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Abstract

We consider the problem of learning k-term DNF formulas using equiva-
lence queries and incomplete membership queries as defined by Angluin and
Slonim. We demonstrate that this model can be applied to non-monotone classes.
Namely, we describe a polynomial-time algorithm that exactly identifies a k-
term DNF formula with a k-term DNF hypothesis using incomplete membership

queries and equivalence queries from the class of DNF formulas.
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1 Introduction

Recently much research has been directed at understanding the importance of mem-
bership queries in obtaining efficient learning algorithms. Some concept classes known
to be learnable using membership and equivalence queries are deterministic finite au-
tomata [Ang87b], read-once formulas over various bases [AHK89, HH91], read-twice
DNF formulas [AP90, Han91], and Horn sentences [AFP90]. Furthermore, using An-
gluin’s method of approximate fingerprints [Ang90], it can be shown that membership
queries are necessary to efficiently learn these classes. In contrast to these classes in
which membership queries are useful, Angluin and Kharitonov [AK91} have shown
that, under cryptographic assumptions, membership queries do not help in learning
DNF formulas (with an unbounded number of terms), read-thrice formulas, NFA’s and
CF@’s. Recently, Aizenstein, Hellerstein and Pitt [AIIP92] have shown that, assuming
NP # co-NP, no polynomial-time membership and equivalence query algorithm exists
for exactly identifying read-thrice DNF formulas using hypotheses of read-thrice DNF
formulas.

While membership queries nicely model an omniscient teacher who provides an-
swers to the student’s questions with perfect accuracy, in reality, even a good teacher
occasionally makes errors. Thus 1t is important to consider the learning scenario in
which the learner can ask membership queries but the answers are subject to errors.
Likewise, if one views membership queries as experiments performed by the learner,
then in any practical application the learner must be able to handle inconclusive results
from the experiments.

Some research has been directed at understanding noise in membership queries.
Sakakibara [Sak90] shows that if each membership query is erroneously answered inde-
pendently at random, then an algorithm designed to work with noise-free membership
queries can simply repeat each query sufficiently often so that, with high probability,
the majority vote is correct. However, one would expect that if a teacher erroneously
answers a question, this incorrect answer will be given whenever the question is asked.
Goldman, Kearns, and Schapire [GKS90] consider a model in which the noise in the

membership queries is persistent. For each instance v, when first queried, the true



output of the target concept is computed and is reversed with probability p. This
answer is then repeated for all future queries on v. They show that certain classes of
read-once formulas are still learnable under this form of noise. Since the membership
queries made by their algorithm are randomly selected in order to simulate a particular
distribution, the noise can be handled by just making additional queries. While this is
an appealing model, in general, it appears to be very difficult to work with.

Angluin and Slonim [AS91] introduced a model of incomplete membership queries
in which each membership query is answered “I don’t know” with probability p. Here
too, this information is persistent—repeatedly making a query that was answered with
“I don’t know” always results in an “I don’t know” answer. They show that under
this model the class of monotone DNF formulas can be exactly identified with high
probability. For p <1/2, the expected running time of their algorithm is O(m?n*).

The main result of this paper is a polynomial time algorithm to obtain exact iden-
tification in a representational sense of DNF formulas with a constant number of terms
under this model of incomplete membership queries. While the equivalence queries
made by our algorithm come from the representation class of general DNF formu-
las, with high probability the final hypothesis output will be a k-term DNT formula
that is logically equivalent {o the target. Given that there exist distinct but logically
equivalent k-term DNF formulas, such a result is the best possible.

The learnability of DNF formulas is an important problem, and thus it is crucial to
explore ways to make learning algorithms for this class robust against noise. There are
several known algorithms for learning DNF formulas with a restricted number of terms
using complete membership queries. Angluin [Ang88] has shown that Valiant’s algo-
rithm for learning k-CNF formulas in the PAC model can be applied to obtain a O(n*)
algorithm to exactly identify k-CNF formulas using only equivalence queries. Thus
one can exactly identify k-term DNF formulas in O(n*) time using the representation
class of k-CNF formulas with only equivalence queries. Also, Blum and Singh [BS90]
give an alternate technique to learn k-term DNF formulas in O(n*) time using only
equivalence queries from the class of general DNF formulas. More recently, Blum and

Rudich [BR92] have given an algorithm with O (n - 20(")) expected running time for



learning k-term DNF formulas using equivalence queries from the class of general DNF
formulas and complete membership queries. Thus for constant k their algorithm is
linear in n and it runs in polynomial time for k& = O(lg n).

All of the algorithms mentioned above for learning k-term DNF formulas do not
obtain a formula that exactly identifies the target formula in a representational sense
(i.e. the final hypothesis comes from a more general representation class). In fact,
Pitt and Valiant [PV88] have shown that for k£ > 2, the class of k-term DNT formulas
cannot be exactly identified, with a k-term DNF result, in polynomial time using only
equivalence queries if P # NP. In contrast to this representational hardness result,
Angluin [Ang87a] has given an O(n*") algorithm for learning k-term DNF formulas
that constructs a k-term DNT formula logically equivalent to the target formula using
equivalence and membership queries. Also, by modifying the Blum and Rudich algo-
rithm [Blu92] one can obtain an algorithm that builds a k-term DNF formula logically
equivalent to the target with an expected running time of O(n - 2°(*)). The key to
obtaining this result is the observation that the final hypothesis output by the Blum
and Rudich algorithm is a DNTF formula with O(2°®)) terms. Thus by looking at all
subsets of k terms and performing an equivalence query, one obtains a k-term formula
that is logically equivalent to the target in O(20%*) time.

The algorithm we present here achieves exact identification of k-term DNF formu-
las, yielding k-term DNF results, with high probability, using incomplete membership
queries and equivalence queries. For p < 1/2, the expected running time is O(n"2+8).
Observe that we must stipulate “with high probability” since it is possible that all
membership queries could be answered “I don’t know”. By the representational hard-
ness result of Pitt and Valiant it follows that the membership queries are needed to
obtain a k-term DNF formula equivalent to the target. Thus this class provides the
first non-monotone class that is learnable in polynomial time with incomplete member-
ship queries yet cannot be learned in polynomial time without the membership queries

unless P = NP,



2 Definitions

We begin by formally describing the model of learning from membership and equiva-
lence queries [Ang87a]. The learner must infer an unknown target concept h. chosen
from some known concept class C. In this paper, C = (J,5; Cn is parameterized by the
number of variables n, and each & € C, represents a DNF formula over the instance
space {0,1}". Also, we assume that the n variables are z;, z3, ..., z, where the value of
z; 1s given by the ¢th bit of the instance. A learning algorithm achieves ezact identifica-
tion of a concept class (with high probability) if it can infer a concept that is logically
equivalent to the target concept on all inputs (with probability at least 1 — §). We say
an algorithm is a polynomial-time algorithm if it runs in time polynomial in n (and
lg ;). In this paper we are also interested in the stronger requirement that the learner
obtain a hypothesis that is equivalent to the target concept in a representational sense.
That is, we want the final hypothesis to come from the same representation class as the
target. We say that a learning algorithm achieves representational exact identification
of a concept class if it outputs a hypothesis from the representational class of the target
concept that achieves exact identification.

(Given an instance v, if position ¢ of v is 1 then we say z; is true in v and T; is
false in ». Similarly, if position ¢ of v is 0 then we say %; is true in v and z; is false
in v. Let A(v) = 1 denote that formula & is true for instance v and A(v) = 0 denote
that £ is false for instance v. A complete membership query MQ(v) returns “yes” if
h.(v) = 1 and returns “no” if h.{v) = 0. An equivalence query, Equiv(h), takes any
polynomially evaluatable hypothesis & and returns “yes” if & is logically equivalent to
h. or returns a counterexample otherwise. This variation of an equivalence query in
which the hypothesis need not be from the same concept class as the target concept is
sometimes referred to as an eziended equivalence query. A positive counterezample v
is one for which h.(v)} = 1 but A(v) = 0. Likewise, a negative counterexample is one
for which A.(v) = 0 but &(v) = 1.

We now describe the model of incomplete membership queries [AS91]. An incom-
plete membership oracle (IM@) is identical to a complete membership oracle except

that it answers “I don’t know” to some subset of the membership queries. The oracle



determines this subset by answering “I don’t know” independently with probability p
the first time a membership query is made for each instance. This missing information
is persistent in that all repetitions of a query result in the answer given the first t{ime.

Finally, a k-term DNF formula k., over n variables is a disjunction of & terms. That
is, he = &1 + t3 + -+« + 1 where {; is monomial over the n variables. We say that a
variable is relevant to a particular term ¢; if that variable appears in ¢;, either negated

or unnegated and denote the literals appearing in term #; by lits(t;).

3 Building a Term

A key step in our algorithm is to use an example, v, for which term ¢ of the target
is positive, to generate a set of candidates for ¢ that is “likely” to include t. More
specifically, we give a technique for which the expectation is that after four positive
counterexamples for ¢ the set of candidate terms for { will include ¢. Then we need just
distinguish ¢ from the other candidates in the set.

As in Angluin and Slonim [ASY91] we view the sample space as a lattice, with
componentwise “or” and “and” as the lattice operators. The top element is the vector
{1}" and the bottom element is the vector {0}*. The elements are partially ordered by
<, where v < w if and only if each bit in v is less than or equal to the corresponding
bit in w. The descendants (respectively, ancestors) of a vector v are all vectors w in
the sample space such that w < v (respectively, w 2 v). For any non-negative constant
d, the d-descendants are all of the descendants w of v that can be obtained from v by
replacing at most d 1’s by 0’s. The d-ancestors are defined analogously.

For a monotone term, by moving down in the lattice (i.e. changing a 1 to 0), the
term can only be “turned off”. Thus every monotone term can be uniquely represented
by the minimum vector in the ordering < for which it is true. Although we can no
longer associate a term with a vector in the lattice as in the monotone case, this way
of viewing the sample space is quite useful. For a term ¢, let maz(t) denote the vector
obtained by turning on all literals relevant to £ and setting all non-relevant bit positions
to 1. Thus maz(t) is the maximum vector in the ordering < that satisfies the term 2.

Likewise, let min(t) denote the vector obtained by turning on all literals relevant to ¢
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and setting all non-relevant bit positions to 0. Thus min(t) is the minimum vector in
the ordering < that satisfies {. For example, if n = 5 and { = 21Taz4, maa(l) = 11011
and min(t) = 10010. Finally, observe that t is the conjunction of literals that are true
in both min(t) and max(t).

We now describe a simple algorithm using incomplete membership queries to con-
struct the candidate set for a term ¢. Suppose we could use incomplete membership
queries to reduce v, a positive counterexample, to min(t) and increase v to maz(t).
Then min(t) and maz(t) could be combined to obtain ¢. To deal with the difficulty cre-
ated by the incomplete membership queries we use procedures similar to the REDUCE]
procedure given by Angluin and Slonim. Namely, in trying to find maz(t) we query all
sufficiently close ancestors of v. If a “yes” reply is given then we continue from this
vector. Otherwise, if all queries are answered with “no” or “I don’t know” then it is
likely that maz(t) is either the vector for which the last “yes” reply was given or one
of the vectors for which an “I don’t know” answer was given. We place all such vectors
in a set, mazset, that contains the vectors that might be maz(t). So the procedure,
SEARCH-FOR-MAX (shown in Figure 1), adds to mazset a set of vectors that is “likely”
to contain maz(t). There is a dual procedure, SEARCH-FOR-MIN, for adding to minset
a set of vectors that is likely to contain min(t). Finally, the candidate set for the term
is constructed by including all terms COMBINE(z,y) for z € minset and y € maazset,
where COMBINE(z,y) denotes the conjunction of literals that are true in both z and
y. Observe that if min(t) € minset and maz(t) € mazset then this candidaie set will
include ¢ as desired. Furthermore, the following observation will be used in several

proofs.

Observation 1 All vectors v that are descendants of positive vector z and ancestors
of positive veclor y are classified as positive by the hypothesis consisting of the term

COMBINE(z,y).

Proof: The term cOMBINE(z,y) contains only variables that have the same value in
z and y. Thus, since v, by definition, must have the same value for these variables it

will be classified as positive. |



SEARCH-FOR-MAX (v, d, mazset) :

mazset +— mazset U {v}
Let A be the d-ancestors of v
For each a € A in breadth-first order
If @ not previously queried
Then If IMQ(a} = “I don’t know”
Then mazset «— mazset U {a}
Else If IMQ(a) = “yes”
Then SEARCH-FOR-MAX (a,d, mazset)

Figure 1: Algorithm for updating maaxset given a positive counterexample v.

We now argue that if d is chosen appropriately, the expectation is that after four
positive counterexamples, ¢ will be placed in its candidate set. It follows from the work
of Angluin and Slonim that if no previously queried positive vectors are encountered

by SEARCH-FOR-MAX then
Prmaz(t) & mazset] < p2d+1”2/(1 —p).

Solving for p yields that choosing d = [f(p)] for

B 1+1g(1/(1—p))\ _
fle) =l (2+ lg(1/p) ) ! ()

guarantees that Pr{maa(t) ¢ mawset] < ;. Observe that for p =1, d =

1 is sufficient.
As shown by Angluin and Slonim, in general, selecting d = [ g 1-_1-; +lIglg ﬁ] suffices.
A dual result holds for minset.

We now must argue that by calling SEARCH-FOR-MAX and SEARCH-FOR-MIN with
each positive counterexample, we have a “reasonable” chance of finding either min(t)
or maz(t). We say a call to SEARCH-FOR-MAX (and respectively SEARCH-FOR-MIN)
has a clear path if it does not encounter any previously queried positive vectors.

From Observation 1, it follows that if SEARCH-FOR-MIN and SEARCH-FOR-MAX are

called with an example v for which (v) = 1, yet all terms of COMBINE(minset, mazset)
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classify v as negative, then either SEARCH-FOR-MIN or SEARCH-FOR-MAX must have a
clear path. Furthermore, if SEARCH-FOR-MAX (respectively, SEARCH-FOR-MIN) has a
clear path, then it follows from the work of Angluin and Slonim that with probability
at least 1/2, max(t) is added to maxset (respectively, min(t) is added to minset). Thus
the expectation is that, for d > [f(p)], after four positive counterexamples min(¢) and
maz(t) are found and thus ¢ is included in its candidate set. By applying Chernoff
bounds it is easily shown that after receiving 16log(1/6) positive counterexamples ¢
will be in its candidate set with probability at least 1 — §.

In order to obtain representational exact identification, we must reduce the candi-
dates for ¢ to a single term, which in this case must be ¢ itself since no other term is
logically equivalent to . What types of terms, besides ¢ itself, can be placed in the
candidate set for {7 One possibility is to include a term ¢ # ¢ that is subsumed by ¢,
where ¢’ is subsumed by ¢ if ¢’ logically implies ¢. In other words, ¢’ is subsumed by
t if lits(t) C lits(?’). This situation occurs when combining an instance from mazset
that is a descendant of maz(f) with an instance from minsef that is an ancestor of
min(t). Finally, the remaining terms in the candidate set are terms ¢ that are not
subsumed by {. We say such candidates are undesirable with respect to ¢ since there
exists an instance v for which ¢(v) = 0 and ¢'(v) = 1. If the target concept is just
the single term ¢ then it is easily seen that such undesirable terms are eliminated by
negative counterexamples. Furthermore, once the undesirable terms are removed from

the candidate set, those terms that are subsumed by ¢ can be eliminated efficiently .

4 Learning k-termw DNF Formulas

In this section we present our main result, an algorithm to obtain representational
exact identification of a k-term DNF formula, with high probability, using incomplete
membership queries and equivalence queries. Although the final hypothesis output is a
k-term DNF formula, the hypotheses used for the equivalence queries are general DNF
formulas.

A natural application of the technique described in the previous section is to use an

equivalence query to get a positive counterexample v and then construct a candidate
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set for some new term of the target formula. However, when using membership queries
to reduce v to min(t) and increase v to maz(t) for some new term ¢, it is possible that
we reduce v to min(¢1) and increase v to maz(tz), for two different terms ¢; and #g,
that when combined do not create a new term of the target. This situation could occur
because v satisfied ¢; and ¢5, or it could be that these terms were turned on when moving
through the lattice. To deal with this difficulty we use a discriminant as originally
defined by Angluin [Ang8T7a]. Informally, a discriminant provides a mechanism for

focusing on a single term of the target formula.

4.1 Discriminants

We now formally describe the discriminant. These definitions are taken from Angluin’s
paper. Let I = {(,7) |1 < i # 7 < k}. A discriminant for a k-term DNF target h.

is an indexed collection of literals L;; for (z,7) € Ix such that:
1. For every (z,7) € Ix, Li; is a literal that is in ¢; and not in ;.

2. If {; and {; contain a complementary pair of literals, then IL;; and Lj are a

complementary pair of literals.
3. Foreach i =1,...,k, the set {L;; : j # i} does not contain a complementary pair.

As Angluin shows, there are k(2n)*(*~%) possible discriminants for a k-term DNF
formula over n variables. A wvalid discriminant is one that adheres to the above rules.
For each ¢, let L;. denote the set of literals {L;; : j # ¢}. Analogously, let L.; denote
the set of literals {L;; : j # ¢}. Thus L. is a subset of the literals in #;. It is L.; that
allows the discriminant to focus on a single term. Turning off all of the literals in L,;
accomplishes this since, by definition, L.; contains a literal in every term except t;.

A k-term DNF formula k. is redundant if the formula obtained by removing any
term from h, is logically equivalent to k.. Otherwise, it is nonredundant. Angluin has

shown that for all nonredundant DNF formulas, a valid discriminant exists.



4.2 The Basic Framework

In this section we describe the basic framework of our algorithm. Then, in the next
section, we describe how to deal with incomplete membership queries. Using complete
membership queries Angluin [Ang87a] has described an algorithm for representationally
exactly identifying the class of k-term DNF formulas. Her algorithm builds on the
following algorithm for learning monomials. Let v be the counterexample returned
when making an equivalence query with the empty hypothesis. The algorithm then
makes membership queries for each instance obtained by flipping exactly one bit in v
and uses the information from these queries to determine the relevant variables. In
extending this algorithm to learn k-term DNF formulas, the interaction between the
terms of the target creates difficulties. Angluin handles this problem by using the
discriminant to find a positive counterexample that turns on a single new term ¢ and
to calculate the relevant variables of £.

As in Angluin’s algorithm, we use a discriminant to modify the positive counterex-
ample given by the equivalence query to satisfy a single new term #;. In addition, we
use this discriminant to constrain the search for min{¢;) and maz(¢;) so that no other
terms are turned on in the process.

Recall that L;. is a subset of the literals that appear in ¢;. If we are building ¢; these
literals must be true, so we constrain the search for min(¢;) and maxz(t;) by considering
only those vectors in which the literals in L;, are true. While this step is not necessary,
clearly it speeds up the search. More importantly, to ensure that only ¢; is true, we
further constrain the search by turning off all literals in L.;. Recall that L,; is a set of
literals that for every 7 # ¢ contains some literal in ;, but not in ¢;. For vector v and
literal I, let v[l] denote the vector obtained by turning ! off in v. Thus, v[L.] is the
vector v with all of the literals in L,; turned off. By turning off the literals of L,; we
ensure that for every j # ¢, t;(v[L.]) = 0. Therefore, if h.(v[L.;]) = 1 then it must be
the case that ¢;(v) = 1. So constraining the search using L.; guarantees that the search
never finds the MIN or MAX vectors for a term other than ¢; (by wandering into the
positive space of another term). Constraining the search also has the effect that we may

not find min(t;) or maa(t;) because we have fixed the value of some variables irrelevant
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to ¢;. Hence, the term resulting from combining the MIN and MAX vectors obtained
by this constrained search may include some variables irrelevant to f;. Fortunately
the discriminant contains enough information to determine which of the constrained

variables are relevant to ;.

Lemma 1 Any literal | such that 1 € L,; but | ¢ L;,, is not relevant to ;.

Proof: We use a proof by contradiction. Assume that [ is relevant to ¢;, [ € L.;, yet
1 & L;,. Since [ is in L,; it must be that Ly = [ for some j # 4. But by the definition
of a discriminant if L;; = [ and ! € #; then L;; = I. Thus I € L;., giving the desired
contradiction. |

Thus, to build the portion of the hypothesis corresponding to term z, we use a new
combining function, COMBINE2(v;, v;) that is the conjunction of unconstrained literals

that are true in both v; and v, and the constrained literals in ..

4.3 Handling Incomplete Membership Queries

We now describe how our algorithm can be made robust against incomplete mem-
bership queries. We first consider the procedure BUILD-FORMULA that, given a valid
discriminant for k., constructs a formula isomorphic to k. with high probability.

As described above, we use the discriminant to constrain the searches for MIN
and MAX. The procedure SEARCH-FOR-MAX2(v,d, magset(t;)), that builds the set
mazset(t;) is like SEARCH-FOR-MAX except that it constrains the search for maz(t;)
by considering only those vectors in which the literals in L;, are on and the literals in
L,; are off. The procedure SEARCH-FOR-MIN2 functions analogously.

Given positive counterexample v, with complete membership queries we can deter-
mine the terms #; of h. for which ¢;(v[L.i]) = 1. However, since the membership queries
are incomplete we cannot always make this determination. It is possible that for some
positive counterexample v and for all ¢; such that #;(v) = 1, the query IMQ(v{L.]) =
“I don’t know”. Therefore, in order to ensure progress, we must try to build a term
t; if IMQ(v[Ly]) = “yes” or “I don’t know”. Thus it is possible that BUILD-FORMULA

will try to build from v some term t; for which ¢;{v) = 0. Suppose that v’ = v[L,j]

11



is an ancestor of max(t;) yet IMQ(v") = “I don’t know”. Then BUILD-FORMULA will
try to build ¢; from v’ and clearly it is possible that mexz(t;) could be found during
SEARCH-FOR-MIN2 and added to minsef(t;). Since we do not repeat any membership
queries on positive vectors, it is possible that maz(t;) is “blocked off” by previously
asked queries and thus not added to mazset(t;). In this case, ¢; may not be built. For
this reason we introduce searchset(t;) = minset(t;) U mazsei(t;) where 1 < 7 < k. The

hypothesis & is then created by

he—hvV (Vx,yeSEGTChset(ti) COMBINE2(z, y)).

By keeping a single set of MAX/MIN candidates for each term, we eliminate the possi-
bility that some term is never built.

The procedure BUILD-FORMULA is shown in Figure 4.3 and a sample execution
is shown in Figure 4.3. Observe that this algorithm assumes that k& is known a pri-
ori. If k£ is not known the standard doubling trick can be applied. The algorithm
LEARN-KTERM-DNF (also shown in Figure 4.3) simply calculates all possible discrim-
inants for A, and then calls BUILD-FORMULA for each discriminant until it returns

successfully.

5 Analysis

In this section we prove that LEARN-KTERM-DNF obtains representational exact identi-
fication of the target k-term DNF formula with probability at least 1 —§. Furthermore,
LEARN-KTERM-DNF runs in polynomial time. We first prove that if BUILD-FORMULA
is called with a valid discriminant for A., then with probability at least 1 — § it will
return a hypothesis isomorphic to i« We then complete the correctness proof for
LEARN-KTERM-DNF by showing, with probability at least 1 — &, that for some call of
BUILD-FORMULA a k-term DNF formula logically equivalent to the target is obtained.

Finally, we prove that the time and sample complexities are as polynomial in n and

lg1/6.
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BUILD-FORMULA ({L;;}, k, d, 6):

For1<i<k
searchset(t;) «— 0
pos-ce « 0
he10
While Equiv(h) # “yes”
Let v be the counterexample returned

IFh{v)y=1
Then remove from & all terms ¢ s.t. t(v) =1
Else

pos-ce +— pos-ce + 1
If pos-ce > 16k log(1/é) Then Return fail
Use IMQ to find I = {¢ such that h.(v[L.]) = “yes” or “I don’t know”}
If I = @ Then Return fail
Foreachi e [
searchset(l;) «— searchsel(l;) U SEARCH-FOR-MIN2 (v[L.], d)
searchset(l;) « searchset(t;) U SEARCH-FOR-MAX2 (v[L.],d)

hehV (Va:,yesearchset(t,-) COMBINE2(z, y))
h' + CLEAN-FORMULA (h)
If 4" is a k-term DNF formula
Return A’
Else Return fail

LEARN-KTERM-DNF(k, d, 6):

For all possible discriminants {L;;}
h « BUILD-FORMULA ({Li;}, %, d, 6)
If A # fail Then Return h

Return fail

Figure 2: The algorithm, LEARN-KTERM-DNF, to obtain representational exact iden-
tification of h. is shown. For each possible discriminant, it calls the procedure
BUILD-FORMULA that constructs the target if given a valid discriminant, or report
failure otherwise. The procedure CLEAN-FORMULA simple removes from % all terms ¢;
such that some term %; in & subsumes ¢;.

13



******* Positive for t:

—————— Positive for tz

he = T13p + zo23

0011

(0000 )

Equiv(@)? = 1110 (positive c.e.) Lz =%,
IMQ(1010) = “I don't know”
IMQ(1110) = “yes” Loy =z
after SEARCH-FOR-MIN2(1010), searchsei(t;) = {0010,0000}
after SEARCH-FOR-MAX2(1010), seerchsei(t,) = {0010,0000,1011}
h = T1Tox3Ts + T1%2T3Fy + 21F22324 + F1 50Ty + Fozva + T2
after SEARCH-FOR-MIN2(1110)}, searchset{tz) = {0110,0100}
after SEARCH-FOR-MAX2(1110), searchset(iz) = {0110,0100,1111}
h = F1FaTaTy + F1F2F3Fs + 21 Tora8q + F1%2%1 + Toga + Fp + T1zaz3 T+
F12283% + c10203% + T1 8274 + 223 + 22
Equiv(h)? = 0100 (negative c.e.)
remove from h all terms ¢ such that £(0100) = 1
h =T Tawa®y + T1F2Ea Ty + v1F20304 + T1 52T 4 Tawg + T + T152%3Ts + 21228374 + w223
Equiv{k)? = 1011 (negative c.e.)
remove from h all terms ¢ such that £(1011) == 1
b =T T253% + F15253% + F152T1 + F10203Ts + T1T223T4 + v27a
Equiv(h)? = 0001 (positive c.e.)
IMQ(D001) = “yes”
IMQ(0101) = “no”
after SEARCH-FOR-MIN2(0001), searchset(t; ) = {0010,0000,1011, 1000}
after SEARCH-FOR-MAX2(0001), searchset(t;) = {0010,0000,1011,1000,0011}
h = Z1T22374 + T1T2T3 T4 + F1F2T4 + T12222% + T18282%4 + T2z3 + z1Torazs + 21 T2T3T+
T1Twa®y + T2T3 + T2F + T1T22a + T2 + T12TaTa + T F2 + mFp - Fowazy
Equiv(k)? = 1000 (negative c.e.)
remove from A all terms t such that £(1000) = 1
h = T1Tow3 Ty + F1T2T3 T4 + 1828y + Fraaza¥y + v12223%y + zoma+
T1 T3 T4 + T1T2T3T4 + Ta¥a + TiTasa 4+ T1T2 + Toxawy
Equiv(h)? = 1011 {negative c.e.)
remove from A all terms ¢ such that $(1011) =1
h = T\ Tz + F1F2TaFe + Ta1TaTa + T102%3T4 + 1722374 + D223 + T1T25370 + F1Faza + T2
Equiv(h)? = “yes”

CLEAN-FORMULA(h) = zy73 + F1%2
Figure 3: Example execution of BUILD-FORMULA with a correct discriminant. The

incomplete membership. queries made by SEARCH-FOR-MIN2 and SEARCH-FOR-MAX2
are not shown.
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5.1 Correctness of BUILD-FORMULA when given discriminant for target

Throughout this section we shall assume that LEARN-KTERM-DNF makes a single call
to BUILD-FORMULA with a valid discriminant L for %,. In this case, we actually prove
the stronger result that with probability at least 1 — §, BUILD-FORMULA outputs a
hypothesis that is isomorphic to the target. We obtain this stronger result by proving
that any hypothesis logically equivalent to h, that has L as a valid discriminant is, in

fact, isomorphic to the target.

Theorem 1 Any two distinct but logically equivalent k-term DNF formulas do not
have any common valid discriminant.

Proof: We use a proof by contradiction. Let f; and f; be two non-isomorphic k-term
DNF formulas that are logically equivalent. Suppose that L is a valid discriminant for
both f; and f;. Since f; and f; are not isomorphic there must exist some term ¢ in f;
that is not in f;. Without loss of generality assume that ¢ is the first term of f;, ' F# ¢
is the first term of fo, and [ is some literal in ¢ that is not in #/. (If no such literal exists,
then just reverse the roles of ¢ and ¢'.) Consider an example z for which all literals in
L. and [ are off, and all literals in ¢’ are on. Since all literals in L,; are off it follows
that fi(z) = t(z) and fi(z) = ¢/(z). However ¢(z) = 0 and ¢/(z) = 1. Thus f; and fy
are not logically equivalent giving the desired contradiction. ||

Thus to obtain a formula isomorphic to the target, we need just find a formula
with the given discriminant that is logically equivalent to the target. We proceed by
proving that after receiving enough positive counterexamples, with high probability
BUILD-FORMULA will create a hypothesis that contains all of the terms of k.. To prove
this result we use the following additional notation and series of lemmas.

Let V" = {v | ti(v) = 1 A all literals in L,; off }. Thus V;* are the positive vectors
that may be queried when building term ¢;. Observe that for 1 < ¢ < k, the sets V/¥
are disjoint. Let v be a positive counterexample from an equivalence query made by
BUILD-FORMULA. If IMQ(v[L.:]) =“I don’t know” we may try building some ¢; for
which t;(v[L.;]) = 0. This introduces two types of positive counterexamples relative to
a term t; — those for which #;(v) = 1 and those for which ¢;(v) = 0. However, observe

that for every positive counterexample v, t;(v[L.]) = 1 for some term .
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We now show that for every positive counterexample v such that ;(v[L.]) =1,

[T

Pr[min(t;) = searchsel(t;) or maz(t;) = searchsel(t;)] >
where “x => set” is read “z added to set” and denotes that
set « {set U{z} | previously = ¢ set}.

Let a successful iteration of the main loop of BUILD-FORMULA be one in which
for some term t; either min(t;) = searchsei(t;) or maa(t:;) = searchset(t;). We now
show that when BUILD-FORMULA receives a positive counterexample the probability of

having a successful iteration is at least 1/2.

Lemma 2 [f SEARCH-FOR-MAX2 s called with d > [f(p)]| and no previously queried

positive vectors are encountered then Pr [maz(t;) = searchsel(t;)] > 1 for some term t;

of h,.

Proof: This lemma follows immediately from the observation that for every positive
counterexample v, t;(v[L]) = 1 for some new term ¢; of k., and Lemmas 3 and 4 of
Angluin and Slonim [AS91]. [

There is a dual result for SEARCH-FOR-MIN2. In order to apply Lemma 2 it is
essential that when either SEARCH-FOR-MINZ2 or SEARCH-FOR-MAX2 is called, no pre-
viously queried positive vectors are encountered. That is, either SEARCH-FOR-MINZ
or SEARCH-FOR-MAX2 must have a clear path. The following series of lemmas proves

that this is the case.

Lemma 3 Let v be a vector such that t;(v) = 1. Ifv is an ancestor of a positive vector

in searchsel(t;) and a descendant of a positive vector in searchset(t;) then h(v) = 1.

Proof: We use a proof by contradiction. Suppose A(v) = 0. Let vy, be a minimum
positive vector in searchsef(l;) such that v is an ancestor of vp,in. Likewise, let vz
be a maximum positive vector in searchset(t;) such that v is a descendant of vy, By
Observation 1, ¢ = COMBINE2(Umin, Umas) Classifies all vectors that are both descen-

dants of v, and ancestors of vy, as positive. Furthermore, ¢; C ¢ and thus ¢ is never
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removed by a negative counterexample. Finally, since ¢(v) = 1 it follows that A(v) = 1,
contradicting the initial assumption. |
We now prove that if maz(¢;) and min(¢;) are not in searchsei(t;) and v is a coun-

terexample for which ¢;(v) = 1, then either SEARCH-FOR-MIN2 or SEARCH-FOR-MAX?2

has a clear path.

Lemma 4 If max(t;) € searchset(t;) and min(t;) ¢ searchsei(t;) then for any coun-
terezample v € Vit, no descendants of v in Vi have been queried or no ancestors of v

in V¥ have been queried by the call to BUILD-FORMULA with discriminant L.

Proof: Observe that the vectors in ¥t are only queried when building searchset(t;).
Assume that an ancestor of v in V;* and a descendant of v in V;* have been queried.
Note that all positive vectors queries when trying to build ¢; are placed in searchset(t;),
and thus searchsef(t;) contains both positive ancestors and descendants of v. Finally, by
Lemma 3, v 1s classified as positive, contradicting that » is a positive counterexample.
|

Finally, in order to ensure that for every positive counterexample, with probability
1/2, either min(t;) or maz(t;) is added to searchset(t;) for some term #;, we must show
that if min(t;) (respectively, maa(¢;)) is already in searchset(t;) and ¢;(v) = 1 then

SEARCH-FOR-MAX2 (respectively, SEARCH-FOR-MIN2) has a clear path.

Lemma 5 If min(t;) € searchsel(t;) then for any counterezample v € V¥, no an-
cestors of v in V¥ have been previously queried by the call of BUILD-FORMULA with

discriminant L.

Proof: Assume that min(¢;) € searchsei(t;) and let v/ € V;* be a maximum positive
ancestor of v that has already been queried. Observe that v’ € searchsei(t;) since
searchset(t;) contains all positive vectors queried when trying to build ¢;. Since min(;)
is a positive descendant of v and v’ is a positive ancestor of v, it follows from Lemma 3
that A(v) = 1 contradicting that v is a positive counterexample. |

A dual result holds for the case maxz(t;) € searchsei(t;). We now prove that after
receiving enough positive counterexamples, BUILD-FORMULA will have build all terms

of the target with high probability.
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Lemma 6 For a non-redundaent k-term DNF formula h., if BUILD-FORMULA is called
with a valid discriminant for h. then with probability at least 1 — & after receiving
16k log(1/68) positive counterezamples the hypothesis constructed by BUILD-FORMULA

will contain all terms of h..

Proof: It follows from Lemmas 2, 3, 4, and 5 that the probability of a success-
ful run of BUILD-FORMULA is at least 1/2. Observe that 2k successful runs are
needed to guarantee that all k& MIN vectors and all & MAX vectors are found. Since
each positive counterexample has a probability of 1/2 of yielding a success, the ex-
pected number of positive counterexamples required is 4%, and by Chernoff bounds
the probability that more than 16k log(1/6) positive counterexamples are obtained
without yielding 2k successful runs is bounded by §. Thus, with probability at least
1—6, after receiving 16k log(1/6) positive counterexamples, maz(t;) € searchsei(t;) and
min(t;) € searchset(t;) for 1 < ¢ < k and so each term of A, will be included in the
hypothesis created by BUILD-FORMULA. ||

Finally, we prove that CLEAN-FORMULA outputs a formula isomorphic the the tar-
get. Recall that there are only three types of terms in the hypothesis, those that appear
in h., those that are subsumed by one of the terms that appear in A, and those that
are undesirable with respect to some term of k.. Since CLEAN-FORMULA just removes
the terms of the hypothesis that are directly subsumed by some other term in the hy-
pothesis, clearly the resulting formula will be logically equivalent to the target. So we
need just prove that all undesirable terms are eliminated by negative counterexamples

prior to the call to CLEAN-FORMULA.

Lemma 7 For any term t' that is in the candidate set for term t; and is undesirable

with respect to t;, there exists an instance v for which t'(v) =1, yet h,(v) = 0.

Proof: Since ¢ is undesirable with respect to #;, there exists an instance v’ such that
t(v") = 1 and #;(v") = 0. Consider the instance v = v’[L.]. Since SEARCH-FOR-MAX2
and SEARCH-FOR-MIN2 are constrained so that all literals in L.; are off it is not hard
to show that t'(v) = 1 and ¢;(v) = 0. Finally, since L,; contains a literal from all terms

t; for 7 # 4 it follows that ¢;(v) = 0, and thus k.(v) = 0. [
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From the above lemma it immediately follows that when BUILD-FORMULA achieves
exact identification, all undesirable terms have been removed by negative counterex-
amples. The only other types of terms are those from k., and those subsumed by a term
in h,, and thus we can complete the proof that BUILD-FORMULA outputs a formula

that is isomorphic to the target.

Theorem 2 For a non-redundant k-term DNF' formula h., if LEARN-KTERM-DNF
calls BUILD-FORMULA ¢ single time with a valid discriminant for h, then, with proba-

bility at least 1 — §, BUILD-FORMULA oulputs a hypothesis that is isomorphic to h..

Proof: It follows from Lemma 6 that with probability at least 1 — 8, at some point
during the execution of BUILD-FORMULA, the hypothesis created will contain all terms
in the target formula. Furthermore, after possibly some negative counterexamples, the
formula constructed by BUILD-FORMULA will be logically equivalent to the target, and
thus by Lemma 7, CLEAN-FORMULA needs only to remove terms ¢; that are subsumed
by ¢;. Since CLEAN-FORMULA evaluates all pairs of terms ¢;,; in the hypothesis and
removes those terms ¢; such that lzts(t;) D lits(fx), with probability at least 1 — 6,

LEARN-KTERM-DNF returns a k-term DNF formula that is isomorphic to A.. [ |

5.2 Correctness of LEARN-KTERM-DNF

In this section we prove that, with high probability, LEARN-KTERM-DNF outputs a
k-term DNF formula logically equivalent to the target. We have shown that it suc-
ceeds when calling BUILD-FORMULA with a valid discriminant for the target. Thus we
need just consider what could happen when other potential discriminants are given to

BUILD-FORMULA.

Theorem 3 For a non-redundant k-term DNF formula h., LEARN-KTERM-DNF, 0b-

tains representational ezact identification of h. with probability at least 1 — 4.

Proof: The procedure BUILD-FORMULA may be called with a discriminant that falls
into one of three categories: a discriminant that is valid for A., a discriminant that
is valid for some k-term DNF formula f that is logically equivalent to h,, or an in-

valid discriminant. Observe that the lemmas used for proving Theorem 2 assume that
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BUILD-FORMULA has not been previously called with a different potential discriminant.
What happens if BUILD-FORMULA is called (and fails) on some invalid discriminants
before being called with a valid discriminant? Note that the analysis relies on the inde-
pendence of “I don’t know” answers only when BUILD-FORMULA is called with a valid
discriminant. Thus we can handle this technicality by assuming that the answers for
incomplete membership queries are generated by an oracle that first performs the coin
flips for the incomplete membership queries made by BUILD-FORMULA when given the
first valid discriminant and uses these answers for the other runs of BUILD-FORMULA.
Thus, from Theorem 2 we can conclude that when BUILD-FORMULA is called with a
valid discriminant for k., then with probability at least 1 — § it outputs a k-term DNF
formula that is isomorphic to A..

What happens when BUILD-FORMULA is given an invalid discriminant? We guar-
antee that it does not run indefinitely by limiting the number of positive counterex-
amples seen in any call of BUILD-FORMULA to 16k log(1/6). Note that it is possible
for BUILD-FORMULA to learn the target when given an invalid discriminant. However,
this occurs with low probability and does not affect the analysis.

The other possibility we must contend with is the situation in which BUILD-FORMULA
is called with a valid discriminant for some k-term DNF formula f that is logically
equivalent to A, before it is called with a valid discriminant for .. When this occurs,
by the same argument as in Theorem 2, with high probability LEARN-KTERM-DNF will
return f, achieving representational exact identification. |

Observe that if we are provided with an additional oracle that given a hypothesis
returns “yes” if the hypothesis is isomorphic to the target, then by simply querying
this oracle with each result from CLEAN-FORMULA we can continue until we finally
call BUILD-FORMULA with a valid discriminant for A,. Thus if provided with this
additional oracle LEARN-KTERM-DNF can be modified to output a formula isomorphic

to the target with probability at least I — 6.
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5.8 Time and Sample Complexity

In this section we prove that LEARN-KTERM-DNF runs in time polynomial in n and

log(1/6) for k& and p constant.

Theorem 4 For a non-redundant k-term DNF formula h., LEARN-KTERM-DNF uses
e O (n"2+2d+2 logs(l/é)) equivalence queries,
o O (nk2+d+l log(l/E)) incomplete membership queries and
o O (nk2+4d+4 10g6(1/6)) time

where d = [f(p)]*.

Proof: We first bound the number of incomplete membership and equivalence queries
used. Angluin [Ang87a] showed that there are k(2n)**-1) possible discriminants to
consider. Thus, we need just multiply this quantity by the number of equivalence and
incomplete membership queries made by each call to BUILD-FORMULA..

Recall that at most 16k log(1/8) positive counterexamples are obtained in a given
call to BUILD-FORMULA. Now for each positive counterexample v, £ incomplete mem-
bership queries are used to check if A, (v[L.]) = “yes” or “I don’t know”. In addition,
at most O(n%*!) incomplete membership queries are made in the search for min(t;)
and mazx(t;) for 1 < i < k. Thus O(E*n%t!log(1/6)) incomplete membership queries
are made during a single call to BUILD-FORMULA. Since O(n%*!) incomplete member-
ship queries are made during the searches for min(t;) and maz(t;), O(n®*!) vectors are
added to searchset(t;) for each positive counterexample. This results in

16k1og(1/6)
(O - n¥)2 =0 (ke’nz(dﬂ} logs(l/é))

=1
terms being added to the hypothesis for each term of A,. Since every negative coun-
terexample removes at least one of these terms, O (k‘*nz{d"'l) log®(1/ 6)) negative coun-
terexamples can occur during a single call of BUILD-FORMULA. Finally, the time com-

plexity follows from observing that O(%) time is spent for each positive counterexample,

'Recall that Angluin and Slonim have shown that f(p) < lg 125 +lglg 125 and thus selecting
d= {]gi—}}; +lglg 'i"-l-?] suffices.
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O(k4n?@+1) [og®(1/6)) time is spent for each negative counterexample since all terms in

the hypothesis are examined, and O(1) time is spent for each incomplete membership

query. ||

6 Concluding Remarks

We have given an efficient algorithm that with high probability exactly identifies, in a
representational sense, any k-term DNF formula using equivalence queries and incom-
plete membership queries. Like the algorithm given by Angluin and Slonim [AS91],
LEARN-KTERM-DNF can be modified to handle persistent false negative errors in an-
swers to the membership queries. In this model all negative instances are correctly
answered by the membership oracle but each positive instance, with probability p, is
answered “no” by the first membership query made for it. The key observations here
are that all queries answered “yes” are reliable, and that Theorems 3 and 4 hold even
if all “no” queries were answered with “I don’t know”. Thus we need just modify
SEARCH-FOR-MIN, SEARCH-FOR-MAX, and BUILD~-FORMULA to treat all “no” answers
as if they were “I don’t know” answers.

One interesting open question is to determine if the class of DNF formulas with more
than a constant number of terms can be exactly identified (even in just a logical sense)
using equivalence queries and incomplete membership queries. In particular, it may
be possible to use the techniques of Blum and Rudich [BR92] to obtain such a result.
More generally, it would be interesting to determine whether some of the other classes
that are known to be learnable using equivalence queries and complete membership
queries are still efficiently learnable under the model of incomplete membership queries.

Finally, other models of noise in membership queries should be explored.
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