
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-56

2003-07-29

FPgrep and FPsed: Packet Payload Processors for Managing the FPgrep and FPsed: Packet Payload Processors for Managing the

Flow of Digital Content on Local Area Networks and the Internet Flow of Digital Content on Local Area Networks and the Internet

James Moscola

As computer networks increase in speed, it becomes difficult to monitor and manage the

transmitted digital content. To alleviate these problems, hardware-based search (FPgrep) and

search-and-replace (FPsed) modules have been developed. FP-grep has the ability to scan

packet payloads for a given set of regular expressions and pass or drop packets based on the

payload contents. FPsed also scans packet payloads for a set of regular expressions and adds

the ability to modify the payload if desired. The hardware circuits that implement the FPgrep and

FPsed modules can be generated, compiled, and synthesized using a simple web interface.

Once... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Moscola, James, "FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital
Content on Local Area Networks and the Internet" Report Number: WUCSE-2003-56 (2003). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1101

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1101?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1101

FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital
Content on Local Area Networks and the Internet Content on Local Area Networks and the Internet

James Moscola

Complete Abstract: Complete Abstract:

As computer networks increase in speed, it becomes difficult to monitor and manage the transmitted
digital content. To alleviate these problems, hardware-based search (FPgrep) and search-and-replace
(FPsed) modules have been developed. FP-grep has the ability to scan packet payloads for a given set of
regular expressions and pass or drop packets based on the payload contents. FPsed also scans packet
payloads for a set of regular expressions and adds the ability to modify the payload if desired. The
hardware circuits that implement the FPgrep and FPsed modules can be generated, compiled, and
synthesized using a simple web interface. Once a module is created it is programmed into logic on a Field
Programmable Gate Array (FPGA). The FPgrep and FPsed modules use FPGAs to process packets at the
full rate of Gigabit-speed networks. Both modules, along with several supporting applications were
developed and tested using the Field Programmable Port Extender (FPX) platform. Applications
developed for the modules currently include a spam filter, virus protection, an information security filter,
as well as a copyright enforcement function.

https://openscholarship.wustl.edu/cse_research/1101?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1101?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages

SEVER INSTITUTE OF TECHNOLOGY

MASTER OF SCIENCE DEGREE

THESIS ACCEPTANCE

(To be the first page of each copy of the thesis)

DATE: July 29, 2003

STUDENT’S NAME: James Moscola

This student’s thesis, entitled FPgrep and FPsed: Packet Payload Processors
for Managing the Flow of Digital Content on Local Area Networks and the Internet
has been examined by the undersigned committee of four faculty members and has
received full approval for acceptance in partial fulfillment of the requirements for the
degree Master of Science.

APPROVAL: Chairman

Short Title: Managing Digital Content Moscola, M.Sc. 2003

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

FPGREP AND FPSED: PACKET PAYLOAD PROCESSORS

FOR MANAGING THE FLOW OF DIGITAL CONTENT ON

LOCAL AREA NETWORKS AND THE INTERNET

by

James Moscola

Prepared under the direction of Dr. John Lockwood

A thesis presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

August, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

FPGREP AND FPSED: PACKET PAYLOAD PROCESSORS

FOR MANAGING THE FLOW OF DIGITAL CONTENT ON

LOCAL AREA NETWORKS AND THE INTERNET

by James Moscola

ADVISOR: Dr. John Lockwood

August, 2003

Saint Louis, Missouri

As computer networks increase in speed, it becomes difficult to monitor and

manage the transmitted digital content. To alleviate these problems, hardware-based

search (FPgrep) and search-and-replace (FPsed) modules have been developed. FP-

grep has the ability to scan packet payloads for a given set of regular expressions

and pass or drop packets based on the payload contents. FPsed also scans packet

payloads for a set of regular expressions and adds the ability to modify the payload

if desired. The hardware circuits that implement the FPgrep and FPsed modules

can be generated, compiled, and synthesized using a simple web interface. Once a

module is created it is programmed into logic on a Field Programmable Gate Array

(FPGA). The FPgrep and FPsed modules use FPGAs to process packets at the full

rate of Gigabit-speed networks. Both modules, along with several supporting applica-

tions were developed and tested using the Field Programmable Port Extender (FPX)

platform. Applications developed for the modules currently include a spam filter,

virus protection, an information security filter, as well as a copyright enforcement

function.

Contents

List of Tables . vi

List of Figures . vii

Acknowledgments . ix

1 Introduction . 1

1.1 Motivation . 1

1.2 Thesis Outline . 3

2 String Matching . 4

2.1 Background on String Matching . 4

2.1.1 Regular Expressions . 5

2.2 String Matching in Hardware . 7

2.2.1 Nondeterministic vs Deterministic Finite Automata 8

3 The Field Programmable Port Extender and Protocol Wrappers . 11

3.1 Field Programmable Port Extender (FPX) 11

3.1.1 Network Interface Device (NID) 11

3.1.2 FPX Reprogramability . 12

3.2 Protocol Wrappers . 14

3.2.1 Required Modifications to the Protocol Wrappers 15

4 FPgrep: Packet Payload Scanning Using Regular Expressions . . 17

4.1 Searching . 18

4.2 FPgrep Hardware Implementation . 19

4.2.1 Logic Controller . 20

4.3 Increasing Throughput via Parallel Scanners 23

iii

4.4 Results . 24

4.4.1 Device Utilization . 26

4.4.2 Throughput . 27

5 FPsed: Packet Payload Search-and-Replace Using Regular Expres-

sions . 29

5.1 Search-and-Replace . 29

5.1.1 Brute Force . 32

5.2 FPsed Hardware Implementation . 34

5.2.1 Logic Controller . 34

5.2.2 Replacement Buffer . 39

5.2.3 Word Builder (Byte-to-Word Converter) 39

5.2.4 Multiple Expression Search-and-Replace 40

5.3 Results . 40

5.3.1 Device Utilization . 41

5.3.2 Throughput . 42

6 Generating the Hardware . 45

6.1 Hardware Generation Implementation Details 45

6.1.1 Top Level Script: buildApp . 47

6.1.2 Create Regular Expression FSM: createRegex 48

6.1.3 Convert Java FSM to VHDL: stateGen 48

6.1.4 Create Replacement Buffer: replaceBufGen 48

6.1.5 Create Synthesis Script: makeProject 49

6.2 Web Interface . 49

7 Applications for Managing Digital Content 51

7.1 Spam Filter . 51

7.2 Virus Protection . 52

7.2.1 Passive Virus . 54

7.2.2 Active Virus . 55

7.3 Information Security . 56

7.4 Copyright Enforcement . 59

8 Summary and Future Work . 64

8.1 Summary . 64

iv

8.2 Future Work . 65

8.2.1 FPgrep . 65

8.2.2 FPsed . 66

Appendix A Application Packet Formats 67

A.1 Common Packet Formats for All Applications 67

A.1.1 Alert Packet Format . 67

A.2 Other Copyright Enforcement Application

Packet Formats . 68

A.2.1 Forwarded Alert Packet and Purchase Prompt

Response Formats . 68

A.2.2 Purchase Prompt Request Format 69

A.2.3 Release and Drop Packet Formats 70

A.2.4 Receipt and Not Registered Packet Formats 70

Appendix B Database Tables . 71

References . 73

Vita . 76

v

List of Tables

4.1 Device Utilization for Protocol Wrappers 26

4.2 Device Utilization for FPgrep Module with Single Content Scanner . 26

4.3 Device Utilization for FPgrep Module with Quad Content Scanners . 26

5.1 Device Utilization for Protocol Wrappers 42

5.2 Device Utilization for FPsed Module with Single Content Editor . . . 42

5.3 Device Utilization for FPsed Module with Quad Content Editors . . . 42

vi

List of Figures

2.1 The ratio of the size of the DFA to the NFA for all REs used by the

SpamAssassin program. Note that the majority of the DFAs optimize

to be smaller than the NFAs . 9

3.1 Configuration for the WUGS, FPX, and the line cards 12

3.2 Major components of the FPX . 13

3.3 Block diagram of FPGrep/FPSed module in the Protocol Wrappers . 14

4.1 DFA1 for “ARL” does not reach the accept state 19

4.2 DFA2 for “.∗ARL” does reach the accept state 19

4.3 Block diagram of FPgrep content-scanning module 20

4.4 FPgrep flow diagram for the input/searching process 22

4.5 Arrangement of four parallel FPgrep scanners 24

4.6 Laboratory test layout . 25

4.7 FPgrep device utilization . 27

4.8 Speed and slice utilization as a function of the number of characters in

the search string . 28

5.1 DFA for “.*ARL” . 30

5.2 DFA for “.*AR*L” . 31

5.3 DFA for “.*A(AR)*L” . 32

5.4 Block diagram of FPsed search-and-replace module 34

5.5 FPsed flow diagram for the input/searching process 36

5.6 FPsed flow diagram for output/replacement process 38

5.7 Multiple search-and-replace modules 40

5.8 Example of FPsed used to strip HTML tags from a packet payload . 41

5.9 FPsed device utilization . 43

5.10 Comparison of hardware and software throughput 44

vii

6.1 Hardware generation from specification to bitstream 47

6.2 Web interface for generating modules 50

7.1 FPgrep used as a spam filter . 52

7.2 Typical unprotected network . 53

7.3 Network protected with FPgrep or FPsed 54

7.4 FPgrep used for passive virus protection 55

7.5 Alert message generated by agent software 55

7.6 FPgrep used for active virus protection 56

7.7 Alert message generated by agent software 56

7.8 FPgrep used as a passive security application 58

7.9 Alert message generated by agent software 58

7.10 FPgrep’s copyright enforcement application (1 of 6) 59

7.11 FPgrep’s copyright enforcement application (2 of 6) 60

7.12 FPgrep’s copyright enforcement application (3 of 6) 61

7.13 A prompt to purchase copyrighted content 61

7.14 FPgrep’s copyright enforcement application (4 of 6) 62

7.15 A receipt prompt for copyrighted content 62

7.16 FPgrep’s copyright enforcement application (5 of 6) 63

7.17 FPgrep’s copyright enforcement application (6 of 6) 63

viii

Acknowledgments

I would like to thank all the people who have make this work possible. Firstly, I would

like to thank my advisor John Lockwood for giving me the opportunity to work on

this project and his never-ending support.

Next, I would like to thank Dr. Ronald Loui for all of his support and ideas

on the project as well as for teaching me the joy of GAWK.

I would also like to thank all the people in the FPX group (past, present, and

future) for their contribution to the FPX platform. Without their work, this project

would not have been possible. I would especially like to thank Todd Sproull for his

continuous help in the lab debugging and for his work on the NCHARGE control

software. For all of his hard work on the NID, I would like to thank David Lim.

For his initial work (and continuing support) on this project, and for being a

great friend I would like to thank Michael Pachos. Without Michael I would not have

been involved with this work.

For financial support, I would like to thank my research sponsor Global Velocity

and all those involved in the company. For without them I would have been evicted

long ago. In particular, I would like to thank Matthew Kulig, David Reddick, and

Tim Brooks for their unending interest and support on the project.

Finally, I would like to thank my wife Stephanie for being patient and sup-

portive throughout my lengthy education. Without her motivation this thesis may

have never been come to completion.

James Moscola

Washington University in Saint Louis

August 2003

ix

1

Chapter 1

Introduction

1.1 Motivation

With the ever-increasing popularity of the Internet, it is becoming increasingly more

difficult to manage digital content and to ensure the safety of machines connected to a

network. On a daily basis, email accounts are flooded with spam, network machines

are infected with viruses, servers are crashed by Denial of Service (DOS) attacks,

company secrets are leaked, and millions of files are traded illegally. The Internet has

truly become a dangerous place from both a user perspective as well as a corporate

perspective.

Firewalls and Network Intrusion Detection Systems (NIDS) attempt to protect

networks from the perils of the Internet. They provide protection for Local Area

Networks (LANs) by enforcing Access Control Policies (ACPs) for both incoming

and outgoing traffic and by alerting a system administrator if any of these policies

are broken. Currently, the scope of most ACPs only covers packet headers. Some

firewalls and NIDS also support ACPs that do exact string matching within the packet

payload. However, this is usually done in software making it too slow and inefficient

2

for modern network backbones. Current firewalls and NIDS also do nothing to protect

against the widespread distribution of illegal digital content.

By giving firewalls and NIDS the ability to perform regular expression (RE)

matching in hardware, instead of software, the power of these systems can be greatly

enhanced. With regular expressions, a single ACP is capable of enforcing rules which

previously took multiple ACPs to enforce (just as one IP address/netmask pair can

be used to specify multiple IP addresses). More importantly, regular expressions can

give ACPs the ability to enforce rules on mutable content such as that found in many

Denial Of Service (DOS) attacks and viruses. By doing all of the RE processing in

hardware, every byte of every packet can be scanned while still maintaining the speed

and throughput required for very high speed network backbones.

This thesis describes the implementation of hardware-based search (FPgrep)

and search-and-replace (FPsed) modules that can be used to augment the capabili-

ties of modern firewalls and NIDS. To achieve the performance required by today’s

high-performance networks, hardware devices known as Field Programmable Gate

Arrays (FPGAs) are employed. FPGAs offer a method for implementing functions in

hardware using reprogrammable chips. In addition, FPgrep and FPsed utilize regular

expressions to provide a powerful method for specifying a single string pattern or set

of string patterns that may be searched for within the payload of a packet as it passes

through a network. The regular expressions can range in complexity from a simple

single character string to a string consisting of multiple wildcards.

By combining the power of regular expressions and the flexibility of FPGAs

on the Field Programmable Port Extender (FPX) [14, 15], the FPgrep and FPsed

packet payload processors may be used to process packet contents within a Local

Area Network or even over the Internet.

3

1.2 Thesis Outline

The thesis begins with a brief history on the methods used for string matching,

and string matching in hardware. This is followed by a description of the Field

Programmable Port Extender platform and a set of layered Protocol Wrappers used

for the hardware modules. Next is a description and results for both the FPgrep and

FPsed hardware modules. After describing the modules, there is a description on how

they can be automatically generated and programmed into the FPX platform. Finally,

different applications for the technology are discussed and how each is implemented.

4

Chapter 2

String Matching

2.1 Background on String Matching

Both string matching and regular expression matching have been studied extensively

in the past. Prior to the late 1970’s, string searching was accomplished using a

brute force method. The brute force method assumes that a pattern of length m

may occur at any position in a string of length n, and then sets about testing each

possible orientation. The brute force method’s worst case running time is O(nm).

The major problem with the brute force search is that characters in the text may

be re-examined multiple times. In some cases, this can lead to poor performance.

In 1977 both Knuth, Morris and Pratt (KMP) [13], and Boyer and Moore (BM) [2]

developed efficient approaches to string searching. The KMP algorithm provides a

way to eliminate repeated accesses to the text and delivers a guaranteed linear time

searching algorithm. By using previous character information, the KMP algorithm

can access the characters sequentially without any need to back up and re-read por-

tions of the input. The BM algorithm uses an approach similar to that of the KMP

algorithm, but instead searches text from right-to-left. This eliminates the need for

5

the algorithm to examine a great deal of the text on a mismatch. Both the KMP and

the BM algorithms have a worst case running time of O(n + m).

Thompson [29] developed the classical approach for searching for a regular

expression. Thompson’s idea involves converting a regular expression into a Non-

deterministic Finite Automaton (NFA) with O(m) nodes. The worst case running

time of the search is O(nm) because the machine may be in more than one state at

any given time. Consequently, there may be situations in which all states require a

transition to a new state resulting in a slow and inefficient method of searching. A

more efficient technique (in terms of running time) is to convert the NFA into a De-

terministic Finite Automaton (DFA). This approach yields a worst case running time

of O(n). A drawback to this approach is that, theoretically, there can be up to O(2m)

states, thereby requiring a great deal of memory or hardware for implementation.

2.1.1 Regular Expressions

A regular expression is a pattern that describes a set of strings. The basic build-

ing blocks for these patterns consist of individual characters that match themselves

such as “a”, “b”, and “c”. Combining characters with meta-characters (∗, |, ?) allows

more complex regular expressions to be created. If r1 and r2 are regular expressions

then r1∗ matches any string composed of zero or more occurrences of r1; r1? matches

any string composed of zero or one occurrences of r1; r1|r2 matches any string com-

posed of r1 or r2; and r1r2 matches any string composed of r1 concatenated with

r2. For instance, “a” is a regular expression that denotes the singleton set {“a”},
while “a|b” denotes the set {“a”,“b”}. The expression “a* ” denotes the infinite set

{“”,“a”,“aa”,“aaa”,. . .}.

6

Regular Expression Terminology

Before beginning a more in-depth discussion, some of the terminology used in this

thesis to describe the matching of regular expressions is defined below.

Start: The transition of a state machine from the idle (initial) state to

a non-idle state.

Accept: The state machine has accepted the substring if the state ma-

chine has determined that the substring is a member of the language

defined by the RE. For instance, if the regular expression that is being

searched for is “abc?”, then the language defined by this expression is the

set {“ab”, “abc”}. For this language the state machine will accept when it

detects the substring “ab”. This substring is a member of the set defined

by the regular expression. However, the state machine cannot be sure that

this is the longest possible match until it sees the next character. If the

next character in the substring is “c”, then the state machine will now

accept the substring “abc” as part of the language. If the next character

in the substring is not “c”, then the state machine will continue to accept

the substring “ab” as part of the language. Once a state machine accepts

a substring it must match on that substring some time in the future.

Match: The state machine has determined the boundaries of the com-

plete substring. Using the example above, the state machine would match

on the third character independent of what the character is. If the third

character is a “c”, then the substring “abc” matches. If the third character

is something other than “c”, then the substring “ab” matches.

7

Running: The state machine has started but not yet failed. The state

machine may or may not be in an accepting state.

Reset/Fail: The state machine was running and a character read caused

the substring to no longer be a member of the language defined by the

RE. If the substring was previously accepted then a match was created

over a portion of the substring up to, but not including the character that

caused the state machine to reset.

Idle: The state machine is not running. A character has not yet been

read that defines the beginning of the language that is being searched for.

2.2 String Matching in Hardware

The idea of string matching in hardware is a topic that has been explored for over two

decades. Haskin and Hollar [8] offer a comprehensive (but dated) survey on hardware-

based regular expression matchers. The authors discuss various techniques and offer a

novel solution of their own. They defined three different classes of approaches: parallel

comparators, cellular comparators, and finite state machines. Both the parallel and

cellular comparator techniques have substantial drawbacks. The parallel technique

can only handle a fixed number of terms of a fixed maximum size. The cellular

technique can require extensive logic to implement. The last technique, the use

of a finite state machine, is capable of handling exact character and character class

matching. Haskin discusses a technique of simulating an NFA by replicating a number

of DFAs where an idle DFA starts every time the possible beginning of a term is

recognized.

8

More recent work in the area of string matching on FPGAs has been done

by Sidhu and Prasanna [22] as well as by Franklin, Carver, and Hutchings [7]. The

work by Sidhu and Prasanna was primarily concerned with minimizing the time and

space required to construct NFAs because they run their NFA construction algorithm

in hardware as opposed to software. Their work yielded an exceptional approach

to string matching in hardware. Franklin, Carver, and Hutchings followed with an

analysis of this approach for the large set of expressions found in a Snort database

[18].

2.2.1 Nondeterministic vs Deterministic Finite Automata

In other work, NFAs were chosen due to the shorter time and smaller space required

for constructing the automata [22]. In contrast, this work was not concerned with the

time and space required for constructing the automata. It was however, concerned

with the size of the completed automata. Theoretically, DFAs can contain up to

O(2n) states, where n is the number of characters in the expression. However, in

practice it was found that the number of states required is most often less than or

equal to n. In addition to this, DFAs can only have one active state and thus can be

represented more compactly than NFAs if the state of the search needs to be stored.

To verify that DFAs are generally more compact with real data, spam-matching

rules were extracted from the current version (2.60) of the SpamAssassin [23] program.

State machines were then generated from the 358 regular expressions found in this

database using a Java-based lexical analyzer generator called JLex [1]. As input, JLex

takes a regular expression. It outputs a Java file that contains state and transition

tables for a minimized DFA that implements the given expression. The JLex tool was

run to generate an NFA and a minimal DFA from each of the regular expressions. It

9

was found that most of the expressions created DFAs that were optimized to contain

fewer states than the NFA. Figure 2.1 shows the ratio of the number of states in the

JLex-optimized DFA to the number of states in the NFA. Note that where the x-axis

equals 1 is the point where the DFA and the NFA are equal in size. To the left of

this point represents DFAs that are smaller than the corresponding NFAs and to the

right represents DFAs that are larger.

66% 33%66% 33%66%66% 33%33%

Figure 2.1: The ratio of the size of the DFA to the NFA for all REs used by the
SpamAssassin program. Note that the majority of the DFAs optimize to be smaller
than the NFAs

Through this experiment it was found that about two-thirds, or 66% of the DFAs

were smaller than the NFAs. Only 2.5% of the expressions had more than a 10x

expansion and only 0.5% went beyond 40x.

A typical SpamAssassin expression used in this experiment is:

U\.?S\.?(D\.?)?[\]*(\$[\]*)?([0-9]+,[0-9]+,[0-9]+
|[0-9]+\.[0-9]+\.[0-9]+|[0-9]+(\.[0-9]+)?[\]*milli?on)

The output of JLex for this particular expression is:

10

Processing first section -- user code.

Processing second section -- JLex declarations.

Processing third section -- lexical rules.

Creating NFA machine representation.

NFA comprised of 78 states.

Working on character classes.:

::.:.::.::............:::..:::

NFA has 15 distinct character classes.

Creating DFA transition table.

Working on DFA states.............................

Minimizing DFA transition table.

24 states after removal of redundant states.

Outputting lexical analyzer code.

From the above output, it can be seen that the NFA for this expression contains 78

distinct states whereas the DFA only contains 24. This represents a DFA to NFA

ratio of .3 to 1 [16].

11

Chapter 3

The Field Programmable Port

Extender and Protocol Wrappers

3.1 Field Programmable Port Extender (FPX)

The FPX is a reprogrammable logic device that provides a hardware platform for

the user to deploy packet processing network modules [14, 15]. It can act as an

interface between the line cards and the WUGS (Washington University Gigabit

Switch) [5] as shown in Figure 3.1. It can also be used in a stand-alone configuration.

The FPX is composed of two FPGAs: the Network Interface Device (NID) and the

Reprogrammable Application Device (RAD) [27].

3.1.1 Network Interface Device (NID)

The NID controls how packet flows are routed to and from hardware modules pro-

grammed into the RAD. It also provides mechanisms to dynamically load hardware

modules over the network. The combination of these features allows these modules

12

to be dynamically loaded and unloaded without affecting the switching of other traf-

fic flows or the processing of packets by other modules in the system. As show in

Figure 3.2, the NID has several components, all of which are implemented in FPGA

hardware. It contains a four-port switch to transfer data between ports; Virtual Cir-

cuit lookup tables (VC) on each port in order to selectively route flows; a Control

Cell Processor (CCP), which is used to process control cells that are transmitted and

received over the network; logic to reprogram the FPGA hardware on the RAD; and

synchronous and asynchronous interfaces to the four network ports that surround the

NID.

IPP

IPP

OPP

OPP

IPP

IPP OPP

OPP

Card
OC3/
OC12/
OC48

Line FPX

Extender
Port

programmable
Field−

FPX

Extender
Port

Field−
programmable

Card
OC3/
OC12/
OC48

Line

Switch

Fabric

Gigabit

Figure 3.1: Configuration for the WUGS, FPX, and the line cards

3.1.2 FPX Reprogramability

The RAD can be programmed and reprogrammed to hold user-defined network mod-

ules [24], and is connected to two SRAM and two SDRAM components (Figure 3.2).

In order to reprogram the RAD over the network, the NID implements a reliable

protocol that fills the contents of the on-board RAM with configuration data that are

transmitted over the network. As each cell arrives, the NID uses the data and the

sequence number in the cell to write data into the RAD Program SRAM. Once the

13

SRAM

Four Port

Switch

ECEC

Switch LineCard

VC VC

VCVC

RAD

NID

FPX

M
od

ul
e

M
od

ul
e

SRAM
Data

Program
RAD

SDRAM SDRAM

Data Data

SRAM
Data

C
C

P

Figure 3.2: Major components of the FPX

last cell has been correctly received, the FPX holds an image of the reconfiguration

bitstream that is needed to reprogram the RAD. At that time, another control cell

can be sent to the NID to initiate the reprogramming of the RAD using the contents

of the RAD Program SRAM.

The FPX supports partial reprogramming of the RAD by allowing configura-

tion streams to contain commands that only program a portion of the logic on the

RAD [9, 10]. Rather than issue a command to reinitialize the device, the NID writes

the frames of reconfiguration data to the RAD’s reprogramming port. This feature

enables the other modules on the RAD to continue processing packets during the

partial reconfiguration. Similar techniques have been implemented in other systems

using software-based controllers [30].

14

3.2 Protocol Wrappers

Protocol Wrappers [3, 4] are used in the FPgrep and FPsed modules to streamline and

simplify the networking functions to process ATM cells, AAL5 frames and IP packets

directly in hardware. They use a layered design and consist of different processing

circuits within each layer. The block diagram of the Protocol Wrappers is shown in

Figure 3.3. At the lowest level, the Cell Processor processes raw ATM cells between

network interfaces. At the higher levels, the Frame Processor processes variable length

AAL5 frames while the IP Processor processes IP packets. Additionally, there is a

UDP Processor that transmits and receives UDP messages, but this level was not

required for the FPgrep and FPsed modules.

Different layers of abstraction are important for structuring the functions of a

network because doing so allows relevant details to be exposed and irrelevant details

to be hidden. In this manner, an application that interacts with IP packets can

effectively interface just with the IP the Protocol Wrapper.

Data written
to network

IP Processor

Frame Processor

Cell Processor

Data read
from network

FPgrep/
FPsed

Figure 3.3: Block diagram of FPGrep/FPSed module in the Protocol Wrappers

15

3.2.1 Required Modifications to the Protocol Wrappers

The original Protocol Wrappers, while feature rich, were lacking in certain features

required to process traffic on a real network. Below is a description of several modi-

fication made to the Protocol Wrappers to and why each was required.

The most important modification to the Protocol Wrappers was the ability

to handle any frame and IP packet size. The original Protocol Wrappers were only

able to handle frames and packets that were of modulus four in byte length. This

shortcoming meant that the Protocol Wrappers were only capable of handling 25%

of real network traffic. The other 75% of the traffic would either be corrupted or just

dropped by the wrappers. To fix this issue, the last two bits of the AAL5 length field,

and the last two bits of the IP length field were used to determine exactly how many

bytes needed to be processed.

Additionally, the original Protocol Wrappers were only capable of processing

IP packets that were encapsulated in a frame with the same byte length. This is

because the IP Processor did not actually check the IP length field when receiving

packets. Instead the IP Processor just assumed that any data that was received

from the Frame Processor was valid IP data. In many cases, this shortcut would

be harmless. However, in the lab it was found that commercial routers often add

additional data to a frame in lieu of padding. This “garbage” data is likely there

to give the AAL5 CRC-32 more robustness. The simple fix to this problem was to

modify the IP Processor to actually check the IP length field and only process the

appropriate amount of data.

Another problem of the original Protocol Wrappers was that all frames at-

tempted to traverse through all layers of the wrappers, and the IP Processor would

16

drop any packets that were not IPv4 packets. This means that frames that encap-

sulated ARP packets, DHCP packets, or any other non-IPv4 packet passed from the

Frame Processor to the IP Processor and would be dropped. This behavior was unac-

ceptable because real networks have many different types of packets that are required

for efficient communication. In order to handle this problem, the design of the IP

Processor was modified to bypass non-IPv4 packets around the user application as

opposed to dropping them. This approach required adding an additional buffer to

the output side of the IP Processor.

The next change that was required was to deal with different types of encapsu-

lation methods on networks. The original IP Processor was only capable of processing

packets that were embedded directly into a frame without any additional encapsula-

tion headers, such as an LLC/SNAP or a MAC header. This limited the utility of

the IP Processor on real network traffic because most routers use some type of packet

encapsulation. The solution to this was to add a new control signal to augment the

original three: start-of-frame, start-of-payload, and end-of-frame signals. The new

control signal, start-of-IP-header, allows the IP wrapper to pass headers that arrive

after the start-of-frame signal, but before the IP header itself.

Other changes to the Protocol Wrappers include removing a great deal of

unused logic from the Cell Processor as well as addressing several bugs related to

frame size and dropped frames in the Frame Processor.

17

Chapter 4

FPgrep: Packet Payload Scanning

Using Regular Expressions

The FPgrep content scanner is a hardware module that is capable of searching network

packet payloads for a list of regular expressions. The scanner was implemented as

a module on the FPX platform. The scanner utilizes the Protocol Wrappers to

reassemble cells into IP packets and to delineate the header and payload fields. When

designing the content scanner, four initial behaviors were desired: (1) the ability to

scan every byte of every packet’s payload for a given set of expressions, (2) the ability

to actively drop packets that match a given expression, (3) the ability to generate

an alert packet identifying which expressions in the given set match, and (4) the

ability to send an alert packet to a log server when a match is detected. This chapter

describes how the hardware module accomplishes each of these tasks.

18

4.1 Searching

FPgrep searches the input for substrings that belong to the language defined by

the regular expression. When FPgrep matches a substring in a packet it has the

ability to transmit information about the packet to a monitoring host system. The

information sent can include the sender’s and receiver’s IP addresses and/or any other

data transmitted over the connection.

The search runs in linear time (proportional to packet size) O(n) and in con-

stant space. That is, there is never a need to examine a character more than once

and the amount of hardware is proportional to the size of the regular expression.

Approximately one flip-flop is required per character.

When a regular expression search is requested, a “.∗” is prepended to the

beginning of the original regular expression. It is natural to think about it this way

since searching involves finding any number of characters followed by a matching

substring. The prepended “.∗” allows the machine to recognize a matching substring

anywhere in the record [12].

If the “.∗” is not prepended, then there are situations in which a substring that

should be matched by the machine is missed. This situation arises if a machine M

enters the running state when it encounters character ci and then transitions to the

failed/reset state when it encounters ci+n. If the machine simply continues reading

beginning with the next character, ci+n+1, it would not detect a substring whose first

character is in the range ci+1 to ci+n.

A small example illustrates this problem. Assume “ARL” is being searched

for. If both “ARL” and “.∗ARL” are converted into DFAs, two functionally different

machines (DFA1 and DFA2 respectively) are produced. These DFAs can be seen in

Figure 4.1 and Figure 4.2.

19

2 3 4

5 R 4,L A
3

1
A R

2

A R L
1

Figure 4.1: DFA1 for “ARL” does not reach the accept state

2 3 4

1
A R,R

2 4
L

5

A
3

A R L
1

A

Figure 4.2: DFA2 for “.∗ARL” does reach the accept state

When the input to the machines is “A1R2A3R4L5”, DFA1 will recognize that

“A1” followed by “R2” is part of the language. When “A3” is input, the machine

fails and thus transitions to the idle state. It is clear that machine will not find

the substring “A3R4L5”, since when the next character “R4” is input into DFA1 it

remains in the idle state. On the other hand DFA2 does operate correctly and finds

the substring.

4.2 FPgrep Hardware Implementation

The FPgrep hardware module has been implemented to perform a complete payload

scan of every packet that passes through it. The module uses the previously mentioned

technique of prepending a “.∗” to each regular expression to aid in the search. A block

diagram of the implementation can be seen in Figure 4.3.

20

Data sent
to Protocol
Wrappers

from Protocol
Data arrives

Wrappers

RE1 DFA

RE2 DFA

RE3 DFA

.
.

.
.

REn DFA

8

m
at

ch
 a

rr
ay

Logic controller n

1
Content
stored in
output
buffer

Alert Packet
Generator

Data Path:
Control Signals:

36

36

36
36

expression
buffer

regular
stored in
Content

Figure 4.3: Block diagram of FPgrep content-scanning module

4.2.1 Logic Controller

The logic controller performs most of the work. It controls the reading and writing of

the memory buffers, the data that is sent to the regular expression state machines, and

the alert packet generator. The controller has three main operations: (1) Receiving

Packets, (2) Processing Packets, and (3) Outputting Packets. Each of these three

operations is controlled independently of the other two. All three operations run in

parallel.

Receiving Packets

Packets enter the module in 32-bit chunks after passing through the Protocol Wrap-

pers. The Protocol Wrappers assert control signals to indicate the beginning of a

21

frame, the beginning of IP packet headers, the beginning of an IP packet payload,

and the end of a frame. There is also a data enable signal to indicate the presence

of a valid 32-bit data word on the incoming bus. Every valid data word, along with

the four control signals, is written to two parallel 512x36 dual-port memory buffers.

By using two identical buffers, it is possible to read newer packets for processing

while older packets (that are not being dropped) are read for output. This could be

achieved with a single tri-port memory buffer if available.

Processing Packets

Once data are available in the input buffer (a packet has started arriving), the module

can begin processing the packet (Figure 4.4). To process a packet with the content

scanner, a counter is used to address one of the 512x36 memory buffers. On each

clock tick, one byte is read from the memory buffer and sent to each of the regular

expression DFAs. All of the DFAs search in parallel. Each DFA maintains a 1-bit

match signal that is asserted high when a match is found within the packet that is

being processed. When the counter reaches the end of the packet, one or more of the

following can occur:

1. If the match signals from all of the DFAs indicate no match was found, then a

pointer to the packet is inserted into an output queue.

2. If any of the match signals indicate a match was found but do not require

dropping the packet, then a pointer to the packet is inserted into an output

queue.

3. If one or more of the match signals indicates a match was found that requires

dropping the packet, then a pointer to the packet is not inserted into an output

queue, hence the packet is dropped.

22

4. If one or more of the match signals indicates a match was found that requires

an alert packet to be sent, then a pointer to the original packet is inserted into

an output queue. This enables the alert packet to use header information from

the original packet. Also, a special pointer is inserted into a match queue to

indicates an alert packet should be output. The special pointer contains a bit

array that indicates which DFAs found a match. It should be noted that if a

match is found that requires an alert packet but does not require dropping the

packet, two pointers (one for the original packet and one for the alert packet)

are inserted into the output queue.

Is

header?
packet

start_ptr
position in
Save current

Increase current
position by 1

End of
packet?

in output fifo
Enqueue start_ptr

in output fifo
Enqueue start_ptr

No

Yes

No

No

Yes

No

Start search at
beginning of

buffer

Yes

Start of new
Is

packet?

Any data
available at
current
position?

Yes

cause match?
packet
Did

No

Yes YesDrop
packet?

No

Yes

holder into

match fifo

NoSend

RE FSMs
Send byte to

Enqueue place

alert packet?

match fifo

array into

Enqueue match

Figure 4.4: FPgrep flow diagram for the input/searching process

23

Outputting Packets

A packet is output from the content scanner whenever there is an available pointer

in the output queue. Each pointer that is dequeued can be either for a regular packet

or for an alert packet. This is determined by dequeuing a pointer from the match

queue. If the pointer from the match queue is all zeros, or null, then a regular packet

should be output. If the pointer from the match queue is not null, then an alert

packet should be output.

In the case of a regular packet, a counter is assigned the value of the pointer

and used to address the 512x36 output memory. The packet is then output 32-bits per

clock cycle until the end of the packet is detected. The most significant 4 bits of the

output memory are used to recreate the necessary control signals for communicating

with the Protocol Wrappers.

When an alert packet pointer is dequeued, a UDP alert packet has to be

generated since one does not already exist. The alert packet can be addressed to a

predetermined log server (specified at compile time but also runtime reconfigurable) or

to the destination of the original packet that caused the alert packet to be generated.

The payload of the alert packet contains the source and destination IP address of the

packet that caused the alert, an associated identification number for all of the regular

expressions that matched in the original packet, along with several other fields. More

details on the format of the alert packet can be seen section A.1 in Appendix A.

4.3 Increasing Throughput via Parallel Scanners

As mentioned in the sections Receiving Packets and Processing Packets, packets enter

the content scanner at a rate of 32-bits per clock cycle, and are processed at 8-bits per

clock cycle. As a result, the content scanner can only process data at one-quarter of

24

the maximum input rate. In order to process data at the full input rate, four parallel

content scanners are arranged as shown in Figure 4.5. Arriving packets are dispatched

to an available content scanner in a round-robin fashion. With four parallel scanners,

the module is now capable of scanning 32-bits per clock cycle.

RE1
DFA

RE1
DFA

RE1
DFA

RE1
DFA

D
is

pa
tc

he
r

Incoming
Packets

Fl
ow

 C
ol

le
ct

or

Outgoing
Packets

RE2
DFA

REn
DFA

RE3
DFA

. . .

RE2
DFA

REn
DFA

RE3
DFA

. . .

RE2
DFA

REn
DFA

RE3
DFA

. . .

RE2
DFA

REn
DFA

RE3
DFA

. . .

Figure 4.5: Arrangement of four parallel FPgrep scanners

4.4 Results

Several different versions of the content scanner were synthesized with the Proto-

col Wrappers into the RAD of the FPX. The regular expression set for each of the

content scanners consisted of 21 regular expressions. The expressions chosen were

aimed primarily at dropping spam. For example, “Get Rich Quick” and “(L|l)imited

(T|t)ime (O|o)ffer” were among the expressions in the set. On average, each regular

25

expression was 20 characters long. Note that these were simpler expressions than

those found in the SpamAssassin database.

Each of the scanners was tested in the lab using NCHARGE [24] for initial

testing. NCHARGE allowed single packets to be sent to the content scanner for

easier debugging. Later stages of testing were conducted using real Internet traffic

via web browsers, email clients, and FTP clients. The configuration of the lab setup

is shown in Figure 4.6. This type of testing allowed placement of pseudo-viruses

and other content on the Internet to verify detection and potential dropping by the

scanning module.

The following subsections describe the device utilization and throughput of the

content scanner modules on a Xilinx Virtex XCV2000E-6 part.

Figure 4.6: Laboratory test layout

26

4.4.1 Device Utilization

Device utilization for three different modules is shown in Tables 4.1, 4.2, and 4.3.

Table 4.1 shows the device utilization for a module containing only the Protocol

Wrappers. These values represent the overhead of the packet processing done by

the Protocol Wrappers. Table 4.2 details the device utilization for a single content

scanner that implements the spam filter with the Protocol Wrappers. Table 4.3 shows

the device utilization for the four parallel content scanners shown in Figure 4.5 with

the Protocol Wrappers. The chart in Figure 4.7 helps to illustrate the relative sizes

of each of the modules.

Table 4.1: Device Utilization for Protocol Wrappers
Virtex XCV2000E Utilization

Resources Device Utilization Percentage
Logic Slices 2410 out of 19200 12%
Flip Flops 2870 out of 38400 7%

Block RAMs 19 out of 160 11%
External IOBs 142 out of 512 27%

Table 4.2: Device Utilization for FPgrep Module with Single Content Scanner
Virtex XCV2000E Utilization

Resources Device Utilization Percentage
Logic Slices 3615 out of 19200 18%
Flip Flops 3981 out of 38400 10%

Block RAMs 33 out of 160 20%
External IOBs 142 out of 512 27%

Table 4.3: Device Utilization for FPgrep Module with Quad Content Scanners
Virtex XCV2000E Utilization

Resources Device Utilization Percentage
Logic Slices 6508 out of 19200 33%
Flip Flops 6182 out of 38400 16%

Block RAMs 66 out of 160 41%
External IOBs 142 out of 512 27%

27

0%

20%

40%

60%

80%

100%

Slices Flops RAMs IOBs

Quad Scanner
Single Scanner
Protocol Wrappers

%
To

tal
 Ch

ip
Re

so
urc

es

0%

20%

40%

60%

80%

100%

Slices Flops RAMs IOBs

Quad Scanner
Single Scanner
Protocol Wrappers

%
To

tal
 Ch

ip
Re

so
urc

es

Figure 4.7: FPgrep device utilization

As mentioned earlier, simplified DFAs use an average of n states for an n

length regular expression. This translated into the hardware as using on average 1

flip-flop per character (minus the overhead associated with the Protocol Wrappers

and the logic controller). Figure 4.8 shows the relationship between the number of

characters in the search string and the number of slices required to implement the

FPgrep hardware module.

4.4.2 Throughput

The single-scanner spam filtering module with 21 regular expressions currently places

and routes at 37 MHz. The critical path of the module was found to be the fanout of

the 8-bit lines to each of the DFAs. The quad-scanner module has similar results; it

also places and routes at 37 MHz. Given that each scanner is capable of processing

28

45

50

55

60

65

70

75

0 20 40 60 80 100 120 140 160 180 200

Number of Characters in String

S
p

ee
d

 (
M

H
z)

3000

3050

3100

3150

3200

3250

3300

N
u

m
b

er
 o

f
S

li
ce

s
fo

r
M

o
d

u
le

PAR Speed

Number of Slices

Figure 4.8: Speed and slice utilization as a function of the number of characters in
the search string

8-bits of data per cycle, the throughput of the single-scanner spam filter can be

calculated as 37 MHz × 8 bits = 296 Mbps. By running four content scanners in

parallel, the module can reach 37 MHz × 8 bits × 4 = 1.184 Gbps.

When limiting the scanner to only several small DFAs (thus minimizing the

fanout bottleneck), the module is capable of achieving frequencies in the range of

70-80 MHz. At these frequencies, the module is capable of exceeding 2.5 Gbps. The

graph in Figure 4.8 displays the relationship between the number of characters in the

search string and the speed of the FPGA.

29

Chapter 5

FPsed: Packet Payload

Search-and-Replace Using Regular

Expressions

The streaming content editor, FPsed, was implemented as a module on the FPX

platform. The content editor has the ability to perform regular expression searches

and replacements on network packets passing through the module. The function is

similar to the substitute command of Unix’s stream editor utility (sed). The scanner

utilizes the Protocol Wrappers to process IP packets and delineate the header and

payload fields in hardware

5.1 Search-and-Replace

The FPsed module performs both replacement and global replacement operations

on packet payloads. The task of string replacement of a regular expression is not as

straightforward or efficient as searching. String replacement requires that the machine

30

do more than simply determine the presence of matching substrings in a record. The

machine must also determine the position of the first and last character of all complete

substrings that are matched by the machine. It is this requirement that causes the

task of regular expression search-and-replace to be more complicated and less efficient

than a simple search.

Searching for the complete substring is logical when the goal is to replace that

substring. Consider the task of replacing every occurrence of a certain hexadecimal

string associated with a computer virus “37F43(B+|7*)” with the text “Virus Pat-

tern Detected”. For the input string “3172F34435B6B7B8”, the substring could be

replaced from the point where the machine starts running, “31”, to the point where

the substring is accepted “B6”. But this would allow a portion of the virus to remain

in the content stream. In most situations, it is preferable to replace only complete

substrings.

To search for complete substrings, a “.* ” can no longer be prepended to a

regular expression before it is converted to an FSM. This is because prepending a

“.* ” would make it difficult to determine the first character of the matched substring.

It is not believed that there is a general, easily automatable, method for determining

the position of the first character in a matching substring when a “.* ” is prepended.

For instance, suppose all occurrences of “ARL” were to be replaced. Figure 5.1 is a

state machine for the regular expression after prepending a “.* ”.

A

1 2 3 4
A R L

A

Figure 5.1: DFA for “.*ARL”

31

If the string “A1A2A3A4R5L6X7” is input to the machine it would begin running

when it encounters “A1” and matches when “X7” is read. This would have the effect

of replacing “A1A2A3A4R5L6” when the intention is to replace “A4R5L6”. One could

counter that this would not be a problem if the machine simply kept a count of

how many characters were read after entering state 2, resetting the count every time

it entered state 2. For this particular example that would be true, but there are

examples that do not have such a simple and formulaic solution.

A slightly more complicated example is “.*AR*L”, seen in Figure 5.2. Once

again there is a solution to the problem, but this time it is more complicated. In this

situation, the machine would again have to keep track of the number of characters

read after entering state 2. However, this time the machine should only reset its count

if the input causing the transition to state 2 is not an “R”.

A

1 2 3 4

A
A

R

A L

Figure 5.2: DFA for “.*AR*L”

An even more complicated example is the machine for “.*A(AR)*L” in Fig-

ure 5.3. It is left to the reader to see that the machine becomes quite complex.

It is therefore difficult to devise a general method for determining the start of

the string. One can always find a more complicated regular expression that would

require the addition of more rules to the method.

It has been shown that prepending a “.* ” to regular expressions that are to

be replaced is clearly not a viable solution as it was with searching. In Chapter 4 on

32

L

5

A

1

2

4

3

AR

A

A L

A

Figure 5.3: DFA for “.*A(AR)*L”

FPgrep, it was shown that if a “.* ” is not prepended, the searching functionality will

not have the correct semantics if each character is read only once. Because of this,

FPsed must employ a different technique for dealing with the problem of finding all

complete substrings that match a particular regular expression. A solution to this

problem is to use a brute force (or backtracking) method of searching.

5.1.1 Brute Force

The brute force technique of string searching is a simple and well studied technique.

The idea behind this method is that the machine checks all characters of the input

to determine if they could be the beginning of a substring that matches the regular

expression.

The brute force technique works like this: The machine attempts to read the

input string through the automaton beginning with character ci. If, while processing

the string, the machine fails, it immediately initiates a new search beginning with

33

character ci+1. This ensures that all characters are checked to determine if they would

cause the machine to begin running.

As an example, assume the machine is searching for “ABC” and the input is

“A1B2A3B4C5D6”. In this case the machine would begin running on “A1”, continue

to run on “B2” and fail on “A3”. The machine would then backtrack and begin

reading the input from character “B2”. It then begins running when it encounters

“A3”, accepts the substring on “C5” and matches the substring when it reaches “D6”.

The worst case running time occurs when every input character is a possible

starting position, and all but the last character of the input matches the regular

expression. For example, if the machine is searching for “A*B” and the input is

“A0A1 . . . An−1”. The machine must make O(nm) comparisons, where n is the string

length and m is the pattern length, to determine that the pattern does not occur in

the record.

The worst case condition is unlikely to appear when searching for English

language expressions, but it is less rare when searching binary text. Davies and

Bowsher [6] examined the efficiency of the backtracking technique when searching

strings from the English language and binary strings. Their experiments involved

keeping track of the number of references to an input string divided by the number of

characters occurring before the matched substring (the index position of the pattern

minus one) thus obtaining the number of inspected characters in the text string

per character passed. The results of their experiments showed that when searching

English text, the backtracking method referenced the text string 1 to 1.1 times per

character passed. When searching binary text for an expression of length six or

greater, approximately 2 characters were inspected for every character passed.

34

5.2 FPsed Hardware Implementation

The FPsed hardware module has been implemented to perform a brute force method

for search-and-replace. The hardware consists of several components, all of which are

controlled by the logic controller. A block diagram for the module can be seen in

Figure 5.4.

8

Replacement
Buffer

from Protocol
Data arrives

Wrappers

Logic controller

Content
stored in
output
buffer

36

Data Path:
Control Signals:

368
8

8

for matches
FSM scans

Regular Expression

expression
buffer

regular
stored in
Content

Builder
Word

Data sent
to Protocol
Wrappers

Figure 5.4: Block diagram of FPsed search-and-replace module

5.2.1 Logic Controller

The logic controller is the most complex entity in the design. It controls parallel dual-

ported memory buffers, the regular expression machine, the replacement buffer and

the word builder using control signals that it generates. Like the FPgrep controller,

35

the FPsed logic controller has three main phases that operate in parallel: (1) Receiving

Packets, (2) Processing Packets, and (3) Outputting Packets.

Receiving Packets

As packets come into the module from the Protocol Wrappers, they are first written

into the two parallel 512x36 dual-port memory buffers. The lower 32 bits written into

the memory buffers are the incoming data. The upper four bits are used to store the

four control signals from the Protocol Wrappers (start of frame, start of IP headers,

start of IP payload, and end of frame). The write-side address lines are shared by

the two memory buffers, as is the write-enable signal. This ensures that the contents

of the two buffers are identical. The address lines are controlled by a simple counter.

Each time a new word is written to memory, the counter is incremented to address

the next location. Finally, because the buffer size is limited, when the buffer is almost

full a congestion signal is sent upstream to notify the Protocol Wrappers and the NID

to stop sending cells. Once the hardware has had a chance to catch up and complete

processing of the received cells, the congestion signal is removed.

Process Characters In Regular Expression Machine

The bytes that are input to the regular expression machine come from the read side

of one of the dual-port memories. Only the payload data are sent through the regular

expression machine for processing. To address the memory, a counter is used to step

through the memory one byte at a time. The bytes are sent to the regular expression

machine and processed. Control signals from the regular expression machine tell the

controller which address to read next using the following rules:

36

Any data
available at
current
position?

Increase current
position by 1

back_ptr
position in
Save current

accept_ptr
position in
Save current

Current position
is set to

back_ptr + 1

Start search at
beginning of
buffer

Yes

Is

Yes

Yes

No

No

Yes

No

Yes

Yes

No

Enqueue back_ptr

Enqueue accept_ptr

Current position
is set to

accept_ptr + 1

FSM

Is
FSM

resetting?

running?

No
Is

FSM
accepting?

Did
machine
create
match?

send byte to
RE FSM

in start_fifo
as start of match

as end of match
in end_fifo

Figure 5.5: FPsed flow diagram for the input/searching process

1. If no control signals are returning from the regular expression machine (i.e. not

running), the controller updates the current back ptr and increments the byte

address by one.

2. If while running the controller receives an accepting signal from the regular

expression machine, it stores the address of the byte that created the match

into accept ptr and continues to increment the byte address by one.

3. If the controller receives a resetting signal from the regular expression machine,

one of two things can happen:

37

(a) If while running, the controller did not receive an accepting signal, it backs

up the byte address and begins processing data immediately proceeding

the byte that previously started the machine.

(b) If an accepting signal was received (a match was found), it backs up the

byte address and begins processing data immediately proceeding the byte

that caused the machine to match. Also, to remember where the match

has occurred, the starting byte address and the ending byte address of the

string are stored in two fifos (the start fifo and the end fifo).

When the end of a packet is reached, the controller sends a reset signal to the

regular expression machine to reset it. A flow diagram of the above process can be

seen in Figure 5.5.

Output Modified Packet

The output process (Figure 5.6) examines bytes from the read port of the second

dual-port memory. It can only output data that are completely done being processed

by the regular expression machine (none of the regular expression machine pointers

reference the data). As the output process steps through the available bytes, it checks

the previously mentioned start fifo and does the following:

1. If the current output address is not stored in the start fifo, then the byte is sent

to the word builder and the byte address is incremented by one.

2. If the current output address is stored in the start fifo, then the following occurs:

(a) The byte is not sent to the word builder. Instead a signal is sent to the

replacement buffer to begin outputting a replacement.

38

(b) The byte address for the output process is assigned the value stored in the

end fifo.

(c) The output process waits for a done signal from the replacement buffer

before processing additional bytes.

Finally, as data are read from the memory and output, the four control bits

are used to assert the appropriate signals back to the Protocol Wrappers.

Output byte from
output buffer

Advance output
address by one

No

Yes

buffer done?
Is replacement

Output byte from
replacement buffer

buffer one byte
replacement
Advance

Start ouput
at beginning
of buffer

Yes

Is data
available

for output?

Yes

buffer
to replacement
Send start signal

No

No

start_fifo?
at head of

output address
Is current

Dequeue start_fifo

and store as new
output address

Dequeue end_fifo

Figure 5.6: FPsed flow diagram for output/replacement process

39

5.2.2 Replacement Buffer

The replacement buffer contains a variable length array of byte strings. This array

contains the replacement string, which determines the length of the array. The re-

placement buffer has two states: idle and replace. By default the buffer is in the

idle state until it receives a signal from the controller to begin a replacement. At

this point the buffer transitions into the replace state and begins outputting data.

The data consist of the byte values from the array beginning at position zero and

advancing one position per clock tick until the end of the array is reached. A counter

is used to index the array. Finally, a special status signal is raised high for one clock

cycle concurrently with the last byte in the array to notify the controller that it may

resume its normal output. At this time, the replacement buffer also returns to its

idle state.

5.2.3 Word Builder (Byte-to-Word Converter)

The word builder is the final component in the data path of the packet through the

hardware. The purpose of the word builder is to take bytes from the output process of

the controller and buffer them until four bytes are available for a 32-bit output from

the application. A counter keeps track of how many bytes have been seen. An enable

signal comes from the controller to notify the word builder of each incoming byte.

The first three bytes are buffered. When the fourth byte arrives it passes through and

combines with the first three bytes for a 32-bit output. An output enable signal to

the controller informs the controller that the 32 bits are valid for output. The world

builder also has a flush signal that comes from the controller. This signal is asserted

by the controller when the last byte in the packet is being sent to the word builder.

It informs the word builder that it should output however many bytes it may have

40

buffered along with the incoming (last) byte. If there are not four bytes for output,

padding (a byte of zeros) is used to complete a 32-bit word. One last output from

the word builder tells the controller the number of valid bytes of data (non-padding)

that went out with the last word. This information is necessary for the controller to

successfully modify the byte-length field in the frame trailer.

5.2.4 Multiple Expression Search-and-Replace

Unlike the FPgrep module, the current design of the FPsed module only allows for one

search-and-replace operation per module. However, multiple search-and-replace op-

erations can be achieved by simply daisy-chaining FPsed modules together as shown

in Figure 5.7. Note that daisy-chaining the modules together gives priority to search-

and-replace operations that come first in the specification.

Specification:

s/a(ar)*l/ffppxx/g

Resulting Hardware Circuit:

aararl ffppxx fpx

s/a(ar)*l/ffppxx/g

Module Module
FPsed FPsed

s/f*p+x*/fpx/g

s/f*p+x*/fpx/g

Figure 5.7: Multiple search-and-replace modules

5.3 Results

Several versions of the content editor were synthesized with the protocol wrappers

into the RAD of the FPX. One module was designed to replace computer viruses as

they traversed across a streaming UDP-based Internet connection. Another module

was developed to remove profanity from packet payloads and was tested in the lab

41

using a UDP-based chat client. A third module was developed to remove HTML

tags from text. An example of the transformation performed by the HTML filter is

shown in Figure 5.8.

The following sections describe the device utilization and estimated throughput

of the content-editing modules that implements the HTML filter on a Xilinx Virtex

XCV2000E-6 part.

<BODY><H1>sed, a stream editor</H1>

<H2>version 3.02, 28 June 1998</H2>

<ADDRESS>by Ken Pizzini</ADDRESS>

<P><P><HR><P>

<A NAME="TOC1"

HREF="sed_1.html#SEC1">Introduction

<A NAME="TOC2"

HREF="sed_2.html#SEC2">Invocation

SED

Programs

Selecting

lines with SED

Overview of

regular expression syntax

Where SED

buffers data

Often used

commands

Less

frequently used commands

Commands

for die-hard SED programmers

Some

sample scripts

About the

(non-)limitations on line

length

Other

resources for learning about SED

Reporting

bugs

Concept

Index

Command

and Option Index

<P><HR><P>

This document was generated on 28 October 1999

using the texi2html<

/A>

translator version 1.54.</P></BODY>

sed, a stream editor version 3.02, 28 June 1998

by Ken Pizzini

Introduction
Invocation

SED Programs

Selecting lines with SED

Overview of regular expression syntax
Where SED buffers data

Often used commands
Less frequently used commands

Commands for die-hard SED programmers

Some sample scripts

About the (non-)limitations on line length
Other resources for learning about SED

Reporting bugs
Concept Index

Command and Option Index

This document was generated on 28 October 1999

using the texi2html translator version 1.54.

FPsed

s/<[^>]*>//

Internet Packet Header Internet Packet Header

<BODY><H1>sed, a stream editor</H1>

<H2>version 3.02, 28 June 1998</H2>

<ADDRESS>by Ken Pizzini</ADDRESS>

<P><P><HR><P>

<A NAME="TOC1"

HREF="sed_1.html#SEC1">Introduction

<A NAME="TOC2"

HREF="sed_2.html#SEC2">Invocation

SED

Programs

Selecting

lines with SED

Overview of

regular expression syntax

Where SED

buffers data

Often used

commands

Less

frequently used commands

Commands

for die-hard SED programmers

Some

sample scripts

About the

(non-)limitations on line

length

Other

resources for learning about SED

Reporting

bugs

Concept

Index

Command

and Option Index

<P><HR><P>

This document was generated on 28 October 1999

using the texi2html<

/A>

translator version 1.54.</P></BODY>

sed, a stream editor version 3.02, 28 June 1998

by Ken Pizzini

Introduction
Invocation

SED Programs

Selecting lines with SED

Overview of regular expression syntax
Where SED buffers data

Often used commands
Less frequently used commands

Commands for die-hard SED programmers

Some sample scripts

About the (non-)limitations on line length
Other resources for learning about SED

Reporting bugs
Concept Index

Command and Option Index

This document was generated on 28 October 1999

using the texi2html translator version 1.54.

FPsed

s/<[^>]*>//

Internet Packet Header Internet Packet Header

Figure 5.8: Example of FPsed used to strip HTML tags from a packet payload

5.3.1 Device Utilization

The utilization of FPGA resources for three different modules is shown in Tables 5.1,

5.2 and 5.3. Table 5.1 shows the device utilization for a module containing only the

Protocol Wrappers. These values represent the overhead of the packet processing

42

done by the Protocol Wrappers. Table 5.2 details the device utilization for a single

content editor that implements the HTML filter along with the Protocol Wrappers.

Finally, Table 5.3 shows the device utilization for four parallel content editors with

the Protocol Wrappers. The chart in Figure 5.9 illustrates the relative sizes of each

of the modules.

Table 5.1: Device Utilization for Protocol Wrappers
Virtex XCV2000E Utilization

Resources Device Utilization Percentage
Logic Slices 2410 out of 19200 12%
Flip Flops 2870 out of 38400 7%

Block RAMs 19 out of 160 11%
External IOBs 142 out of 512 27%

Table 5.2: Device Utilization for FPsed Module with Single Content Editor
Virtex XCV2000E Utilization

Resources Device Utilization Percentage
Logic Slices 2922 out of 19200 15%
Flip Flops 3223 out of 38400 8%

Block RAMs 21 out of 160 13%
External IOBs 142 out of 512 27%

Table 5.3: Device Utilization for FPsed Module with Quad Content Editors
Virtex XCV2000E Utilization

Resources Device Utilization Percentage
Logic Slices 4131 out of 19200 21%
Flip Flops 4093 out of 38400 10%

Block RAMs 56 out of 160 35%
External IOBs 142 out of 512 27%

5.3.2 Throughput

A single content-editing RE module for the HTML filter was synthesized for the

Virtex XCV2000E-6 FPGA that implements the RAD on the FPX platform. The

43

0%

20%

40%

60%

80%

100%

Slices Flops RAMs IOBs

Quad Editor
Single Editor
Protocol Wrappers

%
To

tal
 Ch

ip
Re

so
urc

es

0%

20%

40%

60%

80%

100%

Slices Flops RAMs IOBs

Quad Editor
Single Editor
Protocol Wrappers

%
To

tal
 Ch

ip
Re

so
urc

es

Figure 5.9: FPsed device utilization

FPGA was placed and routed using the Xilinx backend tools to run at 64 MHz. This

provides a throughput of 64 MHz × 8 bits = 512 Mbps.

An experiment was run to mimic FPsed’s functionality with software running

on four different computers. One computer, a dual Intel Pentium 3 operating at 1 GHz

running a Linux 2.2 kernel, achieved 13.7 Mbps when the sed program (version 3.02)

read data from disk. To ensure that disk I/O was not a bottleneck, the same program

was run completely from memory and achieved 32.72 Mbps. This is approximately

16x slower than the FPsed hardware. Another computer, an Alpha 21364 operating at

667 MHz running Linux kernel 2.4, was able to perform a search-and-replace operation

on data at 36 Mbps when the input was read from disk, and 50.4 Mbps when the

input was run completely from memory. On average, the fastest computers were 10x

slower than a single FPsed module. Throughput results for all four computers are

shown in Figure 5.10.

44

0

500

1000

1500

2000

2500

Quad-FPsed at
64 MHz from
NETWORK

FPsed at 64
MHz from

NETWORK

AMD Athlon
1.2GHz from

MEMORY

AMD Athlon
1.2GHz from

DISK

DEC Alpha
21364 .7GHz

from MEMORY

INTEL dual P3
1GHz from
MEMORY

AMD K7 .9GHz
from MEMORY

DEC Alpha
21364 .7GHz

from DISK

AMD K7 .9GHz
from DISK

INTEL dual P3
1GHz from

DISK

S
in

g
le

 e
d

it
o

r
th

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 5.10: Comparison of hardware and software throughput

As with FPgrep, the throughput of the FPsed module can be further increased

by instantiating multiple content editors in parallel and dispatching incoming packets

to an available editor (see section 4.3). For instance, if the HTML filter uses four

parallel editors, then the throughput can increase four-fold to 2.048 Gbps. This gives

FPsed a 40x advantage over the software as shown in Figure 5.10.

45

Chapter 6

Generating the Hardware

The FPgrep and FPsed modules were designed to be easily reconfigurable when new

search terms are desired. It is necessary to have certain components such as the

regular expression finite state automata and the replacement buffer generated because

no single finite state automaton can be used to search for every regular expression.

Also, no single replacement string is suitable for all applications. To accomplish this

task, a complete design flow was implemented using a combination of static VHDL

components and dynamic VHDL components that are generated according to a user

specification. The design flow is completely automated, starting with a list of regular

expressions and ending with a hardware bitstream being programmed into the RAD

of an FPX.

6.1 Hardware Generation Implementation Details

Generating the hardware for the FPgrep and FPsed modules is done using a series of

scripts. These scripts are accessible via a shell command line or an easy to use web

interface. The input specifications to the scripts are slightly different for FPgrep and

46

FPsed. For FPgrep, the specification contains a list of regular expressions, each with

an identification number associated with it that is also programmed into the hardware.

The identification number is inserted into an alert packet when the regular expression

is matched. The syntax for FPgrep and an example of a single list entry can be seen

below:

syntax:

/expression/prop(id number)/

example of a virus scanner:

/V i(R|r)u(S|s)/prop(6)/

The input specification for FPsed is slightly different. It consists of a list of regular

expressions and their corresponding replacement strings. The syntax for FPsed and

a couple examples can be seen below:

syntax:

s/expression/replacementstring/

example of stripping out HTML tags:

s/ < [∧>]∗ > //

example of a profanity blocker:

s/(P |p)rofa(N |n)ity/ ∗ ∗ ∗ ∗ ∗ ∗ ∗ /

The complete process of generating hardware from the user specified regular expres-

sion to the resulting module can be seen in Figure 6.1 (note that dashed-line blocks

are for FPsed only).

47

No

of user input?

Another line Yes

Regular expressions

(and replacement)

are generated via

other software

makeProject:

create synthesis

script including

static and dynamic

hardware

regex_app.vhd

regex_app.prj

hardware with

static hardware

synthesize dynamic

Place and Route

RE application

with memory

blocks and

Protocol Wrappers

regex_app.edn

createRegex:

Top level script

buildApp is run

Get user input line

convert regular

replaceBufGen:

expression (RE)

JLex input format

search term to

creates a FSM in

VHDL to replace

text as specified

by the user

replace_buf.vhd

User enters

regular expressions

(and replacement)

into a file

User enters

regular expressions

(and replacement)

via web interface

create a Java

representation of

the RE FSM

to convert the Java

the FSM to a

VHDL entity

representation of

regex_fsm.vhd

Call JLex to

Call stateGen

create top−level

which instantiates

VHDL entity

all the static and

dynamic entities

regex_app.bit

Figure 6.1: Hardware generation from specification to bitstream

6.1.1 Top Level Script: buildApp

The main structure of the device is generated by a script called buildApp. BuildApp

reads the list of regular expression and performs several functions. First, it runs a

script called createRegex to create a regular expression machine for each entry in the

list. For FPsed, it also runs a script called replaceBufGen to create a replacement

buffer for each entry in the list. Finally, buildApp generates a VHDL entity for the

48

top-level design (regex app.vhd), which instantiates each of the previously generated

components and wires them together.

6.1.2 Create Regular Expression FSM: createRegex

The createRegex script is responsible for creating each regular expression state ma-

chine needed for the design. This script first creates an input file (jlex in) for JLex

to parse. Next, JLex parses this file creating a Java representation of the regular

expression state machine. Finally, createRegex calls another script called stateGen to

parse the Java file.

6.1.3 Convert Java FSM to VHDL: stateGen

The stateGen script takes in a JLex-created Java representation of a regular expres-

sion state machine. It parses this Java file and extracts the pertinent state machine

information, including state transition tables and accepting states. Using this infor-

mation, the stateGen script then creates a VHDL representation of the state machine.

For FPgrep, the identification number associated with each regular expression is also

included in the hardware. Separate state machines are created for each regular ex-

pression in the user specification that are called regex fsmi.vhd, where i indicates the

regular expression number.

6.1.4 Create Replacement Buffer: replaceBufGen

The replaceBufGen script creates a VHDL representation of a state machine that

controls the output of a replacement string for FPsed. Note that separate replacement

buffers are created for each regular expression in the user specification that are called

replace bufi.vhd, where i indicates the replacement number.

49

6.1.5 Create Synthesis Script: makeProject

Each new user specification may have a different number of regular expression strings.

This creates different files each time a new module is generated. Because of this, the

synthesis scripts required to build the hardware need to be different for each generated

module. The makeProject script creates a .prj file which can be used to synthesize

and map each specification using the Synplicity [26] synthesis tools (regex app.prj).

6.2 Web Interface

A PHP-based [28] web interface was created to simplify designing new modules (cur-

rently only supports FPgrep). The interface allows regular expressions to be added,

edited, or deleted from a list of available expressions. The expressions along with

the associated information is stored in a MySQL [17] database. A screenshot of the

interface is shown in Figure 6.2. From the web, an administrator can select any sub-

set of the available expressions to be programmed into the hardware. The resulting

module can be used for several applications such as virus protection, network security,

copyright enforcement, or spam filtering. For network security and spam filtering ap-

plications, the Internet address of a server is specified to determine where alert packets

should be delivered. For networks that contain multiple FPX devices, the FPX IP

address, the port, and the stack specifies which FPX should be reprogrammed.

For example, if the second and third boxes of Figure 6.2 are checked, then

the FPX will be programmed to scan for two regular expressions. First, it will

scan packets for the hex string “6C744E5076” which appears in a digital document

fingerprint. Additionally, it will scan packets for the regular expression “Do Not

(Distribute|Release)”. If a packet containing either of these regular expressions is

found, then an alert packet is sent to the server address 192.168.100.1. Once the

50

Figure 6.2: Web interface for generating modules

“Build FPX” button is pressed, the design scripts proceed to synthesize, place and

route, and reprogram the FPX over the network. More details on the applications

listed in Figure 6.2 are discussed later in Chapter 7

51

Chapter 7

Applications for Managing Digital

Content

A variety of applications have been developed using the FPgrep and FPsed hardware

modules in conjunction with a suite of software tools. The software tools include a

MySQL database, a Java-based server that communicates with the database, as well

as a Java-based (also ported to C#) agent that communicates with the server. Each

of these components will be further described with respect to each application in the

following sections.

7.1 Spam Filter

Over the past decade, spam has become a menace to anyone with an email account.

Recent surveys show that between 50% and 60% of all email is now spam [11]. In

order to identify and effectively eliminate spam, packet payloads need to be completely

examined for spam keywords.

52

FPgrep offers the power and flexibility to search for a number of regular ex-

pressions representing spam keywords. By programming a list of spam keywords into

the FPgrep hardware module and placing the hardware upstream from a mail server

as shown in Figure 7.1, much of the spam can be eliminated. Valid packets are al-

lowed to pass through the FPgrep module and arrive at the mail server. However,

when packets containing targeted spam keywords are processed by the FPgrep mod-

ule, these offending packets can be dropped before reaching the mail server. FPgrep

also offers the ability to send an alert packet to the mail server (or some other log

server) to log the event. The format of this alert packet can be seen in section A.1 of

Appendix A.

FPgrep module

Mail Server

Mail arrives
from Internet

Mail is
processed in
the FPX

Alert packet is sent
to mail server to
log event

Mail containing spam
is dropped by FPgrep

Valid mail
arrives at
Mail Server

FPgrep moduleFPgrep module

Mail Server

Mail arrives
from Internet

Mail is
processed in
the FPX

Alert packet is sent
to mail server to
log event

Mail containing spam
is dropped by FPgrep

Valid mail
arrives at
Mail Server

Figure 7.1: FPgrep used as a spam filter

7.2 Virus Protection

Besides spam, viruses have become not only an annoyance, but also a costly hazard

for businesses connected to the Internet. Figure 7.2 represents a typical network

layout that is unprotected from modern viruses. If Host C is infected with a virus,

53

then all the shaded nodes in the network now become vulnerable. Notice that no

node on the network is safe.

Host EHost DHost CHost B

Dept E

University X

Location B

Dept D

Location A

Dept A Dept C

Dept B

Host A Host EHost DHost CHost B

Dept E

University X

Location B

Dept D

Location A

Dept A Dept C

Dept B

Host A

Figure 7.2: Typical unprotected network

By placing a protective system such as FPgrep or FPsed into the network and pro-

gramming it to search for digital virus signatures, malicious viruses can be effectively

identified and quarantined before they are able to spread. Figure 7.3 depicts the

same network as in Figure 7.2. However, when the network is protected only a small

portion of the nodes on the network are now vulnerable.

The following sections describe two possible virus protection solutions that

can be offered via the FPgrep module: a passive approach and an active approach.

Both approaches are similar in that the FPgrep module is programmed to search for

digital signatures of some number of viruses. Each digital signature may consist of

54

Host EHost DHost CHost B

Dept E

University X

Location B

Dept D

Location A

Dept A Dept C

Dept B

Host A Host EHost DHost CHost B

Dept E

University X

Location B

Dept D

Location A

Dept A Dept C

Dept B

Host A

Figure 7.3: Network protected with FPgrep or FPsed

a hexadecimal string extracted from an executable virus, several lines of code from

a macro virus, or some other identifying characteristic of the virus. The passive and

active virus applications differ only in their behavior once a virus is detected.

7.2.1 Passive Virus

When running the passive virus application, the FPgrep module passively monitors

all traffic flowing through the network. This means that if a virus is detected by

the system, the virus is allowed to continue on to its destination. However, before

sending the offending packet, a UDP alert packet (see section A.1 of Appendix A) is

generated and sent to the same destination as the offending packet. A software agent

residing on the destination machine receives the alert packet and informs the user of

55

the machine of the possible downloaded virus via a prompt similar to the one seen in

Figure 7.5. This sequence of events can be followed in Figure 7.4.

FPgrep module

Internet User

(1) Internet
User requests
content from
Internet

(2) Content
returns from
Internet through
FPX

(3) Content is
processed in
the FPX

(4) Alert packet is
sent to user to warn
them about the virus

(5) Content
containing virus is
forwarded from FPX

FPgrep moduleFPgrep module

Internet User

(1) Internet
User requests
content from
Internet

(2) Content
returns from
Internet through
FPX

(3) Content is
processed in
the FPX

(4) Alert packet is
sent to user to warn
them about the virus

(5) Content
containing virus is
forwarded from FPX

Figure 7.4: FPgrep used for passive virus protection

Figure 7.5: Alert message generated by agent software

7.2.2 Active Virus

The active virus application uses the FPgrep module to actively monitor all traffic

flowing through the network. This is different from the passive application because

now when a virus is detected in a packet, the packet is not allowed to continue on to

its destination. Instead, the virus is dropped by the FPgrep module, thereby protect-

ing the destination machine. However, just as in the passive application, the FPgrep

module generates a UDP alert packet and sends it to the destination machine where

56

a software agent receives the packet and generates a screen prompt. The sequence of

events for the active virus application and the screen prompt can be seen in Figures

7.6 and 7.7.

FPgrep module

Internet User

(1) Internet
User requests
content from
Internet

(2) Content
returns from
Internet through
FPX

(3) Content is
processed in
the FPX

(5) Alert packet is
sent to user to let
them know about
the virus

(4) Content
containing virus is
dropped at FPX

FPgrep moduleFPgrep module

Internet User

(1) Internet
User requests
content from
Internet

(2) Content
returns from
Internet through
FPX

(3) Content is
processed in
the FPX

(5) Alert packet is
sent to user to let
them know about
the virus

(4) Content
containing virus is
dropped at FPX

Figure 7.6: FPgrep used for active virus protection

Figure 7.7: Alert message generated by agent software

7.3 Information Security

Another important issue with respect to many corporate and medical networks has

to do with the security of the information on the network and the information that

is being accessed by machines on the network. It is crucial for both business and

57

legal reasons that documents deemed to be internal documents stay internal to the

network, and information deemed to be a liability or unsuitable not be allowed onto

the network.

The first problem of maintaining internal documents can be easily accomplished

with the FPgrep module by embedding some digital signature or watermark into each

document, or by using some regular expression that is common to all internal doc-

uments such as “CONFIDENTIAL” or “Do Not (Distribute|Release)”. The FPgrep

hardware could then be programmed to search for this signature and drop all packets

containing the signature as they attempt to exit the network.

The second problem of disallowing certain information onto the network would

require an administrator to identify and create regular expressions for each piece of

information that was not allowed onto the network. This sounds like an arduous

task, but can be greatly simplified by finding commonalities between many pieces of

information and using one regular expression to search for all of them. For instance,

if administrators wanted to eliminate all traffic utilizing the KaZaA [21] peer-to-peer

software, they simply need to program the FPgrep module to search for the common

KaZaA application header. This would cause the FPgrep module to drop all KaZaA

packets thus rendering the software unusable.

Just as with the virus protection algorithm, the security application has both

an active mode that drops offending packets and a passive mode that allows offend-

ing packets to pass through (Figure 7.8). Whichever application is used, it is always

important that all network security breaches be reported to some administrator. Be-

cause of this, the FPgrep security application sends a UDP alert packet (see section

A.1 of Appendix A) to some predetermined administrative server whenever a match

is detected.

58

The alert packet is received by a Java-based security application. The appli-

cation logs the source and destination IP addresses of the offending packet as well as

what information was matched in the packet. The security application also has the

ability to access the Property database table displayed in Figure 6.2 to retrieve the

information related to each property ID in the alert packet. This information consists

of a description along with a value for each expression found. The values for each

expression found can be accumulated to represent some priority level given to each

alert. An example prompt for a security breach can be seen in Figure 7.9.

FPgrep module

Internet User

Security Server

(1) Internet
User requests
information
from Internet

(2) Information
returns from
Internet
through FPX

(3) Information
is processed in
the FPX

(4) Information
passes through
FPX and returns
to user

(5) Alert packet is sent
to security server for
packets that contain
targeted information

DBase

FPgrep moduleFPgrep module

Internet User

Security Server

(1) Internet
User requests
information
from Internet

(2) Information
returns from
Internet
through FPX

(3) Information
is processed in
the FPX

(4) Information
passes through
FPX and returns
to user

(5) Alert packet is sent
to security server for
packets that contain
targeted information

DBaseDBase

Figure 7.8: FPgrep used as a passive security application

Figure 7.9: Alert message generated by agent software

59

7.4 Copyright Enforcement

The final application that was developed for the FPgrep module is a method to legit-

imize the distribution of copyrighted digital media such as music and movies. With

the widespread use of peer-to-peer networks such as KaZaA, Morpheus, BearShare

and others, the illegal distribution of digital music and movie files has had a tremen-

dous strain on their respective industries.

To alleviate this problem, a complete hardware/software solution has been de-

veloped including the FPgrep hardware, a software agent for the end systems, and a

transaction server (database tables for the transaction server can be seen in Appendix

B). Each software agent is registered to a specific user with the transaction server.

The transaction server keeps track of all registered agents, registered users, as well as

what content each user is authorized to download.

FPgrep module

Internet User

(1) Internet
User requests
content from
Internet

(2) Content
returns from
Internet through
FPX

(3) Content is
processed in
the FPX

(5) Alert packet is sent
to user to determine
Transaction Server
info

(4) Flow containing
copyrighted content
is blocked at FPX

Transaction Server

DBase

FPgrep moduleFPgrep module

Internet User

(1) Internet
User requests
content from
Internet

(2) Content
returns from
Internet through
FPX

(3) Content is
processed in
the FPX

(5) Alert packet is sent
to user to determine
Transaction Server
info

(4) Flow containing
copyrighted content
is blocked at FPX

Transaction Server

DBaseDBase

Figure 7.10: FPgrep’s copyright enforcement application (1 of 6)

For this application the FPgrep module can be programmed to search for either

Digital Rights Management (DRM) tags, or just byte stings that occur in commonly

traded music and movie files. When a match is detected in a packet, the FPgrep

60

module can prevent that packet along with all subsequent packets from reaching

the destination machine. Instead an alert packet (see section A.1) is sent to the

destination machine with information about what match or matches occurred in the

offending packet as shown in Figure 7.10.

When the alert packet arrives at the destination machine, the agent software

appends a user ID# and an agent ID# to the alert packet (see section A.2.1) and

forwards it to the transaction server. When the transaction server receives the packet,

it checks a Rights table in the database to see if the user is authorized to download

the content. If so, the transaction server sends a release packet (see section A.2.3) to

the FPgrep module allowing the blocked content to pass through. This is shown in

Figure 7.11.

FPgrep module

Internet User

DBase

(6) Alert message is
forwarded to
Transaction Server
with User info

(7) If user owns rights to the
content, then send message
to FPX to release flow

(8) Content is
released from
FPX and sent
to user

Transaction Server

FPgrep moduleFPgrep module

Internet User

DBaseDBase

(6) Alert message is
forwarded to
Transaction Server
with User info

(7) If user owns rights to the
content, then send message
to FPX to release flow

(8) Content is
released from
FPX and sent
to user

Transaction Server

Figure 7.11: FPgrep’s copyright enforcement application (2 of 6)

If the transaction server determines that the user is not authorized to down-

load the content, it will send a purchase request (see section A.2.2) to the user as

shown in Figure 7.12. The purchase request contains a textual description of the

content that was blocked by the FPgrep module as well as a cost for the content.

This enables a user to make an informative decision about purchasing the content.

61

Once the purchase prompt arrives at the user’s machine, the agent software gener-

ates a screen prompt with all of this information giving the user a choice to purchase

or not to purchase the content. An example screen prompt can be seen in Figure 7.13.

FPgrep module

Internet User

DBase

(9) If user DOESN’T
own rights to the
content, then
generate prompt to
purchase

Transaction Server

FPgrep moduleFPgrep module

Internet User

DBaseDBase

(9) If user DOESN’T
own rights to the
content, then
generate prompt to
purchase

Transaction Server

Figure 7.12: FPgrep’s copyright enforcement application (3 of 6)

Figure 7.13: A prompt to purchase copyrighted content

Once the user make a decision, a response packet (see section A.2.1) is sent to

the transaction server. This is shown in Figure 7.14.

62

FPgrep module

Internet User

DBase

(10) User selects
“YES” or “NO” to
purchase

Transaction Server

FPgrep moduleFPgrep module

Internet User

DBaseDBase

(10) User selects
“YES” or “NO” to
purchase

Transaction Server

Figure 7.14: FPgrep’s copyright enforcement application (4 of 6)

In the event that a user selects YES and decides to purchase the copyrighted

content, several events follow. First, the transaction server makes an entry in the

Rights table so that subsequent downloads of the same content are allowed to pass

through the FPgrep module. At this point the transaction server can also debit a

user account for the purchase. Next, the transaction server sends a release packet (see

section A.2.3) to the FPgrep module allowing the blocked content to pass through.

Finally, the transaction server also sends a receipt packet (see section A.2.4) to the

user to let them know that their account has been debited. The receipt packet

contains information about how much the user’s account was debited and creates a

screen prompt similar to the prompt in Figure 7.15. This whole sequence of events is

shown in Figure 7.16.

Figure 7.15: A receipt prompt for copyrighted content

63

FPgrep module

Internet User

DBase

(12) Send a release
message to the FPX

(13) Content is
released from
FPX and sent to
user

(11) If user selects “YES” then
add rights info to DBase

(14) Send a
transaction receipt
to the user

Transaction Server

FPgrep moduleFPgrep module

Internet User

DBaseDBase

(12) Send a release
message to the FPX

(13) Content is
released from
FPX and sent to
user

(11) If user selects “YES” then
add rights info to DBase

(14) Send a
transaction receipt
to the user

Transaction Server

Figure 7.16: FPgrep’s copyright enforcement application (5 of 6)

If the user decides that they are not interested in downloading the copyrighted

content and selects NO when presented with the option, the transaction server simply

sends a drop packet (see section A.2.3) to the FPgrep module. This packet tells the

module that it should stop buffering data associated with the copyrighted content

and just drop all the data. This can be seen in Figure 7.17.

FPgrep module

Internet User

DBase

(15) If user selects “NO”,
then send message to FPX
to terminate flow

Transaction Server

FPgrep moduleFPgrep module

Internet User

DBaseDBase

(15) If user selects “NO”,
then send message to FPX
to terminate flow

Transaction Server

Figure 7.17: FPgrep’s copyright enforcement application (6 of 6)

64

Chapter 8

Summary and Future Work

8.1 Summary

In this thesis two hardware modules, FPgrep and FPsed, have been presented that

were designed to help manage the distribution of digital content.

The FPgrep module is capable of passively scanning packet payloads for a

set of regular expressions, actively dropping packets that match any of the regular

expressions, and generating alert packets to notify administrators of any match that

occurs. The module was implemented on the FPX and tested using real TCP/IP

Internet traffic on both the WUGS and in a stand-alone configuration. FPgrep is

capable of operating at speeds of 1.184 Gbps for twenty-one ∼20 character regular

expressions, and exceeding speeds of 2.5 Gbps for smaller numbers of similar regular

expressions.

The FPsed module is capable of scanning packet payloads for a set of regular

expressions and actively replacing any occurrence of a match. The module was im-

plemented on the FPX and tested using a UDP-based chat client over the Internet.

65

The hardware solution was found to be about 60 times faster than similar software

solutions when using parallel modules.

A simplified design flow was implemented for both modules. The design flow

accepts user input in common regular expression syntax, generates the necessary

VHDL, places and routes the design, and even programs the FPGA with the new

bitstream. The design flow can be accessed through either command lines tools or

through a web interface.

Finally, several applications were developed to utilize the capabilities of the FP-

grep and FPsed modules. These include a spam filter, a virus protection application,

an information security application, as well as a copyright enforcement application.

8.2 Future Work

8.2.1 FPgrep

Currently, the bottleneck in the FPgrep module is the fanout associated with sending

8-bits of data to all of the parallel DFAs. To improve the timing, a tree structure of

flip-flops (as described and implemented in [7]) can be used to distribute the data to

all of the DFAs to minimize the propagation delay.

The content scanner is designed to support several different behaviors as de-

scribed in Chapter 4. However, the behaviors such as sending an alert message are not

specified on an expression-by-expression basis. For example, if the content scanner

is compiled to send an alert packet, it will send that alert packet for all the regular

expressions in the module. It is more desirable to have the action rules based on

which expression matched. Doing this would allow alert packets to be sent for some

regular expressions in the module and not for others. An enhanced version of awk’s

66

pattern-rule syntax [25] (but with reduced instruction set) has been defined which is

suitable for this task.

Finally, the content scanner currently looks for matches on a packet-by-packet

basis. This means that if a string that should cause a match spans multiple packets,

it will be missed by the content scanner. This behavior may be improved by utilizing

the TCP-Splitter [19, 20] to process data on a stream-by-stream basis. This entails

augmenting the content scanner to a multi-context design that maintains a match

context for each available flow and switches contexts based on the stream that is

currently being presented by the TCP-Splitter.

8.2.2 FPsed

Currently, the FPsed module does not search for multiple regular expressions in the

same fashion as the FPgrep module. Each FPgrep module is capable of using parallel

DFAs and searching for multiple regular expressions. In contrast, each FPsed module

only searches for a single regular expression. FPsed modules are daisy-chained to-

gether when searching for more than one regular expression. This not only wastes the

limited resources of the FPGA, but it also adds a great deal of latency. Future ver-

sions of the FPsed module will employ an architecture similar to that of the FPgrep

module.

The idea of doing search-and-replace on TCP/IP streams is also something that

has been considered. Preliminary plans for accomplishing this have been discussed.

67

Appendix A

Application Packet Formats

A.1 Common Packet Formats for All Applications

A.1.1 Alert Packet Format

Packet Type

Source IP

Dest. IP

FPX IP Addr

Packet Ref.

Property IDs
…

Packet TypePacket Type

Source IPSource IP

Dest. IPDest. IP

FPX IP AddrFPX IP Addr

Packet Ref.Packet Ref.

Property IDs
…
Property IDs
…

• Packet Type:

– byte 0:

∗ opcode = 0x00 (Information Security)
∗ opcode = 0x01 (Passive Virus Protection)
∗ opcode = 0x02 (Active Virus Protection)
∗ opcode = 0x03 (Copyright Enforcement)
∗ opcode = 0x04 (Spam Filter)

– byte 1-3: unused

• Source IP address of packet that caused this alert packet

• Destination IP address of packet that caused this alert packet
to be generated

• FPX IP address is the address of the FPX device that found
the match and generated this alert packet

• Packet Reference ID# is a 32-bit identifier used by the hard-
ware to identify this alert packet

• Property IDs is a list of 32-bit integers that identifies which
content matched in the original packet

68

A.2 Other Copyright Enforcement Application

Packet Formats

A.2.1 Forwarded Alert Packet and Purchase Prompt

Response Formats

Packet Type

Source IP

Dest. IP

FPX IP Addr

Packet Ref.

Property IDs
…

Delimiter

User ID#

Agent ID#

Packet TypePacket Type

Source IPSource IP

Dest. IPDest. IP

FPX IP AddrFPX IP Addr

Packet Ref.Packet Ref.

Property IDs
…
Property IDs
…

DelimiterDelimiter

User ID#User ID#

Agent ID#Agent ID#

• Packet Type:

– Forwarded Alert Packet

∗ byte 0: opcode = 0x03
∗ byte 1-3: unused

– Purchase Prompt Response

∗ byte 0:
· opcode = 0x16 if user selects YES
· opcode = 0x18 if user selects NO

∗ byte 1-3: unused

• Source IP address of packet that caused this alert packet to be
generated

• Destination IP address of packet that caused this alert packet
to be generated

• FPX IP address is the address of the FPX device that found
the match and generated this alert packet

• Packet Reference ID# is a 32-bit identifier used by the hard-
ware to identify this alert packet

• Property IDs is a list of 32-bit integers that identifies which
content matched in the original packet

• The Delimiter is used to separate the User ID# from the Prop-
erty IDs. This delimiter is 32-bits of zeros. (NOTE: This
means that when assigning property IDs, the database must
begin at 1 instead of 0 to prevent confusion).

• The User ID# is a 32-bit number that identifies each user that
has registered with the system

• The Agent ID# is a 32-bit number that identifies an Agent
that has been registered with the system.

69

A.2.2 Purchase Prompt Request Format

Packet Type

Source IP

Dest. IP

FPX IP Addr

Packet Ref.

Property IDs
…

Property
Descriptions

Delimiter

Packet TypePacket Type

Source IPSource IP

Dest. IPDest. IP

FPX IP AddrFPX IP Addr

Packet Ref.Packet Ref.

Property IDs
…
Property IDs
…

Property
Descriptions
Property
Descriptions

DelimiterDelimiter

• Packet Type:

– byte 0: opcode = 0x10

– byte 1-3: a representation of the value of the sum of all
property IDs the user doesn’t currently have rights to
download

• Source IP address of packet that caused this alert packet to be
generated

• Destination IP address of packet that caused this alert packet
to be generated

• FPX IP address is the address of the FPX device that found
the match and generated this alert packet

• Packet Reference ID# is a 32-bit identifier used by the hard-
ware to identify this alert packet

• Property IDs is a list of 32-bit integers that identifies which
content matched in the original packet

• The Delimiter is used to separate the Property Descriptions
from the Property IDs. This delimiter is 32-bits of zeros.
(NOTE: This means that when assigning property IDs, the
database must begin at 1 instead of 0 to prevent confusion).

• Property Description is a string which identifies to the user
what was matched by the hardware.

70

A.2.3 Release and Drop Packet Formats

Packet Type

Packet Ref.

Packet TypePacket Type

Packet Ref.Packet Ref.

• Packet Type:

– Release Packet

∗ byte 0: opcode = 0x12
∗ byte 1-3: unused

– Drop Packet

∗ byte 0: opcode = 0x14
∗ byte 1-3: unused

• Packet Reference ID# is a 32-bit identifier used by the hard-
ware to identify this alert packet

A.2.4 Receipt and Not Registered Packet Formats

• Packet Type:

– Receipt Packet

∗ byte 0: opcode = 0x22
∗ byte 1-3: unused

– Not Registered Packet

∗ byte 0: opcode = 0x21
∗ byte 1-3: unused

71

Appendix B

Database Tables

This appendix describes the MySQL tables that are used for the applications de-

scribed in Chapter 7 as well as the table described in section 6.2 that is used with

the web interface.

Property Table (used with web interface)

+---------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
search_string	varchar(50)				
description	varchar(30)				
owners_id	int(11)			0	
value	decimal(9,2)			0.00	
+---------------+--------------+------+-----+---------+----------------+

Agents Table

+----------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+---------+------+-----+---------+-------+
| users_id | int(11) | | | 0 | |
| agent_id | int(11) | | | 0 | |
+----------+---------+------+-----+---------+-------+

72

Owners Table

+-------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+----------------+
| id | int(11) | | PRI | NULL | auto_increment |
| name | varchar(30) | | | | |
+-------+-------------+------+-----+---------+----------------+

Rights Table

+---------------+---------+------+-----+------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---------+------+-----+------------+----------------+
invoice_num	int(11)		PRI	NULL	auto_increment
users_id	int(11)			0	
property_id	int(11)			0	
purchase_date	date			0000-00-00	
+---------------+---------+------+-----+------------+----------------+

Users Table

+--------------+--------------+------+-----+------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+--------------+------+-----+------------+----------------+
id	int(11)		PRI	NULL	auto_increment
login	varchar(16)				
password	varchar(16)				
name	varchar(30)				
address	varchar(30)				
city	varchar(30)				
state	char(2)				
zip	varchar(5)				
credit_card	varchar(16)				
exp_date	date			0000-00-00	
account_bal	decimal(9,2)			0.00	
+--------------+--------------+------+-----+------------+----------------+

73

References

[1] E. Berk and C. Ananian. JLex: A lexical analyzer generator for Java

http://www.cs.princeton.edu/∼appel/modern/java/JLex/, 2000.

[2] Robert S. Boyer and J. Strother Moore. A Fast String Searching Algorithm.

Communications of the ACM, 20(10):762–772, October 1977.

[3] Florian Braun, John Lockwood, and Marcel Waldvogel. Reconfigurable Router

Modules Using Network Protocol Wrappers, booktitle = Proceedings of Field-

Programmable Logic and Applications, address = Belfast, Northern Ireland,

month = aug, year = 2001.

[4] Florian Braun, John W. Lockwood, and Marcel Waldvogel. Layered Protocol

Wrappers for Internet Packet Processing in Reconfigurable Hardware. Technical

Report WU-CS-01-10, Washington University in Saint Louis, Department of

Computer Science, June 2001.

[5] Tom Chaney, J. Andrew Fingerhut, Margaret Flucke, and Jonathan S. Turner.

Design of a Gigabit ATM Switch. Technical Report WU-CS-96-07, Washington

University in Saint Louis, 1996.

[6] G. Davies and S. Bowsher. Algorithms for Pattern Matching. Software Practice

and Experience, 16(6):575–601, 1986.

[7] R. Franklin, D. Carver, and B. L. Hutchings. Assisting Network Intrusion Detec-

tion with Reconfigurable Hardware. In IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), Napa, CA, USA, April 2002.

[8] Roger L. Haskin and Lee A. Hollaar. Operational Characteristics of a Hardware-

Based Pattern Matcher. ACM Transactions on Database Systems, 8(1):15–40,

March 1983.

74

[9] Edson Horta and John W. Lockwood. PARBIT: A Tool to Transform Bitfiles

to Implement Partial Reconfiguration of Field Programmable Gate Arrays (FP-

GAs). Technical Report WUCS-01-13, Washington University in Saint Louis,

Department of Computer Science, July 6, 2001.

[10] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour. Dy-

namic Hardware Plugins in an FPGA with Partial Run-time Reconfiguration. In

Design Automation Conference (DAC), New Orleans, LA, June 2002.

[11] MessageLabs Intelligence. MessageLabs Monthly Intelligencec Report-May 2003.

http://messagelabs.com/binaries/May031.pdf, May 2003.

[12] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, N. Reading, MA, 1980.

[13] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast Pattern Matching in Strings.

SIAM Journal on Computing, 6:323–350, 1977.

[14] John W. Lockwood, Naji Naufel, Jon S. Turner, and David E. Taylor. Repro-

grammable Network Packet Processing on the Field Programmable Port Ex-

tender (FPX). In ACM International Symposium on Field Programmable Gate

Arrays (FPGA’2001), pages 87–93, Monterey, CA, USA, February 2001.

[15] John W. Lockwood, Jon S. Turner, and David E. Taylor. Field Programmable

Port Extender (FPX) for Distributed Routing and Queuing. In ACM Inter-

national Symposium on Field Programmable Gate Arrays (FPGA’2000), pages

137–144, Monterey, CA, USA, February 2000.

[16] James Moscola, John Lockwood, Michael Pachos, and Ronald Loui. Imple-

mentaion of a Content-Scanning Module for an Internet Firewall. In Proceed-

ings of IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), Napa, CA, USA, April 2003.

[17] MySQL AB. MySQL. http://www.mysql.com/.

[18] Martin Roesch. Snort - lightweight intrusion detection for networks. In 13th

Administration Conference, LISA’99, Seattle, WA, November 1999.

[19] David V. Schuehler and John Lockwood. TCP-Splitter: A TCP/IP Flow Monitor

in Reconfigurable Hardware. In Proceedings of Hot Interconnects 10 (HotI-10),

Stanford, CA, USA, August 2002.

75

[20] David V. Schuehler, James Moscola, and John Lockwood. Architecture for a

Hardware Based, TCP/IP Content Scanning System. In Proceeding of Hot In-

terconnects 11 (HotI-11), Stanford, CA, USA, August 2003.

[21] Sharman Networks. KaZaA. http://www.kazaa.com/.

[22] R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching using FP-

GAs. In IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), Rohnert Park, CA, USA, April 2001.

[23] SpamAssassin. http://www.spamassassin.org.

[24] Todd Sproull, John W. Lockwood, and David E. Taylor. Control and Configura-

tion Software for a Reconfigurable Networking Hardware Platform. In IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM),

Napa, CA, USA, April 2002.

[25] R. Stallman. The Gawk Manual for Gawk Version 2.15. GNU Press, 1993.

[26] Synplicity. Synplify. http://www.synplicity.com/.

[27] David E. Taylor, John W. Lockwood, and Naji Naufel. RAD Module Infras-

tructure of the Field-programmable Port eXtender (FPX). Technical report,

WUCS-01-16, Washington University, Department of Computer Science, July

2001.

[28] The PHP Group. PHP. http://www.php.net/.

[29] Ken Thompson. Regular Expression Search Algorithm. Communications of the

ACM, 11(6):419–422, June 1968.

[30] Wallace Westfeldt. Internet Reconfigurable Logic for Creating Web-enabled De-

vices. Xilinx Xcell, Q1 1999.

76

Vita
James Moscola

Date of Birth December 14, 1977

Place of Birth Staten Island, New York

Education M.S. Computer Science, Washington Univ., August 2003

B.S. Computer Engineering, Washington Univ., May 2001

B.S. Physical Science, Muhlenberg College, May 2000

Publications James Moscola, John Lockwood, Ronald P. Loui, and Michael

Pachos. Implementation of a Content-Scanning Module

for an Internet Firewall. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), (Napa,

CA, USA), Apr. 2003.

James Moscola, Michael Pachos, John Lockwood, and Ronald

P. Loui. FPsed: A Streaming Content Search-and-Replace

Module for an Internet Firewall. In Proceeding of Hot In-

terconnects 11 (HotI-11), (Stanford, CA, USA), Aug. 2003.

David V. Schuehler, James Moscola, and John Lockwood. Ar-

chitecture for a Hardware Based, TCP/IP Content Scan-

ning System. In Proceeding of Hot Interconnects 11 (HotI-

11), (Stanford, CA, USA), Aug. 2003.

John Lockwood, Chris Neely, Chris Zuver, Dave Lim, and

James Moscola. An Extensible, System-On-Programmable-

Chip, Content-Aware Internet Firewall. In Proceedings of

Field-Programmable Logic and Applications (FPL), (Lis-

bon, Portugal), September. 2003.

August 2003

	FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet
	Recommended Citation
	FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet

	tmp.1471023011.pdf._54G9

	Abstract: Abstract: As computer networks increase in speed, it becomes difficult to monitor and manage the transmitted digital content. To alleviate these problems, hardware-based search (FPgrep) and search-and-replace (FPsed) modules have been developed. FPgrep has the ability to scan packet payloads for a given set of regular expressions and pass or drop packets based on the payload contents. FPsed also scans packet payloads for a set of regular expressions and adds the ability to modify the payload if desired. The hardware circuits that implement the FPgrep and FPsed modules can be generated, compiled, and synthesized using a simple web interface. Once a module is created it is programmed into logic on a Field Programmable Gate Array (FPGA). The FPgrep and FPsed modules use FPGAs to process packets at the full rate of Gigabit-speed networks. Both modules, along with several
supporting applications were developed and tested using the Field Programmable Port Extender (FPX) platform. Applications developed for the modules currently include a spam filter, virus protection, an information security filter, as well as a copyright enforcement function.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: July 29, 2003
	Author: Authors: Moscola, James
	Title: FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet - Master's Thesis, August 2003
	ReportNumber: 2003-56
	DepartmentName: Department of Computer Science & Engineering

