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DECLARATIVE VISUALIZATION IN THE SHARED DATASPACE PARADIGM

Gruia-Catalin Roman and Kenneth C. Cox

Department of Computer Science
WASHINGTON UNIVERSITY
Saint Louis, Missouri 63130

ABSTRACT

This paper is concerned with the use of program
visualization as a means for the understanding, debugging,
and monitoring of large-scale concurrent programs.
Following an overview of the shared dataspace paradigm and
the declarative approach to visualization, the paper discusses:
(1) mechanisms for specifying declarative visualization in the
shared dataspace paradigm and ways of relating the
specifications to program verification; (2) a computational
model which provides a unified framework for comparing
both visual and nonvisual algorithms; and (3) strategies for
implementing declarative visnalization on parallel machines.

1. INTRODUCTION

Visualization is defined as the graphical representation of
objects and processes. The importance of visualization as a
commumication tool has long been acknowledged. In recent
years, however, a growing consensus has emerged regarding
its potential for promoting the understanding of complex
behaviors exhibited by physical phenomena and compu-
tations!2. This paper is concerned with visualization as a
means for the understanding, debugging, and monitoring of
large-scale concurrent programs, i.e., programs consisting of
many thousands of concurrent processes.

The extremely high veolume of information produced
during the execution of a concurrent program greatly exceeds
human abilities to assimilate in textual form. This is in part
due to the sequential processing of textual information. The
human visual system is more suited to information in the
form of images. Humans can process large quantities of
image information in parallel, detecting and tracking complex
visual patterns with incredible speeds.

Nevertheless, as the number of processes grows, the
viewer's ability to understand the resulting image can be
rapidly saturated unless the level of abstraction of the
information being displayed is increased. For this reason,
abstraction plays an important role in visualization. By
providing flexible abstraction mechanisms, a visualizaton
system can, in principle, help the programmer select displays
which are easily specified and understood. Ease of
specification may be achieved by treating visualization as a
formally defined abstraction of the program state rather than
as a mechanism for producing animated displays. Ease of
understanding may be facilitated if the information being
displayed relates to formal properties of the program and if
the choice of rendering maps the property of interest to a
visual pattern which may be detected and tracked with
minimat effort.

Treating images as abstractions of the program state is
also desirable from a pragmatic perspective. It permits the
use of declarative specifications which are more concise and

easier to employ than the imperative strategy which is based
on specifying interesting events and associated actions.

As explained in later sections, our work relies heavily on
the declarative approach to visualization. Actually, the
emphasis on declarative visualization was a major factor in
the selection of the underlying model of concurrent
computation, the shared dataspace paradigm. The shared
dataspace is the only concurrency paradigm we are aware of
which elegantly accomumodates declarative visualization.
This is because the paradigm is based on a model in which
processes use powerful transactions to manipulate & common
content-addressable data structure called the dataspace.
Since all important state information is captured by the
dataspace, one can treat visualization as a mapping from the
dataspace to a geometric or graphical model which, in tumn,
may be rendered on some imaging device.

In the broader sense, our search for ways to make
effective use of images is a vehicle by which we seek to
establish a sound technical foundation for the visualization
field. We see abstraction, human perception, formal
verification, and computational complexity o be the
cornerstones of such a foundation, at least as far as
visualization of concurrent computations is concerned,
Ultimately, the value of this work will be judged by the extent
to which it will contribute to:

(1) the identification of image properties that can be
detected and tracked visually with a high degree of
reliability;

(2) the development of visual representations that capture
directly important formal program properties (e.g.,
safety and progress) and facilitate immediate and
reliable visual detection of instances where these
properties fail to hold; and

(3) the establishment of computational models that allow
the comparison of the effectiveness of alternative
visualizations with respect to each other and with
respect to nonvisual alternatives.

The purpose of this paper is to report on some of the
decisions we have made and the path we are pursiing.

The next two sections of this paper give an overview of
the shared dataspace paradigm and the declarative approach
to visualization. Section 4 discusses mechanisms for
specifying declarative visualization in the shared dataspace
paradigm and ways of relating them to program verification.
In section 5 we propose a computational model which
provides a useful unified framework for comparing both
visual and nonvisual algorithms and for formally
incorporating clements of visual perception. Section 6 is
concerned with swategies for implementing declarative
visualization on parallel machines and includes a brief status
report on our current implementation efforts on a 64-node
multiprocessor.
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2. SHARED DATASPACE

Concurrent programming languages may be divided into
four broad categories depending on the nature of the inter-
process communication they employ. Shared variables as
used in Concurrent Pascal®, for example, allow processes to
communicate by reading and writing (directly or indirectly
via monitors) the values of a fixed set of variables whose
names are known to the communicating processes. Message
based communication requires 2l information sharing to take
place by sending and receiving messages in accordance with
some predefined protocol. CSPI3 and Actor Janguages® are
representative of this category. Remote operations, such as
the remote procedure call used in Adal, permit a process to
mvoke operations associated with some other process. The
parameters and retamed values represent the information
shared by the processes involved in the exchange. The last
category we choose to call shared dataspace. It is comprised
of languages in which processes have access to a common,
content-addressable data structure (typically a set of tuples)
whose components may be asserted, read, and retracted.
Associons!®, Linda%, and some artificial intelligence
languages such as OPS5% belong here.

Qur first attempt to study the relation between the shared
dataspace paradigm and large-scale concurrency relied on the
use of a language called SDL?%-2!, In this paper, we explain
the shared dataspace paradigm by means of a much simpler
language called Swarm'®. In Swarm, concurrent
computations are defined in terms of a dataspace, which is a2
finite set of tuples, and a fransaction space, which is a finite
set of fransactions. Each transaction represents an atomic
transformation of the data and transaction spaces. An
mndividual transaction may examine, assert, and retract tuples
in the dataspace and it may examine and assert (but not
Tetract!) transactions in the tramsaction space. Transaction
execution results in the removal of the transaction from the
transaction space. Transactions are selected from the
transaction space in a nondeterministic order and executed;
the selection 1s fair in the sense that all transactions in the
transaction space are eventually executed.

A Swarm program¥ consists of the initial configurations
for the data and transaction spaces and a finite set of
transaction type definitions. A transaction type definition
defines a name for the fransaction type and a set of
parameters bound at the creation of the transaction. The body
of the transaction {enclosed in [ 1) consists of a number of
subiransactions separated by the symbol |[. Each
subtransaction consists of a query part (a predicate in first-
order Togic) which interrogates the database for tuples, and an
action part which defines tuples to be asseried and retracted
and transactions to be asserted, The scope of existentially
bound variables from the query part includes the action part.
The query and action parts are separated by the symbol —».

During execution of a transaction, the guery parts of all
subtransactions are evaluated and the action parts associated
with the successful queries are performed. Some built-in
queries, such as NOR, may depend on the success or failure
of other query parts; for instance, the query NOR succeeds
only if all other query parts in the transaction fail. It is worth
noting that, even when the actions of the subtransactions are

¥ The syntax used in this paper is for illustrative purposes only, and
does not necessarily represent the actual syntax of Swarmm.

INITIAL DATASPACE:

{ p : pePixels : (p.Intensity(p).is_labeled,p) }
where
Pixels={x,y: 1<x<N, 1<y<M : (x,y)}
Intensity : Pixels — IntensityRange

INITIAL TRANSACTION SPACE:
{ p: pePixels: Label(p) }
TRANSACTION TYPES:
Label(P) ::
i) JpLAla2: [Pais labeled A1]H,
p four_neighbors P, [p,1.is_labeled,A2], A2>A1

— (P,Lis_labeled,’2), Label(P)
| NOR — Label(P)

Figure 1: Region Labeling in Swarm

not disjoint, the language guarantees noninterference between
subtransactions by executing all retractions associated with a
rransaction before any of the assertions.

The notation [patterr] rtepresents a membership test
against the dataspace. For example, 3 A : [pair, 17, A] is a
test for a dataspace tuple having three elements, the first of
which is the atom pair, the second the constant 17, and the
last an arbitrary value. If such a tuple exists, the query
succeeds and the vaniable A is bound to the value in the tuple
for the remainder of the subtransaction. The notation
{patiern]t indicates that the tuple matching the pattern is to
be removed from the dataspace; when this notation appears in
the query part, the removal occurs only if the entire query
succeeds. The similar notation tname([pattern] represents a
membership test against the iransaction space for a
transaction having the type tmame. Some relatively complex
queries can be written in just a few lines in Swarm. For
example, the following query counts the number of tuples
matching a particular pattern by summing a I for each such
fuple:

(Z variables : [pattern] : 1)

Nesting of such queries within other queries is permitted.

In the action part, the notation (fuple) indicates the tuple
is to be added to the dataspace. The notation tname(valies)
indicates a transaction of type tname is to be asserted in the
transaction space, with the transaction type parameters bound
to the given values.

Figure 1 shows a simple version of a region-labeling
program in Swarm. Each tuple in the dataspace represents a
pixel in a N by M image and consists of the pixel position p,
the pixel intensity, and a Iabel. Initially, each pixel is labeled
by its own pixel position. Associated with each pixel in the
dataspace there is a tramsaction of type Label in the
transaction space.

A Label iransaction associated with the pixel P consisis
of two subtransactions. The first one checks to see if there
exists a four-connected neighbor p of the pixel at P which has



the same intensity 1 but whose label A2 is greater than the
label A1 currently associated with P. If such a neighbor is
found, the pixel P is relabeled using A2 by deleting the tuple
(Pa,is_labeled,Al) and asserting the tuple {P,L,is_labeled,A2)
and the transaction Label(P). The role of the second
subtransaction is to recreate the transaction Label(P) when no
such neighbor is found.

The result of executing this program is that, at some point
in the computation, all pixels in a connected region of
uniform intensity are assigned the same unique label.
However, no attempt is made to detect this condition and
consequently the program fails to terminate (although it does
reach a fixed-point state in which neither the dataspace nor
the transaction space change).

3. DECLARATIVE VISUALIZATION

Before discussing visualization in the shared dataspace
paradigm we need to provide the reader with a better
understanding of what is meant by declarative visualization.
The background for this discussion is the evoluton of
methods for program visualization (or algorithm animation,
as it is often called). We explicitly exclude from
consideration visual programming, an area whose primary
concern is the development and use of non-textual languages.

Originally, program visualization research was motivated
by the desire to explain, by means of animated displays, the
workings of sequential algorithms. Among the visualization
systems that are a product of this perspective, Balsa®7 is
probably the best known and the most influential. Balsa is
also representative for what we choose to call the imperative
approach to visualization. Constructing an animation requires
avgmenting the algorithm with calls to a series of library
routines designed to interface with the mechanics of display
generation. The subroutine calls must be placed in such a
way as to capture significant program events and to trigger
needed changes in the display. Despite the high degree of
modularity built into the approach, the need to include the
calls to the visualization routines within the program adds
complexity and Jacks flexibility.

Flexibility becomes particularly important when the
purpose of visualization is to help the programmer understand
and debug algorithms. The programmer needs the freedom to
change both the information being displayed and the way in
which it is displayed. Moreover, changes to the executing
code should be avoided whenever possible.

These and other considerations led to the emergence of
declarative approaches to visualization. The declarative
approach sees visualization as a relation between the program
state and the state of the graphical objects depicting it
Flexibility is derived from the ease with which this relation
can be changed.

In PROVIDE!®, for instance, program variables are
bound to formal parameters associated with visual objects.
Changes in program variables are automatically tramslated
into updates of the display. This type of declarative
visualization could be called event binding. In our opinion,
event binding will prove inadequate for larpe-scale
concurrent programs because of its low level of abstraction.

The declarative approach advocated in this paper is based
on the more abstract notion of state mapping. Program
visualization is defined as a function from the program state
to the state of one or more graphical objects. Both the level
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of abstraction and the choice of graphical objects may be
controlled by changes in the program state; iLe., as the
program state changes the representation may also change.
The resulting increases in flexibility and the ease of
specification, however, do not come for free. Even when the
program state can be captured cleanly, there is still the burden
of ensuring that visualizations are computed rapidly enough
to maintain the continuous display we expect from
visualization systems.

As shown in later sections, the shared dataspace paradigm
is particularly well suited for the state mapping approach.
The program state may be formally defined as a set of tuples,
thus eliminating the need to consider the program text and the
programming  language syntax and  semantics.
Mathematically speaking, transactions (which are the basic
computational entities in the shared dataspace paradigm) are
relations defined over the combined data and transaction
spaces. As such, the same mechanisms that implement
transaction execution are useful in implementing the
visualization system. Finally, the computational power
needed to maintain the continuous displays is readily
available on the highly parallel machines for which shared
dataspace languages are targeted.

4. VISUAL ABSTRACTION

Declarative visualization in shared dataspace languages is
facilitied by the ease with which one can specify properties of
the program state. The current program state is simply given
by two sets of tuples: the transaction space T and the
dataspace D. Properties of the program are easily defined in
terms of predicates in first-order logic, i.e., the very same
formalism used to define the query part of the transactions. In
the region-labeling program, for instance, to determine if
there is a point in the image having more than one label we
can simply write

JpLAlA2:
[p,Lis_labeled,A1], [p,i,is_labeled,A2], Al=A2

The reader may want to think of how one might ask the same
question about a program written in a traditional language
such as Pascal!

Because graphical objects can aiso be specified using the
tuple notation, we introduce a new set of tuples O, called the
object space, which contains the set of graphical objects to be
rendered at any point during the computation, and a
visualization mapping V which computes © in terms of T and
D. In addition, a (device-specific) rendering function
translates the contents of ( into an image.

We specify the visualization mapping V by a set of rules
having the form

variables : query over T and D = list of tuples in O

where the variables are existentially quantified implicitly.
Such a rule defines a (constantly changing) set of tuples as
follows. The query is evaluated, and for each successful
match the variable bindings are used to instantiate the tuple
list on the right hand side; all the resulting tuples are
members of the set. For any state of the computation, the
object space O is equal to the union of the sets produced by
each visualization rile. Thus, if a new tuple is asserted which
matches with some visualization rule, all resulting tuples are
immediately added to O; likewise, if a tuple is retracted, any
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members of O generated by a rule matching the tuple are
immediately removed. (It should perhaps be emphasized that
this is a model of our approach to visualization, and that an
implementation would not necessarily compute the image in
this fashion.)

For the sake of simplicity let us assume that the universe
of graphical objects is Himited to points of various colors, L.e.,
to tuples of the following form:

(point, coordinate, color)

where point is 2 constant literal, coordinate is a pair (x,y),
and color is a (device-dependent) representation of a
particular color.

The tendering function iranslates a particular state of the
object space into a screen image. For the region-labeling
program with N by M pixels, we will assume a rendering
function with the following properties:

» The screen consists of a rectangular array of at least 4N by
4M points.

e A function colorize is available which maps pixel labels to
the color space; the function is one-to-one, so distinct input
labels have distinct colorization values. The range of
colorize does not include all colors that can be produced by
the device; colors not in the range of colorize are called
recognizable.

e An object tuple (point,{2{,27).c) is mapped to a 3x3 region
of screen points having color ¢ at screen coordinate (4,45},

#An object tuple (point(2i+1,2/),c) is mapped to a 1x3
region at screen coordinate (4i+3,45).

» An object tuple (point,(2i,2/+1),c) is mapped to a 3x1
region at screen coordinate {(47,45+3).

s An object tuple (point{2i+1,2j+1},¢) is mapped 1o a 1x1
region at screen coordinate (4i43,4743).

»If no object tuple is mapped to some screen point, the point
is a recognizable color called the background color,

s If two or more object tuples map to some screen point, the
point is a recognizable color called the overlap color and is
flashed in the image.

(2i~1, . (2i+1,
2541) (24, %-1) 2j+1)
@i-1, . @i,
2) @2 2)
i1, L @i,
25-1) {21, 2j+1) 25-1)

Figure 2: Rendering Function Grid

The coordinates are those of the point tuple which is mapped
to the group of screen points.

The reason for the unusual mapping of point coordinates io
screen coordinates will be clarified below. The result of the
mapping is a grid as illustrated in Figure 2.

Considering the region-labeling program again, one can
map pixels (program objects) to points {graphical objects)
having a color determined by the current label:

VO: paAc [pais_labeled A] = (point,2p,colorize(A))

Note that a pixel at {x,y) is mapped to a point at {2x,2y},
which is depicted by the rendering function as one of the 3x3
screen squares. This visualization is illustrated in Figure 3.

At first glance, this rather simple visvalization may
appear to be all that one needs to monitor and understand the
program’s behavior. Unfortunately, although the entire
computational state is captured fully, this visualization is
flawed in two fundamental ways:

(1) the programmer cannot reliably detect algorithmic faults
from the display; and,

(2) the display captures the low-level mechanics of the
program execution rather than fundamental program
properties used by the programmer to reason about the
particular computation.

These are precisely the kinds of shortcomings a more formal

treatment of visualization is meant to overcome.

In the remainder of this section we outline a strategy for
approaching the visvalizations of concurrent computations
and apply it to region labeling. The starting point for our
approach is the formulation of safety and progress properties
of the program in 2 manner similar to the work of Chandy and
Misral®, We chose program verification as the foundation for
our strategy because the complexity of concurrent
computations defeats any kind of operational reasoning about
programs-—it is impossible to keep track of all conceivable
interleavings of events.

Given a particular safety property (typically a program
invariant) we seek to render it as a stable visual pattern in
such a way that any change, representing a violation of the
invariant, wonld be readily observable. Progress properties
are captured by ordered pairs of patterns where a state which
generates the first pattern is to lead to a state which generates
the second. Lack of progress is represented by a failure to
teach the second pattern. Unfortunately, not all
manifestations of lack of progress are easy to detect. Total
lack of activity or cyclic patterns are among the readily
observable progress failures.

The principal invariants and progress conditions used in
the correcmess proof for the region-labeling program (not
presented here) are:

I1: Region boundaries do not change.

I12: Two neighboring pixels belonging to two different
regions never have the same label.

I3: Tn any given region, the pixel having the highest
coordinate is labeled by its own coordinate.

PI: I a pixel p has a neighbor belonging to the same
region and labeled by the highest coordinate in that
region, p will eventually be labeled by the highest
coerdinate in that region.

Given these formal properties we can now turn {o the issue of

selecting an appropriate rendering of the program. It is our

intent to convince the reader that these properties provide
concrete directives toward the kind of visual patterns we seek.

As earlier stated, invariants are rendered as stable patterns
such that violations of the invariant are easily observed.
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Figure 3: Sample Visualization of Region Labeling

The visualization rule V0 is in effect.
Time increases down the page.

Figore 4: Sample Visualization of Region Labeling

The visualization rules VI through V4 are in effect.
Time increases down the page.
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However, 11, I2, and I3 have very distinct logical forms — 1]
is universally qualified, /2 involves a negation, and I3
includes an embedded existential quantification. Because of
this, one should expect to see distinct visualization strategies
applied to each.

The formulation of JI strongly suggests the need to
render the borders between pixels of differing intensities in
some recognizable color, for example white. If /1 is violated
these borders will move or disappear during execution.
Furthermore, examining the other invariants and progress
conditions we note that PI states that progress is made by
labeling all pixels in the same region with the same label.
This suggests that a representation of the region boundaries
would also be useful in visualizing PJ.

To render the borders we use the gaps between the 3x3
regions; by using the eight_neighbors relationship, the small
I1x1 screen areas are filled as well as the 1x3 and 3x1 areas.
The rule which visualizes 17 is:

VI: plalAlp212,A2:
[pl.il,is_labeled,A1], [p2,12,is_labeled,A2],
pl eight_neighbors p2, 11#.2
= (point,pl+p2,white)

In the case of /2, because the invariant deals with the
absence of a condition no particular visual representation
seems to be required. Violations, however, must be detected;
one way to do this is by rendering the gap between any two
neighboring pixels which have different mtensities but the
same labels in the overlap color. This rendering is
accomplished by the rule:

V2: plalp2a2,h:
[plad,is_labeled,A], [p2:12,is_labeled,A],
pl four_neighbors p2, 11#2
= (point,pl+p2overlap)

Visualizing I3 seems to cause difficulties, because the
invariant refers to a pixel which, although known to exist and
to be unigue for each region, must be precomputed. A more
careful analysis of this invariant allows us to produce a visual
representation of this invariant without precomputation by
introducing some initial uncertainty that is gradually reduced.
The idea is to color all pixels which retain their initial label
assignment. Initally all pixels are colored; as the program
proceeds, pixels revert to the background color, leaving only
the pixel with the largest coordinate in the region colored.
The following rule can be used for this:

V3. <A EP,l,iS_Iabe]ed:P]
= (point,2p,colorize(p))

The progress condition P! can be visualized by marking
the boundaries of areas which have the same labeling with
some recognizable color (e.g., red):

V4: plLAlp2,A2:
fpl.Lis_labeled,Al], [p2.1,is_labeled,22],
p1 four_neighbors p2, Al=A2
= (point,p1+p2,red)

The previous visualization rule V7 outlines the boundaries of
the regions in white, while V3 marks the pixel having the
highest label in each region. Progress is recognized by the
expansion of the areas within red boundaries toward the white
boundaries, and completion is recognized by the
disappearance of all red boundaries.

Figure 4 is a sample visualization of the region-labeling
program in which rules VI through V4 are in effect. The
overlap color is bright yellow; naturally, since the program
and this implementation are correct, it does not appear. The
two program runs in Figures 3 and 4 are identical, and
corresponding photographs were taken after equal amounts of
progress; only the visualization differs.

This simple example demonstrates the importance of
using formal program properties as the basis for deciding
which visualization rules are appropriate, It is our hope that
this approach will lead to the development of a set of general
rules for constructing program visualizations based on the
structure of the predicates vsed in the program correctmess
proof and not on knowledge of the operational detaiis of the
program. Such an approach would facilitate true expleration
of the program rather than its mere animation.

5. COMPLEXITY MODEL

This section describes preliminary work on  the
development of a complexity model useful in comparing the
efficiency of alternate visualizations against each other and
against nonvisval algorithms solving the same problem. We
limit our concem to yesfno type questions and to visual
representations consisting of colored points in 2D-space.

A question is simply a predicate over the program state:

q : ProgramStates — {true, false}

Given a concurrent shared dataspace program P and a
question g, we say P answers g if execution of P starting in
some initial state canses a tuple (answer,g(initial-state)) to be
asserted in the dataspace after some finite time and not
thereafter retracted. Note that because the execution
mechanism  for shared  dataspace  programs is
nondeterministic, there may be many ways in which P can be
executed; however, each must cause the assertion of the
answer tuple in finite time.

For any transaction execution T, we define Operands(t) as
the set of tuples and transactions asserted or retracted by the
execution of 7. Two transaction executions Tl and 2 are
conflict-free iff

Operands(tl) m Operands(t2) = &

A set of transaction executions is called conflict-free if all
pairs of distinct elements of the set are conflict-free.

We define a computation as a sequence of state
transitions, each caused by execution of a set of conflict-free
transactions. With each such transition we associate a weight
representing the cost of performing the set of transactions.
The cost of a particular computation is defined as the sum of
the weights of the transitions from the initial state to the first
state in which the wple (answer,g(initial-state)) appears in D.

Two transaction sets are called reducible if their union is
conflict-free. We define a maximally concurrent computation
as one in which the transaction sets associated with each
consecutive pair of transitions are not reducible. The cost of
anonvisual algorithm for a particular initial state is defined as
the minimum of the costs of all maximally concurrent
computations. The complexity of the algorithm is defined as
the maximum computation cost over all initial states. (This
definition of algorithm complexity as the maximum cost over
states, where the cost for a state is the minimum time required
to find the result, is based on similar work with



nondeterministic parallel Turing machines and random access
machines!l: 14, )

In the case of visual algorithms, the guestion is solved
whenever the correct answer may be deduced reliably from
the visual representation of the program state. Any state
whose visualization allows one to deduce reliably the answer
is called a revealing-state. Revealing-states replace answer-
states in determining the algorithm efficiency.

Region labeling again provides the basis for a simple
illustration of the ideas, if we take the liberty to assume that
some mechanism which detects the completion of the labeling
activities has been added to the program and that once the
labeling is completed the tuple (dome) is added to the
dataspace. The question we consider here is: Do pixels Pl
and P2 belong to the same region? One nonvisual solution
cant be comstructed by adding to the initial transaction space
the transaction described in Figure 5.

The efficiency of this solution is determined by the cost
of detecting termination. If the total number of pixels is
MxN, typical solutions exhibit a complexity O(MxN) (with
the worst case exhibited by regions with a spiral shape). If
we consider now the visual approach and assume the
visualization rules used in the earlier section, it turns out that
the initial state of the program is already a revealing-state.
Because the region boundaries are present in the rendering
the question reduces to the visual task of telling if two points
are inside of the same contour. Hence, using the definitions
introduced so far, the program efficiency is O(1).

It is obvious from the example that there are some hidden
costs not accounted for in the definition of efficiency: the
computation of the visualization V and the human effort
associated with performing the visual task. V was defined as
a mapping from the program state to the object space

V : ProgramStates — ObjectSpaceStates

followed by application of the rendering function to produce
a sereen image.

The cost of computing V is determined by the nature of
the visualization rules. Since the implementation of
visualization rules is expected to employ mechanisms similar
1o transaction execution, the cost attributed to ¥V may be
computed in the same manner as the cost associated with the
program execution. In our example this cost is actually a
constant {per pixel) because each pixel contributes to at most
nine poinis in the object space (its own image and those of the
bordering points). Provided the rendering fumction is
relatively simple (i.e., a linear mapping from object space to
screen, with each object producing no more than a constant
number of screen points) the cost of applying the rendering
function may be incorporated into that of computing V.

Since different visual tasks require different levels of
effort on the part of the human observer, one could consider
associating a cost function with the performance of the task.
For a given object space (and associated rendering function)
one might be able to determine the cost function
experimentally, We question, however, the usefulness of
such an undertaking. We prefer to view any visual task
whose complexity exceeds some threshold (e.g., 1 second) to
be too tedious to be useful.

This argument also applies to a second observation. Fora
visual algorithm, we have defined a revealing-state as one
from which the comrect answer may be deduced reliably.
However, it may be the case that the answer can be deduced

SameRegion(P1,P2) ::
I ERW
[P1.Lis_labeled, ], [P2.1,is labeled,A]
- (true)

| Fe12,A1,22 1143,
[P1.L,is_labeled,Al], [P2,.12,is_labeled,A2]
— (false)
| 3uALA2: [done], A1#A2,
[P1,1is_labeled,A1], [P2,1,is labeled,A2]
> (false)
| NOR — SameRegion(P1,P2)
1

Figure 5: Non-Visual Answer Computation

reliably but the complexity of the task exceeds the threshold
discussed above. Retuming to the region-labeling example, a
particular image may be divided into a number of closely
intertwined regions. Although the initial state (containing the
tegion boundaries) contains sufficient information to
determine whether two points lie in the same region, actually
determining this may be as difficult as solving a maze. Thus,
although the image does represent a revealing-state, the cost
of answering the question is too great.

The ability to perform the visual task required to
determine the answer to some question given a particular
image is captured by a function called an oracle:

oracle : ObjectSpaceStates — [can’t-tell, true, false}

If the object space state is too complex to allow determination
of the answer, the value of the oracle is can’t-tell and the
associated oracle cost is infinite. On the other hand, if the
answer can be easily deduced the value of the oracle is either
true or false and the cost is a small constant!. The issue of
how to capture our cument knowledge of visual cognition and
formalize it in terms of oracles is an important open question
but the growing body of informationi? being accumulated in
this area gives us strong reasons for optimism.

6. IMPLEMENTABILITY

In this section we consider the implementability of the
state mapping approach to declarative visualization, i.e., the
algorithms that allow us to compute the visualization
mapping V. State mapping belongs to the broad class of
problems which address the issue of global state detection
and monitoring.

Distributed snapshots and instant replay are two examples
of problems belonging to the same class. The distributed
snapshots problem? involves the detection of stable properties
of a distributed computation. Given a set of processes which
communicate asynchronously by sending and receiving

¥ Defining the cost function in this way leads to what might be
called the *‘Eurcka effect™: A visualization which starts in a state
having an oracle value of can’t-tell and ends in one having a
value of true or false must have a single transition in which the
cost of the oracle drops from infinite to a small constant. Before
this moment, the user cannot easily determine the answer from
the image; after this moment, he can.



3.

messages, a global state is computed cooperatively without
interfering with the underlying computation. The computed
state is not necessarily one through which the computation
passed, but it is guaranteed that the computation could have
passed through the state between the initiation and the
completion of the snapshot. If the computed state has the
desired property, stability guarantees that the property is true
for any current and future global state of the systern; in
particular, the property will hold for the actual system state at
the time of the snapshot’s completion. The instant replay
problem concerns the reproducibility of the execution
behavior of concurrent programs. This is logically equivalent
to forcing the system to go through the same sequence of
global states as it did in some previous compuiation. One
solution to this problem!S assumes that all interprocess
interactions take place via shared objects and uses version
numbers associated with each object to record the order of all
significant events occurring in the system.

In this section we formulate a new global state detection
and monitoring problem which addresses the computation of
the visualization mapping V and show one solution for this
new problem. The problem is called global state tracking.
The motivation for this problem is the need to extract from
the dataspace the current state of any mples matching the left
hand side of the visualization rules, and to use these tuples to
update incrementally the object space and hence the display.
Our statement of the problem is independent of the specifics
of declarative visualization.

In general terms, global state tracking is defined as the
problem of maintaining at 2 centralized location a
continuously updated representation of the global state of a
concurrent computation. We will refer to the actual global
states of the computation as the distributed states and to their
representations as the centralized states. Because the central
location does not have direct access to the state of the
concurrent computation, it can leam about it only from
messages received from processes participating in the
computation. Consequently, the ceniralized state is always
behind the distributed state and some of the constructed
centralized states may not have actually existed in the actual
concurrent computation. This is acceptable as long as for a
given computation we require consistency between the
seguence of centralized states and the sequence of distributed
states and we require a fixed upper bound on the time it takes
for a change in the distributed state to be manifested in some
centralized state. The two sequences of states are called
consistent if dependent changes to the system state appear in
the same order in both sequences--in database terminclogy,
this definition reduces to the equivalence of two serial
schedules. Examples of dependencies that must be
considered are read-write dependencies in database-type
systems and get-send dependencies in  systems
communicating via messages.

The solution we present assumes that the underlying
computation is a shared dataspace program. Furthermore, to
satisfy the fixed upper bound consiraint we must make
several important assumptions. First, we assume that both the
time it takes for a message to arrive at the central Iocation and
the size of the transaction space have upper bounds related to
the problem size. Second, we assume that the central location
has sufficient computing power and input communication
bandwidth to accommodate the receipt and processing of all
the messages sent by the processes participating in the

concurrent computation.

The key to our algorithm is the ability of the ceniral
location to determine the order in which dependent dataspace
transformations (i.e., transactions) actually occurred. For this
reason we associate with each transaction an unique identifier
which is used to tag tuples and transactions with the identity
of their creators. The essence of the algorithms may be
described as follows:

When a transaction T having identifier 1 {s executed:

{1} < locks all the mples (in the data and transaction spaces)
it needs to examine or retract and computes a
dependency set Df1) containing the identities of all the
creators of the locked tuples.

(2) © performs all necessary retractions and assertions
making sure to attach its identity 1 to all the wples it
asserts (in the data and transaction spaces) and releases
all locks.

(3) For every tuple retracted or asserted, T sends to the
central location a message consisting of its identity 1, the
number of tuples retracted and asserted, and the
dependency set D(1). (The reasons for sending separate
messages are to avoid the need for extra communication
required to bring all the tuples together prior to sending
the update information to the central location, and to
allow the possibility that agents other than the
transaction might asswme the task of generating these
messages.)

At the central location:

(1) A message is processed when all messages from the
same fransaction have arrived and all messages sent by
any iransaction appearing in its dependency set have
been processed.

(2) All messages associated with the same transaction are
processed together as an atomic update of the
centralized state.

The solution outlined above can be adapted to other
underlying computational medels far different from the
shared dataspace paradigm and is practical whenever the
number of tuples represents a small subset of the dataspace.
Unfortunately, the algorithm does not take into account the
right hand side of the visualization rule and makes no attempt
to distribute the computation of object space. We are
currently seeking to refine the formulation of the global state
tracking problem and to develop fully distributed algorithms
that solve it.

Our current implementation efforts are directed to the
development of a prototype transaction system and associated
visunalization capability on an NCUBE-7 equipped with a
Real-Time Graphics Board?. The NCUBE-7 is a highly-
parallel hypercube-configured MIMD machine which uses a
message-passing protocol for interprocessor communication.
Our NCUBE is configured with 64 processors, each equipped
with 512 Kbytes of RAM. The Real-Time Graphics Board is
a dedicated image processing device with storage for
2048x1024 pixels of 8-bit data, The data can be modified at
the feature level (i.e., lines, rectangles, circles) by two Hitachi
ACRTC Graphics Controllers or at the pixel level by a group
of 16 processors identical to those in the main hypercube.
The 16 graphics processors can communicate with the main
hypercube at a combined rate of 90 Mbytes/second and can
also send commands to the ACRTC processors.



We are implementing a transaction system. capable of
supporiing the shared dataspace paradigm to run on the
NCUBE's main hypercube. The design dedicates some of the
hypercube processors as database nodes which maintain
distributed shared dataspace of tuples. The remaining
processors are available for wuser applications which
communicate with the database nodes to assert, query,
modify, and retract tuples. The transaction sysiem provides
full support for tuples containing arbitrary data, matching of
patterns against the stored uples, and searching of the
distributed database.

The 16 graphics processors are used to provide the
visualization capability. These processors initiale a global
state tracking algorithm (which in the current design will be
performed cooperatively by the database, user, and graphics
processors). Continuously updated state information is
transmitted to the graphics processors, which maintain 2
centralized state as described above. The visualization rules
are then applied by the graphics processors to the centralized
state and the visualization image generated.

7. CONCLUSIONS

Central to the ideas presented in this paper is the notion
that visualization can play a key role in the exploration of
concurrent computations. Hidden between the lines,
however, is the concern that the full potential of visualization
may not be reached if the art of generating beautiful pictures
is mot rooted in a solid, formal technical foundation. This
paper shows that many of the key concepts on which to build
such a foundation already exist and outlines an approach that
can bring them together into a unified framework. Although
most of the work needed 1o make the framework a practical
reality is yet to be done, the results to date are highly
encouraging.
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