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1. Introduction

The communication network design problem studied here is: given a collection of nodes
(or switches), the cost of building communication links of various bandwidths between the
nodes, traffic requirements for the network, and possibly other constraints, choose which
bandwidth to install between each pair of nodes such that the traffic requirements and other
constraints are satisfied, and the total cost is minimized.

Many variations of this problem have been studied by a variety of researchers (see ref-
erences in Section 5). Most other work considers the traffic requirements to be static and
between pairs of nodes only (point-to-point). This work is distinguished by its characteri-
zation of traffic requirements as sequences of requests to add and remove connections, each
of which may involve two or more nodes (multipoint). The network is a candidate solution
if no request to add a connection is ever refused, i.e., it is nonblocking.

This way of specifying traffic requirements is adapted from research on designing non-
blocking multirate switching fabrics (e.g., Melen and Turner {MT89, MT90]). In that work,
the topologies of the networks studied are highly structured. Here we desire nonblocking
networks with arbitrary topology.

Some generalizations to their model are made which further restrict the traffic that can
be offered to the network (point-to-point restrictions, as described in Section 2.3). This is
done for two reasons. One is that it is easy to include, and could lead to cheaper networks.
Another reason is that suitable choices for these restrictions (p-bounded) show that this
method of specifying traffic requirements is more general than in previous work.

It is intended that such network designs will be useful for fast packet or asynchronous
transfer mode (ATM) networks, for which little is known about the traffic patterns of users.
Nonblocking network designs provide strong guarantees for quality of service.

This paper is structured as follows. Section 2 defines the model we use to describe
communication networks and traffic requirements, and defines what we mean by a non-
blocking network. Section 3 reviews some previous results of work done with fixed traffic
requirements, as opposed to nonblocking traffic requirements. Section 4 presents results
that have been obtained so far on finding efficient algorithms for the nonblocking network
design problem. Section 5 discusses other work known to the author that has some rela-
tionship to that here. Section 6 gives ideas for ways in which this work can be extended.
Finally, section 7 gives proofs for theorems contained in section 4.

2. Definitions and Problem Statement

The following material was also presented by Fingerhut [Fin91], although there the network
links and routes were represented by undirected graphs and edges. The model presented
here uses directed graphs, and is not only a more accurate model of reality, but also simplifies
the solution for alternate path routing (section 4.2).



2.1. Networks, connection requests, and connections

A network is a directed graph G = (V, E) along with a function cap : E — N, where V is
the set of nodes (or vertices), E is the set of links (or edges), cap(e) is the bandwidth, or
capacity, of link e, and A denotes the set of natural numbers.

A connection request (or call) is a triple ¢ = (src, dest, req-rate ), where src(q) C V are
the sources of information flow, dest(¢) C V are the destinations of flow, and req-rate(q) €
N is the desired rate of the connection. Either or both of the sets src(g), dest(g) must
contain exactly one node. If both do, then the request is called poini-to-point. If [dest (¢)| >
1, then the request is called a one to maeny multipoint request. If [src(g)| > 1, then the
request is called a many fo one multipoint request.

A connection (or route) is a pair r = (conn-links, conn-rate). Conn-links(r) is a set of
links in E which forms a tree. That is, if all of the edges F are considered as undirected
edges, then the edges in E with their incident nodes form a connected, acyclic graph. A
point-to-point connection is a directed path from a source node to a destination node. A
one to many multipoint connection is a tree with the source node as a root, destination
nodes as either leaves or internal nodes of the tree, and all edges directed away from the
source. A many fo one raullipoint connection is a tree with the destination node as a root,
source nodes as either leaves or internal nodes of the tree, and all edges directed towards
the destination. conn-rate(r) is the bandwidth which is used on each link of the connection.

A connection r realizes a request ¢ under one of several conditions. If ¢ is point-to-
point, then r realizes g if conn-links(r) is a directed path from src(g) to dest(g). If ¢
is a one to many multipoint request, then » realizes ¢ if conn-links{r} is a directed tree
with root src(q), all links are directed away from the root, all dest(g) are in the tree,
and all leaves are contained in dest(g). If ¢ is a many to one multipoint request, then r
realizes ¢ if conn-links{r) is a directed tree with root dest(g), all links are directed toward
the root, all src(g) are in the tree, and all leaves are contained in src(g). In all cases,
conn-rate(r) = req-rate(g) should also hold.

A state of the network is a (multi)set of connections.

Given a network G with link capacities cap : £ — A and a state s, we define the usage
and available capacity of a link e in state s to be

usage(s,e) = Z conn-rate(r)
rEs, r uses link ¢
avail(s,e) = cap(e)— usage(s,e)

A state s is compatible with network G if

(Ve € E) (usage(s, e) < cap(e))
In other words, every link is used in connections that have a total rate which is at most the
link’s capacity.

For example, the point-to-point request (e, &, 3) is realized by the connection ({(e, a),(a,b)},3),
which is the dotted path superimposed on the network in Figure 1. Similarly, the one to



Figure 1: An example state

many multipoint request (d, {a, b, e},4)is realized by the connection ({(d, ¢), (e, a),(e,)},4),
which is the dashed tree in Figure 1. The links are labeled with two numbers, first capac-
ity and then usage. Note that the link (e,a) has usage(s,{e,a)) = 7 = cap(e,a) and
avail(s,(e,a)) = 0. The link (e, b) has usage(s, (e, b)) = 4 and avail(s, (e,b)) = 7.

2.2. Fixed traffic requirements

Fixed traffic requirements describe an unchanging pattern of traffic among terminals. Al-
though they are not suitable in all cases, they are useful for describing a single worst case
load on the network. If the network can handle the worst case load, then it should also
handle any load which is a “subset” of the worst case.

Fixed traffic requirements are specified by giving a (multi)set of connection requests
REQ. Let G = (V, F) be a network with link capacities cap. We say that G is routable for
request set REQ if there is a state s compatible with G such that for each request ¢ € REQ,
there is one and only one route r € s which realizes g.

2.3. Nonblocking traffic requirements

We will define a nonblocking network formally in a moment, but intuitively it is one which,
given any state s it can get into and an additional connection request g, we can find a
connection r which realizes g such that sU{r} is a compatible state. It should be clear from
this rough definition that unless there is some way to restrict the new requests that come
in, any network with finite link capacities will eventually not be able to handle the new
requests. We will resirict new requests by introducing the concept of termination capacity.



Every node v has a source termination capacity a(v) € N and a destination termination
capacity w(v) € N. ov) (w(v)) is a number which represents the maximum total rate of
all connections in which a node may be a source (destination).

For example, if a(v) = 5, then v may be a source simultaneously in connections with
rates 1,2, and 2, but then it could not be a source in any more connections until an existing
connection is removed.

The source termination capacity a(u) may be interpreted as the bandwidth of the in-
terface to the switch u from the collection of terminals connected to u (similarly for w{u),
but in the opposite direction). This interface has a finite bandwidth, and if it is ever all
used, then it is impossible for any more connections to be made which have one of those
terminals as a source. Note that additional connections may pass through the node, they
just cannot start there. Also note that when we say a network is nonblocking, we mean that
if a new request does not exceed any of the termination capacities, then there will be enough
capacity on the links of the network to satisfy the request. From the point of view of a user
operating a terminal, a request may block because other users connected to the local node
through the same interface may be using all of the termination capacity. A network designer
using the algorithms developed here may wish to vary the values of fermination capacity
to see how it affects the cost of the network. They may also wish to engineer the network
to be nonblocking for lower values of & and w than are actually present in the network.
This could lower the cost of the network, but then the nonblocking guarantee only applies
when the network operates within the designed values. Users could try to exceed those
termination capacity values, and then blocking may occur. It is possible that some requests
like this could succeed, and then other users operating within their termination capacities
may block because someone else is “breaking the rules”. This idea of a termination capacity
was inspired by the “maximum port weight” 8 used by Melen and Turner [MT89, MT90].

An additional idea which may be useful in lowering the cost of network designs is poini-
to-point restrictions, It is also straightforward to add these restrictions to some of the
network design algorithms efficiently. They are specified by giving a value p(u,v) € A for
each u,v € V. The value p(u,v) is the maximum total rate of all connections that may
exist from % to v simultaneously.

Given a network G with termination capacities @ : V — N, w : V — N, point-to-

point restrictions p : V x V — A, and a {(multi)set of connection requests REQ, define the
point-to-point usage, source usage, and destination usege under requests REQ as

pp-usage (u,v, REQ) = Z req-rate(q)
geREQ, uesrc(q), vedest{q)

Z req-rate(g)

q€REQ, u€src(q)

Z reg-rate(q)

gEREQ, u&dest(q)

source-usage (u, REQ)

dest-usage (u, REQ)

A set of requests REQ is compatible with traffic requirements o, w, p if

(Vu € V) (source-usage(u, REQ) < au}) A



(Vu € V') (dest-usage(u, REQ) < w(u)) A
(Vu,v € V) (pp-usage (v, v, REQ) < p(u,v)) 1

That is, no node is involved in more requests than its termination capacity will allow, and
no pair of nodes is involved in more requests than their point-to-point restriction will allow.

There are two restrictions on the values of a, w, and p which are sometimes useful. The
first is the condition

(Vu,v € V)(u(n, v) 2 min{a(u),w(v)}) (2)

It can be proven that when this condition holds, the first two lines of condition 1 imply
the third line. Therefore the compatible sets of requests depend only upon the values of o
and w. When condition 2 holds, we will call the traffic requirements termination capacity
bounded, or a,w-bounded.

The second restriction is

(Ve e V) (afu) > Y p(u,v)) A

veEV

(Vue V) (w(w) 2 3 u(v,u) (3)
veV
When this condition holds, the third line of condition 1 implies the first and second lines.
Therefore the compatible sets of requests depend only upon the values of . When condi-
tion 3 holds, we will call the traffic requirements poini-to-point bounded, or u-bounded.

It is possible for traffic to be neither @,w-bounded nor pu-bounded. This will be referred
to later as the general case of nonblocking traffic requirements.

Some computational problems are made significantly easier when we restrict the types
of connection requests that may be made. For example, we may restrict all requests to
have the same rate. This is called the single rate case. If requests may be made with more
than one rate, we call it the multirate case. In the multirate case, the complexity of the
problem further depends on the set of allowable rates W that may be requested. The only
case studied here is where W is a discrete set, and all rates are equal to an integer multiple
of the minimum rate.

Note that we can handle problems where link capacities, termination capacities, and
point-to-point restrictions are arbitrary real numbers. Tor the single rate case with rate r,
just replace any of the above quantities z (i.e., the a, w, and p values) with the integer
|z/r]. Then act as if the rate is 1. This “scales” all of the rates in the problem, and now
we can think of every quantity in units of whole numbers of connections, rather than rates.
The multirate case where all rates are integer multiples of the minimum rate r can be scaled
similarly to the single rate case. The set of allowable rates should also be scaled, so that it
would end up being a set of integers containing 1. The multirate case where more general
rate sets are used is more complicated, and it is currently unknown how to handle such
cases efficiently. See section 7.1.1 for more details.

Another restriction that may be made is to disallow multipoint requests. This is called
the point-to-point case. If requests may be either point-to-point or multipoint we call it the
multipoint case.



2.4. Nonblocking networks

One way of defining a nonblocking network is given below. It is based on a definition given
by Pippenger [Pip82].

Consider a game between two players called the blocker and nonblocker. The parts of
the game which are fixed and cannot be changed by either player are (1) a network G,
link capacities cap : E — N, termination capacities @,w : V — N, and point-to-point
restrictions g : V X V — A (2) a deterministic connection selection algorithm A which,
given the network description above, a state s, and a single connection request g, produces
a set of connections R. For each » € R, r must realize ¢ and s U {7} must be a compatible
state for G (i.e., no link capacities exceeded). All of this is known completely by both
players. The blocker will try to add and remove connection requests so that the nonblocker
cannot realize the requests. ‘

At the start of the game, both the set of connection requests REQ and the state s are
empty. The blocker has the first move.

At the beginning of the blocker’s move, s realizes REQ. The blocker either adds a single
connection request g to REQ (this new set of requests REQU {g} must be compatible with
G), or it removes a single request. It is then the nonblocker’s move.

At the beginning of the nonblocker’s move, s does not realize REQ. If a request was
removed from REQ, then the nonblocker moves by removing the corresponding connection
from s. If a request g was added, then the nonblocker performs algorithm A given s and
g, producing a set of connections R. If R is empty, then the game is over and the blocker
wins. If R is not empty, then the blocker selects one of these connections and adds it o s.
If the game is not over, then it is the blocker’s move again. It is critical that the blocker is
the one to choose the connection from R.

If the blocker can make a sequence of moves and choices from R such that it eventually
wins, then the network G is blocking for routing algorithm A, or simply blocking. If the
nonblocker can prevent R from ever being empty, then the network is nonblocking (for
routing algorithm A).

It should be clear that the only power the nonblocker has is given to it by the routing
algorithm. A network with given link capacities may be blocking for one routing algorithm,
but nonblocking for another.

2.5. Routing Algorithms

In this section we present several examples of routing algorithms for point-to-point con-
nection requests (some have natural extensions to multipoint requests). In each case, the
algorithm knows the network G = (V, E) with link capacities cap, the current state s, and
a point-to-point connection request ¢ = (u, v, reg-rate). The algorithm must compute a set
R of connections. Recall from the definitions that for a connection r, s U {r} is compatible
if and only if (Ve € 7) (reg-rate < avail(s,e)). It is implicitly assumed that any connections
not satisfying this condition are removed from the set returned.



Fixed path routing (FP)

FP has access to a table path. For each ordered pair of endpoints u, v, path(u,v) is
a directed path from u to v. Return {path(u,v)}.

Alternate Path Routing (AP)

AP is similar to FP, but in this case each entry of the table contains two paths
prim(u,v) and sec(u,v). H s U {prim{u,v)} is a compatible state, then return
{prim{u,v)}, otherwise return {sec(u,v)}.

3. Solved problems for fixed traffic requirements

All of the results in this section are presented in more detail by Fingerhut [Fin91]. Both
network links and traffic are considered undirected in that paper, but similar results hold
for directed links and traffic.

There are two major types of problems that have been studied for fixed traffic require-
ments. The first is a network analysis problem, in which we are given a network and traffic,
and we simply wish to determine if the network can handle the traffic.

Network Analysis with Fixed Traffic Requirements

INSTANCE: A network G = (V, E) with link capacities cap : V — N. Fixed traffic
requirements, given by a set of connection requests REQ.

QUESTION: Is G routable for REQ? That is, find a state s compatible with G that
realizes the connection requests in REQ, or determine that no such state exists.

The second is a network design problem, in which we are given traffic and the costs
of building various links, and we wish to find the cheapest network which can handle the
traffic.

Network Analysis with Fixed Traflic Requirements

INSTANCE: Network G = (V, E) (without link capacities). For each link (u,v} € E,
a function cost () : N — N, where cost (,)(z) is the cost of installing a link of
capacity z from u to v. Fixed traffic requirements given by REQ.

SOLUTION: A capacity cap(u,v) € N for each (u,v) € E. This assignment of
capacity should make the network G routable for REQ.

SOLUTION COST: The cost of the network is the sum of the costs of each link:
Z cost (u,v)(ca'p (’{L, ’U))

{u,v}EE
OBJECT: Find a solution with minimum cost.

The complexity of the problem above depends on two kinds of restrictions. One is
whether the connection requests REQ are restricted to be point-to-point, and the other
is the kind of link cost functions cost allowed. Link cost functions considered here are



" Point-to-point I Multipoint
| Analysis I NP-complete [Fin91, Sec.w4.1]
linear P [Hu69] | np-hard,2 [Fin91, Sec. 4.2]
NP-hard,2 1n general

p for a restriction [Fin91, Sec. 4.3]
both Np-hard

Design startup

P -~ polynomial time (efficient) algorithm known
wp-hard,2 — NP-hard, but there is a known polynomial time algorithm to
approximate within a factor of 2 of optimal

Table 1: Summary of results for fixed traffic requirements

(1) linear, where cost(y)(2} = by -« and b(,,) may be different for each u,v pair;
(2) startup, where cost(,)(2) = @y if 2 > 0, and 0 if = 0; and (3) both, where
€08t (y,5)(£) = G(uy) T b(uw) -z if 2 > 0, and 0 if z = 0. Some results are only known to hold
for symmetric link cost functions, where cost (y ,)(2) = cost (, ) () for all u, v pairs and all
2. Also, some results are only known to hold for symmetric traffic, where for all u, v pairs,
there must be positive traffic from % to v if and only if there is positive traffic from v to .
All results hold for undirected networks and traffic, as presented by Fingerhut [Fin91].

The known results are summarized in table 1. Both Np-hard,2 results are only known
to hold for symmetric link cost functions, and all results for startup costs are only known
to hold for symmetric traffic as well. The ratio of the approximation algorithm for linear
costs and multipoint traffic is as good as the ratio one can find for the Steiner tree problem
on weighted undirected graphs. Several approximation algorithms are known which achieve
a ratio of 2 [KMB81, WI88], Zelikovsky has found an algorithm which achieves a ratio of
11/6 [Zel91], and Berman and Ramaiyer have done further work in this direction [BR92}.

4. Solved problems for nonblocking traffic requirements

There are several variations of the network design problem studied here. Here is the most
general formulation.

Nonblocking network design with routing algorithm A

INSTANCE: Network topology G = (V, E) (without link capacities}. For each link
(u,v) € E, a function cost () : N — N, where cost (,,,)(x) is the cost of installing
a link of capacity 2 from u to v. Traffic requirements are given by termination
capacities o(v),w(v) € N for each v € V, and point-to-point restrictions p(u,v) € N
for each u,v € V. )
SOLUTION: A capacity cap(u,v) € A for each (u,v) € E. This assignment of
capacity should make the network nonblocking for routing algorithm A, where con-
nection requests may be multirate and multipoint.



SOLUTION COST: The cost of the network is the sum of the costs of each link:
z cost (u'v)(cap (u,v))

(uv)eE

OBJECT: Find a solution with minimum cost.

In each of the following subsections, we will present a more specific problem formulation
with additional restrictions.

4.1. Results for fixed path routing

The results known for fixed path routing are divided on one major difference. This is
whether the paths to be used are given as part of the problem instance, or they are to be
determined by the algorithm.

4.1.1. Fixed path routing with paths given. The following problem and the aux-
iliary results derived during its solution form the cornerstone of this work.

Network design with fixed path routing, fixed paths given

INSTANCE: Network topology G = (V, E). For each link (u,v) € E, a nondecreas-
ing function cost(,,) : N — N, where cost (,,)(z) is the cost of installing a link
of capacity z from u to v. Traffic requirements are given by termination capacities
ov),w(v) € N for each v € V, and point-to-point restrictions u(u,v) € N for each
u,v € V. For each u,v € V, a directed path path(u,v) from u to v.

SOLUTION: A capacity cap(u,v) € N for each (u,v) € £. This assignment of
capacity makes the network nonblocking for routing algorithm FP with fixed paths
path, where connection requests may be multirate and multipoint.

SOLUTION CO0OST: The cost of the network is the sum of the costs of each link:
Z cost (,v){(cap (1, v))

(uv)EE

OBJECT: Find a solution with minimum cost.

This problem can be solved efficiently.

THEOREM 4.1. The problem above can be solved in O(m - maxflow(n,U))} time, where m
is the number of links used in fixed paths, n is the number of nodes, U is a parameter
depending on the paths which is at most n? + n, and maxflow(n, U) is the time required to
solve a maximum flow problem [Tar83, Chapter 8] with n nodes and U edges.

Proof: See Section 7.1 =

The best asymptotic bound for maxflow(n, m) known to the author is O(mn + n?+<),
for any constant ¢ > 0, given by King, Rao, and Tarjan [KRT92]. A relatively easy to

10



implement algorithm described by Goldberg and Tarjan [GT88, Section 4] can solve the
problem in O(n?®) time.

A more efficient solution can be obtained if we restrict the paths to form a tree, and
only allow a,w-bounded traffic requirements.

THEOREM 4.2. Let a,w-bounded traffic requirements be given by « and w, and suppose
that the fixed paths path are all along a tree. Then the problem above can be solved in
O(n) time, where n is the number of nodes.

Proof: See Section 7.2 n

4.1.2. Fixed path routing with paths to be computed. It is currently unknown
whether there are efficient algorithms to simultaneously determine the fixed paths and
select the cheapest link capacities, given some traffic requirements. However, the problem of
finding a tree network with minimum total capacity given a,w-bounded traffic requirements
is efficiently solvable.

Tree network design, minimize total capacity

INSTANCE: Network topology G = (V, E). Traflic requirements are given by ter-
mination capacities a,w € A for each v € V. (u(u,v) values are assumed to be any
values such that e, w, u are a,w-bounded, so g may be ignored.)

SOLUTION: A capacity cap(u,v) € N for each (u,v) € E, where the links with
non-zero capacity form a tree. This assignment of capacity makes the network
nonblocking for routing algorithm F P with fixed paths defined by the tree structure,
where connection requests may be multirate and multipoint.

SOLUTION COST: The cost of the network is the sum of the capacities of each
link:
Z cap(u,v)
(u,v)EE
That is, cost(y, .)(z) = @ for all w,v € V.
OBJECT: Find a solution with minimum cost.

For the above problem, there is a particularly easy solution.

THEOREM 4.3. Every tree solution to the problem above costs at least as much as the tree
with node C as the “center” and all other nodes connected directly to C. Here C may be
any node with the maximum value of a(C) + w(C) among all nodes.

Proof: See Section 7.3. |

The center node C' may be found in O(n) time, and optimum link capacities may also
be found in O(n) time (by Theorem 4.2).

We conjecture that for an instance of the problem above, a tree solution is always
optimum even if we allow solutions which are not trees. If this is true, then the problem is
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Restriction on Traffic Requirements

Fixed Form of Link
paths fixed " e cost aw-bounded p-bounded general
given? | paths unctions
O(m-M(n,U)) ] O(m-M(n,U))

Y any nondec. (Thm.4.1) O(m-U) (Thm.4.1)

Y tree nondec. [ O(n) (Thm.4.2)

Y star tree | nondec. O(n?)

N any linear ? AP(n,m) ?

N tree EZ?,“ = | o(r) (Thm.4.3) | O(n - M(n, m)) [Hu74]

Table 2: Summary of results for nonblocking network design with fixed path routing

still efficiently solvable when the restriction “where the links with non-zero capacity form a
tree” is removed.

If we change the restriction on traffic requirements from o,w-bounded to p-bounded,
and require that u(x,v) = u(v,u) for all u,v € V, then the problem is solvable in O(n -
maxflow{n, U)) time, where U < n? is the number of non-zero p values. This was proven
by Hu [Hu74].

The problem in the previous paragraph becomes NP-hard if the link cost functions are
of the form cost (,4)(2) = byy,y) - T, Where each b(, ) € N may be different from one node
pair to another [GJ79, problem ND7, p. 207].

Note that when traffic requirements are p-bounded and link cost functions are as in the
previous paragraph, an optimum solution is not always a tree. The optimum solution is a
solution in which every fixed path is a shortest path in the graph with edge lengths given
by the b,y values [Fin91, Hu69].

4.1.3. Summary of results for fixed path routing. Table 2 summarized the results
known for designing nonblocking networks with fixed path routing. Here M(n, m} represents
the time required to find a maximum flow in a graph with n vertices and m edges, and
AP(n,m) represents the time required to find shortest paths between all pairs of nodes in
a similar graph. Best known times for M(n, m) were given in Section 4.1.1, and the best
known time for AP(n,m) is O(n?logn + nm) [FT87].

The O(mU) result for p-bounded traffic requirements holds because the instances of
maximum flow created in the algorithm of Section 7.1 are simple and can each be solved
in linear time (and need not even be explicitly constructed). Similarly, the O(n?) result
holds because each maximum flow instance can be solved in linear time, which is O(n) for
all such instances.

‘The AP(n, m) result is the same as that for the fixed point-to-point traffic requirements
with linear costs given in Table 1. There is a close similarity between fixed point-to-
point traffic requirements and p-bounded nonblocking traffic requirements with fixed path
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routing. Intuitively, this is because the worst possible traffic in the nonblocking network
can be exactly modeled by appropriate fixed point-to-point traffic requirements.

4.2. Results for alternate path routing with paths given

Let prim(u,v) and sec(u,v) be given for all u,v € V (each is a set of links). A simple
path is a path which visits each switch at most once. It is not a good idea for a path from
one switch to another to be anything other than a simple path, as it only wastes network
resources.

Note that if prim(u,v) is a simple path from u to v and prim(u, v} — sec(u, v) = §, then
either prim{(u,v) = sec(u,v) or sec(u,v) is not a simple path from u to ». If all paths are
simple, this implies that either prim(u, v) — sec(u,v) # @ or prim(u,v) = sec(u,v), for all
u,vEV.

It is unknown whether there are efficient algorithms for the general network design
problem where alternate path routing is used. However, careful choices of restrictions yields
a tractable problem. In particular, the following restriction on the primary and secondary
paths will be useful:

(Va,v € V)(no link in prim(u,v) — sec(u, v) is contained in any path except prim(u,v)) (4)

When condition (4) holds, it is useful to define:

E = | (prim(w,v) U sec(u,v))
u,vEV
p(u,v) = prim(u,v)— sec(u,v)
s(u,v) = sec(u,v)— prim(u,v)
P = U p(u, v)
u,weV
P = E-P

The solution found for the problem below has only been proven to work when link cost
functions are nondecreasing and concave. A function f(2) is concave on the interval [a, 8]
if for all z1,z2 € [a,b] and X € [0,1], f(Az1 + (1 — A)z2) 2 Af(z1) + (1 — A) f(z2)). That
is, if we draw the curve of the function f on a graph and draw a straight line between any
two points on the curve, then f lies on or above this straight line.

Network design with alternate path routing, paths given

INSTANCE: Network topology G = (V, E). For each link (u,v) € E, the cost
function cost(u,v)(ca,p) is a nondecreasing and concave function of cap. Traffic
requirements are given by termination capacities a(v),w(v) € N for each v € V,
and point-to-point restrictions u(u,v) € A for each u,v € V. For each u,v € V,
there are directed paths prim(u,v) and sec(u,v) from u to v. These paths satisfy
condition (4).
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SOLUTION: A capacity cap(u,v) € N for each (u,v) € E. This assignment of
capacity makes the network nonblocking for routing algorithm AP with paths prim
and sec, where connection requests must be single rate and point-to-point.

SOLUTION COST: The cost of the network is the sum of the costs of each link:
Z cost (u‘u)(ca,p (u,v))

(u,v)EE

OBJECT: Find a solution with minimum cost.

THEOREM 4.4. The problem above can be solved in O(2% - m - maxflow(n, U)) time, where
m = ITD-I, n Is the number of nodes, U is a parameter depending on the paths which is at
most n? + n, and d is a parameter depending on the paths which is at most the number of
u, v pairs such that p(u,v) # 8.

Proof: See Section 7.4. =

We conjecture that the running time can be improved to O(m - maxflow(n, U)+2¢-U).
The above theorem yields a polynomial time algorithm if we restrict the instances so that

d = O(logn).

5. Other Related Work

Most work on network design known to the author ([MW84, Min89, GW90, KKG91, and
references therein]) falls in the category of fixed point-to-point requirements. This would
correspond roughly to our case where traffic requirements are py-bounded. Variations in
problems studied include: the set of link capacities allowed to be installed (discrete or
continuous), different link (and sometimes node) cost functions, different ways of satisfying
a single point-to-point requirement {e.g., single path, multiple paths with discrete choices
for traffic splitting, multiple paths with continuous choices for traffic splitting), average
packet delay constraints for packet networks, and reliability restrictions (e.g., network can
still satisfy requirements when any single link fails). Most of these problems are Np-hard,
and solution techniques are either heuristic or based on mathematical programming theory.

The current research is distinguished from all of the above in the way traffic requirements
are specified. Instead of fixed point-to-point requirements, traffic is dynamic and restricted
by the termination capacity and point-to-point restriction values (the o’s, w’s, and p’s).
We also consider multicast traflic. The emphasis in this work has been on finding efficient
algorithms or proving intractibility.

The relation to Hu’s work should be clear from the problem in Section 4.1.2. He considers
only p-bounded traffic requirements, however.

Gibbens and Kelly {GK90] consider a given network topology which is completely con-
nected (links between all node pairs). The network traffic consists of stochastically arriving
connection requests which are point-to-point and single rate. The routing algorithm is like
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the alternate path routing algorithm considered here, except that the primary path is the
direct link between the pair of nodes {which exists, because of complete connectivity), and
if that link has no bandwidth available, then a random two link path is chosen as the sec-
ondary path (independently for each connection request). They do not require that the
network never block a request, only that the probability of blocking is low. This work is
distinguished by its requirement that the network never block a call request. This alleviates
the need to choose a probability model for the arriving connection requests.

Multicast routing algorithms are considered by Waxman [Wax88, Wax89] and Klein and
Powell [KP91]. Klein and Powell consider a problem in which the network topology and
link bandwidths are given, as well as a schedule of connection requests that will arrive in the
future. Their goal is to choose routes for all requests so that none of them will block, and
they give heuristics for doing so. Here we do not have a schedule of connection requests in
advance, and we are designing the link capacities rather than working within the constraints
of given capacities.

Waxman considers a model of traffic which is stochastic. There are several classes of
requests, each with their own rate of arrival, average holding time, average number of
endpoints, and bandwidth used. Endpoints can enter and leave connections dynamically
during the lifetime of the connection. The routing algorithm used is one which returns the
shortest path which has enough spare capacity, along with some variations of this. Waxman
uses simulation to determine how these routing algorithms perform (in terms of blocking
probability) in several particular network topologies, some randomly generated.

This work was influenced by that of Melen and Turner {MT89, MT90]. They consider
some networks which have very regularly structured topologies, such as Benes and Cantor
networks. They introduce a parameter § which restricts the maximum total rate of all
connections sharing the same input port or output port, and it is the same for all such ports.
All links except the input and output ports have bandwidth 1. They present conditions
relating B and other network parameters such that the network can perform as 2 multirate
nonblocking connector (point-to-point connections) or distributor (multipoint connections).
This work extends Melen and Turner’s to include general network topologies.

6. Future Work

There are several solutions in section 4 which only solve special cases of the general problem.
The author believes that more general versions can be solved. For example, the tree network
design problem discussed in section 4.1.2 will also solve the more general problem in which
the fixed paths are not restricted to be on a tree if, among all possible solutions, a tree
solution were always optimal. This is conjectured to be true.

The work already done on alternate path routing suggests that more complex routing al-
gorithms could very well cause the corresponding network design problems to be intractable.
“More complex” in this context does not necessarily mean that the routing algorithm is hard
to specify or compute. It means that its choice of routes is very dependent on the current
state of the network, or that many choices for a feasible path are possible. For such routing
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algorithms, it may be intractible to determine simply whether a given choice of network
topology and link bandwidths can block. In such cases, we desire algorithms which design
networks guaranteed not to block, even though they may not have the minimum cost pos-
sible. The most desirable such algorithms would give solutions guaranteed to cost no more
than a constant factor times more than an optimal solution (e.g., 2 times optimal).

In this work, we assume that a link from a node u to a node v may take any capacity
desired. When building a network, however, capacity is installed by putting a number
of cables between the nodes. The individual cables may have large capacities (e.g., 155
megabits/sec). The problem in section 4.1.1 can formulate this restriction by making the
link cost function have discontinuous “jumps” in cost when a new discrete capacity is
reached, because the algorithm works for any nondecreasing cost functions. None of the
other algorithms can currently handle this discrete capacity restriction.

Another fact that is not modeled by any of this work is one relating to the operation of
ATM networks Between nodes there is an integer number of trunks. When we wish to add
a connection, the entire bandwidth of the connection must be assigned to a single trunk.
This restriction will be called individual trunking. The model which has been used so far
assumes that a connection’s bandwidth may be divided arbitrarily among the trunks. This
model will be called aggregate trunking.

In the individual trunking model, restricting the traffic to be single rate makes the
problem no harder than the aggregate trunking model. They are the same. It is when
multirate traffic is allowed that the problem changes significantly. The author believes that
results can be found to solve problems using the individual trunking model.

7. Proofs

In the following, we use the notation a(X) to denote },cx a(u) for any X C V. Similarly
for w(X). Also, we use X to denote V — X, for any X C V.

The computational problems and theorems have been restated in this section to aid the
reader.

7.1. Proof of Theorem 4.1

An undirected version of this problem was considered by Fingerhut [Fin91].
Network design with fixed path routing, fixed paths given

INSTANCE: Network topology G = (V, E). For each link (u,v)} € E, a nondecreas-
ing function cost () : N — N, where cost (,,)(x) is the cost of installing a link
of capacity « from u to v. Traffic requirements are given by termination capacities
a(v),w(v) € N for each v € V, and point-to-point restrictions p(u,v) € A for each
u,v € V. For each u,v € V, a directed path path(u,v) from u to v.

16



SOLUTION: A capacity cap(u,v) € N for each (u,v) € E. This assignment of
capacity makes the network nonblocking for routing algorithm FP with fixed paths
path, where connection requests may be multirate and multipoint.

SOLUTION COST: The cost of the network is the sum of the costs of each link:
Z cost () (cap (u, v))

(uv)EE

OBJECT: Find = solution with minimum cost.

THEOREM 7.1. The problem above can be solved in O(m - maxflow(n,U)) time, where m
is the number of links used in fixed paths, n is the number of nodes, U is a parameter
depending on the paths which is at most n® + n, and maxflow(n, U) is the time required to
solve a maximum flow problem [Tar83, Chapter 8] with n nodes and U edges.

7.1.1. Point-to-point requests only. The special case in which only point-to-point
requests are allowed is handled first. This solution also works when multipoint requests are
allowed, as shown in section 7.1.2.

The first fact to note about fixed path routing is the state of the network is a function
of the current set of requests. This may sound trivial, but note that if the routing algorithm
gives a choice of routes to use, the state of the network depends not only on the set of
requests, but also on the choices made. Even if the routing algorithm does not return more
than one route, it may return a different route depending on the current state (e.g., the
alternate path routing algorithm AP). In this case, the current state depends not only on
the current set of requests, but also the sequence of add and delete connection requests.

Assume for the moment that all links which are used in some fixed path have a very
large capacity which could not be exceeded even if every connection used it (e.g., the value
min{a(V),w(V)} would be sufficiently small). Let f be the function that maps request sets
to states (this function depends only upon the table of fixed paths path). Given any set of
requests REQ, we can determine the state of the network f(REQ), and therefore the usage
of each link e, usage (e, f(REQ)). The set of all request sets ALLREQ which are compatible
with a, w, p is finite. Therefore we can determine the maximum possible usage of any given
link e:

usage (e, f(REQ))

maxusage(e) = max
REQeALLREQ
Note that this value is independent of any other link capacity. It depends only upon path,
o, w, and .

If we assign any link capacities cap that satisfy cap(e) > maxusage(e) for all links e,
then the network will be nonblocking. If any link e has capacity less than maxusage(e), the
network can block. Therefore, when the link cost functions cost () are any nondecreasing
functions of capacity, the link capacities cap (¢) = maxusage(e), for all e € E, will be the
cheapest solution to the computational problem described in Section 4.1.
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Figure 2: Problem instance for fixed path routing with paths given

Figure 3: END.q) for the instance in Figure 2

Let e € E be any link of the network. Computing maxusage(e) by generating every com-
patible request set in ALLREQ would be computationally prohibitive. It may be computed
more efficiently as follows.

Construct a directed graph END. = (Vgnp,, EgND,): Where

VEnp, = {wv:iuweViu{st}
Epnp, = {(sw):ueVIu{(,t):ueV}uU {(u,v") : path(u,v) uses link e}

Assign a capacity to each arc as follows:

a(z) if (u,v) = (s,z) forsomez €V
cap(u,v) =4 w(z) if (u,v)=(2/,2)forsomez €V
wlz,y) if (w,v) = (x,y’) for some z,y €V

For example, for the instance described in Figure 2, the graph END, 4) and its arc capacities
are given in Figure 3. The arc capacities are the numbers before each comma. Ignore the
numbers after each comma for the moment.

Let ¢ = (u,v,reg-rate) be a point-to-point connection request. If path(u,v) contains
link e, then END, contains an arc from u« to »’. We can model the request ¢ and its
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corresponding connection r = (path(u, v), req-rate} by adding flow reg-rate along the arcs
(s,u), (u, "), and (v',t). If path(u,v) does not contain link e, then do not add any flow to
END,. To model a set of compatible connection requests REQ, simply add all of the flows
induced by each individual request. For example, for the previously given instance and the
compatible request set {(b,d,2),(¢,d,3),(¢c,a,1),(a,b,4)}, the flow assigned to the graph
ENDy,,q) is shown in Figure 3. The numbers before the commas are the arc capacities, and
the numbers after the commas are the arc flows.

The usage of link (e,d) in this state is 6, which is also the value of the flow (i.e., the
total flow out of the source node s).

Note that given any compatible set of point-to-point requests REQ, the flow induced on
an endpoint graph END, is a network flow from s to t, and this flow does not exceed any
of the arc capacities. This follows from the definition of a compatible request set, and the
construction of END,.

Suppose we restrict ourselves to the single rate case, or multirate cases where the set of
allowable rates is one in which all rates are an integer multiple of the smallest rate. Then
we may scale all of the rates and all of the values @, w, and i so that they are integers (see
end of section 2.3). After scaling, any integer network flow on END, from s to ¢ is induced
by at least one compatible request set. It is easy to verify that the value of such a flow
is exactly the usage of link ¢ in state f(REQ) for any such compatible request set REQ.
Therefore, maxusage(e) may be computed by finding a maximum value integer flow {from s
to ¢t in END..

The statement of the theorem claims that this network design problem may be solved
in O(m - maxflow(n,U)) time, where m is the number of links used in fixed paths, n is the
number of nodes, and U is a parameter depending on the paths which is at most n?+n. Here
we see that computing maxusage(e) for a single link e takes maxflow(2n + 2, U) time, where
U is the number of arcs in END,. U can be at most 2n+n(n—1) = n? +n as claimed. The
21 4 2 problem can be resolved by noting that maxflow(2n + 2, U) = O(maxflow(n, U)) for
any polynomial time maximum flow algorithm. The design algorithm must also construct
END, for each e contained in some fixed path, but this time is dominated by the time to
compute maximum flows.

Note that if we allow more general sets of allowable rates in the multirate case, the
problem may not be so easy. For example, if all rates are integer multiples of some rate r,
but r is not itself an allowable rate, we can still perform the “scaling” as before, but now
the set of allowable rates is a set of integers which does not contain 1. In this case, it is still
true that any compatible set of requests induces an integer flow on END,, but it is no longer
always true that every integer flow on END, is induced by a compatible set of requests. If
the set of allowable rates is also finite, then the problem of finding the maximum usage of a
single link e can be shown to be (weakly) NP-hard by a simple reduction from the problem
INTEGER KNAPSACK [GJT9, problem MP10, p. 247).

7.1.2. Handling multipoint requests. We only considered point-to-point requests
and connections in the previous section. In this section we show how to extend the fixed path
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Figure 4: Simple network to demonstrate dynamic multipoint connections

routing algorithm to handle multipoint requests in such a way that the solutions produced
by the algorithm in the previous section will still be nonblocking. We consider only one to
many multipoint requests, Many to one multipoint requests can be handled similarly.

Consider a one to many multipoint request ¢ = (u,{v1,..., v}, reg-rate). Assume for
the moment that we route this request by using bandwidth reg-rate on all links in the set
UL, path(u,v;), which is not necessarily a tree. Consider any link e in this set and its
graph END,. This request and its connection can be modeled by adding flow reg-rate on
the arcs (s, u), (u,v;), and (v;, t), where v; € {vy,..., v} is some vertex (chosen arbitrarily)
for which the arc (u,;) is in END,.

With this induced flow, it is still true that for any set of compatible requests REQ, the
flow is a flow from s to t that does not exceed any arc’s capacity. Also, there is still at least
one compatible request set REQ corresponding to each integer flow. Therefore, the same
method of determining maxusage(e) as for point-to-point requests still works.

To make the multipoint connections into trees, just pick an arbitrary tree which is a
subset of U?ﬂ path(u,v;) that contains a path from u to each v; € {vy,...,v:}. Note that
some of the links for which we have reserved bandwidth for this connection may not be used
at all.

The intuitive idea for why this works is that termination capacity of the nodes is “used
up” more quickly for multipoint requests than for point-to-point requests. Link capacities,
however, are “used up” at the same rate, or less.

The results of this section also imply that we may add and remove destinations from
a one to many multipoint connection dynamically, without removing the entire connection
and replacing it with a new one. However, some rearrangement of the connection may be
necessary when removing an endpoint, depending on the structure of the fixed paths.

For example, consider the network of Figure 4, where path(a, d;) = acdy and path(a,ds) =
abcdy. Suppose there is first a connection request (a,dy, 1), which can be satisfied by the
path acd;. Now suppose that we wish to add the destination dy to this connection. One
way would be to remove the existing connection and then build a connection for the request
(e,{d1,d2},1). Another would be to add links to the existing connection so that the result
is a tree which satisfies the connection request (@, {d1, d2}, 1).

The following way makes as small a change as possible to the existing connection. Step
backwards along the path path(a,d) until a switch is reached which is already in the con-
nection. In this example, add the link (e, d;) and then stop, because c is in the connection.
This method will work in general for adding any destination to an existing one-to-many
connection, because the result is always a tree, and a subset of the links Uf—‘zl path(u, v;).
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However, suppose that we now wish to remove d; as a destination from this existing
connection. In the general case, we could try to update the connection in an analogous
way to adding a destination. That is, work backwards from the destination to be removed
until a switch is reached which must remain in the connection {because of other remaining
destinations). If we tried that in the example, we would remove the link (¢, d;) from the
tree, ending up with the path acdy # abedy = path(a, d;).

As far as the existing connection requests are concerned, there is only (a, d3,1). However,
the link {a,c) is used in the current state, and so future (a,d;) connection requests may
block. Therefore, the minimal modification to the connection, described in the previous
paragraph, does not guarantee nonblocking behavior. It is necessary to make certain that
the links in the connection are a subset of %, path(u,v;) at all times. This may require
removing links from and adding links to the existing connection when a destination is
removed. In our example, we must remove links (a,¢),(¢,d;) and add links (g, b), (b, c).

Note that if the network is a tree, this problem does not occur, and removing endpoints
can be done by removing links but not adding any.

7.2. Proof of Theorem 4.2

THEOREM 7.2. Let o, w-bounded traffic requirements be given by a and w, and suppose
that the fixed paths path are all along a tree. Then the problem above can be solved in
O(n) time, where n is the number of nodes.

Call a link e a directed cut edge if the removal of e leaves no directed path from any
v € X toany v € X, for some set of nodes X C V.

LEMMA 7.1. Let «,w-bounded traffic requirements be given by a and w, and let A be any
routing algorithm. If e is a directed cut edge, then its usage in any state will be at most
min{e(X),w(X)}. Furthermore, there is a state in which the usage will be that much.

Proof: Very similar to the proofs of Lemmas 5.1 and 5.2 given by Fingerhut [Fin91]. |
Let T be any spanning tree of the nodes of G, and let u, v be adjacent nodes in 7. Both

of the links (%, v) and (v, u) are directed cut edges, so the minimum necessary capacities on
these links are given by
cap (u,v} = min{e(X),w(X)} = min{a(X), W - w(X)}
cap (v, 1) = min{a(X),w(X)} = min{4 — o(X), w(X)}
where A = ¥, ey a(v), W = ey w(v), and X is the set of nodes in the component of
T — {u,v} which contains u.

An efficient algorithm for finding all link capacities is:
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Compute 4 = 3 ey a(u) and W = 3 ey w(u)
while there are at least 2 nodes left in T' do
Pick any leaf z € T and let its neighbor be v
cap (1, v) := min{a(u), W —w(u) }
cap (v,u) := min{A4 — a(u), w(u)}
a(v) :i= ofv) + a(u)
w(v) 1= w(v) + w(u)
Remove « from T
end

This algorithm can be implemented to run in only O(n) time.

7.3. Proof of Theorem 4.3

Tree network design, minimize total capacity

INSTANCE: Network topology G = (V, E). Traffic requirements are given by ter-
mination capacities a,w € N for each v € V. (p(u,v) values are assumed to be any
values such that o, w, u are o, w-bounded, so u may be ignored.)

SOLUTION: A capacity cap(u,v) € N for each (u,v) € E, where the links with
non-zero capacity form a tree. This assignment of capacity makes the network
nonblocking for routing algorithm F'P with fixed paths defined by the tree structure,
where connection requests may be multirate and multipoint.

SOLUTION COST: The cost of the network is the sum of the capacities of each

link:
Z cap(u,v)
(v,v)eE

That is, cost (y)(z) = z forall w,v € V.

OBJECT: Find a solution with minimum cost.

THEOREM 7.3. Every tree solution to the problem above costs at least as much as the tree
with node C as the “center” and all other nodes connected directly to C. Here C may be
any node with the maximum value of a(C) + w(C) among all nodes.

Let C be a node with maximum value of (C) + w(C') among all nodes. In a star tree
with ¢ at center, where all nodes other than C have direct link to and from C, the minimum
total capacity of the links (u,C) and (C, u) necessary for nonblocking operation is

cap(u,C) + cap (C,u) = min{a(u), W —w(u)} + min{A — a(u), w(u)}
{ from previous section }
= min{a(u) +w(u), A+ W — (a(u) + w(u)), 4, W}
{ properties of min }
= min{a(u) + w(v), A, W} { see below }
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The last step is justified by the observation

a(C) +w(C) { by choice of C }
vev-{uy(a(v) + w(v)) {CeV~-{u}}
A4+ W = (a(u)+ w(u)) {defns. of A and W }

alu) + w(u)

I IAIA

Therefore, A+ W — (a(u) +w(u)) can be dropped from the collection of values to minimize,
since a{u) + w(u) is always no larger.

Now consider any spanning tree T for the nodes of G. Pick the same node €' used before
and draw T as a rooted tree with C as the root and all other nodes going down. Let D, be
the set of descendants of u in this rooted tree (including u), for any 4 € V. The minimum
total capacity necessary on the links (u, p(u)) and (p(u),u) between a non-root node # and
its parent node p(u) is

cap (u,p(w)) + cap (p(w)yu) = min{a(Ds), W—w(Dy)} +min{A—a(Dy), w(Du)}
. { from previous section }
= min{a(D,)+w(D,), A+W —{a(Dy)+w(D,)), 4, W}
{ properties of min }

Now if we can show that cap(u,p(u))+ cap (p(u),u) is always at least as large as
cap (u,C)+ cap(C,u) then the total capacity of the tree T, 3 ,cv_(cy(cap(u,p(u))+
cap (p(n),u)), is at least as large as the total capacity of the star tree with center C,
ZuGV—{C}(Ca‘p (?1'1 C)+ cap (C} ’U.))

a(Dy) + w(Dy) > a(u) + w(u) follows immediately from u € D,. Also
(D) +w(Dy) { defns. of Aand W }

o(C) + w(C) {C eD.}
afu) 4 w(u) { choice of C }

A+ W — (a(D,) +w(Dy))

VIVl

Therefore min{a (D, )+w(Dy), A+ W—(a(Dy)+w(Dy))} 2 a(u)+w(u). Now z > yimplies
that min{z,z} > min{y, z}. With ¢ = min{a(D,) + w(Dy), A+ W — (e(D,) + w(D.))},
y = a(u)+w(u),and z = min{A, W}, we know that cap (u, p(v)Hcap (p(w), u) > cap(u, CH
cap (C,u) for all u € V — {C}, and we have proved that all trees have at least as much total
capacity as the star tree with node C as the center.

7.4. Proof of Theorem 4.4

Condition 4 is restated here to aid the reader.

(Vu,v € V)(no link in prim(u,v) — sec(x, v} is contained in any path except prim(u,v))
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Figure 5: A simple instance with AP routing

Network design with alternate path routing, paths given

INSTANCE: Network topology G = (V, E). For each link (u,v) € E, the cost
function cost(yy)(cap) is a nondecreasing and concave function of cap. Traffic
requirements are given by termination capacities a(v),w(v) € N for each v € V,
and point-to-point restrictions p(u,v) € M for each u,v € V. For each u,v € V,
there are directed paths prim(u,v) and sec(u,v) from u to v. These paths satisfy
condition (4).

SOLUTION: A capacity cap(u,v) € N for each (u,v) € E. This assignment of
capacity makes the network nonblocking for routing algorithm AP with paths prim
and sec, where connection requests must be single rate and point-to-point.

SOLUTION COST: The cost of the network is the sum of the costs of each link:

E cost (u,v)(cap (u,v))

(u,v)EE

OBIECT: ¥Find a solution with minimum cost.

THEOREM 7.4. The problem above can be solved in O(2¢ - m - maxflow(n, U)) time, where
m = l’]_jl, n is the number of nodes, U is a parameter depending on the paths which is at

most n® +n, and d is a parameter depending on the paths which is at most the number of
u, v pairs such that p{u,v) # 0.

First, a couple of trivial results. If we restrict prim(u,v) = sec(u,v) for all u,v € V,
then the alternate path routing algorithm AP behaves exactly like fixed path routing, and
the results in section 7.1.1 apply.

If we apply the algorithm in section 7.1.1 with fixed paths given by prim, then we will
find link capacities for which the network will never block when we use the alternate path
routing algorithm AP. This is because when AP tests the primary path to see if it has
enough capacity available, it will always be so. This idea will also work for any routing
algorithm like AP which first checks a single path to see if it has enough capacity, and
returns it as the only path if so. However, this choice of link capacities may not be as cheap
as possible for routing algorithm AP.

Before presenting a solution for more general instances, it is helpful to examine a small
instance to understand the issues involved. Consider the network of Figure 5, where a(a) =
8, a(c) = 4, w(d) = 6, p{a,d) = 5, u(c,d) = 4, and all other @, w, and p values are 0. In
this case, only ¢ and ¢ can be the source of connections, and only d can be the destination
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Figure 6: END graphs for the simple AP routing instance

of connections. Let prim(a,d) = abd, sec(a,d) = abed, and prim(c,d) = sec(e,d) = cd. The
other paths do not matter because they can not be used.

Let us generalize the definition of END, for alternate path routing. Let END. =
(VEND,» EEND, Y OEND. U AEND,)s where

VEnp, = f{w,v':ueV}u{st}

Egnp, = s,w):ueV}u {(«', 1) 1w € V}U {(u,v") : both prim(u,v) and sec(u,v) use link e}
Opnp, = {(u,v'): prim(u,») uses link e, but not sec(u, v)}

Apnp, = {(2,v'):sec(u,v) uses link e, but not prim(u,v)}

The graphs END(,3), ENDp, oy, ENDgp 4y, and ENDy gy are shown in Figure 6. All ares
that have 0 capacity have been omitted. The dotted arc (a,d’) in END(3 q) signifies that
link (b,d) is in the primary path from ¢ to d, but not in the secondary path. The dashed
arc (a,d’) in END(; .y and END g signifies that links (b, ¢) and (c,d) are in the secondary
path from a to d, but not in the primary path. The solid arc (a,d’) in END, ) signifies
that link (a,b) is in both the primary and secondary path from a to d. Similarly for the
solid arc (c,d') in END g

The arc capacities require some explaining. For solid ares (u,v") € END(; 4, we know
that whichever path the routing algorithm AP finds, that path must contain the arc (z,y).
Therefore, if such a graph END(,,,) contains all solid arcs, as END(g 4 does in this exam-
ple, we may find the maximum integer flow on ENDy, ;) as described in section 7.1.1 and
know that it corresponds to the maximum usage of link (z,y), which equals the minimum
necessary capacity.

When a graph END(, ) contains dotted or dashed arcs, however, it introduces depen-
dencies between link capacities. In this simple instance, we may think of assigning a capacity
z, 0 < = < pla,d), to link (b,d), and this will allow us to determine the minimum necessary
capacities of links (b,c) and (¢, d). How can this be done?

Consider a sequence of requests to add and delete single rate connections between a and
d, all having rate 1. As long as no more than « requests are using link (,d), the routing
algorithm AP will find that there is enough capacity available on the path abd, and the
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Figure 7: (a) Minimum capacities and (b) total network cost as a function of 2 = cap (b, d)

connections will follow that path. However, as soon as & requests are using link (b,d) and
an additional request comes in (this can only occur if z < p(a, d) = 5), AP will find that the
path abd cannot be used, and so it returns abed instead. We say that the request overflows
onto its secondary path in such a case.

The quantity over(z) is used to express the maximum total rate of requests that can
simultaneously overflow onto the secondary path, given that the primary path can handle
a total rate z. In the single rate case, it should be easy to see that over(z) = u(a,d) — z.

In ENDy; 4), we assign the arc (a,d’) the capacity @ to denote that this is the maximum
total rate of all connections from a to d that may use link (b, d) simultaneously. Therefore
the arc capacity “means the same thing” as it did in the fixed path case, but now z can be
any quantity at most p(a,d). Similarly, we assign the arc (a,d’) in ENDg, ) the capacity
over(z) to denote that this is the maximum total rate of all connections from a to d that
may use link (b, ¢) simultaneously.

Given that the capacity of link (b,d) is =, where 0 < z < p(a,d), we can now find the
minimum necessary capacities for links (b,¢) and (¢, d). Thus we can also find the costs of
each link, and the total cost of the network, as a function of z.

For example, let the cost functions of each link in the example have the form a(, ) +
b(u,w) - cap if the capacity cap > 0, and 0 otherwise (these functions are nondecreasing and
concave when a(u,v),b(u‘v) > 0). Let ageb) =0, b(a,b) = 3, a(b,e) = 6, bp,c) = 4 2ppg) = 10,
bpay = T G(c,gy = 1, and be,q) = 5. Then the link capacities are given as functions of z in
Figure 7(a), and the total cost of the network is given as a function of z in Figure 7(b).

Note that this function is minimized when @ = 0, one of the “extreme” values that z
may take. The other extreme value is 5. z may be larger than 5, but if so, any capacity
aver 5 will never be used. It will be shown that under the conditions given in the problem
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instance, the minimum cost network will always be found by assigning extreme values to
the links in P.

LEMMA 7.2. Suppose we have primary and secondary paths which satisfy condition (4).
Then all links e € P will have END, with only a single dotted arc of the form (u,v"). All
other links e € P will have END, where all arcs are either solid or dashed.

Proof: Follows directly from the modified definition of END, given earlier in this section. M

Note that it is possible for |p(u,v)] > 1 to hold for some u,v € V. If so, then it
never makes sense to assign different capacities to links in p{u,v). It is always the link
in p(u,v) with the smallest capacity which determines when connections overflow onto the
secondary path. Any such links with larger than minimum capacity will never have their
“excess” capacity used. When link cost functions are nondecreasing with capacity, it is
never cheaper to assign unusable capacity to links. Similarly, all links in p(u,v) should
never have a capacity larger than min{g(u,v), a(u),w(v)}.

Let D = {(u, ) : p(u,v) # 0}.
For convenience, let the elements of P be denoted {l1,...,{;}. The exact numbering is
unimportant.

LEMMA T7.3. Let every link in p(u,v) have capacity %(y.), for all (v,v) € D. Then the
maximuim usage, which equals the minimum necessary capacity, of every link in P can be
determined in O{maxflow(n,U)) time per link, where U < n® + n.

Proof: The key idea here is that once capacities are chosen for links in P, this is essentially
the same as the fixed-path problem. The only difference is that some of the point-to-point
restrictions g have been reduced for links in P.

Let e be an arbitrary link in P. By Lemma 7.2, all arcs in its graph END, are either
solid or dashed. Assign all solid arcs (u, ) a capacity of p(u, ), and all dashed arcs (u,v’)
a capacity of u(u,v) — Z(y)-

When arc capacities in END, are assigned in this way, then for every state s which the
network can reach given single rate point-to-point connection requests, there is an integer
flow in END, obeying the arc capacities where the usage of link e in state s equals the value
of the flow. Conversely, for every integer flow in END, obeying the arc capacities, there
is a sequence of adding and removing connection requests (all point-to-point with rate 1)
where the value of the flow equals the usage of e in the resuliing state.

Therefore, the maximum usage of e in any state is equal to the value of a maximum
flow in END, with arc capacities as described above. |

Lemma 7.3 tells us that the minimum necessary capacity of each link e € P is function-
ally dependent on a subset of X = {2(,,,) : (4,v) € D}. For each e € P, denote this subset
of X by X., and denote the minimum necessary capacity of e by cap (Xe).
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Figure 8: (a) Alternate path network instance and (b) dependency graph

Recall that the total cost of the network is 3", )¢z €08t (u,v)(cap (¢, v}), which can be

expanded to
Z Z €08t o(2 () + Z cost o(cap (X.))
{2v)€D e€plu,v} eeP

We want to minimize this function while allowing each z(,,) to range from 0 to u(u,v).

It may be possible to break this sum into several parts, each independent of the others.
To determine these parts, construct a dependency graph, which will represent the functional
dependencies between link capacities. The graph is bipartite, with one node partition
containing a node for each (u,v) € D, and the other containing a node for each link e € P.
There is an edge between two nodes (u,v) and e if the minimum necessary capacity of e
depends on z(y 4, i.e., e € s(u,v).

For example, in the network of Figure 8(a), each edge represents two oppositely directed
links. The dashed edges are the links in the set P. Let prim{(a, f) = af, sec(a, f) = abdf,
prim(a,e) = abe, sec(a,e) = abee, prim(f,e) = fe, sec(f,e) = fdce, prim(g,h) = gh, and
sec{g, h) = geh. For the opposite directions, reverse the paths above (e.g., prim(f,e) = fa
and sec(f,a) = fdba). For all other switch pairs u,v € V, prim(u, v) = sec(u,v) and all
links in these paths use only solid links. These paths satisfy condition 4. The dependency
graph for this instance is shown in Figure 8(b). For example, the capacities of links ec and
cb depend on z(,,4) because s(e,a) = {ec,cb}.

After the dependency graph is constructed, find the connected components of this graph.
Each component contains a subset D’ of the nodes D and a subset P’ of the nodes P. The
portion of the total network cost represented by a single component,

E Z COSte(ﬂt(u’v))‘{‘ Z COStc(Ca'Pe(Xe))

(2, v}eD! ecplu,v} ee?

can be minimized by choosing values for the variables in D’ completely independently of the
variables in other components of the dependency graph. This technique does not change
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the worst-case running time of this algorithm, but it can speed it up dramatically for some
instances. The value of the exponent d in the running time is equal to the size of the largest
subset D’ induced by the components.

For example, in the dependency graph of Figure 8(b), we may minimize the total cost
of links gh, ge, and eh independently of all other links, and this may be done by optimizing
over the single variable z(, 5). Note that the capacities of links ¢i and ic depend on no other
link capacities, and their minimum necessary capacities may be determined exactly as in
Section 7.1.1 because the graphs END,; and END;. contain all solid arcs. In this example,
this technique of finding independent subproblems reduced the exponent d from [P| = 8 to
3.

LEMMA 7.4. Let G = (V, E) be a directed graph with source s € V and sink t € V. Let
a € E,a # (s,t) be a distinguished arc with a capacity given by the variable x > 0. All
other arcs e € E have a fixed capacity cap(e) 2 0. Then the value of a maximum flow from
s to t as a function of =, m(z), has slope 1 for some interval [0, c], and slope 0 afterwards.
More formally, there exist constants s,¢ > 0 such that

m(w)={ s+z if0<z<ec

s+c ez

Proof: The max-flow min-cut theorem of Ford and Fulkerson [FF64] states that the value of
a maximum flow in a network is equal to the capacity of a minimum s — ¢ cut. An s— ¢ cut
is denoted (X, X), where s € X and t € X, and is defined as the set of all arcs (u,v) € E
for which u € X and v € X. The capacity of a cut is the sum of the capacities of the arcs
within it. Let C be the set of all s — ¢ cuts.

Some cuts contain the arc a. Every such cut (X, X) has a capacity of the form sx + =.
Let s’ be the minimum of all sx values.

There exist cuts which do not contain the arc a, because ¢ # (s,t). Every such cut
(X, X) has a capacity cx. Let ¢’ be the minimum of all cx values.

Then m(z) = min{s’ + z,c’}. If we choose s = min{s’,¢'} and ¢ = max{c’ - s',0}, then
this is exactly the function described in the lemma. ]

Note that all of the capacity functions in Figure 7(a) are of the form m(5 — z).

LEMMA 7.5. If the cost function cost{cap ) of a link is a nondecreasing and concave function
of cap, and m(z) is a function of the form described in Lemma 7.4, then cost{m(z}) is 2
nondecreasing and concave function of .

Proof: Let m(z) have the form described in Lemma, 7.4 with constants s,¢ > 0. Then on the
interval [0, c], m(z) is increasing with slope 1, so cost (m(z}) is nondecreasing and concave
on [0, ¢} because cost{cap) is nondecreasing and concave on [m(0),m(c)] = [s,s +¢]. On
the interval [¢, 0o}, m(z) is constant, and so is cost(m(z)). It is easy to see from this that
cost{m(z)) is concave on [0, 00) given that cost(cap) is nondecreasing and concave. B
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COROLLARY 7.1. cost(m(pu—~a)) is a nonincreasing and concave function of ¢ on the interval
[0, 4.

Facr 1. If fi(z),..., fi(z) are all concave functions of z, then so is vk filz).

This can be easily proven from the definition of concave functions.

FACT 2. ¥ f(z) is concave on the interval [a,b], then min.<z<p f(z) = minge(asy f(2)-
That is, the minimum function value over the interval must occur at one of the endpoints
of the interval.

This is a well-known fact about concave functions. See Bazaraa and Shetty [BS79, Thm.
3.4.6, p. 99], for example.

LEMMA 7.6. Let D' and P be all nodes in one component of the dependency graph. Then
the minimum total cost for all links in P U Ulu,wpepr P(t,v) can be determined in 0(2/P'l .

I—'ﬁ!‘ - maxflow(n, U)) time, where n is the number of nodes in the network and U < #? + n.

Proof: Let e be any link in P. For all (u,v) € D/, either END, has a dashed arc (, ')
with capacity p(,v) — 2(y,u), o it has no arc (u,?’). Any other (u,v") arcs in END, must
be solid (with a fixed capacity). If (u,v) € D' and (u,?’) is in ENDe, and if we let z(, )
change while leaving the other z values fixed, Corollary 7.1 tell us that the cost of link e as
a function of z(,,,) is nonincreasing and concave on [0, p:(u, v)]. If (u,v) € D’ and (u,v’) is
not in END,, then the minimum necessary capacity of e as a function of z(,.) is a constant,
and so is its cost. A constant function is concave.

For all (u,v) € D, each link in p(u,v) has a capacity %(y,), and by the restriction in
the problem instance, each of their costs is a concave function of z(, ,).

The cost of this portion of the network is the sum of costs of each link in Uy v)ep P(%, v) U

7’. Since the cost of each individual link is a concave function of each T (u,v) Variable, Fact 1
tells us that the total cost of all of these links is also a concave function of each z(y ).

We wish to find values for all z, .y, (u,v) € D', such that the cost of this portion of the
network is minimized. If we fix the value of all z variables except for 2(, ,), then Fact 2 tells
us that the minimum can be found simply by evaluating the total cost at z(,,) = 0 and
Z(yw) = {1, v). Therefore, the overall minimum can be found by trying all 212"l choices of
assigning the z variables either 0 or their maximum value.

By Lemma 7.3, we can find the costs of each of these 2Pl possibilities in O “1"5" .
maxflow(n, U)) time (assuming the cost functions are easy to compute). »

Theorem 4.4 follows directly from Lemma 7.6 by adding the running times for each
component of the dependency graph. This result implies that alternate path routing with
these constraints gives no lower cost than fixed path routing. The author considers it likely
that if point-to-point multirate traffic is allowed, there will be some instances for which
alternate path routing will give a lower cost than fixed path routing.
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