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This paper promotes a probabilistic approach for building models of local video

statistics for use in background subtraction schemes. By shifting into a probabilistic

framework, additional analytical tools become available for the creation and evalua-

tion of these models.

This paper continues to suggest the use of nonparametric statistical methods

for measuring the quality of efficient local spatio-temporal models of video background

distributions. Beginning with the familiar relative entropy distance between probabil-

ity distributions, we create a new distance measure that can be used to quantitatively

measure the quality of a probabilistic background model.
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Chapter 1

Introduction

There is an increasing need for automated video surveillance systems. Although

surveillance cameras are widespread, it is difficult to find sufficient human resources

to monitor and interpret the enormous amount of data they produce. As a result,

surveillance data are often used to identify criminal or otherwise anomalous activity

only after it has occurred. By combining surveillance cameras with computer systems

capable of automatically monitoring and interpreting the video data in real-time, we

can detect anomalous activity as it occurs.

An important component of video surveillance systems is background subtrac-

tion, the identification of background information that can be safely ignored during

the search for foreground anomalies. With a computationally efficient background

subtraction component, a surveillance algorithm can spend more resources on identi-

fying and tracking anomalies.

The complexity of different background subtraction systems varies wildly. In

the entertainment industry, for example, blue screens are used to give the background

a known and constant intensity that is easy to identify and ignore. Unfortunately, real

data rarely behave so nicely. Consequently, more specialized and tolerant background

models have been developed, some of which can even ignore consistent motion (like

normal movement in traffic scenes) when it occurs in the background.
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Although there are already some useful background maintenance systems in

existence (see, for example, [18]), they suffer from several significant problems. One

of these is their lack of a strong theoretical basis. The design of these systems is

largely ad hoc, and methods are motivated by the quality of their results rather than

by the theoretical soundness of their definitions. In particular, little effort has been

made to quantitatively measure how well a particular background model reflects the

true background distribution.

In this paper we try to close this theoretical gap by promoting the use of

nonparametric statistics for measuring background model quality.

1.1 Previous Methods

The general framework of most automated surveillance systems is simple. A collection

of training video data are used to build a model of the background. The system then

compares new data to the model and identifies which pixels fit it well. Any remaining

pixels are then further processed and tracked, if necessary.

Previous work on background subtraction has focused on calculating the ex-

pected intensity of a pixel [6] and on identifying and classifying consistent motion

within a scene [5, 20, 11]. A good overview of these and other methods can be

found in [18], in which the authors give several guidelines for designing successful

background maintenance systems.

In general, these methods can operate on several different scales—local meth-

ods that model the background distribution at each image pixel [12, 21, 4, 5], methods

that operate on image regions [9], or methods that operate on entire frames [10]. Some

more complicated methods use multiscale detectors that operate at all three levels

[18].

In [12], the authors describe several potentially useful pixel-level background

models and include instructions for generating the models, estimating their parame-

ters online, and scoring new measurements.
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1.1.1 Problems with Previous Methods

These previously proposed methods all lack a sound theoretical basis. Models are

generally measured in terms of their use as dichotomous classifiers. Their quality is

judged by a count of the number of falsely classified objects in test sequences or by an

investigation of their receiver-operating characteristics over a large range of possible

thresholds.

Neither of these procedures attempts in any way to determine just how well

a generated model represents the true background model. Rather, the quality of a

method is determined solely by its results on a small number of examples. Although

there is merit to these observations, it is unclear whether such an approach truly mea-

sures a potential model’s ability to model many different background distributions.

We discuss these problems in more detail in Chapter 2.

1.2 Overview of Remainder

We begin by establishing a standard notation to be used throughout the paper in

Chapter 2. We proceed in that chapter to review previous methods and to discuss

the problems that they suffer. In Chapter 3, we promote a probabilistic approach to

background modeling instead of the classifier approach traditionally used. In Chapter

4, we use nonparametric density estimation to help calculate a new distance measure

on probability density functions. Finally, in Chapter 5, we support the measure

defined with experimental results.

A review of kernel density estimation is given in Appendix A.
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Chapter 2

Notation and Review of Relevant

Previous Work

We begin by defining the notation used throughout this paper.

2.1 Video Notation

We will consider a video to be a sequence of images. Let V represent an N -frame

video, each frame of which is an n × m image. We will then write V = {I(t)}N
t=1,

where I(t) represents the tth frame. To represent the intensity of the component

image I(t) at the pixel (x, y), we write I(x, y, t). This intensity can either be a scalar

(for monochrome videos) or a vector (for color videos).

Throughout this paper, it will often be helpful to think of a video as being a

three-dimensional function that describes how the intensity of a video changes in the

spatial domain over time. We may then consider this function’s spatial and temporal

derivatives. Suppose (x, y) is a pixel of interest. We will use Ix(x, y, t), Iy(x, y, t),

and It(x, y, t) to represent approximations of the spatial derivative in the horizontal

direction, the spatial derivative in the vertical direction, and the temporal derivative

at (x, y) at time t. We will often drop the (x, y, t) parameters when unnecessary.
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2.2 Probability Notation

We will frequently discuss several common probability density functions (PDFs). Sup-

pose that Ω is a measurable state space, that F ⊆ P(Ω) is a set of measurable subsets

of Ω, and that P is a probability measure on Ω, that is, a measure with P (Ω) = 1. If

∆ ∈ F , we can create the uniform distribution on ∆. We will denote this distribution

as U(∆).

If we are working in the familiar state space R
n, we encounter several important

probability density functions. Perhaps the most important is the multivariate normal

distribution. Let µ ∈ R
n be a vector and Σ be a symmetric, positive-definite n × n

matrix. We will use N(µ,Σ) to represent the multivariate normal distribution with

mean µ and covariance Σ.

Throughout the paper we will assume that any covariance matrix Σ is sym-

metric and positive-definite.

2.3 Review of Previous Work

Many background maintenance schemes have been developed. In [18], the authors

examine the performance of 10 such schemes. They describe several problematic

situations of which background maintenance systems should be aware and compare

each method’s performance in response to these problematic scenarios. In the end,

they conclude that none of the schemes is able to correctly handle all of the problem

situations they identify, but with the insight gained from their investigation they

propose five principles by which all background maintenance schemes should abide.

We list these principles below, as stated in [18]:

• Semantic differentiation of objects should not be handled by the background

maintenance module.

• Background subtraction should segment objects of interest when they first ap-

pear (or reappear) in a scene.
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• An appropriate pixel-level stationarity criterion should be defined. Pixels that

satisfy this criterion are declared background and ignored.

• The background model must adapt to both sudden and gradual changes in the

background.

• Background models should take into account changes at differing spatial scales.

2.4 Pixel-Level Spatio–Temporal Models

In [12], a special, robust class of background models is considered. A video sequence

is interpreted as a three-dimensional intensity function on which local spatial and

temporal derivatives are defined. At each pixel (x, y) in the component images, an

independent background model is constructed. The basis for these models is the

4-vectors [I, Ix, Iy, It](x, y, t).

After the background models have been constructed, new data may be scored

using a function f(x,y)(I, Ix, Iy, It) that represents the negative log-likelihood that the

measurement [I, Ix, Iy, It] came from the background model generated at the pixel

(x, y). If a measurement has a score below some set threshold, it is considered to come

from the background; if its score exceeds the threshold, it is marked for additional

processing.

In this paper, we focus on models of the type described in [12]. With this

framework, each model is completely described by its measurement definition, scor-

ing function, and parameter estimation method. The most important models are

those for which parameters can be estimated online. If the system can update model

parameters online, it can adapt to changing background conditions in real-time. With

an online scheme, the background model and scoring function can potentially abide

by the first four of the principles identified above, although they will continue to

operate on a single scale. It would be trivial to implement a multiscale approach,

however, by first subsampling the component images and then building local models
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on the subsampled video. In such a scheme, these background subtraction models can

be expected to satisfy all five of the criteria, assuming a reasonable choice of model

and scoring function. For this reason, we study these models exclusively.

We briefly present the three background models described by [12] that we

consider in this paper. For each model we enumerate the necessary measurements

needed to build the model, the parameters of the model, and the score used to measure

how well a new measurement fits into the model. Descriptions of how the model

parameters may be estimated, including online methods if available, may be found in

[12].

2.4.1 Background of Constant Intensity

If the camera is fixed and the background can be expected to stay relatively constant,

we can model the background as a single static image that may be easily identified and

ignored. Note that such a model requires that all motion be considered anomalous.

• Measurement used: The required measurement is the intensity I.

• Score: If the background is assumed to have intensity I ′, we score an observed

intensity I∗ by simply taking the squared L2 distance, ||I ′ − I∗||2.

2.4.2 Background with Gaussian Distribution in (Ix, Iy, It) Space

If a scene contains motion that should be considered part of the background, more

tolerant models are required. One solution is to model measurements in the (Ix, Iy, It)

space with a single multivariate Gaussian distribution.

• Measurements used: The required measurements are the intensity deriva-

tives, Ix, Iy, and It.

• Parameters: The parameters of this model are the mean µ and covariance

matrix Σ.
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• Score: If background measurements are assumed to come from a multivariate

Gaussian distribution G(µ,Σ), the negative log-likelihood that a given measure-

ment m = (Ix, Iy, It) comes from N(µ,Σ) is simply the squared Mahalanobis

distance, (m − µ)TΣ−1(m − µ).

2.4.3 Background with A Mixture of Gaussian Distributions

When a single Gaussian is insufficient to model the distribution of (Ix, Iy, It) values,

a finite mixture of Gaussians may be used instead.

• Measurements used: The required measurements are the intensity deriva-

tives, Ix, Iy, and It.

• Parameters: Suppose the mixture model contains k Gaussians for some k ∈ N.

The parameters of this model are then k mean values {µi}k
i=1, k covariance

matrices {Σi}k
i=1, and k scaling factors {pi}k

i=1, with 0 ≤ pi ≤ 1 and
∑k

i=1 pi = 1.

• Score: If background measurements are assumed to come from a weighted

sum of multivariate Gaussian distributions {pi ·N(µi,Σi)}k
i=1, the negative log-

likelihood that a given measurement m = (Ix, Iy, It) comes from this distribu-

tion is a weighted sum of the k squared Mahalanobis distances:

k
∑

i=1

pi · ((m − µi)
TΣi

−1(m − µi))

There are several methods available for building such a mixture model. A

widely used algorithm is expectation maximization, which uses an iterative process

to find the best-fitting mixture of Gaussians for a particular dataset [15]. Although

expectation maximization can be expected to perform relatively well, the parameters

must be updated and calculated offline; therefore, expectation maximization cannot

be used when online methods are required.

In [12], the authors consider the finite mixture model for completeness but

conclude that “there is no natural method for an incremental EM solution which fits
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the streaming video processing model and does not require maintaining a history of

all prior data points.” One possible solution is to use the adaptive mixture method

proposed in [13], which uses a data-driven approach to estimate the parameters of an

underlying mixture model. In our simulations this method has proven to be almost

as effective as expectation maximization while operating online.

2.5 Receiver-Operating Characteristics as Measures

of Quality

As a first attempt at measuring the quality of these local models, Pless et al. suggest

using receiver-operating characteristic (ROC) plots. These plots attempt to show the

general performance of a classifier over the range of its possible threshold values.

Suppose we have a classifier C that accepts a range of real values [a, b] (a, b ∈ R)

as its threshold. The ROC plot for C is created by measuring its sensitivity (the por-

tion of true positives correctly classified) and specificity (the portion of true negatives

correctly classified) for large number of sample thresholds T ∈ [a, b]. Let sT represent

the sensitivity of the classifier C with threshold T , and let σT represent its specificity.

For each threshold T , we plot sT (on the y-axis) against (1− σT ) on the x-axis. The

resulting parameterized curve is the ROC curve for C. To clarify this space, the

classifier that always answers “yes” is identified by the point (1, 1) in this space, the

classifier that always answers “no” by the point (0, 0), and a perfect classifier by the

point (1, 0).

The quality of a particular classifier can be inferred from its ROC plot in several

ways. A common approach is to measure the area under the ROC curve. The ROC

plot of a perfectly random classifier has slope 1 and intersects both of the points (0, 0)

and (1, 1). Its integral is therefore 1
2
, and so any potentially useful classifier should

have an integral higher than this. Another popular quality measure is the “distance”

between the curve and the perfect classifier point (1, 0). The closest point on the

ROC curve of a random classifier is the point ( 1
2
, 1

2
), with distance

√
2

2
.
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2.5.1 Problems with ROC Plots

The ROC curve approach has several weaknesses. One significant problem is that

once an ROC plot is generated, it is impossible to infer the amount or nature of the

data considered when creating the plot—information that is clearly important for

ascertaining the relevance of the curve.

Another problem concerns threshold selection. Many different thresholds are

used to generate an ROC plot. From these plots, one can infer to some extent the

general behavior of the classifier and can perhaps gain basic insight into which values

may be good thresholds. These plots can vary widely from one application of the

classifier to another, though, and the optimal threshold may drastically change with

the situation.

Once the classifier is being used on real data, the user cannot know what the

relevant ROCs are and may not be able to choose the optimal, or perhaps even a

useful, threshold. These reservations regarding threshold choice suggest that a di-

chotomous classifier may not always be the best choice for video surveillance systems.

Instead, we suggest that probability density functions be used to model background

distributions, from which useful probabilistic measures may be derived.
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Chapter 3

Moving Towards a Probabilistic

Model

Pixels in surveillance video data can be capturing data from either the background

or the foreground. For this reason, dichotomous classifiers seem to be the natural

choice for solving the background subtraction problem. On the other hand, we can

understand the classifier models described above as operating in two phases. First,

the system builds some parametric model that is assumed to represent the true back-

ground distribution. Second, the system gives each new measurement a score that

measures how well the measurement fits in the model. The magnitude of this score

can, in some sense, indicate the likelihood that the measurement came from the true

background distribution—small values suggest that the measurement is likely to have

come from the background, whereas large values suggest that the measurement is

anomalous. Although this is fairly easy to use in an automatic system, each classifier

has a different range of possible scores. Further, the degree to which the magnitude

of a measurement’s score indicates its likelihood of occurring varies from classifier to

classifier, making their use somewhat difficult.

As an alternative to this approach, we can model the true background distribu-

tion itself. Instead of merely characterizing the distribution and thresholding distance
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scores from some ad hoc model, we model a background distribution with a proba-

bility density function f . This PDF can lie within any number of finite-dimensional

spaces, but for our purposes the most important such space will be the (Ix, Iy, It)

space used in the three models described in the previous chapter. Then, given a new

observation, we can approximate the probability that the measurement came from the

estimated background distribution. The problem of generating background models,

then, becomes a question of probability density estimation.

There are several advantages to this probabilistic approach. It is backwards-

compatible with the classifier approach. We may turn any probability density estimate

of the background distribution into a classifier in a straightforward, universal way:

the user selects a value p ∈ [0, 1], and any measurement having probability less than

p of being in the background distribution is marked for further investigation. This

idea is simple, universal, and independent of the ROCs of a classifier.

Additionally, estimating the probability that a measurement came from the

background distribution can be useful for presenting surveillance data after it has

been scored. For example, the system could use this probability data to color fore-

ground pixels according to their probability of not having come from the background

distribution.

Finally, this probabilistic approach is useful because it permits a wealth of

statistical methods, both parametric and nonparametric, to become available to us

for analyzing and evaluating background models.

Many of the existing classifier-based methods can be easily recast in terms of

this probabilistic approach. The three methods presented in the previous chapter, for

example, all have simple implicit probability density function representations, which

we present in the next section. Almost all of these classifier-based methods, however,

rely on parametric estimates of the data. This is probably not the best approach,

since true video data is not likely to be distributed as any sort of natural parametric

density function.
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By taking a probabilistic standpoint to the problem of background modeling,

we are able to apply nonparametric probability density estimation techniques that

make no assumptions about the distribution of the underlying data. Although several

of these techniques may require a large amount of storage space (some require storing

every data point), they may still be useful in some restricted sense, especially for

judging the quality of simpler online models. One important nonparametric density

estimation technique, kernel density estimation, is presented in Appendix A.

3.1 Recasting Previous Models in the Probabilis-

tic Framework

Most of the local spatio–temporal background classifiers commonly used in video

surveillance systems can be rewritten in terms of probability density functions. Below

we describe how the three models described in [12] and presented in section 2.4 may

be altered to represent background models as probability density functions.

3.1.1 Background of Constant Intensity

If the background distribution is assumed to have intensity I ′ at some pixel (x, y),

we could potentially model the PDF of this background distribution as a single point

mass at I ′. Any measurement that deviated even slightly from I ′, however, would

be scored lower than intended. A more useful approach would be to center a small

Gaussian at I ′ that is scaled according to the noise present in the video.

Let σ̂GN be an estimate of the Gaussian noise present in the training video

data, and let

Σ =











σ̂2
GN 0 0

0 σ̂2
GN 0

0 0 σ̂2
GN










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We then use the probability density function f = N(I ′, Σ) to represent this back-

ground model.

There are several methods available for calculating a good estimate σ̂GN ; one

simple method is presented in section 3.2.1.

3.1.2 Background with Gaussian Distributions

The remaining two background models lend themselves readily to the probabilistic

approach. Suppose that the background distribution at a pixel (x, y) is assumed to

have a distribution given by a mixture of k Gaussians for some k ∈ N. Let {µi}k
i=1

be the k mean values of the Gaussians, let {Σi}k
i=1 be the k covariance matrices of

the Gaussians, and let {pi}k
i=1 be the k scaling factors associated with the mixture,

with 0 ≤ pi ≤ 1 for 1 ≤ i ≤ k and
∑k

i=1 pi = 1. Then we use the probability density

function

f =

k
∑

i=1

pi · N(µi,Σi)

to represent this background model. Notice that if k = 1 this degenerates to the

single Gaussian model, f = N(µ,Σ).

3.2 Estimating the Probability that a Measure-

ment Was Drawn from a Model Distribution

Suppose that at a particular pixel (x, y) we have generated a continuous probability

density function f(Ix, Iy, It) that approximates the true distribution of background

measurements at (x, y). Given a new measurement m = (x, y, t), we wish to estimate

the probability that m came from the distribution f . Simply evaluating f(m) is

meaningless, since f is a continuous probability density function. We can only make

sense of average values of f on intervals.

Instead, we center a small Gaussian G at m and calculate the convolution

(G ∗ f)(m) to estimate the probability that m was drawn from f .
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It is not immediately clear how large the Gaussian G should be. One reasonable

method would be to use estimates of the inherent noise in the (Ix, Iy, It) data as a

guide. If σ̂x, σ̂y, σ̂t are estimates for the noise in the Ix, Iy, and It measurements,

respectively, we can create the matrix

Σ =











σ̂2
x 0 0

0 σ̂2
y 0

0 0 σ̂2
t











and set G = N(m,Σ) above. It may be impossible to estimate the noise inherent

in the Ix, Iy, and It channels effectively. To estimate these values, however, we can

use an estimate of the Gaussian noise present in the image space. There are several

methods for doing so; one simple and fast method is presented below.

3.2.1 Estimating the Gaussian Noise in a Video

Immerkær [14] provides a fast method of estimating the standard deviation of additive

Gaussian noise in an image, σGN . The approach is to convolve with a linear filter

insensitive to the Laplacian of the image:

L =











1 −2 1

−2 4 −2

1 −2 1











After applying L to an m × n image I, we may estimate σGN with:

σ̂GN =

√

π

2

1

6mn

m,n
∑

i,j=1

|(I ∗ L)(i, j)|

To estimate the amount of noise present in a video sequence, we can simply

measure σ̂GN for a selection of frames and average the results.
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3.3 Possible Problems with the Probabilistic Ap-

proach

The remainder of this paper deals with the problem of measuring the quality of an

estimated background distribution function by comparing it with the true background

distribution. Unfortunately, one cannot know the properties of the actual background

distribution a priori. Moreover, it is incredibly difficult, if not impossible, to form a

reasonable global distribution that is likely to model a wide range of natural scenes

with any accuracy.

As a result, we need some way to approximate the true background distribution

at a pixel. The problem of probability density estimation has received a great deal of

attention over the past few decades, and many robust methods, both parametric and

nonparametric, are available. As we cannot reasonably parameterize the background

distributions encountered in natural scenes, we naturally choose a nonparametric

approach.

The most popular nonparametric density estimation techniques include his-

tograms, frequency polygons, average shifted histograms, and kernel density esti-

mates. An excellent review of these methods may be found in [16]. Of these, kernel

density estimation has the best efficiency; therefore, we use it exclusively for density

estimation when needed. A review of multivariate kernel density estimation can be

found in Appendix A.
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Chapter 4

Quantitatively Measuring the

Quality of Background Models

Given a background model of a scene, we wish to quantitatively measure how well

the model reflects the actual background distribution. Suppose we have modeled the

background of some video V and that for each pixel p the model is represented by a

d-dimensional PDF, b̃p(x). Usually we select the b̃p models to lie within the three-

dimensional (Ix, Iy, It) space, although different spaces could be used without altering

the measures described below.

Whatever the underlying space, each pixel p is associated with an actual back-

ground distribution bp(x). In a good background model, the b̃p distributions will

closely approximate the bp distributions, especially in regions of the state space where

measurements occur frequently. We describe a method to quantitatively measure this

difference below. It is a a measure analogous to the relative entropy distance com-

monly used in information theory.

4.1 The Relative Entropy Measure

The relative entropy measure is widely used in information theory, where it has a very

specific meaning. Suppose that we wish to encode the values of a random variable
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with distribution f . If we could completely specify the distribution f , we could encode

the random variable with a code that has average length H(f) bits, where H(f) is the

Shannon entropy of f [1]. If, however, f were not completely specifiable, we could use

an approximate distribution g to model the random variable. In that case, the code

would need more bits to represent the random variable. That difference is exactly

the entropy of g relative to f , d(f ||g).

The relative entropy measure, by definition, calculates the information lost

when we approximate one probability density function with another. This is the

reason we choose it as the basis of our quality measure.

4.1.1 Definition of Relative Entropy

Suppose Ω is a measurable state space and that f and g are probability densities on

Ω. The entropy of g relative to f , also called the Kullback-Leibler distance, is given

by

d(f ||g) =

∫

S(f)

f(ω) log

(

f(ω)

g(ω)

)

dω

where S(f) is the support of f [3]. The common convention, reached by appealing

to continuity arguments, is to define f · log
(

f

0

)

= ∞ for nonzero f [3]. The relative

entropy measure, then, assumes values in [0,∞].

The relative entropy measure is not a true metric. It is not symmetric and

does not satisfy the triangle inequality. Nevertheless, it has many useful properties.

It is always nonnegative and only assumes the value 0 if f = g almost everywhere on

Ω [1]. Since this property is usually only proven for the univariate case (with Ω = R),

we prove this property below.

Theorem: Let f and g be probability density functions on the measurable

space Ω. Then d(f ||g) ≥ 0, with equality holding if and only if f = g almost

everywhere on Ω.
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Proof : We have:

−d(f ||g) = −
∫

S(f)

f(ω) log

(

f(ω)

g(ω)

)

dω

=

∫

S(f)

f(ω) log

(

g(ω)

f(ω)

)

dω

≤ log

∫

S(f)

f(ω)

(

g(ω)

f(ω)

)

dω

= log

∫

S(f)

g(ω)dω

≤ log 1

= 0

The first inequality follows from Jensen’s inequality [19]. If equality is to hold there,

we must have that the argument of the convex function log(·) be a constant almost

surely, that is, that f = g almost everywhere. 2

4.2 A New Measure of Background Model Quality

We modify the relative entropy measure slightly to measure the distance between

the b̃p and bp distributions. Unfortunately, we cannot know a priori how the back-

ground measurements are distributed, and so cannot calculate directly with the bp

distributions. Instead we choose from a variety of nonparametric density estimation

techniques to form good approximations of the bp distributions.

Our modification will reflect the heuristic observation made above, that is, that

we should penalize background models heavily for differing from the true distribution

in areas where measurements occur relatively frequently, but should not penalize

too harshly for differing from the true distribution in areas where measurements

occur relatively infrequently. To do so, for each pixel p we build an approximation

of the universal distribution of measurements at p, including both background and

foreground measurements. For a particular pixel p, label this universal distribution

fp(x).



20

4.2.1 Definition of Relevance-Weighted Relative Entropy

Choose and fix a pixel p = (x, y) in the image. Using nonparametric density es-

timation, we build approximations of fp(x) and bp(x). Call these approximations

f̂(x) and b̂(x), respectively. Once suitable f̂ and b̂ have been found, we calculate the

relevance-weighted relative entropy of the model b̃p as:

q(b̃p) =

∫

X

f̂p(x) log

(

b̂p(x)

b̃p(x)

)

dx (4.1)

The measure q(b̃p) is based on the relative entropy measure between b̃p and b̂p,

modified to weight their difference by the function f̂ .

It is easy to see that although this measure is not a true metric, it equals 0 if

b̃p = b̂p.

In the next chapter we present results from natural scenes that suggest that

relative quality is a useful measure to consider.
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Chapter 5

Results

The new quality measure was extensively tested with several parametric and non-

parametric density estimation techniques. The relative performance of each of the

methods, as measured by their relevance-weighted relative entropies, closely matches

their expected performance. This suggests that the new measure is likely to be useful

as an unbiased estimator of a background model’s quality.

We briefly describe the test sequences used and background models tested in

the next two sections.

5.1 Description of Test Sequences

We chose three test videos to represent several common scenarios where background

subtraction might be used. For each sequence, we concentrate on specific image

regions that were chosen to reflect differing amounts and types of activity. We list

the videos and brief descriptions below.

• Ducks—The first video is a scene of ducks swimming on a pond. The camera

remains static, but both the water and surrounding foliage are affected by blow-

ing wind. This is an example of a video that contains a great deal of fairly small,

sometimes inconsistent motion (swaying grasses) that should be ignored when
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searching for the true anomalies (the ducks). Although the ducks are benign,

this type of scene typifies many surveillance situations.

The first region of interest lies in a portion of the water where ducks occasionally

wander; the second region focuses entirely on waving grass.

• Intersection—The second video is a scene of a traffic intersection. A great deal

of relatively consistent motion occurs, except in the intersection’s center. This is

an example of a possible commercial use for automated surveillance—analyzing

traffic flow patterns.

The first region of interest is in the center of the intersection where a lot of

activity occurs in different directions of motion; the second region lies in a

region of sidewalk with little activity. We show a sample frames from this

videos, highlighting the region(s) of interest, in Figure 1.

• Stabilized—The third video is a stabilized aerial view of a suburban area. This is

an example another possible use of automated surveillance systems—modeling

consistent motion in large, mostly static scenes.

The region of interest is for the most part static, but a small portion contains

a road on which cars consistently drive.

5.2 Description of Background Models Tested

The relevance-weighted relative entropy measure was tested on seven local spatio–

temporal background estimation techniques. We list them, including any relevant

information, below.

Parametric models:

• Uniform intensity

• Single Gaussian in (Ix, Iy, It) space
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(a) (b)

(c)

Figure 5.1: Frames from the test sequences: (a) “ducks,” (b) “intersection,” and (c)
“stabilized.” Regions of interest are inverted and labeled.
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• Mixture of 3 Gaussians in (Ix, Iy, It) space (generated with expectation maxi-

mization algorithm)

• Mixture of up to 5 Gaussians in (Ix, Iy, It) space (generated with adaptive mix-

tures technique)

Nonparametric models:

• Kernel density estimate with 10 data points randomly chosen from training data

• Same with 30 points

• Same with 50 points

5.3 Procedure

After selecting a portion of the video sequence to represent the background, we used

that portion to train and construct probability density estimates for each pixel of

interest, using the methods described previously and in the appendix. These estimates

comprised the b̃ distributions in the definition of relevance-weighted relative entropy.

Additionally, for each pixel one large universal model was created, using kernel density

estimation, with the data from the entire training sequence. This large background

distribution was used to represent the f̂ distributions. A subsample of the training

sequence was used to create a smaller model, again using kernel density estimation,

to represent the b̂ distributions in the definition.

With these distributions, we proceeded to calculate the relevance-weighted

relative entropies for each of the background models as given in equation 4.1. The

results for each video region and background model are presented in Table 1. The

number listed is the mean relevance-weighted relative entropy of the model over the

entire region being tested.

To evaluate the integral in equation 4.1, Monte Carlo integration was used

with enough sample points to ensure that the result was very likely to be accurate to

within 5% error.
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Table 5.1: Relevance-weighted relative entropy measures for several density estimates
across differing video sequences

Ducks Intersection Stabilized
Method Region 1 Region 2 Region 1 Region 2 Region 1

Uniform 1.758 ×10−3 1.220 ×10−3 8.262 2.245 0.2207
Single Gaussian 2.036 ×10−4 1.681 ×10−3 9.634 4.030 0.2917

Multiple Gaussian (AM) 4.734 ×10−2 4.161 ×10−2 5.959 3.703 0.5056
Multiple Gaussian (EM) 1.479 ×10−4 1.567 ×10−3 4.365 3.228 0.2955

KDE (10 points) 0.6820 0.7262 1.0404 0.7377 0.5068
KDE (30 points) 0.3722 0.3445 0.3877 0.3968 0.1987
KDE (50 points) 0.2470 0.2582 0.3300 0.3311 0.1234

5.4 Findings

Of the parameterized methods, the multiple Gaussian mixture model built with ex-

pectation maximization was the best in regions with a lot of activity. For regions

with little activity, however, simpler methods such as single Gaussian models or even

uniform intensity models performed slightly better. The multiple Gaussian mixture

model built with adaptive mixtures performed similarly, suggesting that it may be

useful as an online substitute for expectation maximization.

The single Gaussian and uniform models performed surprisingly well. This

should not be that surprising, however, since in many of these background distribu-

tions outliers are fairly scarce.

Additionally, the relevance-weighted relative entropy measures are greater for

regions that have more activity, which agrees with the common sense notion that

distributions with larger support are more difficult to model with highly localized

representations.

Somewhat surprisingly, the nonparametric density estimators produced very

good results. For the “intersection” scene, for example, the kernel density estimates

performed by far the best, even with a very small amount of data. These models

can, however, be understood as being nothing more than large mixture models that
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use identical scaling for each mixture. In fact, if infinite support is desirable, the

Epanechnikov kernels we use could be replaced with standard normal distributions.

It should also be noted that the relevance-weighted relative entropies did not

vary greatly over the test region. Any variation more than slight could be resolved

easily—higher entropies generally corresponded to more active pixels.

These results suggest that kernel density estimators or other nonparametric

estimates of density should be strongly considered when deciding upon a background

model. They model a wide range of datasets quite well and require little storage

space with small datasets. A kernel density estimate with 10 points, for example,

only requires storing 10 · d floating point numbers, where d is the dimension of the

space. A finite mixture model with 5 Gaussians, for comparison, requires storing

5d2 + 6d floating point numbers.

5.5 Implementation

All code was written in MATLAB. To create kernel density estimates, the Kernel

Density Estimation Toolbox for MATLAB, created by Alexander Ihler, was used [7].

Additionally, the expectation maximization and adaptive mixtures techniques were

implemented using the Computational Statistics Toolbox, created to accompany a

textbook by Wendy L. Martinez and Angel R. Martinez, was used, despite several

bugs in their code [8].
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Chapter 6

Conclusion

Although there are several classifier-based methods that can be used successfully

for background subtraction, they are all lacking a theoretical basis. Additionally,

classifier-based techniques have several weaknesses that should not be ignored. One

particularly important weakness is that no good method exists to quantitatively mea-

sure the quality of a given background model.

After adopting a framework based on probability density functions, we devel-

oped a technique for measuring the relevance-weighted relative entropy of a back-

ground model. The technique is based on an important information-theoretic quan-

tity, the relative entropy.

Using kernel density estimation to model the true background and universal

distributions at a pixel, we tested the newly developed relevance-weighted relative

entropy measure on several parametric and nonparametric density estimation meth-

ods. Even for very different video regions, the relevance-weighted relative entropy

measure supports the traditionally-held ranking of the qualities of these techniques,

supporting the notion that the new measure is indeed useful.
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Appendix A

Kernel Density Estimation

Popular nonparametric density estimation schemes include histograms, frequency

polygons, average shifted histograms, and kernel density estimation. Of these, ker-

nel density estimation is the most efficient, converging to the true distribution (in

terms of asymptotic mean integrated squared error) at a rate of O(n− 4

4+d ), where n

is the number of data points used to build the estimate and d is the dimension of

the state space. The multivariate histogram, for comparison, converges at a rate of

O(n− 2

4+d ). The other methods mentioned above converge at the same rate as kernel

density estimates, but with larger constants [16].

Somewhat surprisingly, kernel density estimates, may be understood as the

limiting case of these other methods. Frequency polygons and average shifted his-

tograms asympototically approximate kernel density estimators as their bin width

becomes smaller. In fact, almost every density estimation technique asymptotically

becomes a kernel estimate [16].

For our purposes, one of the most useful properties of a kernel density estimate

is that it gives a bona fide estimate of the true probability density—the estimate is

always guaranteed to be a proper probability density itself.

The idea is to center a small, scaled kernel at each data point. To estimate the

probability density function at a new measurement, we evaluate the kernels at that

point and sum the results.
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A.1 Definition and Discussion of Parameter Selec-

tion

A.1.1 Definition

Choose and fix a pixel (x, y) and select an n-frame section of the training data from

which to build an approximate background distribution. Decide upon a particular

state space for the distributions to lie within, and let {mi}n
i=1 be the measurements

in that space at the pixel (x, y) for each of the n frames. If f is the true background

distribution in this space at the pixel (x, y), we can estimate the value of f at some

point x in the domain by calculating as follows:

f̂(x) =
1

n

n
∑

i=1

{

d
∏

j=1

h−1
j K

(

xj − mi,j

hj

)

}

The values {hj}d
j=1 are called the scaling factors of the kernel estimate, and the

function K(t) is a one-dimensional kernel function that satisfies the properties listed

below:

• K(t) > 0 for all t ∈ R

• K(t) = K(−t) for all t ∈ R

•
∫∞
−∞ K(t)dt = 1.

A.1.2 Choice of Kernel Function

The paricular choice of kernel is not terribly important in terms of efficiency and

convergence [16]. Nonetheless, other factors, including computational cost, should be

carefully considered when deciding between available kernels. Epanechnikov proved

that the most efficient univariate kernel is given by his eponymous kernel, K(t) =

3
4
(1−t2)·I[−1,1](t), where I[−1,1] is an indicator function [2]. We select the Epanechnikov

kernel for our kernel because it is optimally efficient, is simple to calculate, and has
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compact support—to calculate f̂(x) we only need to consider measurements within

L1 distance maxj{hj} from x.

A.1.3 Choice of Scaling Parameters

The quality of the kernel estimate f̂ strongly depends on the choice of scaling factors.

Scott shows how to optimally estimate the scaling parameters {hj} [16]. Suppose

K is a kernel with finite and nonzero second central moment κ and f is the density

function we wish to approximate. The idea is to minimize the asymptotic mean

integrated squared error (AMISE) of the kernel estimate f̂ given a particular set of

scaling factors {hj}. For the univariate case, he calculates

AMISEK(h) =
1

4
κ2h4R(f ′′) +

R(K)

nh

The function R is a “roughness” measure, defined for a function f as

R(f) ≡
∫ ∞

−∞
f(x)2dx

Minimizing the AMISE function yields the optimal scaling factor:

h∗
K =

(

R(K)

nκ2R(f ′′)

)
1

5

Since f is in general unknown, we must approximate the value of R(f ′′). The

usual method (given by Silverman [17]) is to assume f has the standard normal distri-

bution N(0, σ2
f ), where σf is the standard deviation of f . This leads to the estimate

R(f ′′) ≈ 3/(8
√

π)σ5
f . We can approximate σf using the sample standard deviation of

the data or the nonparametric estimator IQR/1.348; Silverman recommends using

the smaller of the two [17].

For the Epanechnikov kernel KE, we have κE = 1/5 and R(KE) = 3/5, leading

to the estimate
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h∗
KE

= (40
√

π)
1

5 σ ≈ 2.34σn
1

5

Unfortunately, the optimal scaling parameters cannot be directly calculated

for multivariate kernels. Instead, Scott explicitly calculates the optimal scaling pa-

rameters {hj} for the Normal kernel N(0, Id), where Id is the d × d identity matrix.

He derives the Normal reference rule:

h∗
j =

(

4

d + 2

)frac1d+4

σjn
− 1

d+4

Scott then suggests that for other kernels, the scaling parameters are given by:

ĥ∗
j(K) =

h∗
j

σK

Therefore, for the Epanechnikov kernel KE, we may use

ĥ∗
j(KE) =

√
5 · h∗

j

as our approximately optimal scaling factors.
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