
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-47

2005-09-27

X Language Specification X Language Specification

Eric Tyson

Language X provides a formal and intuitive way to describe a series of interconnected

processing fiblocks.fl Users of Language X may enter in a logical arrangement of blocks that

describes the interconnection of their inputs and outputs. Language X also provides syntax for

specifying implementation details for processing blocks and for targeting the entire architecture

onto arbitrary sets of devices. Formally, Language X is a structure-only dataflow programming

language (DFPL) that is heavily dependent on its library of functions.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Tyson, Eric, "X Language Specification" Report Number: WUCSE-2005-47 (2005). All Computer Science
and Engineering Research.
https://openscholarship.wustl.edu/cse_research/964

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233200039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F964&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/964?utm_source=openscholarship.wustl.edu%2Fcse_research%2F964&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Language X Specification Draft November 12, 2005

 - 1 -

Eric Tyson, etyson@wustl.edu
Washington University Storage Based Supercomputing

History:
7/10/05 ejt Initial language spec. finished, almost-draft status
9/27/05 ejt Minor revisions to syntax, semantics; draft status

Corresponds with X compiler version 0.2
10/30/05 ejt Added “Constant evaluation” section clarifying the

‘delayed’ evaluation of constants.
11/9/05 ejt Corrected float96 datatype (not float128)
11/12/05 ejt Updated to new and improved split/merge syntax

1 Introduction

1.1 Overview
 Language X provides a formal and intuitive way to describe a series of interconnected
processing “blocks.” Users of Language X may enter in a logical arrangement of blocks
that describes the interconnection of their inputs and outputs. Language X also provides
syntax for specifying implementation details for processing blocks and for targeting the
entire architecture onto arbitrary sets of devices.

 Formally, Language X is a structure-only dataflow programming language (DFPL) that
is heavily dependent on its library of functions.

 Associated with Language X is the X Compiler. The X Compiler is capable of forming
compileable and synthesizable code for multiple platforms and devices, using a library of
native inter-block and inter-device connection routines.

 Language X can also be used in conjunction with the Auto-Pipe design flow for
pipelined algorithms. Architectures created in Language X may be analyzed using Auto-
Pipe to better understand and optimize the system. Additionally, hardware and software
created by the X Compiler provide the capability to capture statistical information about
executed architectures, which can be used to refine the allocation of devices and further
optimize the system.

 This document describes the syntax and semantics necessary to create a document
compliant with Language X. To create processing blocks or to use prefabricated blocks,
see additional documentation (e.g. The Language X C API, The Language X VHDL API).

Language X Specification DRAFT November 12, 2005

 - 2 -

1.2 Notation
 The syntax notation used in section 2 is a form of Extended Backus-Naur Formalism
(EBNF). Some additional style changes have been made for clarity. To summarize:

• Symbols, on the left hand side, are defined by their substitution, on the right.
• Symbol replacement choices are delineated by the pipe | character.

• Direct strings of Language X code are contained within single quotes ‘’.

• Symbols may be grouped into a single logical symbol with parentheses ().

• Optional symbols may be grouped using square brackets [].

• Symbols may be replicated zero or more times when suffixed with an asterisk *, or
one or more times when suffixed with a plus sign +.

• Non-terminal symbols, excluding those found under the heading “Lexical
conventions,” begin with an upper-case letter.

• White space has been ignored to make the notation is this document more readable.

2 Syntax

2.1 Lexical conventions
[1-1] char ::= nextline | digit | letter | somepunctuation
[1-2] comment ::= ‘//’ (char)* nextline | ‘/*’ (char)* ‘*/’
[1-3] natural ::= (digit – ‘0’) (digit)*
[1-4] integerC ::= [‘-’|‘+’] (natural | (‘0’)*)
[1-5] floatC ::= (digit)* [‘.’] (digit)* [‘e’ (digit)+]
[1-6] stringC ::= ‘"’ (char)* ‘"’
[1-7] filenameC ::= ‘"’ (letter|digit|punctuation)* ‘"’
[1-8] identifier ::= (letter|‘@’) (letter|digit|‘_’|‘@’)*

 “C++ style” comments are allowed. The characters // begin a comment, which is only
ended by the end-of-line character. Additionally, the characters /* begin a comment
which is only ended by the characters */. Comments may be inserted between any two
distinct symbols in the input file.

 Integer and floating-point constants are permitted in certain circumstances. All values
are entered in decimal format unless otherwise specified, with optional exponentiation
using the e character (e.g., 11.2e2 is equivalent to 1120). Entering floating-point
constants when integers are expected produces undefined behavior.

 String constants consist of a series of one-byte ASCII characters, surrounded by the
double-quote character ". Only printing characters (ASCII values above decimal 31 and
below decimal 127) excluding the double quote character are supported, unless otherwise
specified.

 Identifiers consist of a sequence of letters, numbers, underscores ‘_’, and at ‘@’
characters. An identifier may not begin with a number or underscore character. Identifiers,

Language X Specification DRAFT November 12, 2005

 - 3 -

keywords, and numerical constants are case-insensitive. String constants may be case-
sensitive in some cases, such as filenames. This behavior is specified where relevant.

 The following are keywords that may not be used as identifiers:
array
block
constant
config
device
impl

input
output
platform
use
source
struct

target
typedef
@blockrank
@devicerank
@starttime
@unique

2.2 Pre-processing directives
 The Language X parser uses the C Preprocessor (cpp) before parsing the file directly.
Any directives supported by the native cpp are available to the user. Of particular note are
the cpp statements #include, #if[def]/#else/#endif, and #define. Use of these
directives is recommended to improve readability and reduce redundancy in the Language
X code. cpp identifiers may also be passed in on the command line to facilitate automated
construction of systems using Language X.

2.3 Statements
[2-1] XLanguage ::= (ToplevelS)* UseS (ToplevelS)* EOF
[2-2] ToplevelS ::= BlockS | ConstantS | DeviceS | PlatformS |
 TargetS | TypedefS | UseS

Language X files are created from the top-level declarations and statements enumerated in
grammar [2-2]. Synthesizable X files contain at least one architecture and one use
statement (see section 0) indicating an architecture to implement. The following sections
examine the top-level statements in further detail.

2.3.1 Data type syntax
[3-1] DataType ::= ‘array’ ‘<’ DataType ‘>’ ‘[’ (natural | ‘*’) ‘]’ |
 identifier | BasicType |
 ‘struct’ ‘<’ DataType (‘,’ DataType)* ‘>’
[3-2] BasicType ::= ‘signed8’ |‘unsigned8’ |‘signed16’|‘unsigned16’|
 ‘signed32’|‘unsigned32’|‘signed64’|‘unsigned64’|
 ‘float32’ |‘float64’ |‘float96’ |‘string’

 Language X native data types are constructed from a set of basic data types, including
floating-point numbers and signed and unsigned integers, each of various bit widths.

 Homogenous arrays of data types are constructed by using the array keyword. array
requires a non-negative length to be specified when creating the data type, or * indicating
variable length. Variable length arrays are of indeterminate length and their handling by
the system is platform-specific.

Language X Specification DRAFT November 12, 2005

 - 4 -

 To create heterogeneous data structures (i.e., consisting of multiple data types), the
struct keyword is used. This data type is provided with an ordered and unnamed list of
types that are contained in the structure.

 array and struct data types may be nested to create arbitrary data types of larger
dimension.
[3-3] TypedefS ::= ‘typedef’ identifier DataType ‘;’

 User-named data types are created using the typedef statement. The parser does not
distinguish these named types from their fully expanded contents.

2.3.2 Configuration statements
[4-2] ConstantS ::= ‘constant’ DataType identifier ‘=’ Constant ‘;’
[4-3] Constant ::= (integerC|floatC|stringC) |
 ‘{’ Constant (‘,’ Constant)* ‘}’

 constant creates a named constant of a specified type, and sets it to an integer or float
value, or an array of such values. Array constants are surrounded with braces {} and their
elements delimited with commas. Array constants may be nested (e.g. {{1,2},{3,4}}).
[4-4] PlatformS ::= ‘platform’ stringC [‘:’ stringC] [‘{’
 (ImplPS | ConfigPS)* ‘}’]
[4-5] ImplPS ::= ‘impl’ identifier FuncIdent ‘;’
[4-6] ConfigPS ::= ‘config’ identifier ‘;’
[4-7] FuncIdent ::= letter (letter | digit | ‘_’)*
 [‘<’ (DataType | Constant)
 (‘,’ (DataType | Constant))* ‘>’]

 The platform statement associates library functions with blocks for use in device
implementations (see section 0). The first string constant specifies the name of the
platform. The platform can optionally derive the content of another platform by specifying
a second string constant.

 Specific functions are attached to blocks using the impl statement. The block name is
specified, followed by the function identifier. Function identifiers are specific to their
native language – see implementation-specific documentation for details. The source
statement indicates which files are searched for these implementations.

 config works similarly by indicating possible configuration options; these are only
meaningful to the library implementations of certain blocks.

2.3.3 Blocks
[5-1] BlockS ::= ‘block’ identifier ‘{’
 (PortBS | ConfigBS | BlockInst | TypedefS |
 ConstantS | EdgeBS | SplitBS | MergeBS)* ‘}’ ‘;’

 Blocks are the abstract processing elements with which Language X creates processing
architectures. The block statement encloses a description of a single block. Describing a

Language X Specification DRAFT November 12, 2005

 - 5 -

block does not create the block; only an instantiation from a used architecture or
subcomponent thereof will do so.
[5-2] PortBS ::= (‘input’ | ‘output’) DataType identifier ‘;’
[5-3] ConfigBS ::= ‘config’ DataType identifier [‘=’ ConstArg] ‘;’
[5-4] ConstArg ::= Constant | identifier (‘[’ natural ‘]’)*

 Within a block statement are port declarations containing the type and name of input
and output ports, and one-time configuration inputs. These are indicated by the input,
output, and config keywords, respectively. Each declaration is followed by the
expected data type, and a unique identifier. config ports may optionally include a default
value, provided by a constant value or a named constant with optional indexing.
[5-5] BlockInst ::= identifier BlockIdent [BlockOpts]
 (‘,’ BlockIdent [BlockOpts])* ‘;’
[5-6] BlockOpts ::= ‘(’ identifier ‘=’ ConstArg
 (‘,’ identifier ‘=’ ConstArg)* ‘)’

 Blocks may also contain other blocks by declaring an instance using the block’s
identifier and an instance name. Configuration may be provided by following the
identifier with arguments in the form SomeBlock(config1=constant1,
conf2=const2). Same-type blocks with different names may be declared by separating
the identifiers with commas. Same-type arrays of n blocks may be declared by
immediately following the identifier with [n].
[5-7] EdgeBS ::= (Port ‘->’ (DefaultEdge ‘->’)* Port) ‘;’
[5-8] DefaultEdge ::= DefaultPort (‘->’ DefaultPort)*
[5-9] Port ::= DefaultPort| BlockIdent ‘.’ identifier | identifier
[5-10]DefaultPort ::= BlockIdent
[5-11]BlockIdent ::= identifier [‘[’ natural ‘]’]
[5-12]SplitBS ::= (DefaultEdge ‘->’)* Port ‘=<’ CompoundPort ‘;’
[5-13]MergeBS ::= CompoundPort ‘>=’ (DefaultEdge ‘->’)* Port ‘;’
[5-14]CompoundPort::= Port | ‘{’ Port (‘,’ Port)* ‘}’

 Edges may be created between subcomponent blocks after all block declarations have
been made. The most explicit form for an edge is of the form:
 blockA.outportX -> blockB.inportY;

 However, for convenience and readability, “default” ports may be used when the input
or output is unambiguous. For example, if the only output of blockA is outportX, and
the only input of blockB is inportY, then the above example can be simplified to:
 blockA -> blockB;

 Additionally, unambiguous strings of blocks may be connected in one statement by
using their default ports. Note that this is only possible if all interior blocks in the
statement satisfy the requirement of having only one input and one output. Referring again
to the above example, if blockA also has only one input and blockB has only one output,
then a legal string would be:
 blockC.outportW -> blockA -> blockB -> blockD.inportZ;

 The =< split operator allows array and struct data types to be divided into parts and
distributed to multiple ports. A port list, usually a list of ports surrounded by braces {}

Language X Specification DRAFT November 12, 2005

 - 6 -

and separated by commas, is provided in place of a single port for the destination. The
number and order of elements in the port list must completely agree with the data type
being split.

 The >= merge operator is similar to split, but in the opposite direction. A port list is
merged into a single port of the compound data type. If the merged port data types are
different, then a struct will be formed. If the types are the same, then either a struct or
array will be formed, depending on the destination data type. As with split, the number
order of the data types must completely agree.

 Block array members must be referred to using an index subscript (i.e. [n]), unless
they are used in a split or merge operation. In the case of a split, a non-indexed array block
identifier may be used as the destination block. Similarly, in the case of a merge, a non-
indexed array block identifier may be used as the source block. For instance, if E is an
array of five blocks with a scalar data type output y, and F is a single block with one input
that is an array of five elements of the same data type, then the following statements
perform the same operation:
 { E[1].y, E[2].y, E[3].y, E[4].y, E[5].y } >= F;
 E.y >= F;

 Inputs and outputs declared by the block may be used as output ports and input ports,
respectively.

 See section 3.7 for more details on the behavior of split and merge.

2.3.4 Generation statements
[7-1] UseS ::= ‘use architecture’ BlockInst [identifier] ‘;’

 The use architecture statement is used to indicate all block hierarchies that are to
be actually synthesized by the code generator. Only a single instance of the highest-level
block containing all subcomponents should be used to create a single architecture.
Multiple architectures may be used; see section 3.4. An optional name may be given to the
architecture; otherwise, the name will be the same as the instantiated block’s.
[7-2] DeviceS ::= ‘device’ DeviceIdent ‘:’ stringC
 [DevConfig | ‘{’ DevConfig (‘,’ DevConfig)* ‘}’]
 ‘;’
[7-3] DevConfig ::= ‘(’ (identifier ‘=’ ConstArg ‘,’)* ‘)’
[7-4] DeviceIdent ::= identifier [‘[’ natural ‘]’]

 Actual devices available to the code generator are specified using the device
statement. This statement identifies a name for the device or devices, and the type of
device (from platform, syntax 4-4). In this statement, the user may also provide
configuration information. For scalar (non-array) devices, only a single configuration of
the form (configA = valueA, configB = valueB, ...) is accepted. Array
devices may be configured identically using a single configuration, or differently by
nesting configurations within an additional pair of enclosing braces. An empty { }
configuration is also accepted in all cases. Device configuration must specify all
configuration items from platform that lack a default value.

Language X Specification DRAFT November 12, 2005

 - 7 -

[7-5] TargetS ::= ‘target’ DeviceIdent ‘=’
 ‘{’ [FullIdent (‘,’ FullIdent)*] ‘}’ ‘;’
[7-6] FullIdent ::= (BlockIdent ‘.’)* BlockIdent

 Blocks in the used architectures are bound to devices using the target statement.
Using target, a device identifier is connected to one block or a set of blocks. Blocks are
identified as a fully specified child of an architecture identifier provided by the use
statement. Multiple target statements for the same device identifier are permitted and
will be merged. If a non-terminal block (i.e., a block containing other blocks) is specified,
then all contained blocks will be assigned to that device as well, unless overridden by a
later target statement.

3 Behavior

3.1 Type checking
 Language X is strongly, statically typed with respect to the data types of blocks’ ports.
Types are checked during compilation and may not necessarily be re-checked when
synthesizing block implementations in the native languages.

 Any named types (corresponding to typedef statements) with the same fully expanded
type may be used interchangeably. For instance, in following example, types T and U are
identical:
 typedef array<unsigned8>[8] S;
 typedef array<S>[4] T;
 typedef array<array<unsigned8>[8] >[4] U;

 However, simply having the same number of elements of the same type will not
guarantee type compatibility. In the below statement, the type V is not compatible with
either type T or U, above, even though they all contain 32 unsigned8 elements:
 typedef array<array<unsigned8>[4] >[8] V;

 An exception to the type checking is allowed in the case of variable-length array
outputs connected to static-length array inputs. An output port of type array<T>[n] may
be connected to an input port of type array<T>[*], but the reverse is not permitted.

3.2 Declaration ordering
 Similar to other languages, most identifiers must be declared and/or defined before
they are used. add: typedefs, blocks, etc.

3.3 Special constants
 The following constants are known to the Language X parser and will be filled in at or
before runtime:

@BUILDTIME (unsigned32)

This takes the value of the UNIX timestamp (seconds since the beginning of Jan. 1,
1970) on the build machine at some time during the parsing of the X Language file.

Language X Specification DRAFT November 12, 2005

 - 8 -

@BLOCKRANK (unsigned16)

This takes the value of the array index to the block in which this constant is
referenced. For instance, if there is an array of 32 MyBlock blocks, then @BLOCKRANK
will be assigned numbers from 1 to 32 whenever it is used from within the MyBlock block.
If there is no array index available, @BLOCKRANK takes the value 0 (zero).

@DEVICERANK (unsigned16)

This takes the value of the array index to the device to which the referring block is
targeted. For instance, if MyBlock[3] is targeted to device PC[1], then any use of
@DEVICERANK within MyBlock[3] will be given the value 1. If there is no array index
available, @DEVICERANK takes the value 0 (zero).

@UNIQUE (unsigned32)

 This constant is replaced with a unique value for every instance in which it is
referenced (up to 232 references).

3.4 Evaluation of constants
 To increase the flexibility of the Language X and enable more complex structures to be
created, all constants are evaluated after the initial parsing of the language file. This
includes but is not limited to the special constants in section 3.3, block and constant array
indices, and CONSTANT assignments.

 The utility of this is apparent in the block instantiation expression:
 CONSTANT ARRAY<UNSIGNED8>[4] c_array = {5, 3, 1, 4, 2};
 Block myBlock[4] (c = c_array[@BLOCKRANK]);

where myBlock[1] will be configured with c=5, myBlock[2] with c=3, and so on.

3.5 Multiple architectures
 Multiple architectures may be created through multiple use statements. Identical
statements will create multiple distinct architectures. As with a single use statement,
additional resources will be consumed for each additional architecture.

3.6 Stacking block bindings
 An important feature in the behavior of the platform statement is that implementation
bindings for a specific platform may be distributed across any number of equally identified
platform statements. For instance, if a function for a new block Foo has been written for
platform Bar, then a new platform "Bar" { impl Foo … } binding may be written
without modifying any earlier platform "Bar" { … } blocks.

3.7 Split and merge
 The split operator =< (syntax 5-12) and merge operator >= (syntax 5-13) are used to
trivially separate and collate compound data types. Splits allow an edge to connect an
output of type array<T>[n] on a source block to an input of type T on an array of n
blocks. Similarly, merges allow outputs of type T on an array of n blocks to connect to a

Language X Specification DRAFT November 12, 2005

 - 9 -

single input of type array<T>[n]. When a split or merge operate on a struct<> data
type, the semantics are the same over the heterogeneous data types.

 The behavior of splits and merges on edges is intended to be as transparent as possible.
Once data is transmitted on the source of the edge, it is to be ready on the destination of the
edge without preference to any single element, in the same manner as an equal number of
simple one-to-one edges. Often, a more complex method of distributing compound data
types to multiple destinations is necessary. In these cases, it is necessary to create a block
implementation to perform the more complicated operation.

Language X Specification DRAFT November 12, 2005

 - 10 -

4 Example

4.1 Block declarations

// byte, word are defined for convenience
typedef UNSIGNED8 byte, SIGNED16 word;
// two array objects are defined as arrays of words
typedef ARRAY<word>[4] phrase, ARRAY<word>[4] result;

block Ablock {
 output UNSIGNED8 p; // these can be connected to byte and
 output SIGNED16 q; // word, respectively
};
block Bblock {
 input byte r;
 output word s;
};
block Cblock {
 input word t;
 input word u;
 output phrase v;
};
block Dblock {
 input word w;
 output word p;
};
block Eblock {
 input result p;
 config UNSIGNED16 size; // config constants passed in arch
};

platform "C_MPI" { // append Bar to "C_MPI" platform functions
 impl Bblock Bar<byte,word>; // templates may pass datatypes
};
platform "X" : "C_MPI" { // "X" derives "C_MPI" functionality
 config debug;
 impl Ablock Foo;
};
platform "Y" {
 config address;
 impl Cblock BAZ_8x8;
 impl Dblock BLIP<1,2,3.4>;
 impl Eblock FLIM<1.0e-14>;
};

Ablock Bblock Cblock

Dblock Eblock

P: byte

Q: word
R: byte S: word

W: word P: word

T: word
U: word

V: phrase

P: result

Config: size
(unsigned16)

Language X Specification DRAFT November 12, 2005

 - 11 -

4.2 Implementation

block Dgrp { // define a composite block with two Dblocks
 input word in; // composite blocks have inputs and outputs
 output word out;
 Dblock D1, D2;
 in -> D1 -> D2 -> out; // The default ports are used here
};

block Flow_Arch { // this is a main architecture block
 Ablock A;
 Bblock B;
 Cblock C;
 Dgrp DD[4]; // an ordered array of components
 Eblock E(size=16384); // 16384 passed in as configuration to E

 A.p -> B -> C.t; // unambiguous connections may be grouped
 A.q -> C.u;
 C.v =< DD; // divide the phrase type into 4 words
 DD >= E; // DD refers to the whole array
};

use architecture Flow_Arch flow;

device xdev : "X" { debug = "true "; }; // a single "X" device
device ydev[2] : "Y" { // a set of "Y" devices
 { address = "0xabc00000"; }, // configuration; apply to ydev[1]
 { address = "0xabc10000"; } // this applies to ydev[2]
};

/* Blocks are allocated to each device. DD is split up into two
 * groups of two, specifically selected using DD[n] */
target xdev = { flow.A, flow.B };
// flow.DD[1] target uses the highest-level blocks, flow.DD[1].D1 and D2
target ydev[1] = { flow.C, flow.DD[1], flow.DD[2], flow.E };
target ydev[2] = { flow.DD[3], flow.DD[4] };

	X Language Specification
	Recommended Citation

	tmp.1469562486.pdf.3OsJd

	Abstract: Abstract: Language X provides a formal and intuitive way to describe a series of interconnected processing ﬁblocks.ﬂ Users of Language X may enter in a logical arrangement of blocks that describes the interconnection of their inputs and outputs. Language X also provides syntax for specifying implementation details for processing blocks and for targeting the entire architecture onto arbitrary sets of devices.

 Formally, Language X is a structure-only dataflow programming language (DFPL) that is heavily dependent on its library of functions.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: September 27, 2005
	Author: Authors: Tyson, Eric
	Title: X Language Specification
	ReportNumber: 2005-47
	DepartmentName: Department of Computer Science & Engineering

