Metadata, citation and similar papers at core.ac.uk

Provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-82-3

1982-02-01

The Total System Design (TSD) Framework: An Approach to the
Development of Distributed Systems Design Methodologies

Gruia-Catalin Roman, Mishell J. Stucki, William E. Ball, and Will G. Gillett

A methodological framework is an abstraction over a class of design methodologies. The
framework characteristics the problem solving approach shared by the methodologies
belonging to that class: it identifies the nature of their common design concerns and the
fundamental logical interdependencies between these concerns. The paper proposes a
particular framework called the Total System Design (TSD) Framework. It represents a
specification for a class of design methodologies which view computer-based systems as
potentially distributed hardware/software aggregates. As such, the TSD Framework
consolidates under a unified perspective two traditionally separate concerns: software design
and hardware design. Furthermore, it establishes the... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin; Stucki, Mishell J.; Ball, William E.; and Gillett, Will G., "The Total System Design
(TSD) Framework: An Approach to the Development of Distributed Systems Design Methodologies"
Report Number: WUCS-82-3 (1982). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/893

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233200104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/893?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/893

The Total System Design (TSD) Framework: An Approach to the Development of
Distributed Systems Design Methodologies

Gruia-Catalin Roman, Mishell J. Stucki, William E. Ball, and Will G. Gillett

Complete Abstract:

A methodological framework is an abstraction over a class of design methodologies. The framework
characteristics the problem solving approach shared by the methodologies belonging to that class: it
identifies the nature of their common design concerns and the fundamental logical interdependencies
between these concerns. The paper proposes a particular framework called the Total System Design
(TSD) Framework. It represents a specification for a class of design methodologies which view computer-
based systems as potentially distributed hardware/software aggregates. As such, the TSD Framework
consolidates under a unified perspective two traditionally separate concerns: software design and
hardware design. Furthermore, it establishes the role played by hardware/software trade-offs in system
design. A strategy for deriving methodologies from the TSD Framework is outlined and illustrated.

https://openscholarship.wustl.edu/cse_research/893?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/893?utm_source=openscholarship.wustl.edu%2Fcse_research%2F893&utm_medium=PDF&utm_campaign=PDFCoverPages

THE TOTAL SYSTEM DESIGN (TSD) FRAMEWORK:
AN APPROACH TO THE DEVELOPMENT OF
DISTRIBUTED SYSTEMS DESIGN METHODOLOGIES

Gruia-Catalin Roman
Mishell J. Stucki
William E. Ball
Will D, Gillett

WuCs-82-3

Department of Computer Science
Washington University
St. Louis, Missouri 63130

February 1982

THE TOTAL SYSTEM DESIGN (TSD) FRAMEWORK:
AN APPROACH TO THE DEVELOPMENT OF
DISTRIBUTED SYSTEMS DESIGN METHODOLOGIES

Gruia-Catalin Roman
Mishell J. Stucki
William E. Ball
Will D. Gillett

WUCS-82~3

Department of Computer Science
Washington University
St. Louis, Missouri 63130

February 1982

ABSTRACT

A methodological framework is an abstraction over a class of design
methodologies. The framework characterizes the problem solving approach
shared by the methodologies belonging to that class: it identifies the
nature of their common design concerns and the fundamental logical
interdependencies between these concerns. The paper proposes a particular
framework called the Total System Design (TSD) Framework. It represents a
specification for a class of design methodologies which view
computer-based systems as potentially distributed hardware/software
aggregates. As such, the TSD Framework consolidates under a unified
perspective two traditionally separate concerns: software design and
hardware design. Furthermore, it establishes the role played by
hardware/software trade-offs in system design. A strategy for deriving
methodologies from the TSD Framework is outlined and illustrated.

Acknowledgements: This work was supported in part by Rome Air Development
Center and by Defense Mapping Agency under contract F30602-80-C-0284. The
contributions of R. K. Israel and J. T. Love to the investigation of
certain aspects of the TSD Framework are also acknowledged.

Keywords: methodological framework, methodology, system design,
hardware/software trade-offs.

Roman, Stucki, Ball and Gillett Page 1

INTRODUCTION

The software crisis of the 70's played a significant role in
increasing the general awareness of, and interest in, design
methodologies. In particular, it brought about a wide-spread belief that
large system development without strong methodological support involves
unacceptable risks. As a result and in a relatively short time span,
major advances have been achieved in the areas of methodology development,
project control and review, specification techniques, and automated
documentation and analysis tools [CHAN78, WASS78, WEGN79, YEH77]. The
complexity of the design issues facing system developers, however, also
has grown. The ever increasing interdependency between hardware and
software has led to the view that a system is a hardware/software (H/S)
aggregate in which the hardware and software aspects must be treated
together and not separately as has been traditional.

Today's system design methodologies must consider the relation
between hardware and software and its impact on the performance
characteristics of the total system. The design of high performance
systems {(e.g., for graphics, avionics, etc.) demands careful tuning of the
hardware structure and primitives to the needs of the application
software. The design of distributed systems forces traditional software
designers to consider the nature of the support hardware to a larger
degree than in the past. Microprogrammeble machines blur the distinction
beiween hardware and software. VLSI technology allows traditional
software functions to be realized in hardware. Changes in the relative
cost of hardware and software affect the system's useful life span. These
and many other similar considerations strongly suggest the need to
consolidate methodological advances in the software and hardware design
areas.)

The notion of a methodological framework is employed in this paper as
the means by which this consolidation is accomplished. A methodological
framework is an abstraction of a class of system design methodologies.

The framework is hierarchical in structure, being composed of stages which
are, in turn, composed of phases, which are composed of steps. The stages
represent broad design areas such as system design, software design, and
hardware design, while the phases represent finer divisions of these
design areas. TFor example, a stage dealing with software design could
contain separate phases for software architecture, program design, and
coding. The steps represent design activities that go on within the
design areas. They include activities such as performance evaluation,
functional verification, documentation, and acceptance.

The framework characterizes the problem solving approach shared by a
group of related methodologies by identifying the nature of their common
design concerns and by establishing the fundamental logical
interdependencies between these concerns. This fact makes the framework
useful as a specification for a class of methodologies having predefined
characteristics. The Total System Design (TSD) Framework, for instance,
is a methodological framework that has been developed in order to specify

-& class of distributed systems design .methodologies which emphasize 2
rational and systematic resolution of the hardware/software partitioning
issue. The definition of the TSD Framework and its significance for

Roman, Stucki, Ball and Gillett Page 2

system design is the topic of this paper. The next two sections contain a
brief description of the TSD Framework stages, phases and steps. The
exposition is introductory in nature, with a detailed description of the
TSD Framework being given in [ROMABQ]. A separate section summarizes the

TSD Framework perspective on H/S trade-offs.

A subsequent section considers the issue of developing specialized
methodologies via successive refinements of the TSD Framework. These
refinements take into consideration the nature of the application area,
the availsble technology, and the characteristics of the organizations
involved in the development and maintenance of the systems. The approach
draws heavily on past experience with the development of design
methodologies in general (e.g., [ROMAB2]) and with the development of
several organization specific methodologies (e.g., [ROMA79]). A sample
application area and a hypothetical organization are used for illustrative
purposes. The concluding section reviews the experience to date with the

use of this approach.

STAGES AND PHASES

Figure 1 shows the logical structure of the TSD Framework. The stage
boundaries are drawn along traditional lines and the concern of each is
obvious from the stage name. Fach stage is composed of two or more phases
which represent well known design areas. The downward arrows represent
requirements specifications that define the problem to be solved by a
subsequent stage. Each specification has two parts, a functional
requirement and a set of implementation constraints. The upward arrows
indicate the flow of finished products during the integration portion of
system development. The idea here is that each stage is responsible for
the integration of its portion of the design. The integration process
thus begins at the lowest level of detail and works upward until all
components of the system have been assembled and tested.

PROBLEM DEFINITION STAGE.
This stage is composed of two phases: identification and

conceptualization. Both phases are application domsin dependent and their
Successful completion rests on a good understanding of the application.
The TDENTIFICATION phase is informal in nature and has an exploratory
flavor. Its objective is to produce an identification report which
contains all the information availsble with regard to the system support
required by the application at hand, as well as any relevant constraints.
Despite the fact that the level of formalization and sbstraction of the
identification report is relatively low, the report serves two important
functions: it establishes the communication link between the designer and
the user and provides the necessary base for the development of a formal
definition of the problem. This formal development is done in the

conceptualization phase.

Roman, Stucki, Ball and Gillett

application _____.___1

Page %

[________. system

PROBLEM DEFINITION STAGE

* jdentification
¥ conceptualization

system requirements

SYSTEM DESIGN STAGE

* system architecture design
* system binding

|

software requirements

hardware requirements

SOFTWARE DESIGN STAGE

* software configuration design
* program design
* coding

MACHINE DESIGN STAGE

* hardware configuration design
* component design

¢ircuit design requirements

&

firmware requirements

4

CIRCUIT DESIGN STAGE

awitching circuit design
electrical circuit design
80lid state design
fabrication

* ok K %k

FIRMWARE DESIGN STAGE

* microcode design
* microprogramming
* microcode generation

FIGURE 1: TSD FRAMEWORK STRUCTURE

Roman, Stucki, Ball and Gillett Page 4

The CONCEPTUALIZATION phase uses the identification report in order
to generate the system requirements. These requirements contain a
conceptual model which formalizes the system's role from a user
prerspective and the application constraints identified earlier. Because
of its-formal -nature, the-conceptual model provides a solid basis for the
entire design process and represents the ultimate correctness criterion
against which the final system is judged. The ability to meet all the
stated constraints is a second fundasmental evaluation criterion.

SYSTEM DESIGN STAGE.

This stage includes two phases: system architecture design and
system binding. The main concern of the SYSTEM ARCHITECTURE DESIGN phase
is to investigate system design alternatives and their potential impact on
the choices for a feasible system configuration (i.e., H/S mix). Without
meking any explicit choices with respect to the selection of particular
software or hardware components, this phase is involved in the performance
of H/S trade-offs to the extent that design decisions taken here affect
the class of feasible configurations in a manner too significant to be
left to chance.

The functional/performance specifications generated by the system
architecture design, as part of the system configuration requirements,
form the basis on which a particular H/S mix is selected during the SYSTEM
BINDING phase. The hardware and software requirements being generated by
this phase may assume a variety of H/S combinations from off-the-shelf
complete systems to custom built components. The election of one option
over another is determined by the nature of the system design, the
constraints to be met, and the available technology. Binding options are
identified in the system architecture design phase, but the selection of
specific components is done in the binding phase.

SOFTWARE DESIGN STAGE.

This stage includes all activities relating to software design and
procurement. There are three phases involved in this stage. The first
one, SOFTWARE CONFIGURATION DESIGN, is responsible for the procurement of
off-the-shelf software as well as the overall high level design of the
software system. The software requirements are the basis for these
activities which result in the development of program requirements
specifications, including the complete design of its data and environment
interfaces. The PROGRAM DESIGN phase, in turn, takes these requirements
and produces the program design (datas and processing structures) which,
together with all pertinent assumptions and constraints, make up the
implementation requirements. They are used by the CODING phase to build
the actual programs.

MACHINE DESIGN STAGE.

This stage plays a role similar to that of the first two phases of
the software design stage. The HARDWARE CONFIGURATION DESIGN phase is
concerned with the procurement of off-the-shelf machines and the design of
the high level architecture of custom hardware. Component requirements
are developed for all entities that are part of the custom hardware and
passed on to the COMPONENT DESIGN phase. This phase generates a register
transfer level machine description that will be included in the circuit
design requirements and in the firmware requirements.

Roman, Stucki, Ball and Gillett Page 5

CIRCUIT DESIGN STAGE.

This stage follows a generally accepted scenario involving four
phases: SWITCHING CIRCUIT DESIGN, ELECTRICAL CIRCUIT DESIGN, SOLID STATE
DESIGN, and FABRICATION. Each phase generates design requirements for the
phase listed after it.

FIRMWARE DESIGN STAGE.

This stage consists of three phases that are an analog to program
design, coding, and compilation. These phases are called MICROCODE
DESIGN, MICROPROGRAMMING and MICRCCODE GENERATION.

STEPS

The previous section gave a general introduction to the design areas
covered by the TSD stages and phases. This section gives a general
introduction to the activities that occur during the design process. The
major design activities within a phase are called STEPS. There are ten
steps which collectively represent the sctivities within any phase,
regardless of the nature of the phase. Some of the steps represent
activities that are common practice among good designers and appear to be
fundamental to the design process. The other steps represent activities
that are needed to meet the objectives of the TSD Framework. The names of
these steps are listed below. The dashed lines are used to indicate

groups of related steps.

formalism selection

formalism validation
exploration
elaboration

consistency checking
verification
evaluation
inference

The FORMALISM SELECTION step encompasses the activities involved in
selecting a formalism for a particular problem domain. Candidate
formelisms are evaluated for their expressive power in that domain and
also for qualities such as simplicity of use, lack of ambiguity,
analyzability, and potential for automation. While this step must take
place before other steps in the phase, it often occurs long before them.
This is sometimes due to the use of & methodology that is based on =
particular formalism, but is more often simply a matter of policy or is
due to the availability of tools tailored to that formalism.

Roman, Stucki, Ball and Gillett Page 6

The FORMALISM VALIDATION step encompasses activities involved in
determining whether a formalism has the expressive power needed for a
particular task. It also includes the evaluation of formalisms from the
standpoint of ease of use. These tasks are generally non-trivial and may

involve both theoretical and- experimental evaluations. Theoretical
results may indicate the power and the fundamental limitations of the

formalism while past experience with it on similar projects may provide
insight into its appropriateness and ease of use. The step 2lso includes
evaluations of the formalism's potential for design automation (as a way
to bring sbout productivity increases) and its ability to support
hierarchical specifications (as an aid to controlling complexity).

The EZPLORATION step encompasses the mental activities involved in
synthesizing a design. These activities are c¢reative in nature and depend
on experience and natural talent. They cannot be formalized or automated
unless the problem domain is restricted to a significant degree.

The ELABORATION step encompasses the activities involved in giving
form to the ideas produced in the exploration step. 1In general, this step
involves the use of formalisms and its activities are facilitated by
design aids such as text editors and formatters. This step includes the
building of a concrete object such as a piece of hardware.

The CONSISTENCY CHECKING step encompasses activities such as checking
for incorrect uses of formalisms, checking for contradictions, conflicts,
and incompleteness in specifications, and checking for errors of a
semantic nature. It includes checking for consistency between different
levels of abstraction in a hierarchical specification and the
reconciliation of multiple viewpoints.

The VERIFICATION step encompasses activities involved in
demonstrating that a design has the functional properties called for in
its requirements specification. Since each phase has a requirements
specification and produces a design, this step is equally important for
all phases. A common example of this type of activity is the proving of
program correctness. The difficulty of this task is well known and is
also representative of the difficulty of the verification task in general.

The EVALUATION step encompasses activities involved in determining if
a design meets a given set of constraints. This includes constraints
which are part of the requirements specification for the phase and
constraints which result from design decisions. The nature of the
evaluvation activities depends on the type of constraints being analyzed.
They include classical system performance evaluation of response time and
workload by means of analytical or simulation methods; deductive
reasoning for investigating certain qualitative aspects like fault
tolerance or survivability; and construction of predictive models for
properties such as cost and reliability.

The INFERENCE step encompasses activities involved in assessing the
potential impact of design decisions made in the phase. The domain of
these activities includes: impact on the application environment, ability
of subsequent phases to live with decisions made in this phase, effect on
system maintainability and enhanceability, and effect on implementation

Roman, Stucki, Ball and Gillett Page 7

options. While these issues must be considered in every phase, proper
treatment is particularly critical in those stages defining architectures.

The INVOCATION step encompasses the activities associated with
releasing the results of the phase. It includes quality control
activities where tangible products are involved and review activities
leading to the formal release of output specifications. It is this latter
aspect that gives the step its name, since the release of specifications
in effect invokes subsequent phases.

The INTEGRATION step encompasses the activities associated with the
configuring and testing of that portion of the total system that was
designed in the phase. Although it is traditional to consider integration
to be a design area that would gualify as & stage in the framework, the
integration activities have been distributed among the phases in
recognition of the following facts: the expertise needed to test a
portion of the system is similar to the expertise needed to design it;
the assumptions made in e& phase about the nature of the products that
could be delivered by the subsequent phases must be checked once the
subsequent phases complete their respective tasks; all models used to
make these assumptions must be validated; and, finally, design errors
found during integration must naturally be referred back to the phase in
which they were introduced. It is therefore fitting that integration be
considered a phase activity.

HARDWARE/SOFTWARE TRADE-OFFS

This topic was already introduced earlier in the context of the
system design stage. In this section we provide a brief review of the
framework's perspective on this issue in its own right undiluted by all
the other details involved in the presentation of the framework. The
discussion starts with the definition of H/S trade-offs, outlines the
approach prescribed by the framework, and identifies the main problem
areas.

The problem embodied in H/S trade-offs is that of allocating the
system's functionality between hardware and software components {be they
off-the-shelf or custom designed) in a manner that satisfies all system
design constraints. Because systems are perceived as H/S aggregates, the
consideration of H/S trade-offs is perceived to be a central system design
issue. Its complexity is so high, however, that few methodologies make
any attempt to deal with it, and most existing work focuses solely on
computer systems selection, itself a difficult problem.

As far ss the TSD Framework is concerned, the activities related to
H/S trade-offs are distributed across the two phases of the system design
stage. The system architecture design phase is engaged in a systematic
process of reducing the binding options to the point where the binding
phase is left to deal strictly with component selection from among a few
... feasible alternatives. Every.system.architecture design decision, taken
in the exploration step, has implications with respect to the type of
technology that would be needed to realize the system. Furthermore,

Roman, Stucki, Ball and Gillett Page 8

partitioning into hardware and software needs to be carried out as part of
this phase because all performance models used in the evaluation and
inference steps demand, as a minimum, information about the distribution
of the system's functions among various processors and about
interprocessor communication -costs. All such design decisions are
actually subject to explicit review and analysis in the inference step.

0f particular concern for the inference step is the rejection of any
design solutions which limit the range of feasible binding options
unnecessarily. Since the system architecture is presumed to be developed
top-down, the option elimination process is characterized by an iterative

sequence of refinements and inferences.

Having the range of binding options significantly reduced by the
previous phase, system binding concentrates on selecting specific
components among those still eligible. It is critical fo proceed with the
selection of individual components in the context of the entire systenm,
and not by optimizing local decisions. This enables the focus to remain
on the performance objectives of the system as a whole {(cost included),
where it belongs.

Neither option reduction nor component selection is a simple task.
The former requires significant experience with system design and a good
grasp of existing technology and current technological trends, issues that
are difficult to formelize. The availability of appropriate performance
models applicable both to performance evaluation and to technological
inferences could, however, assist the designer in very important ways.
While the number of conceivable binding options may be overwhelming, the
development of reduction strategies and performance models for a few
common ones is believed to be feasible, but nontrivigl. Similar
challenges are present in dealing with component selection, in the binding
phase. On one hand, there is a need to develop adequate selection
strategies for both software and hardware components. On the other hand,
it is necessary to establish meaningful mappings between performance
attributes present in the performance models mentioned above and those
recognized in the sctual component candidates.

FROM FRAMEWORK TO METHODOLOGY

This section introduces and illustrates a strategy that could assist
a methodology developer to instantiate the TSD Framework by developing
methodologies customized to particular spplications and organizations.
The approach draws heavily on previous experience with methodology
development (e.g., fROMA79}) end makes explicit decision processes which
occurred informally in the past. Its theoretical foundation, however, is
to be found in the following set of basic principles:

- The framework represents a general problem solving approach.
Tts role is to impose a particular structure over the class of
possible problem solving approaches. The framework may limit
both the set of acceptable problem solving strategies and the
set of acceptable solutions.

Roman, Stucki, PBall and Gillett Page 9

- Methodologies are application dependent. The effectiveness of &
methodology depends upon the extent to which its specification,
design, and analysis techniques are tuned to the nature of a
particular application.

- Methodologies are technology dependent. The nature of the
technology being postulated, the relative costs of different
technological alternatives (e.g., hardware versus software), and
the recognized technological trends play a major role in
methodology development and selection.

- Methodologies are organization dependent. The level of
expertise, the cost of labor, and the structure of the

organization affect to a significant degree the effectiveness of
the methodology being used, i.e., the product quality and the
personnel’s productivity.

~ Project management objectives impact methodology development.

- The methodology, i.e., the technical approach, must be supported
and enforced by the project management techniques adopted.

The way in which these principles have been embodied in the methodology
development approach will become evident in its description below.

Context identification.

If one assumes the availability of a framework, the TSD Framework in
this case, the first task involved in methodology development is the
establishment of the context in which the methodology is to function,
i.e., the application area and the type of organization for which it is
intended.

The importance of understanding the application area has long been
acknowledged by system designers. Defense related systems, for instance,
are generelly separated infto three general categories: embedded
(real-time) systems, data processing systems, and command, control,
communication, and intelligence systems. Unfortunately, this taxonomy is
much too broad to be very useful. Data processing systems, for example,
include both logistic command systems, which have features in common with
business datas processing, and geographic database systems which have a
rather unique nature. The methodology developer has to identify both
those application features that are unique and those that are common to
other applications. Common features may suggest the use of similar
techniques to be borrowed from already existing methodologies, while
unique features may reveal special problems that need to be addressed. 1In
such cases existing techniques may have to be adapted or new ones may need
to be conceived.

The need to look at the type of organization for whieh the
methodology is intended has been considered by few and only indirectly.
(It is common practice to compare methodologies which are intended for
different organization types_and to pasa on_gratuitous judgemenis.) Such
an omission, however, may lead to methodologies that ignore the obvious
fact that the success of the methodology depends to a very large extent

Roman, Stucki, Ball and Gillett Page 10

upon the people that use it. A low level of sophistication may demand the
use of less formal and more mechanical techniques. A smell organization
may be able to cope with or to afford fewer project controls and reviews.
A highly diversified company may not be in a position to impose & common
methodology over the entire organization. A defense contractor must have
a methodology compatible with the Department of Defense regulations.

These are only a few issues that a methodology developer should consider

from the start.

In order to illustrate how such considerations affect methedology
development, the case of a small data processing organization will be
considered. Its characteristics will be brought to light gradually
throughout the remainder of this section. At this point, it suffices to
introduce the organization by indicating its small size. Furthermore, it
will be assumed that the systems to be developed are turnkey systems for
relatively small data processing applications and that development and
maintenance of these systems is to be the responsibility of the vendor
organization,

Framework pruning.

The framework may be used as a methodology skeleton and checklist
which is pruned and refined during methodology development based on the
nature of the application and orgenization. The starting point is the
discarding of whole phases which may be shown to bare no significance for
the type of system being considered. In other words, the domain of
acceptable solutions is restricted a priori based upon certain global
issues which remove from consideration particular technological
alternatives.

In our example three whole stages may be removed from the start:
machine design, circuit design, and firmware design. The justification
may be found in the following concerns. First, it is the lack of
expertise available in the organization--nobody has any hardware
background. Second, maintainability and cost considerations strongly
suggest the use of off-the-shelf machines if at all possible--the nature
of the application makes it possible. Third, even if development and
product costs could be reduced and performance could be increased by using
customized components, maintenance costs over several years may offset the
balance. Finally, having the hardware vendor provide the hardware support
through ifs organization may be not only cost effective but a positive
marketing factor.

Phage redefinition.

The pruning of the framework must be followed by & redefinition of
the objectives of the phases that are still present. 1In part, this is
because the elimination of some phases and stages (e.g., machine design
stage) results in.fewer demands on the Phases that are supposed to
generate their requirements (e.g., system binding phase). However,
further reductions in the range of acceptable design solutions also take
place. Many reductions are often rooted in economic considerations which
are addressed through some sort of standardization. The standardization
may cover anything from the use of predefined hardware, software packages,
operating systems, databases, file formats and implementation languages to
prescribed system architectures. In the first case, a certain amount of

Roman, Stucki, Ball and Gillett Page 11

"pre-binding” takes place, while the second case goes so far as to ecarry
out & certain level of "pre-design."” Neither may be accomplished without
in-depth understanding of the application area and the organization
involved. Both represent degrees of specialization motivated by the
desire to achieve methodology effectiveness, be it measured in terms of

quality, productivity, or both.

These issues may be illustrated by continuing the example., The
nature of the application, small data processing, makes it possible for
the vendor organization to select & single minicomputer as the common
hardware support for all systems to be developed. The consequence is
immediately felt in the system design stage. The objective of the system
architecture design phase is reduced to the determination of how to
allocate the system's functions among one or more minicomputers of a given
type. The binding phase, in turn, is assigned the task of evaluating the
proposed distribution against the characteristics of the actual machines
and of generating the hardware and software requirements. The former
specify the number of machines and the way in which they are configured.
The latter contain descriptions of the software to be placed on each of
the machines, the implementation language, and the communication protocols
between the software pieces residing on different machines. The last two
are always the same due to standardization considerations. At this point
the reader may notice that, while none of the specification, design and
analysis techniques of the methodology have been identified so far,
significant system design decisions have already been taken.

Specification language selection and validation.

The design papers and documentation produced by various phases are,
generally, required to adhere to certain standards of presentation. They
vary in degree of formality from one methodology to another. At one
extreme, there are no standards or the standards that exist are concerned
with the general form and content of the document which otherwise is
written in naturel language. At the other end of the spectrum, formally
defined specification languages are employed and all specifications are
maintained on line and checked for adherence to the language syntax and
semantics by mechanical means (e.g., compilers and interpreters). Most
methodologies, however, fall somewhere in between combining formal and
informal specifications. Furthermore, the specification language enployed
by some methodology is seen as its cornerstone--so much so, that often
people talk about a specification language as if it were a methodology,
when in actuality a specification language exists independent of any
methodology that relies on its use.

There are several important reasons why specification languages
occupy such a central role in methodology development. First, they
establish the basis for precise communication among designers. Second,
they influence to a significant degree the.way in which a designer
approaches a problem by defining a certain point of view and the concepts
one uses to present a model of the system being designed. Third, they
determine the nature of the design and analysis tools that may be provided
to the designer and, thus, they affect the productivity of both the people
involved in ithe design proper and in.the review process. A high degree of
mechanization of various design/analysis tasks and a properly
human-engineered interaction with the language processor result in the

Roman, Stucki, Ball and Gillett Page 12

exploration of a large solution space and increase the confidence level in
the quality of the design.

Given the role played by specification languages and the investment
required in making them available for use in the organization, their
selection is generally done a priori rather than on a project by project
basis. (The latter is not uncommon when there is a lack of commitment or
experience with specification languages or in large and diversified
organizations where individual projects have a high degree of
independence.) The selection is affected by three key factors: the nature
of the application, the background of the available personnel, and
availability of tools supporting a particular specification language.
Because no language is equally adequate from all three points of view, the
choice is usually a compromise favoring one need over the others. One
such example is the selection of a single specification language over the
use of several languages each better suited for a particular subclass of
the projects of interest. The rationale for this decision may rest with
the desire to facilitate personnel transfer between projects, to limit
retooling and training costs, to establish a common base for the
interpretation of collected statistical data, ete.

In the case of our example, because the use of identical formalisms
on all sysiem design projects has obvious advantages, several
specification languages could be adopted as company standard after
evaluating their appropriateness for the type of projects being
envisioned. The formalism selection and validation steps are thus
eliminated from the methodology. Our sample organization could decide,
for instance, in favor of:

- English text for the identification report;

- PSL/PSA [TEICT7] to assist the conceptualization phase by
providing computer-aided assistance in the development of
dataflow specifications for the system requirements:

- & modified use of PSL for both the system architecture and
software configuration design phases;

~ some form of pseudocode (syntactically checked by a locally
developed tool) for the program design phase;

- and a standard programming language for coding.

Selection of design/analysis techniques.

The language selection is not independent of the design/analysis
techniques being contemplated. A language that does not support the
development of hierarchical specifications cen hardly be expected to work
well with a technique which emphasizes top-down design, for instence. The
language is generally targetted toward particular design/analysis
techniques. Nevertheless, it has to be chosen before attempting to carry
out their selection and tuning. The design techniques are generally
intended to help the designer structure the design process in such a way
ag to reduce the chance that a significant amount of effort is wasted on
dead-end paths. The designer is provided most often with guidelines

Roman, Stucki, Ball and Gillett Page 13

rather than algorithms and with tools that assist with the rapid
development of design specifications. The analytic techniques used to
evaluate various properties of the design also provide feedback with
regard to potential problems, weaknesses, and strengths of particular
design alternatives.

The choice of one set of techniques over another is determined, in
principle, by their relative costs. In practice, this is a most difficult
task due to the lack of empirical studies and great variability between
designers' experience and background. Mechanical and easily taught
techniques are needed for less sophisticated designers but they often
compromise both the quality and the performance capabilities of the
resulting systems. By contrast, complex techniques are hard to teach and
demand more experience but are more apt to deal with the design of novel
systems and with the design of systems that must meet severe performance

constraints.

System life-cycle considerations also affect the nature of the
selected techniques. Some loss in efficiency and productivity is often
acceptable if it brings about lower maintenance and higher reliability.
Company design rules are common practice in the electronics industry and
are intended to avoid well-kmown pitfalls and hard to understand designs.
The use of standard parts having known properties also affects the nature
of the design/analysis techniques.

Finally, the nature of the design/analysis techniques is also
affected by the dominant constraint over the system. The reliability
required from an unmanned space craft is quite different from that of an
airline reservation system. In the latter case manual intervention is
possible; in the former it is not. The result is a significant disparity
between the structures used in the design of the two systems and between
the serutiny to which they are subjected during testing.

In our simple illustration, because software design is perceived to
be the dominant design activity, a set of design guidelines is adopted
based on practices common in the industry. They include top-down stepwise
refinement, modularity, ete. Furthermore, structured programming is to be
enforced by the nature of the pseudocode and by the implementation
language itself which includes all needed structured constructs. The use
of goto's is generally prohibited by a set of programming standards.

Driven by the desire to minimize both development and maintenance
costs, a systematic quality assurance program is also put in place. Some
of its components are listed below. Consistency checking and logical
verification are to be carried out as walk-throughs; the performance
evaluation step is formally identified only in the architecture design and
software configuration design phases~-it is limited to questions of time
and space and it is done by hand calculations and occasional benchmarks:
the inference step is handled in an ad-hoc manner by taking advantasge of
past experience and the similarity between systems. Without being too
sophisticated, these choices may, nevertheless, prove adequate for our
hypothetical organization. - If not, adjustments will have to be made
later. Because the organization and the technology change, the
methodology will have to be revised too, even if the original selection

Roman, Stucki, Ball and Gillett Page 14

were adequate.

Sequencing of design/analysis activities.

Besides the use of particular techniques, another factor that
contributes to the effectiveness of some methodology is the manner in
which design activities identified by the framework as steps within
various phases are to be sequenced on actual projects. To illustrate this
point, consider a relatively well-understood activity such as program
testing and three testing sitrategies. The first one requires the complete
coding of the program before testing. The second one employs a strict
top-down testing approach where the main program is tested first, then all
second level modules are added and tested, then the next level is added
and tested, etc. The third strategy starts by testing the main program
after which a small number of stubs may be replaced by code before
resuming the tesfing process. The last one {turns out to be the most cost
effective of the three both in terms of the time being expended and the
quality of the tests. Thisg is because it combines control and

flexibility.

Similar considerations are generally involved in sequencing all
activities prescribed by some methodology. Complex sequencing strategies
have been observed in some existing design methodologies (e.g., [MCCL?B]).
The right answer depends again upon the particulars of the application and
the organization involved. Here are some examples of issues that need to
be addressed: the selection of an overall design strategy (top-down,
bottom-up, etc.); the points in the design when performance evaluation
should be carried out through the use of benchmarks rather than
simulation; +the frequency and placement of design reviews; the
circumstances under which parallel development of parts of the system may
be permitted; +the placement of project planning activities; etc. The
choices are generally made based on past experience and deductive
reasoning. A more judicious selection method needs to be based on models
(of the system design process) which would permit the designer to
establish the potential impact of altering such parameters as error
frequency, error recovery costs, review costs, etc.

Considering the example again, project control objectives may dictate
that all relevant phases are to be done in the order in which they appear
in the framework except for the case when corrections to earlier work are
deemed necessary. Different subsystems, however, are permitted to be in
different stages of development as long as their interfaces are ¢learly
identified. On the other hand, within a single phase, all steps are to be
repeated, in the same sequence as in the framework, for every level of the
hierarchical specification being produced. Formal project reviews are
scheduled at the completion of each phase for each subsystem involved.

Adding the project management components.

Methodology development must also include the manageriml perspective
on system design. It adds (to the methodology) activities which, without
being directly related to the design process, are essential to managing
any reasonably sized project: project organization, scheduling, resource
allocation, reporting procedures, configuration control, etec. Their
placement in the methodology has to be coordinated with the design
activities but their role is fairly well-understood and, consequently, no

Roman, Stucki, Ball and Gillett Page 15

further elaboration is necessary at this point.

The development of the methodology has to be followed by the even
greater effort represented by its integration into the organization. This
includes retraining, retooling, the use of experimental pilet projects,
gradual irtroduction of the methodology in production, ete. These issues,
however, are outside of the scope of this paper.

CONCLUSIONS

The TSD Framework builds directly on the current understanding of
system design methodologies with respect to both the phases and the steps
that make up its structure. Its steps represent a taxonomy of the design
activities generally encountered in system design. Its phases, aside from
those included in the system design stage, have been recognized already by
other authors. There are, however, two important distinctions between the
way phases and steps are used here and elsewhere. TFirst, the grouping of
activities into a phase is based upon the nature of the technical
expertise they require rather than upon considerations related to project
management. The latter are relegated to methodologies and are not part of
the framework. Second, the steps are abstractions over classes of design
activities and not specific actions to be carried out by the designer in
some prescribed order. These differences stem from the fundamental
distinction between frameworks and methodologies.

The criteria used in the selection of both phases and steps are a
direct reflection of the principle of separation of concerns. The
traditional separation between hardware and software design, for instance,
is captured by the identification of distinct phases associated with each.
At the same time, however, because judicious partitioning of the system
functions between hardware and software demands the two to be considered
together and to perform certain trade-offs, the system design stage has
been included. It separates the selection and specification of the
hardware and software from hardware and software design.

The TSD Framework has been used primarily as a way of specifying a
class of distributed system design methodologies called the TSD
Methodologies. The development of one such methodology has been carried
out following the approach described in this paper. Unfortunately, the
methodology was so general in scope that it exercised the approach only to
a very limited extent. However, a systematic evaluation of the approsch
in an industrial environmment is anticipated to take place in the near
future. 1In the meantime, the approach is now being used again in the
development of a distributed data-processing methodology that could later
be easily adapted to the needs of certain types of organizations. Despite
the limited evaluation of the approach, the fact that it is based on the
earlier experiences with the selection of design methodologies for two
very different organizations recommends it for serious consideration.

[Mcer7s)

[rRoMAT79]

[Romag2]

[TEICT77)]

[wass78]

[wEGN79]

[YEHT77]

Roman, Stucki, Ball and Gillett Page
REFERENCES
[cHAN78] Chandy, K. M. and Yeh, R. T. (editors), Current Trends in

Progremming Methodology, vol. 3, "Software Modeling,™
Prentice Hall, 1978.

McClean, R. K. and Press, B., "The Plexible Analysis Simulation
and Test Faeility: Diagnostic Emulation," Technical Report
TRW-~-55-75-03, TRW, Redondo Beach, CA. 90278, 1975.

Roman, G.-C., "Verification Procedures Supporting Software
Systems Development,” 1979 NCC Proc., pp. 947-956, June 1979,

Roman, G.-C. et al, TSD Methodology Assessment, Final Report,
Contract F30602-80-C-0284, Washington University, Saint Louis,
Missouri 63130, 1982.

Teichroew, D. and Hershey, III, E. A., “"PSL/PSA: A
Computer-Aided Technique for Structured Documentation and
Anelysis of Information Processing Systems.” IEEE Trans. on

Soft. Eng. SE-3, No. 1, pp. 41-48, January 1977.

Wasserman, A. I. and Beladf, L. A., "Software Engineering: The
Turning Point," Computer, pp. 30-41, September 1978.

Wegner, P. (editor), Research Directions in Software Technology,
MIT Press, 1979.

Yeh, R. T. (editor), Current Trends in Programming Methodology,
vol. 2, "Program Validation,” Prentice Hall, 1977.

16

	The Total System Design (TSD) Framework: An Approach to the Development of Distributed Systems Design Methodologies
	Recommended Citation
	The Total System Design (TSD) Framework: An Approach to the Development of Distributed Systems Design Methodologies

	tmp.1465590965.pdf.KwOpC

