Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-79-3

1979-06-01

Gauss-Jordan Elimination By VLSI Mech-Connected Processors

Takayuki D. Kimura

It is shown that a mesh-connected n x (n+m) toroidal array of processors can perform Gauss-
Jordan elimination without pivoting, on an n x (n+m) matrix, in 4n+m-1 steps, each step
involving at most two artithmetic operations for every processor.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Kimura, Takayuki D., "Gauss-Jordan Elimination By VLSI Mech-Connected Processors" Report Number:
WUCS-79-3 (1979). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/872

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F872&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/872?utm_source=openscholarship.wustl.edu%2Fcse_research%2F872&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

GAUSS-JORDAN ELIMINATION
BY VLSI MESH-CONNECTED PROCESSORS

Takayuki Kimura

WUCS-79-3

Department of Computer Science
Washington University
St. Louis, Missouri 63130

June 1979

ABSTRACT

Tt is shown that a mesh-comnected n x (ntm) toroidal array of pro-
cessors can perform Gauss~Jordan elimination without pivoting, on an
n x (ntm) matrix, in 4ntm-1 steps, each step involving at most two

arithmetic operations for every processor.

Keywords: mesh-connected multiprocessor system, Gauss-Jordan elimination,
communication complexity

CR Categories: 5.14, 6.29

1. Intrcduction

The purpose of this paper is to show that a mesh-connected
n x (n+m) toroidal array of processors can perform Gauss-Jordan

elimination without pivoting, on an n X (n+m) matrix, in 4n+m-1

steps, each involving at most two arithmetic operations for

every processor. As a corollary, a system of n linear equations
can be solved in 4n steps by an n X (ntl) troid of processors,

if the process does not involve pivoting. Van Scoy[.8], whose
result is closest to ours, shows that a matrix inversion by
Gaussian elimination with partial pivoting requires O(nz) steps
with nx n processors, where n is the order of the matrix.

Qur result is not better, on surface, than the known result
of the following parallel algorithm for Gauss-Jordan elimination,
requiring 3n+l steps by (n-1)(n+m) processors (Heller[2 1).

G~-J Algorithm:
for j=1 step 1 until n do

row i s= row i - (aij/hjj) row j 3+ (lgign, i #% j)
X35 += a33/a33 3+ (lsisn, ntl<jsnim).

In assessing the time complexity of this algorithm to be 3n+l,
it is assumed that the datum a3jj is accessible to every processor
within a constant time that is independent of n. We assert
that the assumption is not practical from our point of view.

Qur objective is to minimize the communication complexity
rather than the processing complexity (the number of arithmetic

operations), and to maximize the degree of distribution of

communication activities in an actual execution of an algorithm.

One way of satisfying the assumption made for the G-J algorithm

is to provide a private communication path between every pair of
processors. This requires O(nu) connections within the system and
O(n2) communication ports for each processor, Anofher way is

to store all data in a shared memory space to which every
processor is connected in such a way that the memory contention
problem can be resolved within a fixed amount delay that is
independent of the number of processors.

Even though the above kinds of requirements for communication
1imit the value of an algorithm to theoretical interests, parti-
cularly when the number of processors is unbounded, they have
been shared by many of known parallel algorithms, for example,

those surveyed in Sameh[6] and Heller[21.

Some matrix algorithms have been constructed with conscious
efforts to minimize the communication comﬁlexity. For example,
Kant & Kimura [3] give an algorithm, called KK-algorithm, for
solving a system of n linear equations in 2n-1 steps by a hex-
connected (four neighbours plus one diagonal) n X(n+l) array of
processors, and Kung & Leisersonl 4] show that LuU-decomposition (
factoring a matrix into lower and upper triangular matrices) of
an n Xn matrix can be done in 4n steps, including'I/O time, by an
n X n hexagonal 'systolic® array.

The KK-algorithm requires the coefficient matrix to be
'strongly non-singular', that is to say, every square submatrix

is non-singular, and Kung & Leiserson's algorithm assumes that

the matrix can be factored by Gauss-Jordan elimination without
pivoting. Both algorithms, however, can be executed by an
array of processors in which every processor has a fixed number
of communication ports (6 ports, in fact) that is independent of
the size of the matrix.

The importance of a communication complexity in a matrix
computation is discussed in Gentleman[1], The significance
of the communication issue in computer science, with the ongoing
impact of VLSI technology (Mead & Conway [5]), is expounded in

Sutherland & Mead LT,

Even though our algorithm is amenable to SIMD computer
architectures such as ILLIAC IV, it is best fit to VLSI architecures
by the virtue of its uniformity in the distribution of processing
and memory requirements, and its simplicity in the topology of
communication requirements. The algorithm reguires that each
processor have three data registers, three control registers (two
bits long each),and arithmetic capabilities. Each processor
communicates with immediate four neighbours only. A single
step of computation consists of either one division or one addition
and one multiplication.

A practical implication of the algorithm is that, for example,
assuming 10 us of division time, 100 X100 matrix can be inversted
every 5 ms by a two-dimensional array of 20,000 chip processors,

The technique of our construction is a two dimensional
pipelining.

In the next section, we will define %he underlying afchitecture.

The algorithm will be given in Section 3 without a mathematical

proof of correctness. In Section 4, we will demonstrate how
the algorithm works, step by step, with an example of inverting

a 4X4 matrix.

2. The Toroid System

We define a toroid system as a two dimensional array of

Px Q processors, {P(i.j)l 1<i<p, 1l<j<q }, mesh-connected into

a toroidal shape as shown in Figure 1. All processors have

the same structure and the same capabilities which are independent
of p and q; i.e. a fixed number of data registers, control registers
and arithmetic capabilities. Contents of the registers represent
a state of a processor. Every processor has four neighbours and
it synchronizes with them locally, in the sense that the processor
can recognize any state-change in the neighbouring processors.

Logically speaking, a toroid system works without any mecha-
nism of global communication (synchronization). We assume, however,
for the sake of simplibity, that all processors will change its
state at the same time as if there exist a global clock.

The next state of a processor is a function of the current
state of the processor itself and the current states of the neigh-
bours. (See Figure 2) The next state function is the same for
all the px q processors in the system, Consequently, a toroid
system can be uniquely identified by (1) the dimension p and q,

(2) the registers and their types (the type of values each register

can contain), and (3) the next-state function. A computation by

a toroid system can be identified -by the initial configuration

and the final configuration in addition to the above three items.
AS an example, a toroid system for matrix multiplication is

given in Figure 3. Note that the next-state function is given

in the form of a schematic replacement rule.

2 58|i101 7 10 13
3695011 9 12 15

in Figure 4, The initialization of Xi3 and yj j requires matrix

The actual computation of ‘l 4 ?]{1 1 0] = [5 8 11]

by the toroid system is given

transformations (aij) f—> (ai.i+j-l) and (bij) — (bi+j-1)'
There exists a toroid system that can perform exactly the above
transformations in linear time. The reader is encouraged to

try a construction.

3. The Algorithm

In this section, we will describe a toroid system GJ for

Gauss-Jordan elimination without pivoting, working on matrices

A= (aij) and B = (bjk), where Igi, jsn, l<k<mgn. The matrix

A must be a nonsingular square

without pivoting. The matrix

matrix which can be inverted

B may not be square.

Initially, the toroid contains (A,B) and after 4n+m-1 steps

of transformations, it will contain (I.A'lB), where I is the

identity matrix of order n. (Figure 5)

A specification of GJ is as followss

Dimensions: n X (n+m)

Registers: x,y,ziReal
B Z
h,Vl{--l,O,l] X h
Processor
Next-State
Function s (x',y',2z',c',h',v*') 3= kagh,c.yn,hn.vn.zw,hw,vw)
North Neighbour
ha
yn Vﬂ
Z, 1) z'
West Wi g
Neighbour M| X h = X h’
Viw c yiv'|e’
Current State Next State

(The exact definition of the next-state function 6 is given

in Table I, and is represented schematically in Figure 6.)

Initial

Configuration: Xj5 = 2ij l¢i¢n, 1lgj¢n,
{ = byk l<i<n, n+kgjsn+m,.
yij = zij = hij = vij =0 l¢i<n,
1< jgn+m,
S5 = 1 if i=j=1,
= ~1 if j=i+n,
=0 otherwise.,
Final
Configuration: xjj =1 l<i, jgn and i=j,
=0 1<i, jsn and i#j,
= 8y 1<ign, n+lgj=ntk<n+m,

where (&;x) 7 A~1B,
v

=2.: = h;: = =0 1<i<n,

Yij ij ij ij
l<j<n+m,

C:z = 2 1<i<n, 1l<j<ntm.

With respect to Table I, the following should be noted:
(1) The blanks in the left half indicate "don't care" conditions,
and in the right half, they indicate that no change occurs
on the value.
(2) With a proper initialization, the following conditions always
hold: (a) if h=-1, then ¢=2, (i.e. -1 does not appear for h),
(b) if v,=1, then h,=0, (Rule(5)),
(¢) if ¢=-1 and hy,v,<0, then hy=v, =0, (Rule(7)),
(d) if e¢=0 and h=0, then hytv.2-1, (i.e. -1<ag0),

(e) if h=1, then hy=v,=0, (Rule(3)).

The next-state function € is broken down into seven disjoint

functions (transformation rules), and for every processor at any

moment, there exists exactly one rule applicable to the processor,

provided that the system start with a properly initialized con-
figuration. In that case, every computation is deterministic.
The essential part of the algorithm works in the following

way. Consider the formula for Gauss-Jordan eliminationi

for j=1 step 1 until n do aj 1= aj - (a35/2j5)*ajk 3

(1gi<n and i%$j, 1lgkgn+m and k#%j).
The GJ toroid implements the computation by pipelining the
individual assignment operations over a two dimensional array
of processors. Ignoring the pipelinihg aspect of the algorithm,
let us assume that the foroid is ready to start the process of
executing the assignment operation aik‘=aik"(aij/ajj)'ajk at some
point of the computation, say at the p-th step of transformation,
and also assume that aik'aij'ajj'and ajk are now contained in the
x registers of the processors P(i,k), P(i,j), P(J,J) and P{(j,k),
respectively. Further, without loss of generality, we assume

that j<i<k. Then, Figure 7 shows the data flow for this parti-

cular assignment operation.,

The processor P(j,j) starts the process by making ajj
available to the east neighbour and a signal 1 to the south
neighbour at the {(p+l)-th step. It also changes its value
to 1 at the same time. (Figure 7(ii)) The datum ajj travels
eastwards through the z registers of the processors on the j=-th
TOW, Similarly, the signal 1 travels southwards through the

v registers on the j-th column,

The signal 1 becomes available to P(i, j) at Step (p+i-j),
before 23j arrives at P(j,k), (recall that i<k), and P(i,J)
makes 2 j available to its east neighbour through the register z,
at the next step (p+i-j+l). (Figure 7(iii)) At the same time,
P(i,j) changes its value to O and keeps passing the signal 1
towards south.

When the datum asj becomes available to P(j,k) at Step
(p+k-j), P(j,k) changes its value to ajk/ajj' and makes it
available to the south neighbour through the register y, at the
next step (ptk-j+l). (Figure 7(iv)) Since the path length
between P(j,j) and P(i,k) via P(i,j) is the same as the path
via P(j,k), the data ajk/ajj and aj ; will become available to
P(i,k) at the same timé, i.e. at Step (p+i+k-2j). The processor
P(i,k) completes the process by executing the assignment operation
aik'zaik'(ajk/ajj)'aij at the next step (p+i+k-2j+l). (Figure
7(v))

The processor P(j+l,j+l) will initiate a similar process
at the (p+3)-th step, i.e. 3 steps behind P(j,J), to implement
the assignment operation ajyi=aj,-(a; 54+1/2541,541)25+1,k °
The processor P(i,k) will receive the data (aj+l.k/aj+1,j+1) and
aj,j+1r and execute the above assignment operation at -the
({(p+3)+k+i-2(j+1)+L1) = (p+tk+i~-2j+2)-th step, i.e. immediately

after the execution of aik'zaik‘(aij/ajj)'ajk .

10

L4, Example

In lieu of a mathematical proof for the correctness of the

algorithm, we demonstrate an execution of the algorithm for a

particular 4 X4 matrix, step by step, showing which transformation

rule is executed by which processor at which step. The example

matrices are: (A,B), where

1 2 3 1 12 0 0 O
l 5 15 -5 0 12 0 O
A= B =
-1 -1 2 =4 0O 0 12 o
3 4L 2 10 0 0 0 12

The expected result is: (1,A1B), where
X 0 0 0 100 -28 60 0

o 1 0 0 . -38 14 -42 -6
I= ATTB =

0o 0 1 o 1 -1 9 3

0 0 0 1 -15 3 -3 3

The matrix B is so chosen in order to avoid fractions
during the computation.

For this example, the toroid system has 4 X (4+4) = 32
processors, and the computation requires 5X4-1 = 19 steps.

The snapshots of the computation are given as Figure 8.
Step(0): This is the initial configuration. All blank spaces
contain 0. The first row and column are reserved to repeat
the last row and column for easy perception of applicability
of transformation rules. By marking the processor P(l,1) with
(2), it is shown that Rule(2) is applicable to P(1,1). For
the rest of processors, the rules (6) and (7) are applicable.
However, since their applications do not change processor states,

the other processors are unmarked.

"

ic

Step(l): The result of applying Rule (2) to P(1l,1) is displayed.
No change occurs in the rest of the system, Only relevant
components for the transformations that change the processor
states are displayed. Note that the applicable rule for each
processor is unique,

Step(2): Once Rule (1) is applied, no more change will occur to
the processor, Since P(1,1) will be in the same state for the
rest of the computation, the state of P(1l,1) will not be
displayed after some point. Similarly for the processors
which have executed Rule (1). An application of Rule (6)

will change the state of P(2,2), while the other processors
executing (6) or (7) will not change the state, That is the
reason the state of P(é,z) is explicitly displayed.,
Step{(3)-~(16): Similarly.

Step(17): At this point, the final values for A~

in the x registers, The remaining two steps are for the book-

1B are obtained

keeping purpose only.

13

5. Conclusions

We have given a linear time algorithm for Gauss-Jordan
elimination without pivoting by a toroid of processors, an
algorithm which is relatively easy to explain. The algorithm
can be improved By a slight modification, with the same pipe-
lining principle, to show that if m is known to be less than
or equal to n, then nxn processors, rather than n x(ntm),
are sufficient to perform Gauss-Jordan elimination without
pPivoting in a linear time.

It is still an open problem whether there exists a

linear time algorithm for matrix inversion by a mesh-connected

multiprocessor system.

References

(1) Gentleman, W. M.,
v"Some Complexity Results for Matrix Computations on
Parallel Processors,"
JACM 25,1(1978), pp 1l12-115.

(2) Heller,D., |

"A Survey of Parallel Algorithms in Numerical Linear Algebra,”

SIAM Review 20,4(1978) pp 740-777.

(3) Kant, R. M. and Kimura, T.,

"Decentralized Parallel Algorithms for Matrix Computation,"

Proceedings of the Fifth Annual Symposium on Computer

Architecture, April 1978, pp 96-100.

(%) Kung, H. T. and Leiserson, C. E.,
nSystolic Arrays {For VLSI),"

Computer Science Research Review 1977-1978, Carnegie-Mellon

University, Pittsburg, pp 37-57.
(5) Mead, C. A. and Conway, L. A.,
Introduction to VLSI Systems, Addison-wesley, 1979.

(6) Sameh’ A-. H||
“Numerical Parallel Algorithms -=- A Survey,"

High Speed Computer and Algorithm Organization, Academic Press,

1977, pp 207-228,
(7) Sutherland, I, E. and Mead, C. A.,
*Microelectronics and Computer Science,”

Scientifiec American 237(1977), pp 210-228,

(8) van Scoy, F. L.,
"Some Parallel Cellular Matrix Algorithms,"

Proceedings of 1977 ACM Computer Science Conference,

February 1977, -

15

4 — T 1I-

2 o 1I-

T _ 1 o0

0 00
ez-eq+q | q B pue T5q505eST- $910N
1~a¢ Mz Ug Mglgy q. (0) o o0 o0 T- (L)
BZ-8BQ4+Q Mz Ug MgUgox qQ e 0S 05 0 0 (9)
Z X 0 T (0) o o5 (%)
Mz Mz x Mgy T o0 05 (4)
Mz Ug T o5 (€)
r4 X T T (2)
2 (1)
O 32 K x Maly UagMy Ua My oy o #-aTny

£O a07 ¢ UOTIOUNG 83eYS-3X8N dYL *T oTqE]

C——~ P(1,1) P(1,2)F—f—=~——-~— —|P(1,q)
LP(Z,l) P(2,2) [+—=m === — P(2,q)
1]
] i 1
1 i 1
i T 1
l t i
t t 1
L P(p,1) P(py2) ft—- ===~ — P(P,q)

Figure ls A Toroid Systenm

S* = £(S,5,,S,545,)

where
f 1 thg
S': the
S s the
S, the
Syt the
Sgs the

S the

e'

next-state function

next state of P(i,j)

current state of P(i, j)

current
current
current

current

state
state
state

state

Note that the index computation

and modulo q for j

of
of
of
of

is

Figure 2: The Next-State

P(i-1,j)
P(i,j-1)
P(i+l, j)
P(i, j+1)

always-modulo p for i

Function

HT

8

Dimensions nxn
Registers: x,y,ztReal

Next-State Function: (x',¥',2') 1= (Xes¥gsZ2tXYy)

z Z_l Ze| Ye . Z+xy¥| Vs
>
X [-r-—---{ Xe Xe
:
Zs | s
Xs

Initial Configuration: Xjj = 8i,3i+j-1
Yij = D3 4+35-1, j 1<i, jgn
235 = 0
Final Configuration: Xij = a3,i+j-1
Yij = Pi+j-1,] } 1<i, jsn
21§ T °i] :

where C: i F 2. 83Dk
ij = ik“k}j

Figure 3:+ A Toroid System for Matrix Multiplication

i |

890Ta3el] € X £ Jo uotTyeoTTdTaTNN 14 2an3Td

9 € b b 9 €
S1 I A O b I N 0 £ Qo
2 8 S g 2 3]
= 1 | o1l v 4 [o R)
= L 0N h L 7
1! o | 8 11 9 Q L } Q }

(€) deas (1) deas
1 b 9 W, £ b
gl l g l £ } | O | Q 0
3 S 2 2 7] S
g o | oL } S Q Q I ¢ Q
14 J L1 L, + I
L } s Q S } 0 Q|0 0

(2) de3s (0) de3s

20

o Aq UOTQRUTWITI UBPIOL-SSNBH JO S8S3001d

sdegs
(T-w+uy)

UL 1§ aaNFTd

24

rD aox Q Jo uoTjejussaadsy OT3BWAYOS OYL t9 9INTTJI

REIL
LI
\>\£ nlﬁl L
Aty 2D 243Yym
l-qe £
9- = ¢

V2-(v+1)q 2 »

(L)

N

Xlolad

Nio

(€) L]olX

(9)

—

(2)

A A

x
Y
Z

zA-%

%

7

(9)

N

()

%3 Ui
(1)
aij i aik
at P
h=1
Z=a_jj] aJK
v =1
(i)
Q,J aik
at P+1
h=]
1 z=0;, '
(1i1)
L 4
h=1 .
U':][

at P+(i-j+1)

Figure 7: Data Flow

22

O, | h=1_
Qiil Z=N;
v=i y-‘:aJk/a
) >
h=1
0 " Qi
Z=0.-|j :
at P+Ck-j+1)
;¢
1 4
(v)
h=1
0 - [

Qik ~ (Gx a_,-j)-a-,j

Z=ai___"
/;:-! 1 Y= ajK/Ct_;j

at Pt (k+i-2j+1)

for aiI::aik'(aij/ajj) asy

&3

= . n

211 Ho ol Ho | Holl HZ7 1 H% | He |

, _

- _

0 2l 0 0 - Z I~ I-1

: |

0 o| 2l Ho G-l St H S L

_ (z)

- _

0 0 0 4 _ € 2 11
....... et b s i sv I el s

(0)dess

rd Aq uotrerndwo) yo ofdwexy tg aanStd

=T

(¥

- e = = -

— o —— o -

25

- -

(2)dess

26

(s)
i
]

el o©
(o) CV_
0 2],

21-1 oo
(9) (2) !
9] ljol2 2 :
Olct wm,_ 0 |
(+) (e "
Olg 0 2 _
THHel el H1:
Ol 1 v m

(€)dess

(9) | ())

1 2l _

0 0 !
VIEOo|HO

(37 (%) |

0 olo|e rd

0 o |

| B Hol

(9)) | (1) "

oloJel [2]°? Z _

1o _ i

S ¢ = H_ O |

(%) (£) :

= 5 0 2 !

o) 0 _

¢l I & C b
.. el AU P T s i A E——

21 !

0 Ol & V]i0 |

(#)deas

28

(9) (g "
0 o[o[z] [z |
o) Q ! _
A s O |
(9) (9) D _
0 ofole] [Z1 Z !

0

v-l 2l | %ol Ho
(92D (¥ (€)

Q
O
(=]
<
o
™

O
Q
o
o\
MmOl O
o

(g)daeas

— e ma -

(9) (9) () _
0 olo g AN __
0 0 o ~
Ol = L,- > 0] _
(9) (9) (2) M “
Q ool Lo Z _
o | HHe-| 12T 0 __
())) __
l- ol olzl -1 [TTo 2 _
Q 0 _ } kA o) _ I
4 =<l = P4 4 ik | i
) () > 5y | !
o[0] [i-To 0 olo[z] [Z “
o) L 0 0 ?) _
ol Kol 4z _ e H T
||||||| - - e — e w - —— e —e - — - - S g e)
SToTe] [|
o) oL &1[,~| |9 |
0 v s L~| =0 "

(9)de3s

i

(9 (9) (s) | _
0 o[oTF] [olol¥] T2 !
) 0 0 !
0| L] ;|7 0 |
(9) (9) v (1) |
) olo[2l] [olof-| M2Ttlol 2 !
O.O 0 N_. o) .ﬁl l "
- w Ak 0 _
(9) (%) (£) (9 ﬂ "
I- o p- o 0 2 !
0 o1 [o]>] Jo |
O | 7 ¢! =7 ¢ 1% 1 _ |
(+) (e 9y (9) 6y "
ol0 0 I- 0 olo[€] [z !
o 0) _
o) o) 21 ° &
0] €| B0 m
—_——— e - — - — ——— .. . P . S S -—— - - ___
ool olo|¥]| |2 "
) P !
o o| o O Ll 7 0 u

s

(9) (9) (1) ! ,_ __

0 ololzl] |olo]z- 2l 1 4 !

0 0lac_| [0 0 |

Ol %1 €| KO |

(L) (97 ($) (g) !

- 510 ¥ [olo=| 2 Z !

ol) 7 _

0| HHot| T | "

(9 () () 9 "

ofo EEZ 0 ofoigl 1z .

Q i o Q !

10 O | 1T v-| ¢ 74 | |

(£) (L) (9) (s) :

) I- ololt] oTol¥l [3 !

0| ol ol ™er| BT [s- _.
- - - — - - — = - S eSS o - m m g eem— ot e — - - - . — - - — e

010 21 0012~ r4R! ”

0 oloc.| [0 0 _

O 01 % HE| KO _

(g)dess

]

|
(9) (9) (9) (2) |
0 o 0 ololy- violi-| [z “

o Q 0 7]
_
(9) (L) (+) (€) (9) |
I-lo o101Y] lolol9ll [ofo 4 _

Q .

O el HHv-| |19l & 1- ‘ |
(#) (€) (9) (9) (s) "
O 0 0 I-|0 0 ofol! olol|y _

{) 0 _

ol ol v | B v | "

(L) (9 (1) :

o) -1 121 olole-l (¢ u

|

Q O 0 2 Blg| o _

4 S- “
—_— e - o — e - - — e — - e e m s rmmamEm - e e o G e o o = w m— - - — |||||l-|'l|.|_[|..l||
o) o) o) olo|\b- bloTll-~ _
0 |
O| KO | 10| | v |

(9 (¥ (12 i
)- 0 olol¥| [olol9 [=zTiTol [z __
) 0 0 Olng_| ¥

RO B8l B Bl Ho _

(9) (+) (£) () | |

alo J- ol |b- o) o) I c _

=0 | FCH Yo oY] 1|

(€) i (9) (9) (1) _,

0 0 a - ol eI o 12-| |21] :

1) o 0 _

c O 2 O xw |v... Nl ¥ O _ _

l _

(2) (L) (S) _ _

0 I-lod [oToni I3 _

|

0 0| 0| [Hoz| Ko 0 ﬂ
. B TR R e Sy

I- olol|¥] [oloToll [ZT7T0 |

o 0lng.| [|

Cll HO | B | M09 T |

(o1)dess

4

(9) (+) (€) '
0 olofy- [oJols [T K3
7] | _
0| 2] S ! 0
(€) (9D (9)
2! 0 at el oy |2-1 |2
| EY-l Bt =T- H T
(L) (9) (s)
- alo|b- OlO}l- 2
o) Q 0
0 1% 7| & ¢ 0 |
(9) (9) (L) (1)
0 o|lo|P| [1-] 09t [2T1 2
A0 | 58| ool O 0
o] [[of [Pl T 11 1 1
0 0 l
ﬁ O 7 N_ = mHt

(1T)d™%s

(L)

(z1)deas

(+) (£) (9) __
-0 ofo[2l ols]l [oT RN 2 2 _
0 o371 [0lcT. |
= ¢l | =idl = € ST] 0 |

(€D (9) (9) ($) !

o0 -1 O 0|0 0|0yl (O -l |2 |
] o) Q| 0 Q ”
10| B2 HY-| EH9 | BT 1T _

(> (9 T3 “

I-[oT¥] [ofoTef] [Tt 2 _

O O ¥ | 439 k40 0- “
.V c | I

(99 (9) (9 (1) :
0 0 olov-| 12li-|si- [2 !
0 0 0 ARIE _

0| K0 | 02| (5001 =0 9 _“

o e R T T - - N
<[o oo 2l o[g] ol 2 _
ol51_| [T 0 !

36

(€1)da3s

() (€ (9) (9) __
- Qle- 0 ol 1 2 _
) 0 |
Hel el e S| 1T |
(9) (3) |
o) I- 0 1 0 91 rAR! !
0 . |
O Hel| AV B91 B0 "
(9) (L) P __
0 I-1ob-| |2]1-6 |2 _
0 0) |
o| o] Bloz| [8e] Ho "
(9) (9) (1) _ "
0 olol2l [TTole]l [Z _
0 Q |- _
— e e e e o —— . R L - - Y B
I- o0|e- 0 ”
0 1 0 |
2 Fle-| e |

9) (9) __
}- £ 0 o) Y| |0 9l "
i 0 0
¥ m mqn m 2 m.l _

(1) (%) D ﬂ |

|- o W-] [2T-FA _

QO 0l 10)

O N— .T.l _l — |

(9 (1) __

ofofell el I¢g) [z !

olg+ | [1- } _

0 wmﬁ = 1 8¢ | i

(9) (1) | "

0 2] el [@ ? !
o = _

e e e e - — e — -~ . e aeeao —_— ale = _ i _—— e L
T TE 0 _
—. 1
P S . £- _

(#1)deas

M

(9) (9) (1) I
i-{ 0 o oy (¥4 [Z]I-f5l- _
o) m Q € - 0 m OM—I “
(L) (1) !
RN AIEGERE !
O 71 W.T I !
(9 Q) “
0 2] 0le] [2 2 _
0 - i
710 | =0 HV! | 8 | u
(> "
ANERE 2 2 |
o 091 8¢~ ot __
o T e e e e 1 T e
0 c “

(ST)deas

37

(9) (1) “

1- o e -] € |
m - E- & m._... |

|

(9) (1) !
0 21 |
(1) "
2i10|€ 2 “
x a - _
9| 7y | _
”

: :
° |

_

(91)deas

40

(L) C1) __
- I-1¢g- _
|
& €~ _
(1) _
Zlolg |
1 e b
2
mwl

- - e = —

}
)
|
[
)
[
I
I
I
|
|
|
|
_
_
]
|
)

(41)deas

41

.

(gT)dess

|
|
!
!
|
I
'
|
|
!
I
1
|
]
_
1
|
|
—II!
|
'
I
!
]
|
|

< 2 2 2 m
| 0t O &) Hs- 0 0|
4 2 2 2 _
S b IS | | 0|
c 2 2 AREE
9-| K| H¥l| 8¢ 0 Ho |
K e 2 2 ,
O| H09| H8Z-| ool 0 I #

(61)de3s

	Gauss-Jordan Elimination By VLSI Mech-Connected Processors
	Recommended Citation

	tmp.1465589165.pdf.fOaTs

