.0 e 22

Configure the FPX card that will be loaded with the TCP processor to propagate

data on VCI 0x33, which is network data from the line card, to the appropriate RAD

input.

basic send 0.0 t 0 33 0 2 0 0

Configure the FPX card that will be loaded with the TCP processor to propagate

data on VCI 0x39, which is output, downard.

basic send 0.0 t 0 39 0 0 0 0

Load the TCP processor bitfile into the appropriate FPX.

basic send 0.0 c streamextract 4v2.bit

Inform the reporting module that the TCP processor and HAIL will be loaded into

the GVS-1000.

sendRM HT
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Start the catcher program, which will send data for loading HAIL’s SRAM tables and

catch data being output.

catcher -c ./hailconfig -o ./hailoutput

Running the convertXML program and sending network or file data to be processed

by HAIL is left to the user.
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Appendix D

Additional Figures
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Figure D.1: The effect of n-gram size on accuracy as size is altered from one to ten
bytes
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Appendix E

List of Acronyms

ASCII American Standard Code for Information Interchange

ANSI American National Standards Institute

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

CAM Content Addressable Memory

CLB Configurable Logic Block

CP Code Page

CVS Concurrent Versions System

DDR Dual Data Rate

DRAM Dynamic Random Access Memory

EPROM Erasable Programmable Read-Only Memory

FIFO First In First Out

FPGA Field Programmable Gate Array

FPX Field programmable Port eXtender

FSM Finite State Machine

HAIL Hardware-Accelerated Identification of Languages

HDL Hardware Description Language

HEC Header Error Correct

IANA Internet Assigned Numbers Authority

IP Internet Protocol

ISO International Organization for Standardization

LUT Look-Up Table

NID Network Interface Device

OC Optical Carrier

PC Personal Computer

QDR Quad Data Rate

RAD Reprogrammable Application Device
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RLDRAM Reduced-Latency Dynamic Random Access Memory

RTL Register-Transfer Level

SDRAM Synchronous Dynamic Random Access Memory

SRAM Synchronous Random Access Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

UTF Unicode Transformation Format

UTOPIA Universal Test and Operations Physical Interface for ATM

VCI Virtual Circuit Identifier

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VISCII Vietnamese Standard Code for Information Interchange

VPI Virtual Path Identifier

ZBT Zero Bus Turnaround
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