
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCS-2008-8

2008-05-01

Low Level Verification Low Level Verification

Andrew Reynolds and Aaron Stump

Low Level Verification (LLV) is a user-driven software verification system focused on proving

properties of C-style computer programs. The system is introduced in multiple parts, starting

with a through description of the syntax and operational semantics of LLV code. The LLV

execution language is presented as a simplified version of C/C++, in which data types and

object constructs have been removed. The machine level implementation of LLV is not specified

within the scope of this paper. Instead, the conceptual operation of the execution environment is

described in a way that is easy for the reader to understand. Using this... Read complete Read complete

abstract on page 2. abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Reynolds, Andrew and Stump, Aaron, "Low Level Verification" Report Number: WUCS-2008-8 (2008). All
Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/925

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/925?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/925

Low Level Verification Low Level Verification

Andrew Reynolds and Aaron Stump

Complete Abstract: Complete Abstract:

Low Level Verification (LLV) is a user-driven software verification system focused on proving properties of
C-style computer programs. The system is introduced in multiple parts, starting with a through
description of the syntax and operational semantics of LLV code. The LLV execution language is
presented as a simplified version of C/C++, in which data types and object constructs have been
removed. The machine level implementation of LLV is not specified within the scope of this paper.
Instead, the conceptual operation of the execution environment is described in a way that is easy for the
reader to understand. Using this core language as a base, LLV defines propositional logic, and proof rules
as tools for verification. The user may write theorems to describe the behavior of any given section of
code. In LLV, a theorem specifies a conclusion in the form of propositional logic, and can be verified by a
user-created proof. The LLV proof language includes all the rules available for formulating and
constructing such proofs. In addition, cases requiring inductive reasoning (such as a recursive function)
can be handled by a single unified approach through use of the induction proof rule. The LLV system also
provides the user with other important features, such as an automatic arithmetic equation solver to
handle trivial inferences. Using this as well as other tactics, LLV is presented as a method for reasoning
about low level code in an efficient manner.

https://openscholarship.wustl.edu/cse_research/925?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/925?utm_source=openscholarship.wustl.edu%2Fcse_research%2F925&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2008-8

Low Level Verification

Authors: Andrew Reynolds, Aaron Stump

Abstract: Low Level Verification (LLV) is a user-driven software verification system focused on proving
properties of C-style computer programs. The system is introduced in multiple parts, starting with a thorough
description of the syntax and operational semantics of LLV code. The LLV execution language is presented as a
simplified version of C/C++, in which data types and object constructs have been removed. The machine level
implementation of LLV is not specified within the scope of this paper. Instead, the conceptual operation of the
execution environment is described in a way that is easy for the reader to understand. Using this core language
as a base, LLV defines propositional logic and proof rules as tools for verification. The user may write theorems
to describe the behavior of any given section of code. In LLV, a theorem specifies a conclusion in the form of
propositional logic, and can be verified by a user-created proof. The LLV proof language includes all the rules
available for formulating and constructing such proofs. In addition, cases requiring inductive reasoning (such as
a recursive function) can be handled by a single unified approach through use of the induction proof rule. The
LLV system also provides the user with other important features, such as an automatic arithmetic equation
solver to handle trivial inferences. Using this as well as other tactics, LLV is presented as a method for
reasoning about low level code in an efficient manner.

Type of Report: MS Thesis

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LOW LEVEL VERIFICATION

by

Andrew J. Reynolds

Prepared under the direction of Professor Aaron Stump

A thesis presented to the School of Engineering at

Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

May 2008

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

LOW LEVEL VERFICATION

by

Andrew J. Reynolds

ADVISOR: Professor Aaron Stump

May 2008

St. Louis, Missouri

Low Level Verification (LLV) is a user-driven software verification system focused
on proving properties of C-style computer programs. The system is introduced in
multiple parts, starting with a thorough description of the syntax and operational
semantics of LLV code. The LLV execution language is presented as a simplified
version of C/C++, in which data types and object constructs have been removed.
The machine level implementation of LLV is not specified within the scope of this
paper. Instead, the conceptual operation of the execution environment is described
in a way that is easy for the reader to understand. Using this core language as a
base, LLV defines propositional logic and proof rules as tools for verification. The
user may write theorems to describe the behavior of any given section of code. In
LLV, a theorem specifies a conclusion in the form of propositional logic, and can
be verified by a user-created proof. The LLV proof language includes all the rules
available for formulating and constructing such proofs. In addition, cases requiring
inductive reasoning (such as a recursive function) can be handled by a single
unified approach through use of the induction proof rule. The LLV system also
provides the user with other important features, such as an automatic arithmetic
equation solver to handle trivial inferences. Using this as well as other tactics, LLV
is presented as a method for reasoning about low level code in an efficient manner.

ii

Contents
List of Figures... iv
1 Introduction ..1
2 Approach.. 4

2.1 Function Declarations ...5
2.2 Theorem Declarations ...5
2.3 Other Notes ..6

3 Operational Semantics... 7
3.1 Term Syntax ..7
3.2 Function Example ..8
3.3 Operational Semantics for Terms ..8

3.3.1 Constant ...8
3.3.2 Dereference..8
3.3.3 Assignment ..8
3.3.4 Mathematical Operation ..9
3.3.5 Sequence...9
3.3.6 If/Then/Else...9
3.3.7 Function Call ...9

4 Propositional Logic... 11
4.1 Arithmetic Terms ...11
4.2 Memories ...12
4.3 Terms (extended)..12
4.4 Propositions ..13
4.5 Proposition Normalization ...14
4.6 Theorem Example..14

5 Proof Rules.. 16
5.1 Proof Syntax..16
5.2 Core Proof Rules ..16

5.2.1 Assume Rule ..16
5.2.2 Assert Rule...17
5.2.3 Conclude Rule ...17
5.2.4 Contra Rule..17
5.2.5 Case Rule..17
5.2.6 ForAll Rule...18
5.2.7 Inst Rule ...18

5.3 Arithmetic Rules ...18
5.3.1 ArithCalc Rule ...18
5.3.2 SymN Rule ...19
5.3.3 ReplaceN Rule...19
5.3.4 ArithEq Rule..19

5.4 Memory Rules ...19
5.4.1 MemCalc Rule ...20
5.4.2 SymM Rule...20
5.4.3 ReplaceM Rule...20
5.4.4 MemEq Rule..20

5.5 Term Rules ..21

iii

5.5.1 Eval Rule ..21
5.5.2 Deref Rule..21
5.5.3 Assn Rule ...21
5.5.4 Oper Rule...22
5.5.5 Seq Rule..22
5.5.6 If Rules ...22
5.5.7 FuncCall Rule ..23
5.5.8 FuncArg Rule ..23

5.6 Evaluation Logic Rules ..24
5.6.1 EvalMerge Rule ...24
5.6.2 EvalSplit Rule ..24
5.6.3 ArithEvalEq Rule..25
5.6.4 MemEvalEq Rule..25
5.6.5 StepEvalEq Rule ...25

6 Proof Examples...26
7 Induction...28

7.1 Approach ...28
7.2 Converting an Inductive Proof to a Standard Proof...30
7.3 Induction Rules...31

7.3.1 Induction Rule...31
7.3.2 By Rule ...32

7.4 Induction Proof Example ...32
8 LLV Solver ..36

8.1 Arithmetic Equality ..36
8.2 Arithmetic Equality Implication...37
8.3 Arithmetic Comparison ...37
8.4 Memory Equality ..38
8.5 Memory Lookup Normalization ..39
8.6 Claim Rule ...40

9 Other Features of LLV..41
9.1 Proposition Argument List ...41
9.2 Use Rule...42
9.3 Other Proof Rules ..43
9.4 Axioms ...44
9.5 Proposition Variables...44
9.6 Indeterminate Evaluation..45

10 Conclusion ..46
References...48
Vita..49

iv

List of Figures
Figure 3.1: Length Function..8
Figure 4.1: Clear Function ...14
Figure 4.2: GetNth Function ..15
Figure 4.3: ClearThenGet Theorem...15
Figure 6.1: SymNNot Proof Example ...26
Figure 6.2: SetThenGet Proof Example..26
Figure 6.3: GetNth Function (revisited)..27
Figure 6.4: GetNthError Proof Example..27
Figure 7.1: Induction Proof Example Outline ...29
Figure 7.2: Induction Proof Example Outline (expanded)...30
Figure 7.3: Rte Function ..32
Figure 7.4: DualRte Function..33
Figure 7.5: Induction Proof Example ..34
Figure 8.1: MemCompare Algorithm...39
Figure 8.2: MemLookupNorm Algorithm ..39
Figure 9.1: GetNthError Proof Example (revisited) ...42
Figure 9.2: GetNthError2 Proof Example ...42
Figure 9.3: ContraPositive Proof Example ...44
Figure 9.4: Transitive Proof Example..45

1

Chapter 1

Introduction

In the world of modern software engineering, there is rarely mention of proving the

correctness of software with absolute certainty. When a piece of code is written,

the programmer will typically have a vague notion of why a particular piece of code

works the way it was intended. Although there are many industry tools for analysis

and even methods to ensure code adheres to performance specifications, in many

cases modern software verification is a very inexact science. Consequently,

software written in today’s methods is consistently plagued by bugs.

Although the question of software verification may seem like a straightforward

task, it is in fact an enormously difficult one to approach. With our current

knowledge of this field, a software engineer has very limited ability to verify any

reasonable piece of code in an efficient manner. Due to the time-consuming nature

of constructing logical proofs, it would not be practical to require all software

engineers to construct such proofs before their code is acceptable to use. As a

result, the industry is left in a paradigm in which software is developed in an

efficient manner to produce the necessary result, and is debugged later if problems

arise.

The process of debugging can be a difficult and incredibly time-consuming task, as

many software engineers are painfully aware. There are no easy answers when

trying to track down where a mistake occurred in the engineer’s reasoning. When

the bug is indeed assumed to be fixed, there still is no guarantee that the modified

code is correct. Little is accomplished during this process, and in many cases a

correct solution can only be approximated.

Writing verified software eliminates much of the potential need for a software

2

engineer to debug the code they write. If the time it took to write verified software

were less than the time it took to both write unverified software and debug the

unverified software with a desired degree of certainty, then the methods used in

software verification would not just be useful in our formal studies, but also

applicable in a practical sense to modern software engineering. Although many

strides have been made in the field of software verification, this shift in thinking is

still far from being realized.

There are many approaches to producing an efficient system for writing code that

adheres to some form of verification. In the paper From System F to Typed

Assembly Language (Morisett et al.1998), the authors describe a compiler which

uses multiple steps to convert code between the System F language and Typed

Assembly Language (TAL), which executes code at a low level assembly language.

By doing so, verifiable programs can be written using abstract constructs in System

F and converted to usable assembly language code, while maintaining the type-safe

properties of the code under multiple transformations.

Yet another approach to investigating the safety and correctness of code has been

examined in Bounded Model Checking, as proposed by Biere et al. This approach

involves transforming the question of verification into a SAT problem, in which

constraints can be examined and pursued in a more familiar fashion. This is

accomplished by unrolling algorithm loops a number of times and checking if

satisfiability can be preserved under certain conditions.

While many of these systems can claim to accomplish the task of verifying

software, questions can also be raised as to the validity of the actual verification

rules and transformations. At an even more basic level, the verification technique

proposed in the paper Foundational Proof Carrying Code (Appel) seeks to create a

minimal logical framework in order to build up the necessary foundations for

proving properties of higher level code. Appel argues that this low level of

complexity is needed to maintain the integrity of code we consider verified. A step

3

relation is used to guarantee the safety of any given state encountered throughout

the execution of low level machine code called foundational proof carrying code.

At a less stringent level, work has been made in verifying properties of a language

written at the abstraction level of C/C++, such as the “Why” tool (Filliatre 2005).

This tool examines the literal annotation of a program written in C and seeks to

convert it to a more algorithmic approach which can be verified logically. This

approach relies on a combination of automation and user assistance to verify

properties of code. Even more informally, the Spec# programming system (Barnett,

Leino, and Schulte 2004) has been proposed as an extension to C++ as a method for

maintaining software consistency under certain specifications.

The method presented in this paper, Low Level Verification (LLV), will serve as a

concise method for proving properties about simple computer programs written in a

C-style language familiar to most programmers. In contrast to C/C++, much of the

language in LLV has been removed for the sake of simplicity. This approach will

serve the purpose of providing the user a language that is still powerful and easy to

program, while at the same time not introducing any unnecessary confusion

between the language and its machine level implementation. Since we are not

interested in executing the code written in LLV but rather proving properties about

it, a compiler to transform LLV code to a lower level is not mentioned in the scope

of this paper. Also note that the work of building higher constructs on top of the

LLV language syntax is left as a task for future exploration.

Code sections mentioned in this paper are in no way intended to be as complex as

code sections we may potentially be interested in verifying. Instead, this paper

introduces the basic ideas behind the LLV proof compiler and presents strategies

for which larger pieces of code can be verified. Proof examples will be shown in a

way that is easy for the reader to understand.

4

Chapter 2

Approach

Low Level Verification will prove logical properties of C-style computer programs.

This chapter will serve to lay the framework behind some of the basic ideas that

will be built upon in this paper.

In LLV, files written by the user are parsed into blocks of code, which are then

further interpreted as one of two basic elements of LLV, functions and theorems.

The functions in LLV loosely follow the behavior of C programs, where execution

proceeds logically through series of if/then/else branches and function calls. The

theorems in LLV state propositions concerning the user-defined functions and/or

arithmetic truths. These propositions are verified, or proven, by a proof within the

body of the theorem.

When writing LLV files, the “include” syntax is available (similar to C/C++). This

makes all functions and theorems in the given file (as well as those included by it)

available to the current parser. The parser reads the headers of functions and

theorems before the bodies, eliminating any need for forward declaration.

2.1 Function Declarations

In this section, the formal syntax for declarations of functions will be introduced.

All functions in LLV consist of an argument list and a section of executable code

we will refer to as a term. Note that all of the executable code written in the LLV

language is contained within the bodies of function definitions.

The syntax for functions is as follows:

5

f ::= f(V0,...Vi) { tf }

where “f” is the name of the function, V0…Vi is the argument list, and tf is the term

(body) of the function. The syntax for terms will be discussed in section 3.1.

All arguments to functions in LLV are type-less, and as a rule should be considered

unsigned integers. We will call these arguments numeric variables. In addition, the

return value of all functions is assumed to be an unsigned integer. The syntax for

“return” is not used in the LLV language. Instead, the return value of a function is

assumed to be the literal value of the last term executed.

2.2 Theorem Declarations

The purpose of a theorem is to write a proof that proves a proposition. This

proposition will state properties about the functions defined by the user. The syntax

for theorems is as follows:

T ::= thm(V0,...Vi)(H0,...Hj) :: T { PT }

where “thm” is the name of the theorem, T is a proposition, and PT is a proof. The

lists V0,...Vi and H0,...Hj are input arguments of numerical values and memory states

respectively, and should be considered universally quantified variables. Note that

the proposition a theorem proves is in actuality this universal quantification with the

proposition T as its body, and not T itself. The syntax for propositions and

proofs will be discussed later on.

A theorem is valid if and only if proof PT verifies T. When the compiler examines

a theorem, it will view the theorem (proof and proposition) and state whether or not

the proof confirms the proposition. This confirmation will be logically verified

such that when a theorem compiles, it should be considered true, that is to say, no

erroneous proofs can be successfully formulated with LLV. The details of

6

propositions as well as proofs will be described later on in Chapters 4 and 5.

2.3 Other Notes

Throughout the course of the execution of a function, all numeric variables are

bounded such that 0 ≤ n< max for some predefined maximum value. For example,

in the current implementation of LLV, the value of max = 216 = 65536. Note that

the LLV proof language is implementation independent, i.e. it is valid for any value

of max ≥ 0.

In LLV, there are no local variable definitions. The only data available to the

language within the body of a function is the arguments, and the value of addresses

in the memory.

The memory available to the LLV language can be thought of as an array (of size

=“max”) of unsigned integers. We have made the size of memory equal to the size

of max in order to prevent addressing errors. The memory state is changed only

when the user explicitly requests a memory location to be modified. This will be

known as an assignment. Likewise, getting data from the memory at a particular

index will be known as a dereference.1

The execution of the language can be summarized to the judgment (t, m t’, m’

), where t and t’ are terms, and m and m’ are memories. The value represents the

number of evaluation steps it takes term t in starting memory m to evaluate to term

t’ in a resulting memory m’. The complete evaluation of any term guarantees (t, m

 n, m’) for an unsigned integer n.

1 This terminology originated in regards to pointers in C++, in which a dereference retrieves the
value in memory of a given address.

7

Chapter 3

Operational Semantics

This section will define the syntax for executable code in the LLV language as well

as the operational semantics for the judgment (t, m t’, m’). For a similar

language that defines the operational semantics for a simple recursive language,

refer to the REC language (Winskel 1993). In contrast to REC, the LLV language

maintains and performs operations on a memory state, and not just upon named data

variables.

3.1 Term Syntax

A term can be thought of as a piece of code. For the sake of simplicity, we have

reduced such a language to eight constructs.

t ::= n | V | !(t0) | t0 := t1 | t0 op t1 | f(t0,...tn) | t0;t1 | if(t0){ t1 }else{ t2 }

where n is a constant, V is a numeric variable, and f is a function. The assignment

statement t0 := t1 is written to mean “set the value of the current memory at t0 to the

value of t1”. The dereference statement !(t0) is written to mean “return the value of

the current memory at index t0”. Note that the “while loop” construct has been

omitted from our implementation. This approach was taken since all logic

regarding the use of “while” loops can be simulated via use of recursive function

calls. More specifically, the LLV parser will read terms in the following fashion:

p ::= n | f(v0,...vn) | !p0 | (v0) [Primitive]

v ::= p0 | p0 op v1 [Value]

s ::= v0 | v0 := v1 | if(v0){ s0 } else { s1 } | s0;s1 [Section]

t ::= s0

8

3.2 Function Example

An example of a function written in the LLV language is shown below. A function

to return the length of a linked list (whose addresses are connected by successive

dereferences) is written here:

length(a){
if(!a){

 1 + length(!a)
 }else{
 0
 }

}

Figure 3.1 Length Function

3.3 Operational Semantics for Terms

This section will define all rules needed in defining the relation (t, m n, m’).

Recall that in this expression, and n are unsigned numerical values, t is a term,

and m and m’ are memory states. The statement (t, m n, m’) is to be

interpreted as “term t in memory state m returns the value n in memory state m’

using calculation steps”. Note that the numeric variable term “V” will always be

instantiated to a constant value n, and thus no operational rule is necessary.

3.3.1 Constant

(n, m n, m)

3.3.2 Dereference

(t0, m n, m’)
(!(t0), m m’(n), m’)

3.3.3 Assignment

(t0, m n0, m”) (t1, m” n1, m’)
(t0 := t1, m n1, m’[n0 n1])

9

3.3.4 Mathematical Operation

(t0, m n0, m”) (t1, m” n1, m’) (n>=0) (n<max)
(t0 op t1, m n, m’)

For mathematical operations (op ::= ‘+’, ‘-’,’*’), n = n0 op n1.

For comparison operations (op ::= ‘==’ ‘!=’ ‘<‘, ‘<=‘, ‘>‘, ‘>=‘),

n = 1 if n0 op n1

0 otherwise

For Boolean operations (op ::= ‘&&’, ‘||’),

n = 1 if (n0 ≠ 0) op (n1 ≠ 0)

0 otherwise

The requirements (n>=0) and (n<max) have been added to prevent the case of

numeric overflow. In LLV execution, if calculating a value leads to numeric

overflow, then subsequently nothing can be proven about the execution of the

program. In this case, it can be assumed that the program will stop its execution.

3.3.5 Sequence

(t0, m n0, m”) (t1, m” n1, m’)
(t0;t1, m n1, m’)

3.3.6 If/Then/Else

(t0, m n’, m”) (t1, m” n1, m’)
(if t0 { t1 } else { t2 }, m n1, m’)

where n’ ≠ 0.

(t0, m n’, m”) (t2, m” n2, m’)
(if t0 { t1 } else { t2 }, m n2, m’)

where n’ = 0.

3.3.7 Function Call

(t0, m n0, m1) … (tn, mn n] nn, m”) ([ni/Vi]tf, m” t] n, m’)
(f(t0,...tn), m n+t+1] n, m’)

10

where f╞ tf

The syntax [ni/Vi]tf is written to mean term tf with all instances of numeric variables

Vi replaced by the constants ni.

11

Chapter 4

Propositional Logic

We have defined precisely how code evaluates in the LLV language. From this

specification, we can introduce the syntax of propositions, which will be used to

formalize statements we would like to say about our code and how it behaves.

Before propositions can be described, we will need methods to describe numerical

values as well as memory states. We will introduce two ideas for this purpose,

arithmetic terms and memories.

4.1 Arithmetic Terms

An arithmetic term is a description of a constant value. In contrast to terms defined

in Chapter 3, an arithmetic term is an equation written by the user simply to

describe a static value. For example, we will want to write statements such as “the

input to this function is the value of (a*b)” or “this function outputs the value of 3*(

the value of the current memory state at address a)”. The syntax of arithmetic

terms is as follows:

a ::= n | V | m(a0) | max | a0 op a1

We will refer to the arithmetic term m(a0) as a memory lookup. A memory lookup

is to be interpreted as the value of memory state m at index (or address) a0. The

syntax for memory states is discussed in the next section.

The arithmetic term “a0 op a1” is a mathematical operation that describes an

equation for the arithmetic term, i.e., this value is “4+a”. All operations available to

terms are also available to arithmetic terms.

12

The LLV parser will more specifically parse arithmetic terms in the following

fashion:

p ::= n | V | m(v0) | max | (v0) [Primitive]

v ::= p0 op v0 [Value]

a ::= v0

4.2 Memories

A memory describes what is known about the current memory state. The syntax is

as follows:

m ::= init | H | m0[a0 a1]

where H is a heap variable, “init” is an initial memory state, and a0 and a1 are

arithmetic terms. Note that the value of the initial memory state is undetermined

for all addresses. The memory modification specification m0[a0 a1] is

equivalent to memory m0 with the value at address a0 set to a1.

4.3 Terms (extended)

Until this point, we defined a term as executable code within the body of a function.

However, a user may be interested in describing the values contained in the term in

a more abstract fashion. For example, we may want to know the answer to

questions such as “how does this function behave with x = ‘max’ as an input?” or

“does this function successfully return the value of a*b?” Thus, in order to reason

about terms properly, the definition of terms must be extended:

t ::= a0 | !(t0) | t0 := t1 | t0 op t1 | f(t0,...tn) | t0;t1 | if(t0){ t1 }else{ t2 }

where a0 is an arithmetic term.

13

Note that a term specified as “a + b” will interpreted as “the add operation of

constants a and b”. On the other hand, a term specified as “[a + b]” will be

interpreted to mean “the constant value of a+b”. For example, the judgments (a +

b, m c, m) and ([a + b], m c, m) make two distinct statements. The extended

syntax for terms will be available anywhere a term is written within a proposition or

proof (Chapter 5).

4.4 Propositions

The propositions used by LLV are listed below.

 ::= (a0 = a1) | (m0 = m1) | (t, m t’, m’) | 0 1 |

(0) | ForAll(V0,...Vi)(H0,...Hj)(0)

Note that evaluation statements (t, m t’, m’) will be referred to as the atomic

propositions of LLV. The atomic propositions simply state that term t in memory

m evaluates to term t’ in memory m’ in evaluation steps. Parentheses are written

around the evaluation step specification ([]) to denote that it is optional. When

specified, the proposition (t, m t’, m’) guarantees termination for finite)

evaluation steps. When it is unspecified, the statement guarantees termination for

an unknown, but finite number of evaluation steps. Consequently, we can note the

relation (t, m t’, m’) . (t, m t’, m’). As such, the LLV proof

compiler automatically infers that (t, m t’, m’) (t0, m t’, m’). In other

words, proving that t evaluates to t’ in steps is sufficient to prove that t evaluates

to t’.

Throughout this paper, we will write (t, m a, m’) to insist upon complete

evaluation of term t to the value of arithmetic term a. Otherwise, the ability for the

user to specify partial evaluation (i.e. a term evaluating to another term) is allowed.

14

4.5 Proposition Normalization

This section defines the definitional equality of propositions. The following will be

applied to automatically normalize any propositions as they are generated by the

LLV proof language:

N(0 1)

 N(0) N(1)

N(((0)))

 N(0)

N(ForAll(V0,...Vi)(H0,...Hj)(0))

 N(0) if { V0,...Vi, H0,...Hj } =

 ForAll(V0,...Vi)(H0,...Hj)(N(0)) otherwise

otherwise,

N(0)

0

4.6 Theorem Example

Define a function to clear the value of all data elements in a linked list, where the

data is stored in the address (a + 1) adjacent to the list address a.

clear(a){
if(!a){

a + 1 := 0;
 clear(!a)
 }else{
 1
 }

}

Figure 4.1 Clear Function

Define a function to get the nth data element of a linked list. Note that “error” is

15

written as an alternate syntax for the value of “max”.

getNth(a, n){
if(n){

if(!a){
getNth(!a, n-1)

}else{
error

}
}else{

!(a + 1)
}

}

Figure 4.2 GetNth Function

Using function length(a) defined earlier, we can formulate this theorem:

ClearThenGet(a, n, L)(m, m0) :: ((length(a), m L, m)
(clear(a), m 1, m0)
(1 = n <= L)
(getNth(a, n), m0 0, m0))

{
// proof body of ClearThenGet

}

Figure 4.3 ClearThenGet Proof

The theorem ClearThenGet is stating that if you clear a linked list (set all its data

elements to 0) then getting the nth data element of the same list will return 0 in the

resulting memory state. The next chapter will describe methods to formally prove

such a statement.

16

Chapter 5

Proof Rules

At this point, we have defined the way in which code executes, as well as the

definitions needed to make statements concerning the properties of any given

section of code. A proof will serve as the method in which we verify the

truthfulness of propositions.

5.1 Proof Syntax

Proofs will be used to verify propositions. Use the notation

;├ P0 : 0

to mean “proof P0, under the assumptions , universally quantified variables and

inductive hypothesis proves proposition 0”.Note that is a set of propositions,

 is a set of numerical/heap variables, and is a list of references to inductive

proofs (this will be discussed in Chapter 7).

A theorem t(V0,...Vi)(H0,...Hj) :: T { PT } is valid if and only if

V0,...Vi, H0,...Hj ├ PT : T

5.2 Core Proof Rules

5.2.1 Assume Rule

First we introduce the assume rule, which adds new assumptions to . The user

gives a name u to the proposition immediately following its definition, separated by

17

a colon (shown here as “::”). When referring to propositions in the notation (u ::

) is used to mean “proposition with name u”. The resulting implication has

the assumption as its premise.

; u :: 0);├ P0 : 1

;; ├ assume 0 :: u P0 : 01

5.2.2 Assert Rule

The assert rule simply calls upon a proposition we have assumed to have been true.

;;├ assert u : 0

where (u :: 0)

5.2.3 Conclude Rule

With the conclude rule, the user may eliminate a premise of an implication by

proving that it is true.

; ;├ P0 : 0 ; ;├ P1 : 0 1

;;├ conclude P0 P1: 1

5.2.4 Contra Rule

The contradiction rule “contra” is used to show that a particular proposition 0

cannot be true, as its truth would cause a contradiction 1 & 1.

; ;├ P0 : 0 1 ; ;├ P1 : 1

;;├ contra P0 P1: 0

5.2.5 Case Rule

The case rule is used to show that a proof can be formulated for both the case when

1 is true, and when 1 is false.

; u1 :: 1);├ P1:0 ; u2 :: 1);├ P2:0

;;├ case 1 :: u1 P1 else : u2 P2 :0

18

5.2.6 ForAll Rule

The forall rule is needed to introduce universally quantified variables.

; V0,...Vi, H0,...Hj├ P0 : 0

;├ forall(V0,...Vi)(H0,...Hj) P0 : ForAll(V0,...Vi)(H0,...Hj)(0)

where V0,...Vi, H0,...Hj

5.2.7 Inst Rule

The instantiate rule “inst” is used to substitute arithmetic terms a1 … ai and

memories m1…mj for numeric and heap variables V0,...Vi H0,...Hj contained within

a universal quantification.

; ├ P0 : ForAll(V0,...Vi)(H0,...Hj)0

;├ inst(a1 … ai)(m1…mj) P0 : [a0,...ai / V0,...Vim0,...mj H0,...Hj]0

5.3 Arithmetic Rules

In this section, we will define all rules needed to deduce the relationships between

arithmetic terms.

5.3.1 ArithCalc Rule

The basic rule for arithmetic terms, “arithcalc”, can be thought of as a direct

calculation of the value in question. For example, “arithcalc 6+7” proves the

arithmetic proposition “13 = 6 + 7”. Moreover, this rule can be used to simplify

symbolic expressions, such as “arithcalc (a + b) – a” will return the proposition “b

= (a + b) – a”.

;├ arithcalc a0 : (a1 =a0)

where FV(a0)

and a1 is the normalized form of a0. The exact details of this normalization will be

19

determined by the LLV solver. This will be discussed in Chapter 8.

5.3.2 SymN Rule

The left and right sides of an equation can be swapped in the symN rule.

; ├ P0 : (a0 = a1)
;├ symN P0 : (a1 =a0)

5.3.3 ReplaceN Rule

The replaceN rule is used to substitute one arithmetic term for another within a

proposition, given the two arithmetic terms are equivalent. The notation [a1/a2]0

is written to mean “0 with some instances of a2 replaced by a1”. The actual

substitutions can be deduced from the proposition specification (0). Note that this

is written (0) to mean optional. If omitted, full replacement is assumed.

; ;├ P0 : (a1 = a2 ;├ P1 : [a1/a2]0

;;├ replaceN (0) P0 P1 : 0

5.4.2 ArithEq Rule

An arithmetic equality rule is given. This rule serves as a correspondence between

propositional statements of arithmetic equality and equality via numerical

calculation.

; ├ P0 : (1 = (a0 == a1))
;├ aritheq P0 : (a0 = a1)

5.4 Memory Rules

This section will define all deductions concerning the equality of memories.

20

5.4.1 MemCalc Rule

The first rule, similar to the “arithcalc” rule, is used to normalize memory objects.

As a simple example, “memcalc m0[a m0(a)]” would prove the proposition m0

= m0[a m0(a)].

;├ memcalc m0 : (m1 =m0)

where FV(m0)

and m1 is the normalized form of m0. This will be discussed more in Chapter 8.

5.4.2 SymM Rule

The left and right sides of a memory equation can be swapped in the symM rule.

; ├ P0 : (m = m’)
;├ symM P0 : (m’ =m)

5.4.3 ReplaceM Rule

Equivalent memories can be swapped for one another. Similar to the replaceN rule,

the notation [m1/m2]0 is written to mean “proposition 0 with some instances of

m2 replaced with m1”.

; ;├ P0 : (m1 = m2 ;├ P0 : [m1/m2]0

;;├ replaceM (0) P0 P1 : 0

5.4.4 MemEq Rule

The following can be used as the extensional equality of memory objects. The

“memeq” rule states that memories m and m’ are equivalent if they are equal for all

addresses. The substitution [a0/V] is performed for the purpose of ensuring that V

does not exist as a free variable in the resulting proposition.

; ├ P0 : ForAll(V)()(m(V) ≡m’(V))
;├ memeq a0 P0 : [a0/V](m =m’)

21

5.5 Term Rules

The following section will be used to define rules relating to the operational

semantics of the term language. The rules closely follow the way in which terms

evaluate. It must be noted that wherever applicable, the quantification of evaluation

steps is optional. If the evaluation steps are undefined in any of the premises of

the proof rule, then the value of evaluation steps is undefined in the conclusion.

5.5.1 Eval Rule

A term in a memory evaluates to itself in zero evaluation steps.

;├ eval t0 m : (t0, m t0, m)

where FV(t0, m)

5.5.2 Deref Rule

The dereference rule states that if a term t0 evaluates to a1, then the dereference of t0

will evaluate to the value of memory at address a1. Note that complete evaluation is

enforced in the premise.

; ├ P0 : (t0, m a1, m1)
;├ deref P0 : (!(t0), m m1(a1), m1)

5.5.3 Assn Rule

The assn rule follows directly from the operational rule for assignments. It also

requires complete evaluation in the premises, as we need the value of a0 and a1 to

formulate m1[a0a1] in the conclusion.

; ├ P0 : (t0, m a0, m0) ; ├ P1 : (t1, m0 a1, m1)
;├ assn P0 P1 : (t0 := t1, m a1, m1[a0a1])

22

5.5.4 Oper Rule

The rule for mathematical operation also follows from the operational semantics for

the language. Before proving the results of the two evaluation statements, we must

first prove that the result of the operation is within the bounds for numerical values

in the LLV language.

; ├ P0: (1 = ((a0 op a1)>=0) && ((a0 op a1)<=max))
; ├ P1: (t0, m a0, m”) ; ├ P2: (t1, m” a1, m’)
;├ oper op P0 P1 P2 : (t0 op t1, m a0 op a1, m’)

5.5.5 Seq Rule

The following proof rule is used to reason about the sequence code construct. Note

here that we are allowing the second half of the sequence to partially evaluate.

; ├ P0: (t0, m a0, m”) ; ├ P1: (t1, m” t’, m’)
;├ seq P0 P1: (t0;t1, m t’, m’)

5.5.6 If Rules

Conditionals have been broken up into two rules, one for the case in which the “if”

statement has taken the true branch, and one for the case in which the “if” statement

has taken the false branch. Note that the user specifies the body of the branch not

taken, i.e. “t2” for iftrue.

; ├ P0: (t0, m a, m”)
; ├ P1: (0 = a) ; ├ P2: (t1, m” t’, m’)
;├ iftrue t2 P0 P1 P2: (if (t0){ t1 }else{ t2 }, m t’, m’)

where FV(t2)

; ├ P0: (t0, m a, m”)
; ├ P1: (0 = a) ; ├ P2: (t2, m” t’, m’)
;├ iffalse t1 P0 P1 P2 : (if (t0){ t1 }else{ t2 }, m t’, m’)

where FV(t1)

23

5.5.7 FuncCall Rule

The function call rule “funccall” in simply says that for a particular function, if the

body term returns a certain value, then the call to the function will return the same

value. Note that in the premise, the body of function f (term tf) has arguments ai

substituted for the arguments Vi of the function. The LLV compiler will pattern

match to determine the arguments proven in the conclusion. In the case of an

unused variable in tf for Vk, the compiler will set ak = 0.

; ├ Pf : ([ai/Vi]tf, m t] t’, m’)
;├ funccall f Pf : (f(a0,...an), m t+1] t’, m’)

where f╞ tf

5.5.8 FuncArg Rule

The funcarg rule can be understood in two parts. The first part, proofs P0…Pi,

proves statements about the arguments in a particular function call. The second

part, proof Pf, proves how the resulting function call evaluates after its arguments

have evaluated.

Since we wish to utilize partial evaluation as much as possible, we have given the

user the ability to only prove statements about a subset of the entire argument list.

For this reason, the number of arguments dealt with in proofs P0…Pi is left up to the

user, the last of which may prove a partial evaluation. Subsequent arguments in the

function call are left unmodified from the premise to the conclusion (arguments

ti+1...tn).

; ├ P0: (t0, m a0, m0) … ; ├ Pi: (ti, mi-1 i] tp, mp)
;├ Pf: (f(a0,...ai-1,tp,ti+1...tn), mp t] t’, m’)
; ├ funcarg { P0…Pi } Pf (f(t0,...ti-1, ti, ti+1...tn), m t+(0i)] t’, m’)

24

5.6 Evaluation Logic Rules

In this section we will show two rules for combining and splitting multiple

evaluation statements, as well as three rules concerning the deterministic evaluation

of LLV.

5.6.1 EvalMerge Rule

The evalmerge rule can be thought of as a transitivity of code execution. If a term

and memory < t, m > evaluates to < t’, m’ > which in turn evaluates to < t”, m” >,

then < t, m > evaluates < t”, m” >. The number of steps this evaluation takes is

simply the sum of the evaluation steps in the two premises.

; ;├ P0 :(t, m t’, m’) ; ;├ P1 :(t’, m’ t”, m”)
; ;├ evalmerge P0 P1 : (t, m t”, m”)

5.6.2 EvalSplit Rule

If you have proven two separate statements about how a particular term and

memory evaluate, the evalsplit rule can be used. For example, say you have proven

that < t, m > evaluates to < t’, m’ > as well as < t”, m” >, then < t’, m’ > must

evaluate to < t”, m” > or vice-versa.

; ;├ P0 :(t, m t’, m’) ; ;├ P1 :(t, m t”, m”)
; ;├ evalsplit P0 P1 : (t’, m’ t”, m”)

It is preferred that the user invoke this rule for to keep the evaluation steps

in the conclusion positive, although this does not necessarily produce a

contradiction. In other words, when , we have a negative number of

evaluation steps in the conclusion (t’, m’ t”, m”). In theory, this can be read

as < t”, m” > executes to < t’, m’ > in evaluation steps equal to -

25

Because the execution of terms in the LLV language is deterministic, the following

three rules can be formulated.

5.6.3 ArithEvalEq Rule

If we have proven two statements about how term and memory < t, m > execute,

then the arithmetic return values for these statements must be equivalent.

; ├ P0 : (t, m a1, m1) ; ├ P1 : (t, m a2, m2)
; ├ arithevaleq P0 : (a= a

5.6.4 MemEvalEq Rule

Likewise, the memory of both statements must be identical.

; ├ P0 : (t, m a1, m1) ; ├ P1 : (t, m a2, m2)
; ├ memevaleq P0 : (m= m

5.6.5 StepEvalEq Rule

Finally, we also know that the number of evaluation steps it took term t in memory

m to fully evaluate must be equivalent between both statements.

; ├ P0 : (t, m a1, m1) ; ├ P1 : (t, m a2, m2)
; ├ stepevaleq P0 : (=

26

Chapter 6

Proof Examples

This chapter will present example LLV proofs. In the following simple example, a

proof shows that if the value of a is not equal to b, then the value of b is not equal to

a. This is simply accomplished by contradicting the assumption that (b = a).

SymNNot(a, b)() :: ((a = b) (b = a))
{

assume (a = b) : u1 //proves (a = b) (b = a)
contra //proves (b = a)

assume (b = a) : u2 //proves (b = a) (a = b)
 symN //proves (a = b)
 assert u2 //proves (b = a)
 assert u1 //proves (a = b)
}

Figure 6.1 SymNNot Proof Example

In the next example, we will examine a simple piece of code that assigns the value

of b to memory location a, and then immediately retrieves that value in that memory

location through a dereference operation.

SetThenGet(a, b)(m) :: (a := b;!a, m b, m[ab])
{

seq //proves (a := b;!a, m b, m[ab])
assn //proves (a := b, m b, m[ab])

eval a m //proves (a, m a, m)
 eval b m //proves (b, m b, m)
 deref //proves (!a, m[ab] b, m[ab])***
 eval a m[ab] //proves (a, m[ab] a, m[ab])
}

Figure 6.2 SetThenGet Proof Example

*** If we hold strictly to the rule for dereference, in reality we have proven the

proposition (!a, m[ab] m[ab](a), m[ab]). We will see later in

27

chapter 8 how the LLV compiler will automatically perform the simplification m[

ab](a) b.

In the following proof, we will examine the execution of the getNth function. In

particular, we will be looking at the case in which getNth returns “error”, which

will be returned if we are looking to find a non-zero element of a null list. Recall

from Chapter 4:

getNth(a, n){
if(n){

if(!a){
getNth(!a, n-1)

}else{
error

}
}else{

!(a + 1)
}

}

Figure 6.3 GetNth Function (revisited)

GetNthError(a, n)(m) :: ((0 = n) (0 = m(a)) (getNth(a, n), m
error, m))
{

assume (0 = n) : u1

assume (0 = m(a)) : u2

funccall getNth //proves (getNth(a, n), m error, m)
iftrue !(a + 1)

eval n m //proves (n, m n, m)
assert u1
iffalse getNth(!a,n-1) //proves (if(!a){ getNth(!a, n-1) }else{

 error}, m error, m)
deref //proves (!a, m m(a), m)

eval a m //proves (a, m a, m)
assert u2
eval error m //proves (error, m error, m)

}

Figure 6.4 GetNthError Proof Example

28

Chapter 7

Induction

In this chapter we will introduce a single unified method for writing inductive

proofs in LLV.

7.1 Approach

Because functions written in the LLV language can be recursive, the proof compiler

needs to be able to handle logic for such cases. The mechanism for this is the

induction rule. In this rule, induction will be applied to the decreasing value of an

arithmetic term 1 for 1≥0. This value 1 can refer to any number of things,

including a particular argument of a recursive function, or the number evaluation

steps it takes a term to evaluate. There are no restrictions for what concept this

value enumerates.

The following outline can be written to prove ForAll(V)(H) (0…n). In

the following example, “P : ” is written shorthand to mean “a proof P0 written

by the user that successfully proves proposition ”. Also note that *
0…n is

written to mean zero or more assumptions, and P*
0…n is written to mean multiple

proofs.

forall(V1, … Vi)(H1…Hj)
assume *

0…n

induction i1(V’1…V’k)(H’1…H’l) 1 proving
case base

P0 :

else ind

by i1(a1…ak)(m1…ml){
P*

0…n : [a/V’[m/H’*
0…n

}
P1 : [a/V’[m/H’

29

P2 : (1 = ([a/V’[m/H’1 >= 0) && ([a/V’[m/H’1< 1))

Figure 7.1 Induction Proof Example Outline

At [A], we are declaring an inductive proof with a label “i1”, giving the user an

interface to refer to the inductive proof. The quantification (V’1 …V’k)(H’1…H’l)

is used as an argument list to instantiate the induction hypothesis for a new

proposition [a/V’[m/H’ It is important to note that this quantification is

comprised of preexisting variables in , so in this example, we have { V’1,…V’k,

H’1…H’l } { V1, … Vi, H1…Hj }.

In LLV, an inductive proof can be compared to a recursive function. Our method

for making this recursive call is the “by” rule, in which we will make a call to our

induction proof with the instantiated values a1…ak, m1…ml. To guarantee the

soundness of the specific inductive call, the “by” rule is split into three parts.

The first part of the “by” rule is the collection of proofs P*
0…n, which will verify

that the induction call is consistent with our prior assumptions (*
0…n). When we

are using the “by” rule, we can think of reusing the entire proof beneath our

inductive call modified by the substitution [a/V’[m/H’. However, within the

inductive proof, we made have utilized some or all of *
0…n. If we are appealing to

the inductive hypothesis for a new substitution of variables [a/V’[m/H’, then

clearly we must have a way of proving that these conclusions [a/V’[m/H’*
0…n

are also true. As shown, this is accomplished by proofs P*
0…n.

The second part is used to show that the final conclusion that we are seeking is a

consequence of our instantiated proposition [a/V’[m/H’. The proof P1 directly

proves this implication [a/V’[m/H’.

The third part is used to verify that the induction will terminate. As noted above,

the soundness of the induction principle relies on the value of a decreasing

arithmetic term 1. The proof P2 guarantees that any given inductive call can only

30

be called a finite number of times. In other words, a certain number of substitutions

[a/V’] will imply 1<0, whereby [a/V’[a/V’P2 no longer holds.

7.2 Converting an Inductive Proof to a Standard Proof

In this section, we will show an outline of an inductive proof that has been rolled

out to form a standard proof. This has been written here for the purpose of

demonstrating the soundness of an induction proof in LLV.

Let us assume in the following example that it takes 2 substitutions [a/V1 such

that [a/V[a/V1<0. We can see that the inductive proof above can be unrolled to

the following standard proof outline. The italicized portions are those not

mentioned in the original proof.

forall(V1, … Vi)(H1…Hj)
assume 0…n //(0…n)

case base

P0 :

case ind

conclude //

conclude0…n //[a/V

P*
0…n : [a/V*

0…n

assume [a/V*
0…n //([a/V0…

[a/Vn)[a/V
conclude //[a/V***[C]

contra //([a/Vind)
assume [a/Vind

[a/VP2:(1=[a/V[a/V1≥ 0) //***[D]
Pend: (1=[a/V[a/V1≥)

assume [a/Vbase //[a/Vbase[a/V

[a/VP0 : [a/V //***[E]
P1 : [a/V

Figure 7.2 Induction Proof Example Outline (Expanded)

At [D] and [E], we are using the fact that

(;├ P0 : 0);’├ [a/VP0 : [a/V0) for [a/V ’

31

In other words, if we have a ’ containing the substituted version of all assumptions

needed to prove P0, then we can construct the substituted proof [a/VP0 from those

assumptions. Such a proof proves [a/V0.

At [C], by definition from the case rule, we have [a/Vbase ↔ ([a/Vind).

It is important to note that although this is a simple example (one base/inductive

case), this method of induction can be applied to a proof tree of any complexity. In

addition, multiple induction proofs can be declared on top of one another while still

maintaining the validity of the proof.

7.3 Induction Rules

In this section, we will present the formalized version of the rules for induction.

7.3.1 Induction Rule

The declaration of an inductive proof adds an element to containing four pieces of

information contained in the tuple (i1(Vi)(Hj),,I,). The first three pieces

follow directly from the user’s inductive proof declaration. These refer to the label

and arguments for the induction i1(Vi)(Hj), the arithmetic term the user is

decrementing , and the proven proposition I respectively. The final piece, , is

defined as all assumptions in that have free variables contained in the arguments

(Vi)(Hj) of our inductive proof declaration. This is calculated by the LLV proof

compiler. Each “by” rule call will need to prove all propositions contained in

(i1(Vi)(Hj),,I,);;├ P0 :I

;;├ induction i1(Vi)(Hj) proving I P0 : I

where V1, … Vi, H1…Hj

and = { i FV(i) ∩ { V1, …Vi, H1…Hj } }

32

7.3.2 By Rule

As mentioned before, the “by” rule is broken into three parts. Note that the first

part proves all prior assumptions for a new instantiation of the inductive

hypothesis. The order in which the user must prove these propositions is identical

to the order in which the compiler added the propositions to .

 (i<||. ; ;├ Pi : [ai/Vimj Hj]i)
; ;├ P1 :([ai/Vimj Hj]I I)
; ;├ P2 :(1 = ([ai/VimjHj >= 0) && ([ai/VimjHj <))
;;├ by i1(ai)(mj){ P1...P|| } P1 P2 :I

where (i1(Vi)(Hj), , I,

7.4 Induction Proof Example

In this section we will present a proof by induction in LLV. Define a function to

run to the end of a linked list, returning the value of “1” if so. We will call this

function “rte” for “run to end”.

rte(a){
 if(!a){
 rte(!a)
 }else{
 1
 }

}
Figure 7.3 rte Function

Note that this function successfully terminates only if the list does not circle back

upon itself, in which case rte performs an infinite loop. Define another function,

dualRte, to run through two such linked lists in a simultaneous function.

dualRte(a, b){
 if(!a){
 dualRte(!a, b)

33

 }else{
 if(!b){
 dualRte(a, !b)
 }else{
 1
 }

}
}

Figure 7.4 dualRte Function

We will be proving that if rte(a) and rte(b) terminate, then dualRte(a, b) also

terminates. The induction will be performed on the number of steps to evaluate

dualRte. This value is 4*L1+6*L2+5, where L1 can be thought of as the length of

the list starting at index a, and likewise L2 can be thought of as the length of the list

starting at index b. Note that the runtimes of rte(a) and rte(b) are 4*L1+3 and

4*L2+3 respectively. Our inductive proof will be confirmed by two inductive cases

and one base case, corresponding to the return values/calls of the dualRte function.

Due to the lengthy nature of this proof, we will be writing the conclusions of certain

branches shorthand. For a modular approach to constructing arduous proofs in an

orderly fashion, consult the “use” rule in section 9.2.

34

DualRteInd(a, b, L1, L2)(m) :: ((rte(a), m [4*L1+3] 1, m)
(rte(b), m [4*L2+3] 1, m)
(dualRte(a, b), m [4*L1+6*L2+5] 1, m))

{
assume (rte(a), m [4*L1+3] 1, m) : u1

assume (rte(b), m [4*L2+3] 1, m) : u2

induction traverse(a,b,L1,L2)()(4*L1+6*L2+5)
proving(dualRte(a,b), m [4*L1+6*L2+5] 1,m)

case (0 = m(a)) : u3

case (0 = m(b)) : u4

replaceN (dualRte(a, b), m [4*L1+6*L2+5] 1, m)
P0 : (0 = L1)
replaceN (dualRte(a, b), m [4*0+6*L2+5] 1, m)

P1 : (0 = L2)
P2 : (dualRte(a, b), m [4*0+6*0+5] 1, m)

else : u5

by traverse(a, m(b), L1, L2-1)(){
assert u1

P3 : (rte(m(b)), m [4*(L2-1) +3] 1, m)
}

assume (dualRte(a, m(b)), m [4*L1+6*(L2-1)+5] 1, m) : u6

P4 : (dualRte(a, b), m [4*L1+6*L2+5] 1, m)
P5 : (1 = (4*L1+6*(L2-1)+5 >= 0) &&

(4*L1+6*(L2-1)+5 < 4*L1+6*L2+5)
else : u7

by traverse(m(a), b, L1 - 1, L2)(){
P6 : (rte(m(a)), m [(4*(L1-1))+3] 1, m)
assert u2

}
assume (dualRte(m(a), b), m [4*(L1-1)+6*L2+5] 1, m) : u8

P7 : (dualRte(a, b), m [4*L1+6*L2+5] 1, m)
P8 : (1 = (4*(L1-1)+6*L2+5 >= 0) &&

(4*(L1-1)+6*L2+5 < 4*L1+6*L2+5)
}

Figure 7.5 Induction Proof Example

P0 can be proven by noting that from u1, we have (0 = m(a)) 0 = L1).

P1 can be proven by noting that from u2, we have (0 = m(b)) 0 = L2).

P2 can be proven by the execution of dualRte when (0 = m(a)) and (0 = m(b)).

P3 can be proven by the recursive execution of rte(b) when (0 = m(b)).

P4 can be proven by a proof of the execution of dualRte from the recursive call u6,

noting that (0 = m(a)).

35

P5 can be proven by noting that (0 = m(b)) L2>0), using u2.

P6 can be proven by the recursive execution of rte(a) when (0 = m(a)).

P7 can be proven by a proof of the execution of dualRte from the recursive call u8,

noting that (0 = m(a)) and (0 = m(b)).

P8 is true by direct calculation.

36

Chapter 8

LLV Solver

The proof compiler performs normalization techniques to automatically infer

equality or inequality between arithmetic terms. For example, the “iftrue” rule from

section 5.5.6 has the following antecedents:

; ├ P0 : (t0, m a, m”)

; ├ P1: (0 = a)

In order to use this rule, clearly the value of the arithmetic term “a” in P0 and P1

must be the same value. Until now, this notion of equality has been assumed to be a

literal equality. Now we extend this rigid equality to a definitional equality, in

which logical inferences are automatically handled.

This chapter will introduce some of the basis ideas and heuristics behind an

arithmetic solver. For a more thorough approach to solving integer programming

problem, refer to an algorithm such as the Omega Test (Pugh 1993).

8.1 Arithmetic Equality

Define a “factor” f ::= V | m(a0) | max | f1*f2

The LLV solver converts such factors to a normalized form and is capable of

grouping equivalent factors. When checking equality between two arithmetic

values a0 and a1, and the operations contained in the two terms is a subset of { +, -,

*, / }, the question of equality can be rewritten as a0 – a1 = 0, which can then be

factored into:

c1*f1 + c2*f2.....+ cn-1*fn-1 + cn = 0,

where ci are numerical constants. Arithmetic terms a0 and a1 can be proven equal

under no assumptions if (i. ci=0).

37

8.2 Arithmetic Equality Implication

The proof compiler can also check implication between arithmetic unit

propositions, (a0 =p a1) (a’0 = p a’1), where =p means “provably equal”. The

two equations for equality can be written:

c1*f1+c2*f2..... + cn-1*fn-1 + cn = 0

where (i. ci = 0) (a0 =p a1)

c’1*f1+c’2*f2..... +cn-1*fn-1 + c’n = 0

where (i. c’i = 0) (a’0 =p a’1)

(a0 =p a1) (a’0 =p a’1) if (i. (ci ≠ 0) & (c’i ≠ 0) & (j. cj*c’i = c’j*ci)).

8.3 Arithmetic Comparison

The proof compiler can also compare { >, >=, <, <= } between a0 and a1 if the

operations contained in the two terms is a subset of { +, -, *, / }.

The comparison can be rewritten as

{ a0 – a1 >= 0 for a0 >= a1

{ a0 – a1 – 1 >= 0 for a0 > a1

{ a1 – a0 >= 0 for a0 <= a1

{ a1 – a0 – 1 >= 0 for a0 < a1

which can be factored to:

c1*f1+c2*f2.....+cn-1*fn-1 + cn>= 0,

where ci are constants.

The comparison can be proven under no assumptions if (i. ci>=0). Note that this

heuristic can be improved upon, using an algorithm for checking inequality

constraints.

38

8.4 Memory Equality

Recall that memory is defined as m ::= init | H | m0[a0 v0]

The initial memory state may be referred to as a null variable H = for the

purposes of simplification. All memory can therefore be written in the form H[a0

v0]... [an vn].

In the first step, all assignments that precede another assignment with a duplicate

address are eliminated from the memory specification. In other words, eliminate all

an1 such that (n2. n2>n1 & (an1 =p an2))

The second step will be to remove all memory modifications that can not logically

affect the status of the memory. Note the following simplification:

 m, m’, a, a’. (m =p m’) (a =p a’) m[a m’(a’)] = p m).

All such simplifications are made, starting with [an vn] and proceeding to [a0

v0].

Finally, an algorithm for memory comparison can be devised. This algorithm can

compare two memories with equivalent base variable “H”.

Say m1 = H[a0 v0]... [an vn] and m2 = H[a’0 v’0]... [a’m v’m]

MemCompare(m1, m2) returns true|false{
for i : n 0 {

if(MemLookupNorm(m2(ai)) =p vi)
remove [a’x v’x] from m2 in which (a’x =p ai)

else
return false

}
if (m2 = H)

return true
else

39

return false
}

Figure 8.1 MemCompare Algorithm

Note that the function “NormMemoryLookup” returns the normalized form of the

given memory lookup (see section 8.5 below).

8.5 Memory Lookup Normalization

Given a memory lookup m(a), the following is done for the purposes of

normalization. First, the memory m is normalized (steps 1 and 2) as described

above. Then the following algorithm is used to make any deductions about the

address in relation to the memory.

MemLookupNorm(H[a0 v0]... [an vn](a)) returns a’ {
for i : n 0 {

if(a =p ai)
return vi

else if(!(a ≠p ai))
for j : (i -1) 0 {

if(vj =p vi)
if(aj =p a)

return vj

else
return H[a0 v0]... [ai vi](a)

}
}
return H(a)

}
Figure 8.2 MemLookupNorm Algorithm

Once this method is in place, it can be integrated into the methods for determining

factors in arithmetic term normalization. We can be sure this will not cause any

infinite loop in our solver computation due to the fact that all arithmetic equality

equations in this algorithm involve arithmetic terms that have smaller descriptions

than H[a0 v0]... [an vn](a) itself.

40

8.6 Claim Rule

A new rule can be written to utilize these methods:

; ├ P0 : 0 … ; ├ Pn : n

;├ claim { P0…Pn } :

where 0 … n

In this rule, the LLV compiler will ask the solver if the proposition can be solved

using the given premises. If the proposition in the conclusion can be solved, then

the proof holds.

41

Chapter 9

Other Features of LLV

9.1 Proposition Argument List

As you may have noticed, all theorems mentioned in this paper have made

conclusions of the form 0 1… n . We have found that this form is

sufficient to prove all first order logical propositions we have encountered to this

point. For this reason, it may be useful to give the user the ability to simply

enumerate a list of the propositions assumed by a proof. To do this, the syntax of

theorems can be extended to:

T ::= t(V0,...Vi)(H0,...Hj) :: T (p1 : 1), ... (pn : n) { PT }

We must modify our definition of a valid theorem by adding all assumptions in the

proposition argument list to Thus a theorem is valid if and only if

 (p0 : 0), ... (pn : n)V0,...Vi, H0,...Hj ├ PT : T

Alternatively, this can be read as “if p0 proves 0 ... and if pn proves n, then t

proves T” (see section 9.2 below). This syntax will add additional clarity to the

way in which theorems are presented and subsequently used. To show an example

of the extended theorem syntax, the GetNthError theorem (from Chapter 6) can now

be rewritten as

GetNthError(a, n)(m) :: (getNth(a, n), m error, m)
 p1: (0 = n)
 p2: (0 = m(a))
{
 //proof body for GetNthError

42

}
Figure 9.1 GetNthError Proof Example

This approach is backwards compatible with the previous method of explicitly

declaring the assumptions for theorems within the body of proofs using the

“assume” rule.

9.2 Use Rule

In this section, we will introduce the “use” rule, which will allow the user to build

new theorems using the results of previously proven theorems. With this rule, the

user specifies the name of the theorem they want to use, as well as the arithmetic

terms a0,...ai and memories m0,...mj they wish to instantiate the theorem with.

;;├ P0 : [a0,...ai / V0,...Vi m0,...mj H0,...Hj]0

...
;;├ Pn : [a0,...ai / V0,...Vi m0,...mj H0,...Hj]n

; (p0 : 0), ... (pn : n); V0,...Vi, H0,...Hj ├ PT : T

;;├ use thm(a0,...ai)(m0,...mj) : [a0,...ai / V0,...Vi m0,...mj H0,...Hj]T

where thm(p0 : 0), ... (pn : n)╞ PT

A simple example is shown below. We are instantiating the GetNthError theorem

with a different memory, m0, as well as replacing the value of “a” with “a+1”, and

the value of “n” with “b”.

GetNthError2(a, b)(m) :: (getNth([a+1], b), m0 error, m0)***
 p1: (0 = b)
 p2: (m0(a + 1) = 0)
{

use GetNthError(a+1, b)(m0)
assert p1 //proves (0 = b)
symN //proves (0 = m0(a + 1))

assert p2 //proves (m0(a + 1) = 0)
}

Figure 9.2 GetNthError2 Proof Example

43

*** In the proven proposition, recall the syntax [a+1] is written to mean the

constant value of [a+1], and not the addition operation a+1.

When constructing a proof with the use rule, the LLV compiler can perform pattern

matching on the input propositions to automatically determine the instantiation in

question. In addition, the syntax “use” can be dropped from the syntax altogether.

Thus in the above example, simply writing “GetNthError” would have sufficed

instead of the more lengthy “use GetNthError(a+1, b)(m0)”.

There are many benefits to adding this rule to the proof compiler. The user now has

the ability to modularize theorems in order to see the larger ones with more clarity.

The user does not need to reprove similar theorems every time they are needed, and

instead can approach useful theorems in LLV in a way similar to building a library

in C++. Groups of theorems concerning a function can be created and referenced

elsewhere as needed. However, this rule does nothing new to address theorems in

which more complicated logic is needed, such as proofs requiring multiple

induction hypotheses.

9.3 Other Proof Rules

The user may not want to instantiate the proven proposition of a given theorem or

prove its premises. The reference rule returns the universally quantified proposition

that a desired theorem has proven:

; (p0 : 0), ... (pn : n) V0,...Vi, H0,...Hj ├ PT : T

;;├ reference thm : ForAll(V0,...Vi)(H0,...Hj)0n)T))

where thm(p0 : 0), ... (pn : n)╞ PT

The user may wish to prove propositions that are auxiliary to the main proof. This

can be accomplished with the “lemma” rule.

44

; ;├ P0: 0 ; u : 0);├ P1 : 1

;;├ lemma u { P0 } P1 : 1

9.4 Axioms

Axioms are to be considered theorems with no verifying proof. All axioms are

valid by default and should be verified by inspection. An axiom is specified using

the syntax:

A ::= a(V0,...Vi)(H0,...Hj) : 0

9.5 Proposition Variables

LLV also allows for the user to place proposition templates on their theorems. If

we extend our definition of propositions to include these template variables, we can

now create more general proofs. For example, the following proofs may be helpful:

template< y1, y2 >
ContraPositive()() :: (y2 y1)

p1 : y1 y2

{
 assume y2 : u1 //proves (y2 y1)
 contra //proves y1

 assert p1 //proves (y1 y2)
 assert u1 //proves y2

}
Figure 9.3 ContraPositive Proof Example

template< y1, y2, y3 >
Transitive()() :: (y1 y3)
 p1 : y1 y2

 p2 : y2 y3

{
Assume y1 : u1 //proves (y1 y3)

conclude //proves y3

conclude //proves y2

assert u1 //proves y1

assert p1 //proves (y1 y2)
assert p2 //proves (y2 y3)

45

}
Figure 9.4 Transitive Proof Example

9.6 Indeterminate Evaluation

For inductive proofs thus far, we have examined proofs for which the evaluation of

the code segment was guaranteed to terminate. What if the user was only

concerned about the return value of a function, regardless of whether or not the

function terminated? Here we will introduce a proposition for indeterminate

evaluation. Define a new proposition (t, m a, m0), where

(t, m a, m0) ((v, m’. (t, m v, m’)) (t, m a, m0)).

Also, note the relation (t, m a, m0) (t, m a, m0). In other words, if term t

does in fact terminate its evaluation with return value of a, then it suffices to say

that if t were to terminate, it would return the value of a.

From this, we can formulate a simpler version of the induction rule. In this version,

the user does not need to specify a decreasing arithmetic term . However, this

form of induction can only be used for proving indeterminate evaluation

propositions.

(i1(Vi)(Hj), (t, m a, m’),);;├ P0 : (t, m a, m’)
;;├ induction i1(Vi)(Hj) proving (t, m a, m’) P0 : (t, m a, m’)

where V1, … Vi, H1…Hj

and = { i FV(i) ∩ V1, …Vi, H1…Hj }

 (i<||. ; ;├ Pi : [ai/Vimj Hj]i)
; ;├ P1 : (t, m [ai/Vimj Hj]t, [ai/Vimj Hj]m)
; ;├ P2 :> 0)
;;├ by i1(ai)(mj){ P1...P|| }P1 P2 :(t, m [ai/Vimj Hj]a, [ai/Vimj Hj]m’)

where (i1(Vi)(Hj), (t, m a, m’),)

46

Chapter 10

Conclusion

Low Level Verification has been presented as a method for proving theorems in a

clear and understandable fashion. The language for coding programs has virtually

no limitations. Consequently, the user can produce complex and useful programs

without significant difficulty. The proof rules are easy enough for a casual reader to

comprehend and logically understand. However, the crux of the system to this

point has been the user’s ability to hand-write theorems containing any high degree

of logic. When reasoning about a function, most of the useful proofs referring to

the behavior of that function can be shown to be consistently larger than the

function itself. Clearly, this limitation is not ideal. Thus, at this point, it can be said

that the LLV proof system is not sufficient in addressing any practical concerns of

software verification. For this reason, automation must be employed to lighten the

work load on the user. This can be accomplished in a variety of ways.

While working with the LLV proof language, it may quickly become clear that

much of the theorems of interest to LLV seek to prove properties concerning the

deterministic evaluation of a particular function. Very often when constructing

proofs, the user will have the need to know all possible cases of a single execution

through the function, and what value or function call the execution resulted in. An

algorithm can be formulated to automatically create such a proof for all possible

conditions. For example, in the function dualRte mentioned in Chapter 7, these

possibilities are:

(0 = m(a)) (dualRte(a, b), m dualRte(m(a), b), m)

(0 = m(a)) (0 = m(b)) (dualRte(a, b), m dualRte(a, m(b)), m)

(0 = m(a)) (0 = m(b)) (dualRte(a, b), m 1, m)

47

The premises in the above formulas are a minimal set of propositions needed to

construct a proof showing that the execution of the function leads to the conclusion.

This list of propositions can be automatically determined. In addition, if a

contradiction is encountered in the premises (determined by the LLV solver), then

the system can determine that such a branch is unused within the execution of a

program, thereby reducing the size of certain problems even further. Improvement

upon such procedures is left as a task for future research.

48

References

[1] A. W. Appel. Foundational proof-carrying code. Logic in Computer

Science, 16th Annual IEEE Symposium, pages 247 – 256, 2001.

[2] Mike Barnett, K. Rustan M. Leino, and Walfram Schulte. The Spec#

programming system: An overview. In CASSIS 2004, LNCS vol. 3362,

Springer, 2004.

[3] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman and Y. Zhu. Bounded

Model Checking Vol. 58 of Advances in Computers, 2003.

[4] Jean-Christophe Filliarte Introduction to the Why Tool. CNRS – Universite

Paris Sud, TYPES summer school, (2005).

[5] Greg Morrisett et al. From System F to Typed Assembly Language, ACM

Transactions on Programming Languages and Systems, 1998.

[6] William Pugh. The Omega Test: a fast and practical integer programming

algorithm for dependence analysis. Communications of the ACM, 1992.

[7] Glynn Winskel, The Formal Semantics of Programming Languages : an

introduction, The MIT Press, 1993.

49

Vita

Andrew J. Reynolds

Date of Birth October 5, 1981

Place of Birth Plainfield, NJ

Degrees B.S. Cum Laude, University of Illinois, Computer Science, May 2004

May 2008

50

Short Title: Low Level Verification Reynolds, M.S. 2008

	Low Level Verification
	Recommended Citation
	Low Level Verification

	tmp.1468963809.pdf.Fq4gl

