View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-88-33

1988-10-01

A Shared Dataspace Model of Concurrency - Language and
Programming Implications

Gruia-Catalin Roman and H. Conrad Cunningham

The term shared dataspace refers to the general class of models and languages in which the
principal means of communication is a common, content-addressable data structure called a
dataspace. Swarm is a simple language we have used as a vehicle for the investigation of the
shared dataspace approach to concurrent computation. This paper reports on the progress we
have made toward the development of a formal operational model for Swarm and a few of the
language and programming implications of the model. The paper has four parts: an overview of
the Swarm language, a presentation of a formal operational... Read complete abstract on page
2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Cunningham, H. Conrad, "A Shared Dataspace Model of Concurrency -
Language and Programming Implications" Report Number: WUCS-88-33 (1988). All Computer Science
and Engineering Research.

https://openscholarship.wustl.edu/cse_research/790

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://core.ac.uk/display/233199983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/790?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/790

A Shared Dataspace Model of Concurrency —- Language and Programming
Implications

Gruia-Catalin Roman and H. Conrad Cunningham

Complete Abstract:

The term shared dataspace refers to the general class of models and languages in which the principal
means of communication is a common, content-addressable data structure called a dataspace. Swarm is
a simple language we have used as a vehicle for the investigation of the shared dataspace approach to
concurrent computation. This paper reports on the progress we have made toward the development of a
formal operational model for Swarm and a few of the language and programming implications of the
model. The paper has four parts: an overview of the Swarm language, a presentation of a formal
operational model, an examination of Swarm programming strategies via a series of related example
programs, and a discussion of the distinctive features of the shared dataspace model.


https://openscholarship.wustl.edu/cse_research/790?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/790?utm_source=openscholarship.wustl.edu%2Fcse_research%2F790&utm_medium=PDF&utm_campaign=PDFCoverPages

A SHARED DATASPACE MODEL OF CONCURRENCY
— Language and Programming Implications —

Gruia-Catalin Roman and H. Conrad Cunningham

WUCS-88-33

October 1988
Revised March 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

To appear in the Proceedings of the 9th International Conference on Distributed Computing Systems,
IEEE, Newport Beach, California, June 1989.






A SHARED DATASPACE MODEL OF CONCURRENCY
-~ Language and Programming Implications —

Gruia-Catalin Roman and H, Conrad Cunningham

Department of Computer Science
WASHINGTON UNIVERSITY
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ABSTRACT

The term shared dataspace refers to the general class of
models and languages in which the principal means of com-
munication is a common, content-addressable data structure
called a dataspace. Swarm is a simple langnage we have used
as a vehicle for the investigation of the shared dataspace
approach to concurrent computation. This paper reports on
the progress we have made toward the development of a for-
mal operational model for Swarm and a few of the Janguage
and prograraming implications of the model. The paper has
four parts: an overview the Swarm langurage, a presentation of
a formal operational model, an examination of Swarm pro-
gramming strategies via a series of related example programs,
and a discussion of the distinctive features of the shared data-
space model.

1. INTRODUCTION

Over the last decade concurrency has been ome of the
most active and prolific areas of research in computer science,
The variety of formal models, languages, and algorithms that
have been proposed attests to the vitality of the field and to its
ability to respond to the underlying technological currents
which demand new ways to manage and exploit parallelism.
Nevertheless, despite the multiplicity of forms, much of the
work on concurrency is aligned with one of three basic para-
digms: communication via shared variables, (synchronous or
asynchronous) message-based communication, and remote
gperations. The three paradigms differ in the mechanisms
they provide for communication among concurrent processes.
However, all three rely on the use of names to identify
(directly or indirectly) the commumicating parties.

Given this state of affairs, one would naturally pose the
question: fs naming fundamental to achieving cooperation
among concurrent processes? We believe the answer to be
no. To take an example from nature, it is very doubtful that
bees making up a swarm have individual names, yet, they
cooperate effectively in performing highly complex tasks.
The key to communication is not naming but, as Lamport??
points out, the existence of a persistent communication
medium (the beehive, the intruding bear, the bees themselves)
and a coherent interpretation of the information it encodes.

In the programming language arena, there are numerous
mstances where data access is primarily by content rather
than by name: logic programming, rule-based systems, and
database languages. Languages without name-based access-
ing of data are rare. Associons!? is a notable exception—data
are represented by a set of tuples which may be altered by
means of an operation called the closure statement. Although
the closure statement facilitates highly parallel execution,
Associons is not a concurrent language—it does not provide

mechanisms for explicit representation of concurrency.

The first concurrent language to make extensive use of a
content-addressable communication medium is Lindal. In
Linda processes commumicate by examining, inserting, and
deleting {one at a time) tuples stored in a tuple space.
Linda’s success has been instrumental in the emergence of
other languages using a similar communication paradigm.
Our own work on language and visualization support for
large-scale concurrency led us to propose SDL!%12, g lan.
guage in which processes use powerful transactions to manip-
ulate abstract views of a virtual, content-addressable data
structure called the dataspace. The Transaction Network? is
a visual language in which the traditional places and transi-
tions appearing in Petri nets have been replaced by databases
and transactions, respectively.

We use the term shared dataspace to refer to the general
class of models and languages in which the principal means
of communication is a common, content-addressable data
structure. Because the investigation of shared dataspace lan-
guages and models has just begun, the body of knowledge
accumnulated to date is too limited to reach any decisive
conclusions about the paradigm’s long-term viability. Even
so, the Linda-related work, our own experiments with SDL,
the general trend toward the integration of database concepts
into programming languages, and the growing interest in
parallel computation among artificial intelligence researchers
make us highly optimistic about the future of shared data-
space languages.

During the past year our research group has embarked on
a systematic study of the shared dataspace paradigm. The
main vehicle for this investigation is a language called
Swarm. Following the example of the UNITY model®, the
design of Swarm takes a mimimalist approach; it provides
only a small number of constructs which. we believe to be at
the core of a large class of shared dataspace languages. The
stzdy, which is far from being completed, has a very broad
scope, encompassing the development of formal (operational
and axiomatic) semantic models, novel programming meta-
phors specific to the shared dataspace paradigin, implementa-
tion strategies, and new approaches to visualizing concurrent
computations!4,

This paper reports on the progress we have made toward
the development of a formal operational model for Swamm
and a few of the language and programming implications of
the model. The paper has four parts. Section 2 informally
overviews the Swarm language. Section 3 follows with a for-
mal operational model. To illustrate the kinds of algorithms
one can construct in shared dataspace languages, section 4
presents several solutions to the problem of labeling equal-
intensity regions within a digital image. Section 5 highlights
the distinctive features of the shared dataspace model,



2. THE SWARM LANGUAGE

To probe the essence of the shared dataspace paradigm,
we define a shared dataspace language based on a few simple
concepts. By choosing the name Swarm for this language, we
evoke the image of a large aggregation of small, independent
agents cooperating to perform a task.

Underlying the Swarm language is a state-transition
model similar to that of UNITY, but recast into the shared
dataspace framework. In the model, the state of a
computation is represented by the contents of the dataspace, &
set of content-addressable entities. The model partitions the
dataspace into three subsets: the tuple space, a finite set of
data tuples; the fransaction space, = finite set of
transactions; and the synchrony relation, which is discussed
at the end of the section. An element of the dataspace is a
pairing of a fype name with a sequence of values. In addition,
a transaction has an associated behavior specification,

Although actual implementations of Swarm can overlap
the execution of transactions, we have found the following
program execution model to be convenient. The program
begins executicn with the specified initial dataspace. On each
execulion siep, a transaction is chosen nondeterministically
from the transaction space and executed atomically. This
selection is fair in the sense that every transaction in the
fransaction space at any point in the computation will
eventually be chosen. An executing transaction examines the
dataspace and then, depending upon the resulis of the
examination, can delete tuples (but not transactions) from the
dataspace and insert new tuples and transactions into the
dataspace. Unless a transaction explicitly reinserts itself into
the dataspace, it is deleted as & by-product of its execution.
Program execution continues until there are no transactions in
the dataspace.

2.1. Program Organization

Before explaining the syntax and semantics of programs,
we need to introduce a few frequently used basic construets.
Swarm’s ubiquitous constructor notation is used to form a set
of entities and apply an operator to the elemnents of the set. It
has the form:

operands ]

The operator field is a commutative and associative operator
such as 3, V, Z, I, min, and max. The operands field is a list
of operands (separated by semicolons) compatible with the
operator. The variables field is a (possibly nutl) list of bound
variables whose scopes are delimited by the brackets. An
instance of the constructor corresponds to a set of values for
the bound variables such that the domain predicate is
satisfied. (If the domain is blank, then the constant true is
taken for the predicate.) The operator is applied to the set of
operands comesponding to all instances of the constructor; if
there are no instances, then the result of the constructor is the
identity element of the operator, e.g., 0 for £, 1 for II, true
for ¥, and false for 3.

Swarm predicates are first-order logical expressions
constructed in the usual manner from other predicates, paren-
theses, and the logical operators A, v, and —. (For conven-
ience, a comma can be used in place of A), Simple predicates
include tests for the usual arithmetic relationships among
values. Predicates can also examine the dataspace. For

{ operator variables : domain :

example, the predicate has_label(17,)), where A is a variable,
examines the dataspace for an element of type has label
having two components, the first being the constant 17 and
the second being an arbitrary value. If such an element
exists, the predicate succeeds and the value of the second
component of the matched element is bound to the variable A.
A special form of the constructor, called a generator, is
used to form a set of entities. For example, the generator

[ P, L : Pixel(P), Pixel{L) : has_label(?,L) ]

constructs a set consisting a has label(P,L} wple for all
values of P and L that satisfy the predicate Pixel. The domain
predicate of a generator is not allowed to examine the data-
space,

A Swarm program consists of five sections: a program
header, optional constant and macro definitions, tuple type
declarations, transaction type declarations, and a dataspace
initialization section. The syntax and semantics of these pro-
gram sections are given below. Figure 1 shows a Swarm pro-
gram to label each pixel in commected equal-intensity regions
of a digital image with the smallest coordinate in its region.

Program header. The program header associates a name
with the program snd optionally defines a set of program
parameters. An invocation of the program with specific argn-

program Regionl.abel1 ( Rows, Cols, Lo, Hi, Intensity :
1< Rows, 1< Cols, Lo < Hi,
Intensity(p: Pixel(p)),
[V p : Pizel(p) : Lo < Intensity(p) <Hi] )
definitions
[P,QL::
PixelP)=[Fx,y:P=(x¥):
1<x2Cols,1<y<Rows];
P neighbors Q = Pixel(P), Pixel(Q), P = Q,
[@xyab: P=(xy), Q=(2,b):
a-l<x<a+l,b-1 £y <b+l},
[31:: has_intensity(P.1), has_intensity(Q,L)} ;
Pis_labeled L = has_label(P,L)
1
tuple types
[P, L, I: Pixel(P), Pixel{L), lo<I<Hi:
has_Jabel(P,L) ;
has_intensity(P,I)

transaction types
[ P:Pixel(P):
Label(P) =
p,ALA2 : Pis labeled 1%, p is_labeled A2,
p neighbors P, A1 > A2
—» Pis_labeled A2, Label(P)
[ NOR — Label(P)

initialization
[P: Pixel(P):
has_label(P,P), has_intensity(P,Intensity(P)),
Label(P)
end

Figure 1: Nonterminating Region Labeling in Swarm




ment values causes the substimtion of the values for the
parameter names throughout the program’s body. The argu-
ment values must satisfy the constraint predicates given in the
program header. The program in Figure ! is named
RegionLabell; it has parameters Rows, Cols, Lo, Hi, and
Intensity constrained as indicated. Infensity is an array of
input values indexed by the pixel coordinates.

Definitions. The optional Swarm definitions section
allows the programmer to introduce named constants and
“macros" into a program. For example, the Regionlabell
program in Figure 1 defines predicates Pixel(P) and P
neighbors . These predicates allow the other sections to be
expressed in a more concise and readable fashion.

Tuple types. The tuple types section declares the types
of tuples that can exist in the tuple space. Each tuple type
declaration defines a set of tuple instances that can be exam-
ined, inserted, and deleted by the program. In Figure 1 tuple
type has_label pairs a pixel with a label; has_intensity pairs a
pixel with its intensity value.

Transaction types. The transaction types section
declares the types of transactions that can exist in the transac-
tion space. Bach transaction type declaration defines a set of
transaction instarces that can be executed, inserted, or exam-
ined by a program. The program in Figure 1 declares a trans-
action type Label(P).

The body of a transaction instance consists of a sequence
of subtransactions connected by the ||operator:

varfable_lrls'tl : query, — action,

| variable list : query — action_

Each subtransaction definition consists of three parts: the
variable_list, a comma-separated list of variable names; the
query, an existential predicate over the dataspace; and the
action which defines changes to be made to the dataspace. If
the variable list is null, then the colon that separates it from
the query may be omitted.

A subtransaction’s action specifies sets of tuples to insert
and delete and transactions to insert. Syntactically, an action
consists of dataspace insertion and deletion operations sepa-
rated by commas. In the action of a subfransaction, the
notation name ( values) specifies that a wple or transaction of
the type name is io be inserted into the dataspace; a T
appended to a tuple specifies that the tuple is to be deleted if
it is present in the dataspace. Generators may be used to
specify groups of insertions or deletions,

As a convenience, tuple deletion may be specified in the
query by appending the symbol 1 to a mple space predicate.
name (pattern)T indicates that the matching tuple in the wple
space is to be deleted if the entire query succeeds. Any
variables appearing in the patfern must be defined in the
variable_list of the subtransaction {not in a constructor nested
inside the query).

A subtransaction is executed in three phases: query evalu-
ation, tuple deletions, and tuple and transaction insertions.
Evaluation of the query seeks to find values for the subtrans-
action variables that make the query predicate tue with
Tespect to the dataspace. If the query evaluation succeeds,
then the dataspace deletions and insertions specified by the
subtransaction’s action are performed using the values bound
by the query. If the query fails, then the action is not
executed. The subtransactions of a transaction are executed

synchronously: the queries are evaluated simultaneously, then
the indicated deletions are performed for all subtransactions,
and finally the indicated tuple and transaction insertions are
done.

The special global predicates AND, OR, NAND, and
NOR (having the same meanings as in digital logic design)
may be used in queries. These special predicates examine the
success status of all the simultaneously executed subtransac-
tion queries which do not involve global predicates, ie., the
local queries. For example, the predicate OR succeeds if any
of the local queries in the transaction also succeed; NQR
(not-or) succeeds if none of the local queries succeed.

Initialization. By default, both the tuple and transaction
spaces are empty. The initialization section establishes the
dataspace contents that exist at the beginning of a computa-
tion. The section consists of a sequence of initializers sepa-
rated by semicolons; each initializer is like a subtransaction’s
action in syntax and semantics. Since the null computation is
not very interesting, at least ome transacton must be
established at initialization.

2.2. Synchrony relation

In our discussion so far we have ignored the third compo-
nent of a Swarm program’s state—the synchrony relation.
The interaction of the synchrony relation with the execution
mechanism provides a dynamic form of the || operator. Using
this feature programs can dynamically form groups of
transactions; these groups are executed as if they were a
single transaction.

The synchrony relation is a symmetric relation on the set
of valid transaction instances. The reflexive transitive closure
of the synchrony relation is an equivalence relation. When
one of the transactions in an equivalence class is chosen for
execution, then all members of the class which exist in the
transaction space at that point in the computation are also
chosen. This group of related transactions is called a
synchronic group. The subtransactions making up the
transactions of a synchronic group are executed as if they
were part of the same transaction.

The synchrony relation can be examined and medified in
much the same way as the tuple and transaction spaces can.
The predicate

Label(p) ~ Label(Q)

{where p is a variable and Q is a constant} in the query of a
subtransaction examines the synchrony relation for a transac-
tion instance Label{p) that is directly related to an instance
Label((). Neither transaction instance is required to exist in
the transaction space. The operator = can be used in a predi-
cate to examine whether fransaction instances are related by
the closure of the synchrony relation. (The scope of the glo-
bal predicates, e.g., AND, extends to all local subtransactions
in the synchronic group.)

Synchrony relationships between transaction instances
can be inserted into and deleted from the relation. The
operation

Label(p) ~ Label(q)

in the action of a subtransaction creates a dynamic coupling
between transaction instances Label{p) and Label{q} (where p
and g must have bound values). If two instances are related
by the synchrony relation, then



{ Label(p) ~ Label{q) )}

deletes the relationship. MNote that the closure relation can be
examined, but that only the base synchrony relation can be
modified.

By default the synchrony relation is empty. Initial cou-
plings can be specified by putting insertion operations into the
initialization section. For the purposes of this paper, assume
that any two transaction instances can be related by the syn-
chreny relation.

3. AFORMAL MODEL

In this section we present an operational, state-transition
model for Swarm. This model formalizes the concepts
expressed informally in the previous section and lays the
foundation for our development of a programming logic for
the language. The reader uninterested in formal semantics
can proceed to the next section on programming implications.

The model represents the execution of a Swarm program
as an infinite sequence of dataspaces (program states). Termi-
nating computations are modeled as infinite sequences by
replicating the final dataspace. The first dataspace in each
program execution sequence is one of the valid initial data-
spaces of the program. Each successive element consists of
the transformed dataspace resulting from the execution of a
synchronic group from the preceding element’s transaction
space. Allowed transitions between dataspaces are specified
with a transition relation. The choice of the transactions to
execute is assumed to satisfy a fairness property.

The Swann model is stated in terms of relationships
among several sets of basic entities. Val denotes the set of
constant values used in Swarm programs. In this paper we
restrict ourselves to integers (set ¥nt) and booleans (set Bool).
Nam is the set from which names of tuple and transaction
types are drawn (Nam ~ Val = &),

The model] also uses a number of operations on sets. For
set S, Pow(S) denotes the powerset and Fs(S) denotes the set
of all finite subsets. We use a three-part notation similar to
Swarm’s constructor to express set construction and quanti-
fied expressions, e.g., { n: n > 10 : n } denotes the set of
values greater than 10. If R is & binary relation on some set,
then R* is the reflexive, transiiive closure of the relation. If S
is a set, then $* denotes the set of all finite-length sequernces
whose elements are drawn from § and $™ denotes the set of
all infinite sequences. The symbol & signifies the empty
(zero-length) sequence. Sequence elements are indexed with
natural numbers beginning with 0. The notation s, designates
the ith element of the sequence s; #s denotes the length of the
sequence.

Ignoring the program and definitions sections (which
are syntactic sugar), a Swarm program is modeled as a four-
tuple (TP, TR, SR, ID) where:

TP : Nam — Val* — Bool
is the characteristic function for data tuple types.
TP(name,values) = true iff name(values) is a twple
instance allowed by the tuple type declaration in the pro-
gram’s text. A tuple type is the nonempty set of all ple
instances corresponding to one tiple name. The number
of tuple types in a program must be finite.

TR : Nam - Val* — Beh
is the characteristic function for transaction types.

TR(name,values) # £ iff name(values) is a transaction
instance allowed by the transaction type declaration in the
program’s text. A transaction type is the nonempty set of
all transaction instances corresponding to one transaction
name. The number of transacton types must be finite,
The sets of names for tuple and transaction types must be
disjoint. Beh is the set of transaction behaviors defined
below.

SR is the set of valid synchrony relations. Each element of
SR is a symmetric, irreflexive binary relation on the set of
valid transaction instances.

ID is the set of valid initial dataspaces; one of these data-
spaces is chosen nondeterministically as the first data-
space of an execution sequence.

The data type and transaction type characteristic func-
tions define the sets of all valid instances of tuples { TPS ) and
transactions { TRS )

TPS={n,v:ne Nam A ve Val* A TP(n,v) : (n,v) }
TRS = {n,vine Nam A ve Val* ATR(n,v)=£: (n,v) }

SR is a subset of Pow{TRS x TRS).
DS, the universe of dataspaces (program states), can now
be defined as follows:

DS = Es(TPS) x Fs(TRS) x SR

Each dataspace consists of a finite tuple space, a finite trans-
action space, and a synchrony relation. ID is a (normally sin-
gleton) subset of DS.

The set of transaction behaviors Beh is a subset of the set
of sequences (L. U G)* where:

LnG=g

L c[Bool* - DS — Val* > BoolxDSxDS

is a set of behaviors for subtransactions which involve
only ordinary local predicates. Each element of L. maps a
dataspace and a set of bindings for subtransaction varia-
bles to a query result flag, a group of (tuple and syn-
chrony relation) deletions, and a group of (tuple, transac-
tion, and synchrony relation) insertions. Given a data-
space d and a sequence of values for the subtransaction
variables v

(¥ b:be Bool* : L{bdv) =L{ed,v)

because the Bool* argument is & "dummy" included for
compatibility with G.
G c[Bool* — DS — Val* - Bool x DS xDS ]

is a set of behaviors for subtransactions involving the spe-
cial global predicates AND, OR, NAND, and NOR as
discussed in the previous section. The Bool* arguments
represent the success and failure results of all the local
subtransactions executed in the same step. The function
range is interpreted in the same way as in L. Given a
dataspace d, a sequence of Jocal query results b, and a
sequence of values for the subtransaction variables v:

(¥b": b is a permutation of b : G(b,d,v) = G(b",d,v))

because the global predicates are commutative and
associative.
Swarm subtransactions can be translated to L and G functions
in a straightforward manner.



For convenience, we define a number of prefix operators.
For any dataspace d in DS, Tp.d, Trd, and Sr.d yield,
respectively, the tuple space, transaction space, and syn-
chrony relation components of d. For example, if d = {a,b,c)
is an element of DS, then Tp.d yields the tuple space a. For
any subtransaction behavior s in L U G, Q.s, D.s, and L5 are
functions which yield the three components of s’s range when
applied to the same arguments as s, i.e., the query result, the
dataspace deletions, and the dataspace insertions.

For any dataspace d in DS, (Sr.d)* is an equivalence rela-
tion on TRS. An equivalence class of the closure is called a
synchrony class. For a dataspace d having a synchrony class
C,if C m Trd % &, then C N Tr.d, the set of transaction
instances in the synchrony class which actually exist in the
transaction space, is a syachronic group of d. To facilitate
the modeling of terminating computations, we define @ to be
the synchronic group of the empty transaction space,

So far we have modeled the program as a static entity.
As noted at the beginning of the section, an execution of a
program is denoted by an infinite sequence of dataspaces. To
be more precise, we define the universe of execution
sequences ES as follows:

ES = (DS x Fs(TRS))™

For all e € ES and for all i > 0, Ds.e, is the first component of
e, (the "current” dataspace) and Sg.e, is the second (the syn-
chronic group to be executed next).

To define the allowed orders in which dataspaces may be
sequenced in an execution of the program, we introduce the
transition relation step. This relation is defined in Figure 2.
The step relation states that a transition from a dataspace d to
a dataspace d” can occur by the execution of a set of transac-
tions § iff § is a synchronic group of d’s transaction space and
d’ is a possible result of the synchronous execution of all the
subtransactions in S from dataspace d. Because there may be
several sets of values for the bound variables in a subtransac-
ton that allow the query to succeed on dataspace d, the exe-
cution of the subtransaction nondeterministically chooses one
set, Given a set of values that satisfy the query, the deletion of
entities from the tuple space, transaction space, and syn-
chrony relation are "performed before" the insertions of new
entities. The subiransactions involving global predicates
depend upon the sueccess or failure of the local subtransac-
tions as well as directly upon the dataspace.

Some of the notation in Figure 2 needs further explana-
tion. Note in lines 4 and 5 the definition of the functions v
and b. v maps a sublransaction of § into a sequence of value
bindings for its variables, and b maps a subtransaction into a
boolean query success flag. In lines 10 and 11 the queries for
the global transactions depend upon the elemenis of b corre-
sponding to local subfransactions. In the definition of
loc(b,5) the operator SEQ means to concatenate the items in
the range of the constructor into a sequence in an arbitrary
order. In the definition of the Update predicate the subtrac-
tion symbol — is used to denote the set difference operation.

In the previous section we stated the requirement that the
selection of transactions for execution be fair, This faimess
constraint can be stated in terms of the execution sequences
of this model using the predicate Fair defined as follows:

(vd,d,S5:de DSAd’ e DSASCTRS:
step(d,S,d”) = Synch(8,d) A
Fv,b:
ve [{tirte SAOSI<#TR() : 1)) ~» Val*] A
be [{ti:te SAOSI<#TR(): (1)} —» Bool]:
(¥t,i, 0 subtrans(S,t,i,6) Ace L
(Qo(edv(ti)) Ab(Li))
v { (¥ x 2:=Q.o(e,d.x)) A =b(Li) })
A (V1,01 subtrans(S,t,0) A0 e G:
( Q.c(loctb,3),d,¥{t,i)) A b(Li))
v { (¥ x 11 =Q.0{loc(b,5),d,x)) A =b(t,D) ) )
» Update(d,S.d",v,b)
)
)

where
Synch(S,d)=
(S=BATrd=F)v
($2BAScTrda
Vnt'iteSatreS: (N e (Sr.d)) A
VixiteSaxe Trdaxe §:
tx) & (Sr.d)))
and
subtrans(8,51,0)=te SA 05 1<#TR(D AOC = (TR(@),
and
loc(b,8) =
(SEQ t, 1, 0 : sublrans(53,;,1,0) A 6 € L : b(t,i))

and
Update(d,S,d",v,b) =
Tp.d =(Tpd— (Ut i, ¢ subtrans(5,1,1,6) A b{t,i) :
Tp.Do(loc(b,S)d,v (6D}
v (U t, i, ¢! subtrans(S,11,0) A b(t,1) 2
Tp.Lo(loc(b,S),d,v(t,i)))

A Trd’=(Trd-8)
U (Ut i, o s subtrans(S,51,0) A b{LD) &
Tr.Lo(loc(b,Shdv(Li))
A Srd’=(Srd - (Ut i, ¢ : subtrans(S,1,1,06) A b(L1) ¢
Sr.D.c(loc(b,S),d, v(L,i))))
WUt 1, 02 subtrans(S,t,i,5) A b(t,i):
Sr.L.o(loc(b,S),d,v(L,i))

Figure 2: The Transition Relation

(Ve:eec ES:
Fair(e)=(Vi t:0sinte TrDse:
Jj:jzite Sg.ejz\
(Vk:isksj:te TrDse)))

Informally, an execution sequence is fair if, once a transac-
tion exists in the transaction space, it remains in the space
until it is selected for execution and it will be selected for
execution within a finite number of steps.

The set of program executions can now be formalized as
follows:

Exec={ e: e e ES AFair(e) A Ds.e, € ID
A(Vit0<is step(Ds.e,Sg.e,Ds.e )
e}
This is the set of all execution sequences which begin in a
valid initial dataspace, execute a synchronic group of transac-



tions at each computational step, and select transactions for
execution in a fair manner.

Using this state-transition model to capture the desired
notion of program execution, we have developed a program-
ming logic for Swarm®. This programming logic is similar in
style to the logic for UNITYS. The above concept of faimess
is a central assumption of the logic; it is essential to proofs of
liveness (progress) properties of Swarm programs.

4. PROGRAMMING IMPLICATIONS

In the preceding sections we iniroduced a mechanism for
examining and modifying the dataspace-—the transaction. A
transaction consists of a fixed set of subtransactions con-
nected by the | operator. The subtransactions of a transaction
are executed synchronously. Transactions may be coupled by
means of the synchrony relation into synchronic groups
which are executed asynchronously with respect to each
other. Of course, a synchronic group may contain only cne
transaction, having, in tum, a single subtransaction. In this
section we provide some of the motivation for these particular
choices. We do this by identifying the kinds of programming
strategies made possible by these language constructs.

Reasoning about concumrent computations is generally
done in terms of liveness (progress) and safety properties
(e.g., stability). Progress is achieved by effecting changes in
the computation’s state; stable properties are useful in detect-
ing the completion of a particular phase of the computation.
For these reasons our discussion is logically divided into two
paris: computational progress and stable state detection.

4.1, Progress

The manner in which progress is accomplished depends
upon the computational style supported by the underlying
model. Swarm supports both asynchronous and synchronous
computation in the context of either a static or dynamic trans-
action space. These capabilities are illustrated below by con-
sidering the problem of labeling connected regions of egual
intensity within a digital image. Throughout this subsection
we will ignore the issue of termination detection and assume
that any transaction which cannot change the labeling result is
harmless. We could inhibit the creation of such transactions,
but we prefer to keep the presentation simple,

In this section we discuss a series of solutions to the
region-labeling problem. To distingunish among similar trans-
actions in the varjous solutions, we append unique numbers to
the base transaction niames.

Static asynchronous computation. First, we consider
the case of an asynchronous computation with a static trans-
action space. In a manmer similar to Figure 1, the transaction
space consists of one transaction per pixel:

[P : Pixel(P) :
is_labeled(P,P), has_intensity(P,Intensity(PY),
Label 1(P) ]

Each Labell(P) transaction recreates itself and thus leaves
the transaction space unchanged:

[P :Pixel(P):
Label1(P) =
p,A1,A2 : Pis_labeled A17, p is_labeled A2,
p neighbors P, A1> A2
— Pis_labeled A2
| true — Labell(P)

]

Each Labell transaction is anchored at a pixel; the transaction
repeatedly relabels its pixel to smaller labels held by neighbor
pixels. Eventually the winning label propagates throughount
the entire region.

Dynamic asynchronous computation. A very different
kind of solution may be obtained if we allow a dynamic trans-
action space. As before, we can start with one transaction
associated with each pixel in the image:

[ P:Pixel(P): -, Label2(P,P)];

Each transaction, however, has two arguments. The first
argument is the pixel it is attempting to label; the second is
the label it is attempting to place on that pixel:

[P,L: Pixel(P), Pixel(L) :
Label2(P,L) =
[|8:P=),8next toP:
1: has_intensity(P,1), has_intensity(5,1)
— Label 2(8,P)

A :Pis_labeled At, A> L
— Pis_labeled L.

I
[[|[8:86=L, 8next toP:
A,1:Pis labeled A, A>L,
has_intensity(P,1), has_intensity(5,1)
-3 Label2(5,L)

1

Each Label2(P,L) rransaction consists of three groups of
subtransactions. In the first and third groups we use a new
Swarm feature, the subfransaction generator. For P =L, the
first group includes a subtransaction for each & such that §
next to P; otherwise, the group is mull. (The next to
predicate is defined like neighbors except that the pixels are
not required to have equal intensities.) This group of
subtransactions starts the propagation of a pixel’s label to its
neighbors. The second subiransaction group is a single
subtransaction which relabels pixel P when it has a label
larger than L. When a label is changed, the third
subfransacticn group propagates the relabeling activity to the
pixel’s neighbors. A wavefront of fransactions working on
behalf of the pixel having the smallest coordinate in the
region, i.e., the winning pixel, will expand until it reaches the
region boundaries where, having completed the region label-
ing, it dissipates.

Static synchronous computation. The synchronous ves-
sion of the static transaction space is a highly unpleasing one.
It demands the creation of a supertransaction that covers the
entire image:



[
Label3( )=
[lp : Pixelp):
8A1,A2 1 pis_labeled A11,8 is_labeled A2,
3 neighbors p, Al > A2
~3 p is_labeled A2 ]

[ true — Label3()

This kind of solution, typical for many SIMD machines,
creates an unnecessary coupling between independent regions
of the image. Because the structure of the image varies, one
cannot restrict a transaction to processing a single region.

For this reason Swarm includes the synchrony relation ~.
For static data, the synchrony relation may be used to creaie
an initial configuration of the transaction space which is tai-
lored to the initizl structure of the mple space. Using the
earlier definition of the Labell{P) transaction type, we can
redefine the initial configuration to be

[ P:Pixel(P):
has_label(P,P), has_intensity(P,Intensity(P)),
Labell(P)];
[P, Q: Pixel(P), Pixel(Q), P2 Q,
{3 %,y,8,b : P=(x,y), Q=(a,b) :
Intensity(P) = Intensity(Q),
a-l<x<atl,b-1gy<bel |
: Label 1(P) ~ Label 1(Q) ]

All the transactions working on the same region form a syn-
chronic group which recreates itself after each step.

Dynamic synchronous computation. Synchronic
groups can also be formed during program execution in
response to dynamically created data. This brings us to the
case of a synchronous solution in a dynamic transaction
space. This approach can be illusirated by altering the defini-
tion of Label1{P) so that it couples itself to those transactions
that are associated with its neighbors in the same ragion:

[P :Pixel(P):
Label4(P) =
P, Al, A2 : P is_labeled A11,p is_labeled A2,
p neighbors P, AL > A2
—» P is_labeled A2
I p3p neighbors P, ~(Labeld(p) ~ Labeld(P))
— Label4{p) ~ Label4(P)

| true - Labeld(P)

]

Gradually, the Label4(P) transactions associated with the
same region are brought into synchrony with each other.

4.2, Detection

Having considered four alternative ways of accomplish-
ing the labeling, we turn now to the issue of detecting the
completion of the process on a region-by-region basis. We
examine four distinct detection paradigms and relate them to
the different computing strategies discussed above.

Coordinated detection. The first paradigm could be
called coordinated detection, a computation which executes a
special protocol to detect the desired condition. Termination?,
quiescenice?, and global snapshot algorithms3 are representa-
tive of this paradigm. Algorithms for detecting the termina-
tion of a diffusing computation may be adapted to detecting

program RegionLabel2( Rows, Cols, Lo, Hi, Intensity :
1 < Rows, 1 £ Cols, Lo < Hi,
Intensity(p: Pixel(p)),
[ Vp : Pixel(p) : Lo<Intensity(p)<Hi] }
definitions
[P,Q,L::
PixelP)=[Ax,y:P=(xy):
1<x<Cols, 1<y<Rows];
P neighbors Q =
Pixel(P), Pixel(Q), P = Q,
@ xy.ab: P=(xy), Q=(ab):
a1 <x<a+l, b-1<y<b+l],
[3 1 2 has_intensity(P,1), has_intensity(Q,1) ] ;
Pis_labeled L = is_Jabeled(P,L) ;
Pis the winner = wins(P);
Pis not_the winner = —wins(P) ;
Pis a_ child on 1s_a_child_of(P.QQ) ;
P is not a_child_of Q= —is_a_child_of(P,Q}

]
tuple types
fP,Q,L,I:
Pixel(P), Pixel(Q) v Q = nil, Pixel(L), Lo<I<Hi:
is_labeled(P,L) ;
has_intensity(P.1) ;
is_a_child of(P,Q) ;
wins(P)
]
transaction types
[ P : Pixel(P):
Label5(P) &=
p.ALAZ : Pis Jabeled A17,
p Is_}abe}ed A2, p neighbors P, A1 > A2
~3 Pis labeled A2
| p.8ALA2: Pis | “labeled A1,P i is_a_child_of &1,
p is_labeled A2, p neighbors P, A1 > A2
— Pis_a child of p
[ true — Label5(P) ;
Track1(P) =
A,5:Pis labeled A, Pis_a_child_of &f,
[V p : p neighbors P :
p is_labeled &, p is_not_a_child . of P]
- P:s a_child ofml
[ Pis_labeled P,Pis_a_child_of nil
— Pis_the winner
| A:Pis labeled A, Ais_not_the winner
-3 Track 1(P)
]
initially
[ P : Pixel(P):
is_labeled(P,P), is_a_child_of(P,P),
has_intensity (P, Intensity(P)),
Label5(P), Track1(P)
end

Figure 3: Region Labeling in Swarm
Using a Classic Algorithm to Detect the Termination
of a Diffusing Computation




the completion of the region-labeling process. To do this we
modify the program given in Figure 1 to form the program
shown in Figure 3. The key modification is the introduction
of a tuple is a_child of(p,8) which is used to construct a
spanning tree of pixels—a pixel becomes a child of that
neighbor whose label it acquired last. During labeling the
tree grows from the winning pixel and gradually attaches all
pixels in the region to the winning pixel. Trees rooted at
losing pixels are eventually destroyed. The growth is coded
as part of the Label5(P) transaction. Once the labeling is
complete, the tree shrinks to its root which is declared to be
the winner. This is carried out by the Track(P) wansaction.

Note that the additional code required to perform the
detection involved the modification of the Label I(P) transac-
tion type to form the Label5 type. It was not sufficient to
merge two separate programs, a labeling and a detection pro-
gram. We had to introduce some coupling between the two
computations. In Swarm such coupling may be easily
avoided because of the kinds of queries one can perform
against the tuple and transaction spaces.

Absence of activity. The three remaining detection para-
digms show the different ways decoupling may be accom-
plished. One strategy we can pursue is to detect the absence
of activity which may occur once the stable state is estab-
lished. Of course, this is possible only if the ransaction space
is dynamic. In the dynamic asynchronous solution presented
above, when labeling is completed, the winning pixel P is still
labeled with its own coordinate and no tramsactions are
attempting i place the label P on any other pixels.
Unfortunately this property can also be satisfied by losing
pixels. However, a tivial change to Label2 allows us to
come up with the following elegant solution:

[P : Pixel(P):
Track2(P) =
alive(P), [3 p :: Label2{p,P)]
~> Track2(P)
|| alive(P), [V p :: —Label2(p,P)]
-3 Pis the winner
1

We initially associate a Track2(P} transaction with each pixel
P in the image.

The Track3 tramsaction requires that we modify the
RegionLabel? program in two ways. Initially an alive(P)
tuple exists for each pixel P. Transaction Labei2 then deletes
the tuple alive(A) whenever the it relabels any pixe] labeled A
to a smaller value.

Global coordination. In the next stable state detection
mechanism we exploit the global coordination capabilities
available in the definition of a synchronic group. For each
region we grow a synchronic group of Track3 detectors, one
per pixel. The Track3 detector transaction for each pixel
includes (1) a local subtransaction which fails if the pixel is
properly labeled with respect to its neighbors, {2) a second
local subtransaction which fails if the Track3 transaction for
the pixel is in synchrony with the Track3 transactions for all
neighbors, and (3) a global check which succeeds if afl local
subtransactions fail and this detector transaction is associated
with the winning pixel:

[ P: Pixel(P):
Track3(P)=
p.Al,AZ : Pis labeled A1, p is_labeled A2,
p neighbors P, A1 > A2
— skip
] p: pneighbors P, <(Track3(P) ~ Track3(p))
— Track3(P) ~ Track3(p)
|| OR  — Track3(P)
| NOR,Pis labeled P — P is_the winner

1

This approach works by incrementally constructing a
synchronic group of Track3 transactions for each region of
the image; a region’s synchronic group encompasses all of
the Track3 transactions associated with the pixels in the
region. When the construction of this group is complete and
all pixels in the region are labeled identically, the detector can
declare the pixel which is labeled with its own coordinates to
be the winner. The approach is compatible with all labeling
solutions presented earlier. This approach does not require
that alive(P} tples be introduced into the Label2
computation.

Global query. Finally, the most direct solution one can
construct is by actually specifying a global query to deter-
mine whether the region is or is not labeled:

[ P:Pixel(P):
Track4(P) =
P is_labeled P,P is_not the winner
— Track4(P)
| Pis labeled P,
[V p,5:pis_labeled P, 3 neighbors p :
dis_labeled P ]
— Pis_the_winner

1

This solution allows labeling and detection to be totally
decoupled; it is a direct encoding of the problem statement.
Te this extent, it represents the ideal programming solution,

5. DISCUSSION

The desire to assist programmers in the development and
analysis of concurrent computations motivates the shared
dataspace model put forth in this paper. The model brings
together a variety of computing styles within a single unified
framework. Programming convenience has been achieved by
the provision of powerful queries over both the wple and
transaction spaces and by the ease with which unstructured
and unbounded problems may be approached. The opportu-
nities for temporal and spatial decoupling of computations
characteristic of shared dataspace languages have been
strengthened and enhanced. On-going work on a proof system
for shared dataspace languages and on declarative visualiza-
tion techniquesl# promise to contribute to increased analyza-
bility of shared dataspace programs. This secion discusses
the shared dataspace paradigm in relation to the cument
landscape of concurrent programming models, languages, and
methodologies.

Models. The best way to relate the shared dataspace
model (SDM) to existing work is to compare it against the
UNITY model®. Because UNITY's approach and style have
influenced greatly the development of the shared dataspace
model, the distinetions between the two are easiest to draw. In



UNITY concurrent computations are defined by a fixed set of
statements and variables. Each statement may include multi-
ple conditional assignments. In an infinite computation each
statement is executed infinitely often. The computation can
be stopped as soon as the program reaches a fixed point—
termination is considered to be an implementation issue and
not a computation concern. UNITY is defined in terms of a
very small set of constructs, is able to model both synchro-
nous and asynchronous computations, and includes a power-
ful proof system.

In SDM, the fixed set of variables has been replaced by
an unbounded set of tuples; the conditional assignment has
been replaced by transactions which can examine, insert, and
delete elements of the dataspace. The interpretations of the ||
operator are similar in UNITY and SDM. However, the laiter
places no restrictions on the composition of subtransactiors
into transactions—the synchronous nature of subtransaction
execution guarantees no interference among subtransactions,
SDM pemnits both the creation of new transactions and
dynamic coupling among transactions in the transaction
space. As a further distinction, a ansaction is removed from
the transaction space as soon as it executes. It is trivial to
show that the class of UNITY programs is a proper subset of
the class of SDM programs. The additional features are
provided at the expense of a more complex proof system. At
the base level one can think of SDM as a model which allows
for trade-offs between expressive power and proof complex-
ity. We believe, however, that the flexibility built into SDM is
required when faced with unbounded and wmstructured prob-
lems. Moreover, SDM covers a richer class of computing
styles. The dynamic coupling introduced by the synchrony
relation, for instance, models systems which can be
reconfigured to behave synchronously on a region-by-region
basis. Transactions are better suited for modeling production
rule systems than assignment statements are.

Languages. Among existing languages Swarm’s closest
relative is Lindal. In his advocacy of the Linda language,
Gelemnter has relied heavily upon the temporal and spatial
decoupling that can be achieved when data is accessed by
content rather than by name. Our experience, however, shows
that the degree of decoupling one can achieve depends greatly
upon the power of the atomic transactions available to the
programmer (accessing one tuple at a time is very limiting)
and on the ability to organize the computation dynamically in
response to the unpredictable structure of the data being proc-
essed (e.g., on a region-by-region basis in the labeling prob-
lem). Neither Linda nor the traditional approaches to concur-
rent computation, such as the UNITY paradigm and the data-
parallel® computing style used to write Connection Machine
algorithms, can accomplish this. Linda’s Iimitations are the
result of a language development philosophy different from
that of Swarm—a philosophy which favers an efficient imple-
mentation over programming convenience and the capability
to reason formally about programs. The limitations of
UNITY and data-parallel programs result from the fixed com-
putational structures imposed by their programming models
and notation.

All other shared dataspace languages which we are aware
of, such as Associons!! and OPS5%, are only marginally con-
cemed with concurrency., Moreover, the closure statement of
Associons and the production rules of OPS85 have straightfor-
ward Swarm implementations. The potential impact of lan-
guages such as Swarm on the foture generation of expert

system shells is an interesting question that deserves careful
consideration. Swarm’s advantages might rest with its ability
to organize transactions into synchronic groups in response to
the changing dataspace configuration and with the availability
of a proof system. Its disadvantage may be found in the
nondeterministic selection of iransactions to be executed—
expert systems often have complex scheduling Tules based on
rule priorities and the age of the data.

Methodologies. In Swarm, the replicated worker meta-
phor proposed by Gelemnter and his colleagues is refined,
acquiring new forms and nuances. First of all, motivated by
the fact that reasoning about concurrent computations is done
in terms of liveness and safety properties, we have been pur-
suing a programming methedology in which computations
are partiioned between progress and detection activities.
Progress and detection programs can be compesed either by
merging or by introducing some form of coupling (static or
dynamic). As made evident in the previous section, merging
is the preferred method of composition because it enhances
program modularity and simplifies reasoning about the com-
posite program. The use of dynamic coupling as 3 program
composition mechanism remains to be investigated,

The degree of decoupling achievable in Swarm encour-
ages modular programming. As shown in the previous sec-
tion, labeling and detection activities can be easily composed
if we avoid the traditional programming appreach illustrated
in Figure 3. We can actually go one step further: we can con-
struct a speed-up program which can also be merged with. the
Labell, Label3, and Label4 solutions presented earlier. The
speed-up can be carried out by transactions of the following
type:

[ P:Pixel(P):

SpeedUp(P) =

p.A: Pis_labeled pt, p is_labeled A
— Pis_labeled A, SpeedUp(P)
1

This transaction does not work with the Label2 program
because SpeedUp allows the labeling computation to halt
premature]y. This problem can be remedied by modifying
SpeedUp(P) 1o create Label2(8,)) transactions for each
neighbor & of P whenever P is relabeled with A.

Transactions participating in progress activities could be
called workers, while those invelved in detection could be
called detectives. In Swarm, however, workers may be cate-
gorized by the way they function and by their level and style
of cooperation. Cultivating Gelernter’s metaphor, workers in
Linda could be called migrant workers because they exist
solely to seek out work assignments encoded as tuples in the
dataspace. The transactions of the type Label2(P,L} are
migrant workers. In contrast, the transactions of type
LabelI(P) are anchored 1o a particular pixel serving its
labeling needs as a waiter might service a particular table.
Through the use of the synchrony relation, a group of workers
can be organized into a community (ie., a locally synchro-
nous computation) which can evolve and ultimately dissolve
on its own. Finally, detectives may be monitoring either the
tuple or the transaction spaces seeking to determine the end of
a particular phase in the computation,

The reliance on formal reasoning about concurrent com-
putations is also at the base for our approach to program visu-
alization. The visualization approach uses invariants and pro-
gress conditions to determine the kinds of visual representa-
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tions which are most likely 1o convey the workings of the
program. Actually, because the entire computational state is
given by the dataspace, new and highly effective approaches
to the visualization of concurrent computations are made
possible.

6. CONCLUSIONS

In the intwoduction we asked whether naming is funda-
mental to achieving cooperation among concurrent processes.
To investigate this question we have defined a langnage para-
digm called shared dataspace which causes computations to
be performed using an anonymous, content-addressable com-
munication medium acted upon by atomic transactions. To
probe the essence of this paradigm, we have defined a rela-
tively simple shared dataspace language called Swarm. This
paper has overviewed the Swann language, presented a for-
mal operational model for the language, and discussed some
of the programming implications and distinctive features of
the model and language. This work forms the basis for further
investigation of appropriate programming methodologies,
proof systems, approaches lo program visualizaton, and
implementation techniques. Although this work is far from
complete, the results to date are highly encouraging.
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