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The wide-spread use of mobile computing devices has led to an increased demand
for applications that operate dependably in opportunistically formed networks. A
promising approach to supporting software development for such dynamic settings is
to rely on the context-aware computing paradigm, in which an application views the
state of the surrounding ad hoc network as a valuable source of contextual information
that can be used to adapt its behavior. Collecting context information distributed
across a constantly changing network remains a significant technical challenge. This
dissertation presents a query-centered approach to simplifying context interactions in
mobile ad hoc networks. Using such an approach, an application programmer views
the surrounding world as a single data repository over which descriptive queries can be
issued. Distributed context information appears to be locally available, effectively hid-
ing the complex networking tasks required to acquire context in an open and dynamic
setting. This dissertation identifies the research issues associated with developing a
query-centric approach and discusses solutions to providing query-centric support to
application developers. To promote rapid and dependable software development, a
query-centric middleware is provided to the application programmer. These solutions
provide the means to reason about the correctness of an application’s design and
potentially to reduce programmer effort and error.
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Chapter 1

Introduction

As the trend in the availability and affordability of portable computing devices con-

tinues, we can expect heightened demand for software designed for use in dynamic

mobile environments. The increasing popularity of ubiquitous computing drives the

need for applications developed for ad hoc networks in particular. In these set-

tings, network connections are formed opportunistically by devices within wireless

communication range, without any assistance from a wired infrastructure. Such en-

vironments are characterized by their open and highly dynamic nature, resulting in

highly unpredictable and transient interactions among resource-constrained devices.

Applications for such settings are likely to come into routine usage in situations such

as disaster recovery in which rescue workers must find and treat victims, construction

supervision in which a foreman gathers information around a site to gauge progress,

military scenarios in which soldiers can use information collected from roving robots

and autonomous aircraft to navigate safely through a dangerous battlefield, etc.

In recent years, researchers have concluded that the key to developing rich applica-

tions for limited platforms in inherently uncertain settings is to rely opportunistically

on the resources offered by other hosts in the vicinity. As such, software engineers

have been encouraged to embrace the context-aware computing paradigm in which

applications adapt their behavior according to changes sensed in their operational

environments. Using a context-aware design, a disaster recovery scenario application

senses the presence of victims in the surrounding area and uses the information to

arrange on-site treatment and transport to a nearby hospital for the most seriously in-

jured. As the application’s operational environment changes (e.g., victims are treated

and transported), the application responds by accordingly adjusting the treatment
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and transport plan. Though context-awareness is touted as an appropriate design

strategy for applications deployed in dynamic environments, constructing context-

aware software for ad hoc networks is a complex task. Programmers developing these

adaptive applications must gather and maintain a diverse collection of context infor-

mation that originates from multiple sources and is distributed across an open and

constantly changing network.

The goal of this research is to encourage rapid and dependable development of context-

aware applications by domain programmers, who may have expertise in the applica-

tion domain but are novices in managing the complex network interactions required

to interact with a dynamic and distributed context. A desirable approach is to sep-

arate the complex networking tasks required to facilitate context interactions from

application programming tasks and capture them within a middleware framework

that provides the domain programmer with a familiar and simple, yet expressive, ap-

plication programming interface (API). While frameworks and infrastructures have

been devised to simplify context-aware application development, the solutions are of-

ten not appropriate for use in mobile ad hoc networks (e.g., the Context Toolkit [33]

and the Context Fabric [15]) or are tied to a particular abstraction that may limit

application design (e.g., LIME [26], MARS [7], Limone [11], EgoSpaces [19]).

This dissertation introduces a new abstraction to simplify context-aware application

design that allows programmers to view the surrounding ad hoc network as a database.

The collection of contextual information available to a particular application can be

abstracted as a global virtual data repository that reflects the continuously changing

state of the application’s environment. A programmer must simply query the virtual

repository to gain access to available context information distributed across the ad

hoc network. This approach allows developers to interact with distributed context

information as if it were local, effectively hiding the complex networking tasks required

to acquire context in the open and dynamic setting of an ad hoc network.

To support the use of a query-centric approach to context-aware application devel-

opment, this dissertation introduces a database-like abstraction embodied within a

middleware system. A number of issues arise when adapting a query-centric model

to the mobile ad hoc network environment. First, changes that occur within the

environment may impact the collection of context information that is available to a
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Context-aware Search Engine

Query-centric Middleware
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algorithms

Technical contributionsDeliverables

tailored query processing
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Figure 1.1: Dissertation Contributions

user. This means that as a user is collecting context information, new results may

become available as a result of environmental changes or old results may be rendered

unusable. The typical query model must be extended to allow the query-centric mid-

dleware system to notify an application when changes in the environment occur that

may impact the availability and pertinence of delivered query results. Though previ-

ous work has taken a periodic polling approach to notifying the application of such

occurrences, a reactive approach can be more beneficial in helping an application de-

veloper to achieve the desired application semantics and can be more efficient than a

periodic approach. Second, collecting all available context information can be expen-

sive. Often, context-aware programs utilize only a specific type of information that

originates within a small surrounding area or from applications which have particular

properties. The execution of a query should occur within an application-defined scope

so that an application only receives responses that originate from context providers

that it deems to be desirable. Third, the network is comprised of many different

kinds of devices, each serving as a platform to a variety of applications. This kind of

environment results in a collection of potential context information in a wide range of

data formats. The query-centric middleware should allow applications to provide and

retrieve different kinds of context information that are created in various formats.

Figure 1.1 depicts the contributions of this dissertation. On the left are the software

deliverables that result from this study. These include protocols for acquiring context
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from the ad hoc network that are reactive to changes in the environment, a query-

centric middleware system that supports the use of virtually any kind of information

as context data, and a context-aware search application that demonstrates the use of

the query system.

The remainder of this dissertation is organized as follows. Related work is presented

in Section 2. A query-centric model is introduced in Section 3, and a middleware

system which provides an implementation of the query-centric model to provide sim-

plified context interactions to the application developer is introduced in Section 4.

Section 5 shows how the the query-centric middleware system can be used to develop

applications through discussion of the development of a context-aware search appli-

cation for mobile ad hoc networks. Section 6 presents protocols that are incorporated

into the middleware which dynamically propagate a query to an application-specified

portion of the ad hoc network and adaptively delivers query results. Conclusions

appear in Section 7.
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Chapter 2

Related Work

This section introduces context-aware computing and discusses currently available so-

lutions that support simplified development of context-aware applications. Because

this research takes a query-centric approach to simplifying application development,

mobile database systems and query processing systems for sensor networks are re-

viewed and compared to the approach outlined in this proposal. The section con-

cludes with a description of semantic routing, which is a method of supporting a

query-centric abstraction at the protocol level.

2.1 Context-Aware Computing

Context-aware computing, in which applications sense and adapt to changes in the

surrounding environment, has been identified as an appropriate design strategy for

applications that operate in highly dynamic environments. Over the years, a number

of context-aware applications have been deployed. Context-aware office applications

such as Active Badge [14] and PARCTab [38], use an employee’s location (provided to

sensors by the employee’s badge) to automatically direct communications (phone calls,

faxes, etc.) to the correct office. Other typical context-aware applications include

more sophisticated context-aware office spaces (e.g., GAIA [30]), tour guides which

adapt displays according to a tourist’s location and interests (e.g., Cyberguide [1] and

GUIDE [9]), and context-aware note tools which attach environmental information

such as time and temperature to observational notes (e.g., FieldNote [32]).
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Though these applications are designed for more static networks, the context-aware

paradigm offers the ability to opportunistically take advantage of the resources avail-

able in the surrounding environment; as such, facilitating context-awareness has been

of significant interest to the mobile ad hoc network research community. In many

of the applications mentioned above, the use of context was limited to the kind of

information that the application expects to use. Moreover, the solutions for acquir-

ing and using context were created from scratch each time. For instance, the tour

guide applications considered only how to acquire and use location information from

a particular kind of device to determine what information to display to the tourist.

In contrast, the approach in this dissertation will encapsulate tasks related to con-

text acquisition and management within a support infrastructure that can be used

by an application programmer to use virtually any kind of information as context for

behavioral adaptation.

2.2 Support Infrastructures for Context-Awareness

Others have also attempted to encapsulate context acquisition within frameworks,

toolkits, and middleware systems supporting context-aware application development.

The Context Toolkit [33] was designed to simplify context interactions by separating

context acquisition tasks from the application. With the Context Toolkit, applica-

tions can discover and use context widgets, software components that deliver context

information. A number of reusable context widgets are provided as part of the toolkit.

An infrastructure with a similar goal is the Context Fabric [15], which presents an ap-

plication developer with services that are used to acquire the desired context. While

these support systems simplify interactions with sensors, the programmer must still

know the source of data to access and operate on it. In an ad hoc network, the open

and dynamic nature of the environment makes it unreasonable to assume advance

knowledge of the identities of data sources; applications for use in such scenarios

require a highly decoupled method of data access.

Middleware systems based on the concept of the Linda tuplespace coordination model

have been introduced to provide decoupled, context-aware communication in the pres-

ence of mobility, including LIME [26], MARS [7], TuCSoN [28], Limone [11], and
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EgoSpaces [19]. In all of these systems, the contents of the tuplespace available to

an application can be thought of as its context. The systems vary in their purpose

and capabilities. MARS and TuCSoN were designed to support decoupled communi-

cation among mobile agents. In these systems, a tuplespace is associated with each

host in the network; agents interact by migrating to a host and using the tuplespace.

LIME was the first to introduce reactive and transiently shared tuplespaces for use

in mobile ad hoc networks. In the LIME model, each agent is associated with a

tuplespace. When two agents become able to communicate (i.e., they are co-located

or located on hosts within communication range), their tuplespaces become logically

federated. Therefore, both agents share a symmetric context. Limone and EgoSpaces

introduced the notion of asymmetric contexts. As in LIME, each agent is associated

with a tuplespace. However, these systems allow the agent to provide policies that

dictate in which portion of a shared context it is interested.

While these systems are useful for managing underlying coordination needs in mobile

environments, they are tied to the tuplespace abstraction. This limits an application

programmer’s ability to interact with context using only tuplespace operations and

the semantics they offer. Consider, for instance, a disaster recovery application which

needs to display information about the most seriously injured victims within the area

so that those victims can be treated on-site and transported to a local hospital. Using

tuplespace operations, the programmer would use a tuplespace retrieval operation to

collect all injury information. The programmer must write a function that sorts

the data to find the most severely injured victims. This sorting of data would be

unnecessary with a database-like query that returns the set of maximumally valued

items. Moreover, without a careful and preconceived design of a planned interaction

scheme between the providers and users of victim information, the disaster recovery

application would not be able to update the display to reflect the fact the reported

victims are no longer the most seriously injured in the area (i.e., after transport)

when implementing the application using tuple space operations.
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2.3 Mobile Databases

The idea of using a query language to access a collection of data organized in a

database originated decades ago. The continued use of databases for data manage-

ment indicates the successful adoption of this particular abstraction. As computing

environments have evolved, so has the notion of a database. In response to the avail-

ability of network communication, databases became distributed. As devices become

increasingly mobile, the research community has responded by investigating the de-

ployment of databases in mobile and peer-to-peer network settings.

Over the years, researchers have explored the deployment of database systems in

mobile, dynamic environments [35, 29, 2]. Mobile database systems consider issues

related to replicating data across the network such that it is readily available, ensuring

the consistency of replicas across the network, and recovering from frequently termi-

nated transactions due to disconnection. In a related vein of work, recent research

has resulted in the development of data management systems for peer-to-peer (P2P)

network environments. For example, AmbientDB [4] provides a relational database

management model that uses Chord [36], a Distributed Hash Table (DHT) system, to

manage data sharing across a potentially large network. Users can query the network

using high level database-like queries that are optimized by AmbientDB. Another in-

teresting distributed data system for P2P environments is PeerDB, which utilizes local

SQL database table to store sharable information. Applications can issue queries over

a logically federated database which includes all sharable information in the network.

Data is augmented with metadata, allowing queries to be issued in a content-based

manner and eliminating the need to merge schemas. An interesting design choice is

PeerDB’s use of mobile code to propagate a query and return its results.

The research presented in this dissertation is based on the belief that a database-

like abstraction offers a convenient way to acquire context data distributed across an

unknown and changing environment, with queries providing a descriptive and content-

based method of interaction. In contrast to the work cited above, the work here does

not actually create and maintain a database in our approach. Instead, an illusion

of a database is created which encompasses the context data available within the

mobile ad hoc network and provides the application developer with that abstraction
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to access context data; behind the scenes, queries will be executed in a distributed

fashion over the ad hoc network. Creating and maintaining a database distributed

across the ad hoc network is also overkill for the supporting context acquisition; the

goal of the work is to simply hide the details of managing access to remote context

information. Unlike in mobile database systems, there is no need to replicate data

since the proposed system deals with context that has a spatial and temporal nature.

In the view presented in this dissertation, data is either available as context to any

application or it is not—there is no notion of ensuring the availability of context data

across the entire network.

In addition to this divergence in philosophy, my research differs from the aforemen-

tioned systems in a number of ways. First, many mobile databases are targeted

for nomadic network environments in which a mobile device temporarily disconnects

from the wired network only to reconnect later, and disconnection is the exception.

As such, many of the proposed solutions for data management are not applicable

to mobile ad hoc networks. Second, the mobile ad hoc network can grow large and

the amount of context delivered to an application can be overwhelming. To reduce

performance penalties and to take advantage of the notion that applications require

very specific kinds of contexts, my approach seeks to limit the execution of queries

to a portion of the network deemed to be important to the user as context. While

PeerDB provides the ability to limit queries to nodes which have recently provided

query results, that approach is not generalizable to accommodate a wide range of

tailored contexts based on arbitrary properties of entities within the ad hoc network.

Finally, applications operating in ad hoc networks may require the ability to evalu-

ate a query over a prolonged period of time as the circumstances of the surrounding

environment change. For instance, a context-aware fire alarm that uses temperature

data to determine when to sound an alert will need to monitor the changes in the

state of the temperature constantly in order to respond quickly to rising tempera-

tures. None of the database systems discussed above support prolonged evaluation of

queries, although this is mentioned as future work on AmbientDB. A key feature of

the query-centric model presented in this dissertation is that persistent queries can

be evaluated reactively to report relevant changes in context to the application.
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2.4 Query Processing Systems

Similar in concept to databases are distributed query processors which have been de-

veloped for sensor networks, e.g., directed diffusion [17], TinyDB [23], TAG [22], and

Cougar [40]. In these systems, the entire sensor network is treated as a single table

in a database. Users at designated resource-rich nodes on the fringe of the network

can issue SQL-like queries over this “table” to obtain sensor readings. Since commu-

nication is very expensive in sensor network environments, many query processors for

this setting use aggregation to compute intermediate results to reduce energy con-

sumption. In addition, some systems offer a long-lived query construct that delivers

query results proactively to the issuing application (e.g., periodically at a specified

sampling rate).

While the concepts of simplifying the task for the end user, optimizing query pro-

cessing, and eliminating the need to query the network repeatedly are similar to the

goals of this dissertation, there are reasons why these approaches are not appropri-

ate for use in ad hoc networks. For instance, these systems require that all data

providers submit information in a uniform data record structure. This requirement is

unreasonable in an open, dynamic, and heterogeneous ad hoc network environment.

Because of the widely varying nature of context data available in an ad hoc network,

it is impractical to assume that the uniform aggregation techniques used in sensor

networks can be directly applied to mobile ad hoc networks. Most importantly, to my

knowledge, none of these sensor network query processing systems considers adapting

to rapid changes in topology, which frequently occur in mobile ad hoc networks.

Recently, researchers have begun to consider the need to address the mobility of

the user when issuing a query over a network. The MobiQuery protocol [21] aims

to support mobile users that wish to collect sensor readings as they move across a

sensor network. Queries are augmented with spatial constraints that dictate the area

in which query results are valid as well as temporal constraints that dictate the desired

delivery rate and freshness of data. The service relies on a “pre-fetch” approach in

which knowledge of the user’s anticipated mobility is used to prepare the appropriate

sensor nodes for receiving the query.
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MobiQuery is an interesting first step to incorporating spatial and temporal con-

straints for this environment and to using knowledge of mobility to adjust query

processing proactively. One of the main differences between the Mobiquery approach

and the one outlined in this dissertation is their focus on supplying fresh data by

sampling and reporting results periodically. In contrast, the query model presented

here will allow for reactive data reporting. This approach has two significant benefits.

First, by generating a new message only when data changes, it may be possible to

reduce the cost of querying for information. Second, by using a reactive approach,

it may be possible to report changes in data that are of interest to the application

that a periodic sampling approach would miss. Another significant difference is that

the Mobiquery approach provides support at the protocol level for acquiring infor-

mation, whereas the approach outlined here presents an application developer with

a high-level programming abstraction whose execution details are embodied within a

middleware system.

In general, the work in this dissertation is distinguished from all of the aforementioned

query processing systems in several ways. First, the provision of heterogeneous data

in its native format is supported by using metadata to evaluate queries. Second,

in-network aggregation of various data types is supported. Rather than “hardwiring”

the functionality into the query service, a more flexible and general approach is taken

such that the middleware can be customized dynamically with mobile code elements

that are propagated and installed across the network. Finally, the query-centric mid-

dleware is designed to deliver results to long-lived queries in a reactive manner, where

reported query results are sensitive to changes in both data and network topology.

2.5 Semantic Routing

The idea of limiting a query to a relevant portion of data is also utilized in seman-

tic routing, an approach to supporting scalable and efficient search in peer-to-peer

networks. With semantic routing, network nodes are assigned to belong to groups

according to the kind of data they provide, and queries are routed only to pertinent

groups. Generally, groups are defined either implicitly though gossip and observation

(e.g., Socialized Net [5], Neurogrid [18], and REMINDIN [37]) or explicitly by giving
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nodes the ability to join a group. In most of these approaches, groups are defined

prior to the submission of a query.

In contrast to these semantic routing protocols, the query-centric approach presented

in this dissertation can be thought of as creating a semantic group on the fly that

is defined not only by the kind of data that a node in the network offers but also

by its locality with respect to the query issuer. The “group” is formed implicitly by

the query issuer which requires that receiving nodes meet certain properties to be

considered part of the group that evaluates the query. Additionally, as mentioned

previously, my approach provides a higher-level programming abstraction than what

is offered by a network-level protocol such as semantic routing.
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Chapter 3

A Query-Centric Perspective

When using typical programming mechanisms to collect context distributed across the

mobile ad hoc network, the programmer must identify the source of the desired context

and contact the provider in order to obtain it. The unpredictability of interactions and

frequent disconnections in the network setting make this a difficult task for software

developers. The goal of this work is to simplify context-aware software development

by providing a query-centric abstraction for context acquisition that masks the details

of complex network communication programming tasks required to collect and deliver

context distributed across a mobile ad hoc network. The use of queries alleviates the

developer from such responsibilities, instead allowing programmers to retrieve context

declaratively, simply by describing the desired context information.

This chapter introduces a query-centric model for context-awareness. The approach

to developing such a model is based on the following principles:

An application should not be burdened with context that is not pertinent to its purpose.

Collecting all the context information available to an application can be overwhelm-

ingly expensive in terms of communication and computation, especially in expansive

ad hoc networks. This expense may be unnecessary for many context-aware appli-

cations. Often, context-aware programs utilize only a specific type of information

that originates within a small surrounding area to adapt behavior. For example, a

context-aware word processing program may use context information to adaptively

manage constant access to the nearest available printer. Though the word processing

software could collect information from the entire office building, information that is

useful to the application is limited to the areas in the office building in which the



14

user has physical access to printers. Furthermore, the context-aware word processing

program requires only information concerning printers and other relevant equipment

to adapt its behavior.

For these reasons, the query model introduced here allows users to limit context in-

teractions to occur within a manageable and pertinent portion of the ad hoc network.

Developers can describe the desired portion of the network by providing context poli-

cies that place restrictions on which network nodes can receive and respond to a

query. Context policies embody constraints on properties of network links, hosts, and

applications and are used by the model to make decisions about how to propagate

and execute the query within the network.

An application’s view of context should reflect the state of the surrounding environ-

ment. Changes in the environment may impact the collection of context information

that is available to a user. This means that as a user is collecting context infor-

mation, new results may become available as a result of environmental changes or

old results may be rendered unusable. For instance, a driver may use an application

to collect traffic information from surrounding cars on the highway. As cars enter

the highway, additional context information becomes available to the traffic moni-

toring application; as cars exit the highway, the traffic information that they have

provided to the traffic monitoring application is obsolete. It is important to ensure

that context-aware applications are receiving contextual information that is pertinent

to its purpose and that appropriately reflects the current state of the environment.

For this reason, our query-centric model offers developers the option of submitting

persistent queries, which are evaluated reactively within the network.

An application should be able to provide and obtain many different kinds of informa-

tion as context. The ad hoc network is comprised of many different kinds of devices,

each serving as a platform to a variety of applications. This kind of environment re-

sults in a collection of potential context information in a wide range of data formats.

Requiring users to alter the way that they represent and store context information

necessitates extra effort on the part of context providers and may hinder the sharing

of data as a result. Instead, our query model allows programmers to provide many

different kinds of context information. A baseline representation of context allows for

uniform treatment of context by a support infrastructure, while the use of searchable
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metadata supports the evaluation of queries and the use of programmer-provided

strategies supports tailored, in-network manipulation of query results.

The remainder of this chapter describes how these principles are incorporated into

a new query model that manages access to context data transparently in open and

dynamic mobile ad hoc network settings. The query-centric model introduced in this

dissertation relies on the use of a network overlay data structure to support the exe-

cution of queries over the application-specified portion of the mobile ad hoc network.

At its most basic level, the general approach to supporting query execution can be

described as follows. When an application issues a query, the query is disseminated

to hosts within the mobile ad hoc network. As the query is disseminated, a network

overlay is constructed in a distributed fashion. At each host, the received query is

evaluated against locally available context data stored in an updated context reposi-

tory, and the constructed network overlay is used to route query replies back to the

issuer of the query (also referred to as the reference host or reference application).

In the following sections, we describe in detail how this simple network overlay ap-

proach is extended to adhere to the outlined design principles when applied in the

constantly changing, diverse setting of an ad hoc network. This section concludes

with a summary of the operations that can be issued using our query-centric model.

3.1 Controlling the Scope of Query Execution

As mentioned previously, one way to control the cost associated with query processing

across a large ad hoc network is to limit the scope of the query’s execution. To support

application-controlled scoping of query execution and to ensure that an application

only interacts with context that is pertinent to its purpose, our query-centric model

allows the application to provide context policies (similar to those introduced in [19])

describing desirable properties of context data, applications, hosts, and network links.

For instance, an application used by a member of a disaster response team may supply

a context policy that specifies that context information should only be considered if

it comes from injury monitoring applications (a constraint on the type of application)

running on patient monitoring devices (a constraint on the type of host) that are
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located within 20 meters of the responder’s current location (a spatial constraint on

the network).

Each query is associated with a context policy that limits the scope of its execution.

When a query is issued by an application, the context policy bundled with that

query is used to construct a network overlay such that only the context contributors

that satisfy the constraints detailed in the policy are included in the overlay. Query

execution is limited to nodes within the overlay. The following sections describe each

component of the context policy and how it contributes to the construction of the

network overlay. An example is also presented that illustrates the use of context

policies to construct a tailored network overlay for scoped query execution. We then

describe how the model allows for additional control to be placed over the scope of

the network using propagation policies. A presentation of query operations provided

by the model concludes the section.

3.1.1 Network Constraints

Network constraints capture restrictions on the properties of the network links to

restrict evaluation of a query to a subnet of the entire mobile ad hoc network. Some

applications may require that queries be propagated over links that have particular

properties. Such properties may include latency, bandwidth, throughput, delay, jitter,

and so on. Network constraints may also be used to capture a spatial constraint over

the area of the network in which a query should be evaluated or may place some

requirements on properties of the links. Spatial constraints may be given in terms of

network distance (e.g., number of hops) or physical distance (e.g., within a number

of meters, city blocks, etc.).

Because network constraints are used as part of a context policy to scope the mobile

ad hoc network by constructing a network overlay for query execution, the network

constraints must be provided in a way that allows for the construction of a subnet of

the network. The remainder of this section discusses the representation of network

constraints and how they are used to construct a network overlay.
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Using network constraints to construct the network overlay. The first step

in constructing the network overlay is to utilize the network constraints portion of

a context policy. As the query is issued, a distributed protocol is initiated which

constructs an overlay that corresponds to the desired context defined by these con-

straints. As a starting point, we rely on a network overlay data structure that is

commonly used in ad hoc networks for routing: a shortest cost path tree. We extend

the ideas proposed in [12] in which a spanning tree is constructed and maintained in

an ad hoc network that corresponds to constraints on network properties.

The basic premise of their idea is to treat the mobile ad hoc network as a weighted

graph, representing hosts as nodes and network links as edges. Edge weights are

assigned that correspond to the host and network link properties that are considered

in the network constraints. An application’s network constraints are provided as a

metric that is used to evaluate the cost of a path in the graph and a bound on the

metric that restricts the inclusion of hosts to those that lie on a path that has an

allowable cost. The metric is defined as a recursive function that uses the cost of the

path to the previous node and the cost of the link to a one-hop neighbor in order

to calculate the cost of a path to that neighbor. To ensure that a bounded overlay

can be formed, the metric is required to be strictly increasing. As discussed later, we

extend this network overlay to include host and application constraints as well.

At this point, the problem of constructing the network constraints overlay has been

reduced to a problem that has a known solution; we essentially use a distributed short-

est path algorithm to construct the spanning tree overlay, where the cost of the path

is determined by the network constraints metric with the added caveat of including a

bound to halt execution of path construction. To construct the tree overlay, the query

initiator uses the metric to determine the cost of including neighboring hosts in the

network overlay. If the cost of the path to a neighbor is within the bound, the query

initiator propagates the metric, bound, and current path cost to the neighbor along

with the query. The recipient will record the information and will use the metric and

the current cost of the path to determine which, if any, of its neighbors should also

receive the query. This continues until the bound is reached and the query cannot

be propagated further. Because the goal is to form a shortest cost path tree, a node

that receives a query from another with a shorter cost path to the query issuer will be
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chosen as its new parent, and the updated path cost information will be propagated

to its neighbors whose new path cost falls within the bound.

3.1.2 Host Constraints

Each host in the network provides a profile describing its characterizing traits. For

example, a host’s profile may include attributes which include its unique host iden-

tifier or platform type. The profile may also declare characteristics that detail the

host’s resource specifications, such as remaining battery power, processing capacity,

or available storage. Profiles may even be used to provide information about the

quality of a host’s past contributions to the results of previously submitted queries.

The profile is represented as a collection of named, typed attributes. For example, a

rescue vehicle’s host profile may be captured as:

〈 (name = HostID, type = integer, value = 123),

(name = HostType, type = string, value = “firetruck”),

(name = InjuryTransport, type = boolean, value = true),

(name = Capacity, type = integer, value = 2) 〉

Host constraints are provided as part of a context policy that is submitted along with

a query. The host constraints are used to determine which of the hosts that meet the

network constraints may permit the applications it supports to provide results for a

query. These constraints are encoded as a constraint function that is evaluated over a

host profile, i.e., as a collection of constraints on the names, types, and values of host

attributes. When a constraint function includes multiple constraints over multiple

host properties, the host profile must satisfy all of those constraints in order for the

host to satisfy the constraint function. For example, a rescue worker at a disaster

recovery site may need to perform a query to see which rescue vehicles are available

to transport two victims. A host constraint specifying these host-specific needs could

be represented as:

〈 (name = InjuryTransport, type = boolean, value = true),

(name = Capacity, type = integer, value ≥ 2) 〉
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3.1.3 Application Constraints

Similarly to hosts, every application provides a profile that catalogs its distinguish-

ing characteristics. An application’s profile may include an application identifier,

expected lifetime, system support requirements, etc. It may also provide detailed

information about the interface that it provides and the native format of its data.

As with host profiles, an application profile is represented as a set of named, typed

attributes.

Queries are packaged with context policies that include constraints on properties

of applications in order to restrict which applications may provide context data as

a result of a query operation. As before, constraints are provided as a constraint

function that is evaluated over the profile as the query is propagated. A rescue worker

at a disaster recovery site, who needs to query the environment to acquire information

from a particular patient monitoring application she previously encountered, may

provide the following application constraint:

〈 (name = AppID, type = integer, value = 456),

(name = ApplicationType, type = string, value = “patient monitor”) 〉

Imposing host and application constraints on the network overlay. As a

spanning tree is constructed using the network constraints of a context policy, host and

application constraints in the context policy are imposed at each node in the network

overlay. Query evaluation occurs only over context data provided by applications

meeting the specified application constraints running on hosts meeting the specified

host constraints. Though nodes in the spanning tree overlay that do not meet the

host and application constraints cannot provide results to a query operation, the host

can act as a “virtual node” in the network overlay. This simply means that the host

acts only as a router of query replies without actually contributing any context data

owned by applications it supports, to the result of the query.

With this approach to defining context policies, arbitrary constraints can be defined

over properties of the mobile ad hoc network and used to build the overlay data

structure. In the next section, we use an example application to further illustrate
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the use of context policies in the construction of a network overlay to support scoped

query execution.

3.1.4 Application Example

To demonstrate the use of a tailored context, consider a disaster recovery scenario

in which triage is employed to treat the wounded. Victims are quickly examined

to evaluate the seriousness of their injuries and are tagged with devices that emit

(via wireless radio or infrared) information about the assigned injury classification,

ranging from injuries that need immediate attention to those for which treatment

can be postponed. Rescue teams are assigned areas within which they must arrange

transport for the most severely injured first and provide as much on-site treatment as

possible for these victims until transport is available. The rescue team members use

PDAs with wireless communication capabilities to coordinate activities and to obtain

and display the status of victims and emergency medical personnel. An emergency

medical technician (EMT) is selected by the rescue team member to treat the most

seriously wounded victim until transport arrives. An EMT’s assignment may change

as the status of injured victims within the context changes. After a rescue crew

member arranges on-site treatment for a victim, he must arrange for the victim’s

transport to a hospital. As victims are transported, they are removed from the context

of the application. As new victims are discovered and their injuries evaluated, they

are added to the context. Figure 3.1.4 illustrates this application. In the figure, the

disaster site lies within the large oval. A rescue crew member (the encircled cross)

uses a PDA that runs an application to assign to the most seriously wounded victims

in the designated area (the dashed box) on-site treatment and ambulance transport

to a nearby hospital. Victims are shown as circles, with seriousness of injury reflected

by darker shading.

Figure 3.2 illustrates a context definition and the resulting spanning tree for the

disaster recovery application. For simplicity, we assume only one application per host

in the figure, and depict each host (and hence each application) as a circle, and each

network link as a line. The doubly ringed circle represents the application of interest:

the application running on a PDA carried by the rescue worker who is responsible
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Figure 3.1: Disaster Recovery Scenario

for treating and transporting the wounded in a particular area of the disaster site.

The rescue team member needs to query injury monitoring applications running on

patient monitoring devices within 20 meters.

To construct such a context for the rescue worker, the application developer provides

a context policy consisting of network, host, and application constraints. To provide

the network constraint, the application developer may, for example, define a metric

that adds the previous physical distance and hop count to evaluate the current dis-

tance and hop count, and specify a bound of (d, c), where d is the distance and c

is the desired hop count value (in this case, d = 20 and c = 3). The metric uses

both hop count and physical distance because the evaluation of additive physical

distance alone is not increasing in many circumstances and cannot ensure bounded

construction of the network overlay. As illustrated in Figure 3.2a, at time t, the

context defined by the network constraint alone is a, b, c, where a, b, and c are hosts
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Figure 3.2: A Network Overlay Corresponding to a Disaster Recovery Team
Member’s Context Definition

that meet the context specification provided by the reference application (the dou-

bly ringed circle). The constructed spanning tree network overlay is depicted using

bold lines. Figure 3.2b shows the network overlay and the resulting context when

additional host and application constraints are applied. Satisfied host constraints are

depicted by heavily outlined circles, and satisfied application constraints by shaded

circles. Notice the dashed line between the reference host and c, which illustrates

the fact that c is technically in the network overlay formed strictly by the network

constraints but does not satisfy the host and application constraints. Thus, c can be

considered to serve as a virtual node in the spanning tree, used only to route queries

and responses to and from f. As shown in Figure 3.2c, the network overlay changes

over time to reflect changes in the environment that impact the satisfaction of the

context policy. The next section discusses how to address such changes as well as any

changes in data that may occur in the network.

As mentioned previously, applications associate a context policy with each query.

The application may define several context policies to be associated with queries that

acquire different kinds of information. For instance, the disaster recovery application

may also issue a query to acquire information about vehicles that are available to

transport a victim to a hospital. The context policy associated with that query could

stipulate that only vehicle applications running on ambulances and fire trucks within



23

a 2 block radius should provide information about their availability. The application

may also reuse context policies across multiple queries, or change the context policy

associated with a query over time.

The algorithm for constructing a network overlay which incorporates network, host,

and application constraints will be detailed in Section 6.

3.1.5 Propagation Policies

Typically, a query is propagated to all nodes within the application-specified query

scope, triggering a response only when the query reaches a leaf node in the overlay

network data structure. Answers are collected at the reference host from all applica-

tions in the context before returning the result to the reference application. However,

some applications may have needs which are not best served by this kind of approach

to query propagation and execution. For example, an application that wants to deter-

mine the existence of a particular data item in the context may issue a query construct

over the context that determines the existence of a particular piece of context data.

Since this particular query does not necessarily need all data items available in the

context that satisfy the query, it may be possible to reduce the communication costs

by controlling the propagation of the query.

Rather than assume the use of a single propagation method for all queries, our query

model allows the developer to consider the tradeoffs associated with each particular

propagation method and to specify the desired propagation method each time that a

query is issued. Generality, flexibility, and extensibility of this approach are achieved

by requiring that a query propagation policy be supplied with each query submission

that dictates how the query is to be distributed within the constructed network over-

lay. Evaluation of the query propagation policy at each node in the overlay should

result in either propagating the query further over the context or initiating the query

reply process. Essentially, a propagation policy can be captured as a function that

takes a set of neighboring hosts that meet the context policy requirements to be part

of the network overlay and returns a (possibly empty) set of neighbors that should

actually receive the query.
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For example, one option appropriate to determining the existence of a particular

data item is to propagate the query using controlled flooding, which has the potential

to reduce communication costs but requires an extended execution time. With a

controlled flooding propagation policy, a predicate provided as part of the query

propagator is evaluated at each host. The predicate likely incorporates knowledge of

the local query result. If the predicate evaluates to true, the query is not propagated

further, and the reply process is initiated in order to return a result to the query

initiator. Otherwise, the query is propagated to the next hop neighbors that are in

the context associated with the query. At each host, the propagation policy defines

the set of hosts to which it will propagate the query:

PropagationSet(N, h, d) ≡ 〈 set n : d /∈ D(h) ∧ n ∈ N :: n〉

where N is the set of neighboring nodes that satisfy the context policy associated with

the same query as this propagation policy, h is the host on which the propagation

policy is being evaluated, d is the piece of context data requested in the query, and

D(h) is the local set of context data at host h.

Other query propagation policies that may prove useful include random subtree and

random path. In random subtree propagation, the query propagator selects some

subset of next hop neighbors that are in the context and propagates the query to

those neighbors, effectively limiting propagation to a pruned version of the overlay

data structure. Similarly, in random path propagation, the query propagator selects

a single context neighbor and propagates the query to that host, which results in a

query that travels along a single path in the network. A number of other useful query

propagation policies specific to the needs of applications remain to be discovered.

Our query model’s approach to query propagation policies is general, flexible, and

extensible, allowing any imaginable propagation policy to be provided with a query.
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3.2 Reflecting Environmental Change

An issue of particular interest when designing a query-centric middleware is the man-

ner in which each query operation is serviced in such a dynamic setting with a chang-

ing collection of distributed data. Many applications require prolonged use of infor-

mation, and should be informed of changes in the context that can affect the answer

to a query. To address this need, an application can simply issue a query over the

context each time that data is actually needed. It may, however, be more practical to

monitor the environment and notify the application of changes that impact previously

delivered query results.

To address these issues, the query-centric model provides persistent queries which em-

ulate the semantics of subscriptions in publish/subscribe systems. In publish/subscribe

systems, network nodes can register interest in events by submitting a subscription

to the event service. Each time that an event occurs, the event service delivers event

notifications to interested parties. A subscriber will continue to receive event notifica-

tions for that event until it indicates to the event service that it is no longer interested

in the event, by unsubscribing for that event. In contrast to the publish/subscribe

model, the focus of persistent queries is on data state rather than the occurrence of

predefined events. This kind of interaction is especially suitable for mobile ad hoc

networks, since it is an open environment in which hosts can quickly become con-

nected or disconnected at any moment. When publish-subscribe systems are used

in such scenarios, hosts may miss pertinent events due to the unfortunate timing of

forming or dissolving a network connection. Although some systems support discon-

nected event delivery (e.g., SIENA [8] and JEDI [10]), most only are able to buffer

the events for a pre-determined period.

In our query-centric model, an application can register a persistent query to acquire

context data as it becomes available in the mobile ad hoc network. The approach

used in our query-centric model to service persistent queries is inspired by the work

presented in [12], which introduced a protocol to support the construction and reactive

maintenance of a spanning tree overlay by imposing weights associated with network

links, using a metric and bound to calculate the shortest path to each node, and

reacting to weight changes that impact the cost of a path to adjust the overlay
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accordingly. In our model, a similar reconfiguration protocol that mends the network

overlay is used in addressing the frequent disconnections that are likely to occur within

the query’s associated network overlay due to the mobility of hosts and to changing

properties of hosts and agents.

The persistent queries in our query model handle the reconfiguration of the network

overlay to propagate the query to hosts that join the overlay and to prevent hosts

that are no longer part of the overlay from delivering replies. Our persistent queries

also go beyond network overlay maintenance to provide an application with updates

that detail several different kinds of changes in the network that impact the result of

the application’s persistent query. Such changes include the addition of new data, the

removal of data previously reported as a query reply to the reference application, and

the disconnection of hosts running applications which previously provided a response

to a query.

Using this extended notion of persistent queries, the application can expect to con-

tinue to receive new results to a persistent query as it becomes connected to new

nodes that provide the desired context or as the context data is made available by

known providers. Furthermore, the application can expect to receive notice when

the data is no longer available, due to disconnection of the provider of the reported

context data item, or modification or deletion of a reported context data item. The

application will receive context data and notifications of changes to reported results

(until it is no longer interested and deregisters the query), which are processed by

context data notification handlers that are registered with each persistent query.

3.3 Accommodating Heterogeneous Context Data

Context information may be obtained from various sources in numerous data formats.

To support the free exchange of information, it is important to allow context data

providers to share their data without extra effort; they should be able to provide

context without changing the way that they represent and store information. Pro-

grammers should be allowed to provide many different kinds of context information,

and a query-centric model should take an extensible approach to accommodating the
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various forms of information. Users of context data should still be able to utilize the

acquired context data in a meaningful way, and should be able to process the context

data in accordance with its intent and purpose using the original format if desired.

To this end, our query-centric model provides a baseline representation of context

within the query service to allow for uniform treatment of context data by the support

infrastructure. This essentially results in treatment of context data as a “black box”;

a system which implements the query-centric model would have no knowledge of the

contents, format, or purpose of the context data and would only be able to deliver

the context data. It would simply collect all context data items within the query

scope specified by the application programmer and return them to the query issuer.

To support meaningful evaluations of queries based on the content of context data,

the query-centric model employs the use of metadata that describes each context

data item. The query operates over the metadata of context data items at each node

to determine whether or not the data item should be returned as a query result.

Metadata is represented as a set of named, type fields. The content-based data

request embodied in a query is essentially a function that evaluates constraints over

metadata fields. All constraints in the data request must be satisfied for the metadata

to satisfy the constraint function. When the metadata constraint function is satisfied,

the context data item associated with the metadata is returned to the query issuer

as a query reply.

With naive evaluation of queries, all context data items whose metadata meets the

data description in the issued query are collected across the network and returned

to the query issuer. The collected replies are evaluated on the local host according

to the semantics of the query construct and the result is returned to the application.

Some queries, such as those that ask for the minimum data value, require that all

the available data be examined but that only a single result be returned to the

application. Executing the query in a naive fashion can be cost-intensive in terms

of communication on smaller mobile devices. To reduce communication costs, query

systems often perform sophisticated processing on data items sent as query replies

within the network as the reply is delivered to the query issuer [22, 40, 17], e.g., nodes

in the network may aggregate query responses and communicate only the aggregate

responses as the query reply.
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Because the query model supports the use of several different kinds of context data

formats and there are a number of algorithms available to perform in-network process-

ing of data, the model offers the option of choosing an in-network processing scheme

that best suits the needs of the query and the application. To support arbitrarily

defined processing algorithms, the query model allows for tailored manipulation of

returned context information in a manner specific to the data format through the

use of programmer-provided query processing strategies. Such strategies are supplied

with each query as it is submitted. As the query is propagated, its query operation is

evaluated locally on the context data’s associated metadata and the query processing

policy is evaluated on the context data item to perform in-network aggregation or a

more sophisticated form of query processing.

3.4 Query-Centric Operations

The query-centric model introduced here is intended to simplify the programming

tasks associated with the acquisition of context across a mobile ad hoc network. The

model presents a database-like abstraction to the application for acquiring context.

An underlying support system that implements the model manages the processing of

the query across the mobile ad hoc network and hides these details from the applica-

tion programmer. To the programmer, it appears as if a query is being executed on

a local data repository.

When a programmer wishes to collect data from across the network, she can choose to

issue a simple query or a persistent query. The simple query constructs the network

overlay used to scope its execution as the query is propagated, uses the overlay for the

delivery of query replies, and then discards the overlay. To issue a simple query, an

application programmer uses a sendQuery operation. When using the sendQuery

operation, the programmer must provide a context policy, a query propagation policy,

a query processing policy, a data constraint function that describes the desired data,

and the specified query option to be performed. Query operations that are explicitly
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Table 3.1: Typical Query Operations
Operation Name Definition
GET Retrieves the data matching the specified data pattern,

if it exists. If more than one match exists, one
is selected non-deterministically and returned.

GETALL Retrieves all data matching the specified data pattern,
if it exists. If more than one match exists, all
are returned.

EXISTS Returns true if data matching the specified data pattern
exists and false otherwise.

MIN Returns the data item that is the “minimum” among all
data items that match the specified data pattern.
To determine the minimum, an ordering must exist over the
specified data type.

MAX Returns the data item that is the “maximum” among all
data items that match the specified data pattern.
To determine the maximum, an ordering must exist over the
specified data type.

AVG Returns the data item that is the “average” among all
data items that match the specified data pattern.
To determine the average, a method of quantification must
exist over the specified data type.

SUM Returns the data item that is the “sum” among all data
items that match the specified data pattern.
To determine the sum, a method of quantification must exist
over the specified data type.



30

supported by the simple query model include GET, which returns a single result per

context data provider and GETALL, which returns all query results. Additional query

operations can be supported through the use of the aforementioned query processing

policies. A set of commonly used query operations is listed in Table 3.1.

A persistent query continues to deliver new context data results and notifications of

modifications or unavailability of previously reported results. An application pro-

grammer uses the registerQuery operation to register a persistent query. As when

using the sendQuery operation, the programmer must provide a context policy,

a query propagation policy, a query processing policy, a data constraint function

that describes the desired data, and the specified query option to be performed. In

addition, the programmer must provide a policy that dictates how an application

should respond to notifications of new, modified, or unavailable results. For persis-

tent queries, the network overlay is maintained and the context data is monitored

until the persistent query is deregistered. An application developer uses the dereg-

isterQuery operation to terminate evaluation of the query.



31

Chapter 4

QueryME: A Query-Centric

Middleware

This chapter introduces the QueryME middleware. QueryME (Query in an ad-hoc

Mobile Environment) encapsulates the query-centric model introduced in the previ-

ous chapter, and aims to simplify the application development tasks associated with

the acquisition of context distributed across a mobile ad hoc network. QueryME

addresses the technical challenges that arise due to the intrinsic nature of ad hoc

networks and targets solutions to supporting context-aware programming to that en-

vironment. The middleware addresses the need of the application programmer to

acquire only context that is pertinent to the task at hand. The developer is provided

with control over the scope of a query using context policies and query propagation

schemes. The middleware also addresses the fact that data may be continuously

changing in ad hoc networks by providing a special query construct which allows for

reactive query processing and application notification of changes to the network and

reported data. This construct, the persistent query, has semantics which are compa-

rable to a subscription in the publish/subscribe paradigm. Finally, the middleware

addresses the need to accommodate several different data types, providing a baseline

representation for internal query processing by the middleware and supporting reply

processing that can be tailored by the application to operate over the native format

of reported context data results.

One design option for addressing such issues related to controlling query execution

is to hard-code all possible customization configurations into the QueryME. Queries

would be parameterized with a set of customization options that the programmer
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chooses from a fixed set. The middleware would simply use the provided parameters

in order to determine how to process the query. The benefits of such an approach

is its simplicity; such a straightforward approach to designing the middleware sys-

tem can be implemented in an efficient manner. However, adhering to such a design

implies advance knowledge of all possible specializations that any context-aware ap-

plication might ever require. For this reason, QueryME relies on the use of mobile

code fragments that can be installed over the network to encapsulate an application’s

tailored context scope definition, query propagation scheme, and reply processing

scheme. Because the mobile code fragments are loaded and installed across the net-

work at runtime as a query is issued, this approach results in a flexible, extensible,

and expressive middleware, since mobile code elements can be interchanged and new

mobile code elements which implement arbitrary query control policies can easily be

included. Such adherence to a design principle of generality allows the middleware

to support a wide range of existing context-aware applications as well as those of the

future. While the introduction of mobile code elements does introduce overhead, the

overhead corresponds to the complexity of the encoded solution. We believe that most

specializations, while powerful, will be relatively simple and will introduce minimal

overhead.

We begin this chapter by giving an overview of how the QueryME middleware eval-

uates a query. We then discuss the architecture and implementation of QueryME.

The chapter is concluded with a presentation of the interface that a context-aware

programmer uses to construct and issue queries over a tailored context.

4.1 An Overview of Query Execution in QueryME

An application can submit a request for context data by using the query opera-

tions provided by the QueryME middleware. First, the application constructed using

QueryME registers itself with the QueryME query manager on the local host, provid-

ing its application profile during registration. The application then packages a context

policy (network constraints consisting of a metric and bound evaluated over network

link properties, host constraints, and application constraints), a query propagation

policy, and a reply processing policy with its content-based request for context data.
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An additional policy for handling notifications is also bundled with the data request

when a persistent query is registered. Each of these policy specializations is captured

as a mobile code fragment, and is provided to the query manager as a parameter to

the query operation.

When the query manager receives a request from an application to issue a one-time or

persistent query, the QueryME query manager creates a query to be issued over the

specified context. The query includes the mobile code specializations, the content-

based data request, the identifier of the query initiator; the path along which the

query has been propagated; and the unique identifier of the query. The query manager

extracts the mobile code elements and installs them locally for execution. The query

manager then stores information about the query and begins to process it as described

below.

First, the query manager processes the network constraints portion of the context

policy in order to begin constructing the overlay data structure. To evaluate the

network constraints metric, the query manager uses a network discovery package

(described in Section 4.2.1) to find the set of one-hop neighbors and an environmental

monitoring package (described in Section 4.2.2) to gain access to monitors on local

and remote hosts to evaluate the metric over its host and its neighboring hosts.

The metric provides a list of monitor names that impact its evaluation. The query

manager uses a monitor registry provided by the monitor package to access local and

neighboring monitors, and uses the unified monitor interface to query each monitor

for its data value. As monitor values change, the query manager is notified and the

metric is re-evaluated to determine if new neighbors are eligible to be considered as

part of the context, or if existing contributors must be removed.

Once a set of neighbors has been determined to contain only candidates for belonging

to the context, the set of neighbors is passed to the query propagator. The query

propagator applies its query propagation scheme to determine a subset of the given

context neighbors that are eligible for propagation and returns this set, which defines

the context children. The context children is the set of neighboring nodes that make

up the current node’s children in the network overlay spanning tree. If the returned

set of context children is empty, the propagation process stops. Otherwise, the query
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manager disseminates the query and its mobile code specializations to the actual

context children.

Next, the host constraints of the query are evaluated at the local host using the

host profile owned by the query manager. If the host constraints are satisfied, then

the content-based request for data is processed over a data repository that holds the

context data supplied by applications residing on the host. For each local result,

the application constraints of the query are applied to the application’s profile. The

profile is obtained from the query manager using the application identifier that is

stored as part of a context data element. If the application satisfies the constraint,

the local result is packaged as a query reply. If the query is a persistent query, the

query is continuously evaluated over the local data repository and reports of newly

available data satisfying the query or of the removal of results reported to the query

issuer are also packaged as query replies.

Finally, the mobile reply processing scheme for the query is invoked to return the

reply to the query issuer. When the query manager receives a request to send a reply

from a mobile reply processor, it uses the query ID associated with the reply to find

the appropriate return path over the defined context and sends the reply to the query

manager on the host that is the next hop back along that path.

4.2 QueryME Architecture and Implementation

The architecture of our QueryME implementation is presented in Figure 4.1. As

shown in the figure, we rely on the use of additional units of functionality to support

the operation of the query service. For the ease of discussion, we refer to these units

of functionality as components, though we do not imply that these are “software com-

ponents” in the technical sense of the term. These components are used to deliver

messages in the ad hoc network (the messaging component), discover network neigh-

bors (the network discovery component), and to monitor environmental properties

used to define the network constraints portion of the context definition (the moni-

toring component). We assume the existence of the physical ad hoc network and a
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Figure 4.1: The QueryME Architecture

message passing mechanism; we utilize an external network discovery package devel-

oped in [19] and constructed a supporting environmental monitoring package which

can be used independently of the QueryME middleware system. The core component

of the QueryME middleware distribution, the QueryManager, utilizes these support

packages to deliver the functionality of the QueryME operations offered to context-

aware application programmers. Network discovery, environmental monitoring, and

query manager components are discussed in detail in the following sections.

4.2.1 Discovering Network Neighbors

In the QueryME middleware, each query manager uses the network discovery com-

ponent to discover its surrounding neighbors. By separating the network discovery

behavior from query management tasks, we allow for the most appropriate network

discovery mechanism to be employed with QueryME. In addition, by separating net-

work discovery concerns from query management, we allow for reuse of the network

discovery component as a building block in the development of other applications or

infrastructures. By default, the QueryME middleware utilizes a network discovery

package that provides an implementation of a simple discovery mechanism: one that

informs a host of all one-hop neighbors, i.e., other hosts in direct communication. The

details of the network discovery component used to implement this default discovery

behavior are discussed below.
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public class DiscoveryServer implements BeaconListener{
public static DiscoveryServer getServer();

public void initialize(int beaconPeriod, String mcastAddr,

int mcastPort, int addPeriod, long disconnectTime,

long removePeriod, int firstPort);

public void start();

public void stop();

public void addDiscoveryListener(DiscoveryListener dl);

public void removeDiscoveryListener(DiscoveryListener dl);

}

public interface DiscoveryListener {
public void neighborAdded(NeighborAddedEvent nae);

public void neighborRemoved(NeighborRemovedEvent nre);

}

Figure 4.2: The Network Discovery Application Programmer Interface

Our network discovery component is implemented as a Java package containing a

discovery server and a discovery listener interface. At each host, a network discovery

server periodically beacons the surrounding hosts to discover the current set of neigh-

bors. The length of the beaconing period can be adjusted to suit the environment.

For example, in a rapidly changing network, the discovery server may beacon more

frequently so that the neighbor set managed by the server more accurately reflects

the frequent connections and disconnections in the environment. Discovery can also

be parameterized with policies that govern when to add or remove a neighboring host

from the set of neighbors.

The interface of the network discovery component used by the QueryME middleware

is shown in Figure 4.2. Essentially, an application that wishes to utilize the network

discovery package initializes and starts the DiscoveryServer and uses the server’s

addDiscoveryListener method to register a DiscoveryListener. When a host is

added to the set of neighbors, the discovery server calls the neighborAdded method

for all registered DiscoveryListeners. Similarly, the network discovery server calls

the neighborRemoved method for all registered DiscoveryListeners when a host is

removed from the set of neighbors.
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In the QueryME middleware, each query manager uses a network discovery server and

a discovery listener to discover the set of neighboring hosts. The query manager keeps

a consistent list of neighbors by implementing the DiscoveryListener interface of

the network discovery component in order to listen for events signaled by the discovery

server to indicate the addition and/or removal of one-hop neighbors. In this particular

implementation, the discovery policy adds a host to the set of neighbors if a beacon

is received from the host for a number of consecutive beacon periods (by default, two

beacon periods). A host is no longer considered as a neighbor when it is not heard

from for a number of consecutive beacon periods (by default, three beacon periods).

The use of more sophisticated discovery components may be beneficial. For example,

conserving energy while discovering useful neighbor sets might be the driving design

motivation. Birthday protocols [25] have been developed for static ad hoc networks

where certain assumptions hold about the relationships between the devices. These

networks are still quite dynamic, however, because nodes can be deployed and fail at

various times, and require constant discovery. Group communication mechanisms for

mobile networks [16] can extend a node’s neighborhood to include nodes to which it

is not directly connected. Such protocols create a list of nodes with which a group

member can reliably communicate. The integration of group communication protocols

allows applications to access sensing devices available throughout the group instead of

restricting remote sensing to one-hop neighbors. Due to the decoupling between the

network discovery component and the QueryME middleware, the most appropriate

policy for discovering neighbors can be selected for use at each host.

4.2.2 Monitoring Environmental Properties

To determine the logical costs of network paths as dictated by the network constraints

portion of a context policy, the QueryME middleware requires access to properties

of the network links that impact the link cost as defined in the network constraints

by the application. For this reason, we developed the CONSUL (CONtext Sensing

User Library) package [13], a lightweight solution for monitoring the surrounding en-

vironment. CONSUL provides application developers with access to environmental

information through a simplified interface. Programmers explicitly define the kind
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Figure 4.3: The internal class diagrams for the components of CONSUL.

of environmental information of interest and the exact location of the application

providing the information. Because CONSUL is designed to operate in mobile ad hoc

networks where advance knowledge of interaction partners is an unreasonable assump-

tion, CONSUL relies on the use of the aforementioned network discovery component

to support context acquisition. CONSUL can be used as a stand-alone solution for

monitoring environmental properties, or as with QueryME, as a building block for

creating more sophisticated systems.

Two software units contribute to providing CONSUL’s environmental monitoring

functionality: the sensing unit and the sensor monitoring unit. Figure 4.3 shows the

internal class diagrams for these two components and how they interact with each

other and with the application.

Sensing. The sensing component allows software to interface with sensing devices

connected to a host. Each device has a corresponding software object (a monitor).

In CONSUL, each monitor extends an AbstractMonitor base class and contains its

current value in a variable (e.g., the value of a location monitor might be represented

by a variable of type Location). An application can react to changes in monitor

values by implementing the MonitorListener interface and registering itself with

the monitor. To ensure that any listeners registered for changes are notified, the

monitor should perform these changes through the setValue() method in the base

class. Applications can also call the getMonitorValue() method provided by the base
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public abstract class AbstractMonitor {
public AbstractMonitor(String ID, IMonitorValue value);

public AbstractMonitor(StringID);

public AbstractMonitor();

public String getID();

public IMonitorValue getValue();

public void addMonitorListener(MonitorListener ml);

public void removeMonitorListener(MonitorListener ml);

protected void setValue(IMonitorValue value);

}

public interface MonitorListener {
public void monitorEventReceived(MonitorEvent me);

}

public class RemoteMonitor extends AbstractMonitor {
public RemoteMonitor(HostID remoteHost, int localPort,

String ID);

public String getID();

public IMonitorValue getValue();

public void addMonitorListener(MonitorListener ml);

public void removeMonitorListener(MonitorListener ml);

}

public class MonitorRegistry {
public MonitorRegistry(int localPort);

public void stop();

public synchronized void addMonitor(AbstractMonitor m);

public synchronized void removeMonitor(AbstractMonitor m);

public synchronized void removeRemoteMonitor(AbstractMonitor m);

public synchronized void removeRemoteMonitor(String ID,

HostID hID);

public synchronized AbstractMonitor getMonitor(String ID);

public synchronized AbstractMonitor getRemoteMonitor(String ID,

HostID hID);

public synchronized AbstractMonitor[] getMonitors();

public synchronized AbstractMonitor[]

getRemoteMonitors(HostID hID);

}

Figure 4.4: The CONSUL Application Programmer Interface
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class to obtain these values on demand. The interfaces for the AbstractMonitor and

the MonitorListener classes are shown in Figure 4.4.

Figure 4.5 demonstrates an example class that extends AbstractMonitor to collect

various information about the status of a particular link. The details related to

acquiring and using packet information to calculate link properties are omitted. From

CONSUL’s perspective, the important pieces are how the extending class interacts

with the base class.

public class LinkMonitor extends AbstractMonitor{
public LinkMonitor(...){
//call the AbstractMonitor constructor

super("LinkProperties");
. . .

}
public void packetReturnEvent(PacketReturnEvent event){
//use the packet info to calculate link properties

...
double latency = ...
double bandwidth = ...;
double throughput = ...;
// use info to create a LinkProperties object

LinkProperties linkProperties =
new LinkProperties(latency, bandwidth, throughput);
//set local value variable, which will notify listeners
setValue(linkProperties);

}
}

Figure 4.5: The LinkMonitor Class.

To assist application developers, CONSUL includes several MonitorValues for

programmers to use when building monitors or constructing more complex

MonitorValues. These value types reside in a library to which application devel-

opers can add new types. For example, the library contains an IntValue that can

be used for sensors whose state can be represented as a single integer value. There

are also aggregate values, e.g., DateValue, that build on the simple value types. A

list of available monitor value types is shown in Table 4.1. In addition to being

available for developers to use, they also serve as examples for defining new values.

Figure 4.6 shows a class that extends ArrayValue to supply information about the
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public class LinkProperties extends ArrayValue {
public LinkProperties(double latency, double bandwidth,
double throughput) {
super(new IMonitorValue [] {
new DoubleValue(latency), new DoubleValue(bandwidth),
new DoubleValue(throughput)});

});
public double getLatency() {
return ((DoubleValue)getValues()[0]).getValue();

}
public double getBandwidth() {
return ((DoubleValue)getValues()[1]).getValue();

}
public double getThroughput() {
return ((DoubleValue)getValues()[2]).getValue();

}
}

Figure 4.6: The LinkProperties Class.

latency, bandwidth, and throughput of a network link, which are represented via the

standard DoubleValues that are provided as part of CONSUL.

Sensor Monitoring. The sensor monitoring component maintains a registry of

monitors available on the local host (local monitors) and on hosts found by the network

discovery package (remote monitors). As described above, local monitors make the

services available on a host accessible to applications. To gain access to local monitors,

the application requests them by name (e.g., “Location”) from the registry, which

returns a handle to the local monitor. The interface for the RemoteMonitor class is

shown in Figure 4.4.

To monitor context information on remote hosts, the monitor registry creates

RemoteMonitors that connect to concrete monitors on remote hosts. These

RemoteMonitors serve as proxies to the actual monitors; when the values change

on the monitor on the remote host, the RemoteMonitor’s value is also updated. To

access remote monitors, the application provides the ID of the host (which can be

retrieved from the network discovery package) and the name of the monitor to the

registry’s getRemoteMonitor() method. This method creates a proxy, connects it to

the remote monitor, and returns a handle. The application can then interact with

this handle as if it were a local monitor.
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Table 4.1: Monitor Value Types Provided By CONSUL

Monitor Value Name
ArrayValue

BooleanValue

ByteArrayValue

ByteValue

CharValue

DateValue

IntValue

LongValue

DoubleValue

StringValue

The QueryME middleware uses the CONSUL monitoring package to evaluate the

network constraints metric that is provided with a query as part of a context policy,

and thus to determine the cost of a network path, where the cost of each link is defined

by the application according to some properties of the network links. The application

programmer may define the cost of each network link using monitors defined over link

properties. In this case, the network constraints metric provided by the application

must include the monitors, both local and remote, in a stored list of monitors that

are used by the metric. The QueryME middleware accesses the list of monitors in

the metric and uses them to acquire the current cost of each link when calculating

the cost of a path to a network node.

4.2.3 QueryME QueryManager

At each host, a QueryME QueryManager is used to handle shared context data and

to process queries and replies. In this section, we describe key features of a query

manager that support query execution over an application’s defined context.
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Registering Applications

Since each query manager is responsible for storing the data that applications running

on the local host offer to share as context with others in the network, it keeps track of

all applications that are running on the host. The QueryMananger does this through

a registration process. The first time that an application contacts a query manager,

the application is required to provide the query manager with its application profile

and to register itself. The query manager keeps a registry of all application profiles

for applications on the local host, indexed by the unique id of the application. As

will be detailed later, these application profiles are used by the query manager to

determine if the application constraints associated with a query are satisfied by the

provider of context data.

Using Tuples to Represent Context Data

QueryME uses tuples as the baseline representation for context data items. A tuple

is a set of unordered fields, where each field is a triple (name, type, value). Using

tuples allows us to capture a wide range of context types, as well as to incorporate

metadata about the context item using the name and type fields. Each context data

item has two fields: a metadata field and the data field. The metadata field is also a

tuple whose named, typed fields describe the data object.

The query manager stores context data items provided by applications residing on

the local host in a tuple space. Access to the interface of this tuple space is limited

to components of the query service; applications contribute context items and access

context items only through the use of queries to the query manager. This option

allows the query manager to take advantage of a tuplespace’s content-based retrieval

operations which use a provided pattern, or template, to describe the desired tuple(s)

to be returned. A template is similar to a tuple except that wildcards can be used in

the name and type elements of a tuple field, and a tuple field’s value is replaced with

a constraint on the field’s value. Only tuples which match a provided template are

returned as a result. A tuple matches a template, if for every field in the template,

there exists a field in the tuple with the same name and type, and a value that satisfies

the the template’s constraint.
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We developed a custom tuplespace package for use by the query manager to sup-

port query operations. Tuplespace operations for the Tuplespace class developed for

QueryME include non-blocking (or probing) variants of Linda’s rd and in operations,

the inp and rdp, similar to those of other tuplespace-based middleware systems (e.g.,

LIME [26] and Limone [11]. Both operations check the tuple space for a tuple match-

ing the provided template. If one or more matching tuples exist for a rdp operation,

one is selected non-deterministically and is returned. In the case of the inp operation,

the returned tuple is also removed from the tuplespace. If no matching tuple exists,

a null result is returned. Probing operations which return all matching tuples (rdgp,

ingp) are also provided for use by the query service. The tuplespace also provides

an out(t) operation, which places the tuple t into the local tuple space. The ELights

package introduced in [19] is used by the Tuplespace as the implementation of tuples

and templates.

The query manager uses the out(t) operation to support context data insertion

operations. The inserted tuple t has two fields: one for metadata (represented as a

tuple) and another for the data item to be shared (represented as a serializable object).

Tuples that are inserted into a query manager’s tuplespace are extended with special

system fields that uniquely identify the tuple, uniquely identify the application that

provided them, and that indicate their status. These fields are used internally by

the QueryME middleware; they are not made available to the application through

content-based retrieval operations.

The non-destructive operations (rdp(p), rdgp(p)) are used by the query manager

to support the implementation of one-time queries while the removal operations

(inp(p), ingp(p)) are used to support the deletion of shared context data from

the local tuplespace. Both forms rely on the use of metadata to find the desired

tuple. The query manager supplies a pattern p of the form:

〈(“metadata′′, ETuple.class,MetadataConstraintFunction(metadata))〉

where metadata is a template that corresponds to the metadata being searched

for. The MetadataConstraintFunction constraint function is designed to operate

only over the metadata field of context data item tuples in the tuplespace rather
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than both the metadata and data object fields. The metadata tuple of each con-

text data item must match the metadata template supplied as a parameter to the

MetadataConstraintFunction in order for the context data item tuple to be returned

as a result.

Using Reactions to Handle Persistent Queries

Another benefit of designing the query manager to use a tuplespace for storing context

data is that we can take advantage of reactive constructs that have been previously

defined in tuplespace models [26, 11, 19]. The ReactionManager component of the

query manager allows for reactions to be registered on the manager’s tuplespace via

the registerReaction method. A reaction is simply an association between a pat-

tern (template) describing a tuple and a callback function. The semantics of these

reactive constructs dictate that the appearance of a tuple in the tuple space that

satisfies the reactive pattern immediately triggers the execution of the associated

callback function. The insertion of the matching tuple in the tuplespace and the

execution of triggered callback functions occurs in a single atomic step. The reac-

tion will continue to fire each time that a tuple is found that matches the reactive

pattern until the reaction is deregistered (using the deregisterReaction method of

the ReactionManager). Such reactive constructs are extremely useful in the query

service to address issues associated with reporting changing data to the application.

New data items. Addressing the issue of notifying the reference application of the

addition of new context data items that meet a persistent query’s data specification

is relatively simple. When the persistent query is issued, each query manager that

receives the query simply registers a reaction on the tuplespace using the data tem-

plate provided as part of the query as the reactive pattern. The reaction’s call back

function initiates reply processing using the query’s reply processor in order to deliver

the new results to the query initiator. The replies are encapsulated as a data reply.

An application dictates how these replies are managed by submitting a persistent

reply handler at the time the query is submitted.

Removed data items. Dealing with deletions of context items previously reported

as replies is slightly more complex since reactions are based upon the state of the
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tuplespace and cannot be triggered by the removal of tuples. To address this issue,

we have extended the notion of reactions over tuplespaces to support the notification

of removal of data. We do so through the introduction of anti-tuples. The anti-tuple

is simply a copy of the tuple of interest with a value set in a special system tuple

field that indicates its status as an anti-tuple. An anti-tuple is not a piece of data,

but rather indicates the removal of a particular piece of data. When a piece of data

is removed from the tuple space, a corresponding anti-tuple is inserted into the tuple

space.Each time that an anti-tuple is inserted into the tuple space, the set of reactions

are checked to see if any are triggered by the new tuple. The triggered reactions fire,

and the associated call back functions are executed. Though at first the use of anti-

tuples may seem prohibitive in terms of space, the semantics of reactions dictate that

insertion of the anti-tuple and the execution of callback functions associated with

reactions registered on the anti-tuple appear to occur in a single atomic step, which

allows the anti-tuple to be inserted and then immediately removed from the tuple

space.

To support notification of removed data items in QueryME, the ReactionManager

registers a reaction using an anti-tuple as the reactive pattern to signal the deletion

of a reported context item. As before, the reaction’s callback function initiates reply

processing, this time to notify the query initiator that a previously delivered context

item is no longer available. Replies generated to notify applications of changes in

reported data for a persistent query are identified as deleted data replies. As before, an

application dictates how these kind of replies are handled by submitting a persistent

reply policy with the persistent query.

Unavailable data items. With persistent queries, the overlay data structure that

encapsulates the context associated with a persistent query is constantly updated in

response to changes in the environment that impact the context definition. When

such changes cause an application to no longer be a part of a query’s context, the

data that the application has previously reported to the query initiator is no longer

valid. Because each host in the context associated with the query acts as a router to

relay a query response, the disconnection of a host can result in an entire portion of

the context becoming unavailable. This data also becomes invalid to the application.
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To allow a member of the context to notify a query initiator that a context child

and its descendant’s data is no longer available, the query manager once again relies

on the use of anti-tuples and reactions to report change. Each time that a reply to

a persistent query is relayed to an application’s context parent in the overlay data

structure, the query service stores the reply tuple in the query manager’s tuplespace

before processing and propagating the reply back to the query initiator. A system

field in the tuple is used to identify the tuple as a reply to a query rather than

as a locally available result. If the reply is associated with a persistent query, the

query service also registers a reaction on the tuple space that incorporates an anti-

tuple as the reactive pattern, and a call-back function. When the elimination of a

host or application within the context is detected, an anti-tuple indicating such is

placed in the tuple space. This triggers the reaction associated with the anti-tuple,

which is designed to notify the query initiator that the data associated with the host

or application specified by the anti-tuple is no longer available. Replies generated

for persistent queries that indicate the unavailability of previously reported data

are reported as unavailable replies and are handled according to an application’s

submitted persistent reply processing instructions.

One issue that we have not yet addressed is the unavailability of data previously

offered as query responses by a departed context child’s descendants. To address this

issue, we incorporate an additional special path system tuple space field in each tuple

that gives the path in the context overlay data structure from the query initiator to

the query responder. Each time a query initiator receives a notice that a particular

context child’s data is unavailable, the query initiator can use the paths of data items

previously received in order to determine their validity.

Using Profiles to Evaluate Constraints

The QueryME query manager has a HostProfiles that is used to - the host con-

straints of a received query. If the host profile satisfies the host constraints, the query

manager evaluates the query operation over the local tuple space to get a set of po-

tential results. If any context item tuples match the data constraints portion of a

query, then the query manager examines each potential query result to determine if
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public abstract class Application {
private ApplicationProfile profile;

private ApplicationID id;

private QueryManager manager;

public Application();

public ApplicationProfile getApplicationProfile();

public void addProfileField(EField field);

public void removeProfileField(EField field);

public ApplicationID getApplicationID();

public QueryManager getManager();

}

Figure 4.7: The Application Abstract Class

the owner of the context data item tuple satisfies the application constraints asso-

ciated with the query. The query manager does this by using the system field of a

tuple to acquire the application identifier of its owner and uses this ID to look up

the application profile in its list of registered applications. If an application’s profile

matches the application constraint associated with a query, all context data item tu-

ples in the set of potential results that are provided by that application are eligible

to be returned as a result by the query manager.

4.3 QueryME API

Any application that uses QueryME must extend the Application class (Figure 4.7).

The Application class encapsulates an ApplicationProfile describing the appli-

cation, a unique identifier, and a handle to the query manager running on the local

host. If the application’s local host is not currently running a query manager, the

constructor results in the query manager’s initialization. The application is then reg-

istered with the query manager, providing its application profile during registration.

The Application class also provides support for accessing and manipulating the ap-

plication profile, and for accessing the query manager. The query manager is used to

perform all context-related operations.
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public class ContextDataItem extends ETuple {
public ContextDataItem(Serializable data);

public ContextDataItem(ETuple metadata, Serializable data);

public ContextDataItem addMetadataField(EField field)

public ContextDataItem removeMetadataField(EField field)

public ETuple getMetadata();

public Serializable getData();

public EField getMetadataField(String fieldName);

public EField[] getMetadataFields();

public ETemplate getMetadataTemplate();

}

Figure 4.8: The ContextDataItem interface

The QueryME middleware can be used to provide data for use as context by others

or to perform a tailored, content-based search for context data within the mobile ad

hoc network. The following sections describe how an application programmer can

perform context provision and acquisition using the QueryME API.

4.3.1 Providing Context Data

As mentioned earlier, QueryME provides a baseline representation of context within

the query service to allow for uniform treatment of context by the middleware, while

providing an interface to application programmers that allows them to submit their

data as context for use by others in the mobile ad hoc network. Because the QueryME

middleware is implemented in Java, the only restriction is that it must be possible

to convert the data into a serializable Java object. Context data providers must also

supply metadata describing each object to allow the middleware service to evalu-

ate the satisfaction of queries over what it would otherwise consider as “black box”

context data objects.

To share data as context, an application must first construct a ContextDataItem

that encapsulates the context data item’s metadata and the data object. A
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ContextDataItem is essentially a tuple with two fields: a metadata tuple and a seri-

alizable data object. The context data provider can alter the metadata description by

adding or removing fields using the addMetadataField and removeMetadataField

methods, respectively. The ContextDataItem interface is shown in Figure 4.8.

Once the context data item tuple is constructed, the user may submit the item to

the query manager on the local host using the manager’s insert method. The user

must also supply its unique application identifier when submitting the context data

item. This allows for the owner of the item to be identified and its application profile

to be evaluated to determine whether or not the context data provider satisfies the

application constraints portion of a context policy associated with a query.

The insert operation of the query manager places the context data tuple in the local

tuple space owned by the local query manager. The tuple will be available for local

evaluation of single queries on the local host. In addition, the insertion of a new tuple

into the local tuplespace results in the firing of any reactions that are registered on

the tuplespace for a matching data pattern. Therefore, if the newly inserted tuple

meets a persistent query’s context policy and data constraints, the query issuer will

receive notification of the availability of a new query result.

An example of context data insertion is performed by an injury monitoring applica-

tion in the provideStatusReport method shown in Figure 4.9. In this example, the

injury monitoring application is submitting an injury monitoring report for an injured

victim. The application describes the report as a medical document (specifically, an

injury status report) and gives the victim’s current injury classification.

A context data provider may wish to discontinue sharing information or may want

to update the shared context data item. The application can use the query man-

ager’s delete method to discontinue sharing the data as context. The user must

describe the context data item to be removed by creating an ETemplate which de-

scribes the metadata associated with the context data item that is to be removed.

The programmer can acquire a template that matches the provided metadata by using

the getMetadataTemplate method of the ContextDataItem object, which returns a

template that corresponds to the provided metadata tuple. The application’s unique

identifier must also be provided at the time the context data is to be removed. The
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public class InjuryMonitor extends Application {
private QueryManager mgr = QueryManager.getManager();

private int injuryClassification;

private String patientDescription;

private DiagnosisDocument diagnosis;

private TreatmentDocument recommendedTreatment;

private StatusDocument patientLog;

. . .
application specific code for acquiring victim injury info
. . .

supply report for use by rescue workers
public void provideStatusReport() {

ContextDataItem statusLog =

new ContextDataItem(patientLog);

statusLog.addMetadataField(new EField(‘‘dataType’’,

String.class, ‘‘medical document’’));

statusLog.addMetadataField(new EField(‘‘medicalDocType’’,

String.class, ‘‘injury status document’’));

statusLog.addMetadataField(new EField(‘‘injuryClass’’,

Integer.class, new Integer(injuryClassification));

mgr.insert(statusLog, getID());

}

remove invalid report
public void removeStatusReport(ContextDataItem dataItem) {

ETemplate toRemove = dataItem.getMetadataTemplate();

mgr.delete(toRemove, getID());

}
}

Figure 4.9: An Example Provider of Context Data
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delete method will result in the removal of all context data items owned by the

application (as identified by the provided unique identifier) that match the provided

template and are stored in the local query manager’s tuplespace. However, the ap-

plication programmer must be careful to construct the template to be as specific as

possible so as to remove only the single context data item that is intended to be re-

moved. The programmer can acquire a template that matches the provided metadata

by using the getMetadataTemplate method of the ContextDataItem object, which

returns a template that corresponds to the provided metadata tuple.

An example of context data deletion is shown in Figure 4.9 as well. In this example,

an injury monitoring application removes an previously provided injury status report

using the removeStatusReport method shown. The application uses the previously

constructed ContextDataItem to acquire the template for removal.

4.3.2 Acquiring Context Data

When submitting a query, the application programmer must provide a description

of the desired data as well as the query’s associated mobile code specializations that

dictate how it should be processed within the mobile ad hoc network. Along with

the description of desired data, the application programmer must provide a context

policy, a propagation policy, a query propagation policy, and a reply processing policy

when issuing a query. In addition, persistent queries require the provision of policies

to handle notifications of new, deleted, and unavailable query results. The query

service utilizes these pieces of mobile code to tailor the execution of each submitted

query and to deliver the desired results to the issuing application. Each of these query

components is discussed in detail in the following sections. Throughout, examples are

used to illustrate the use of each concept. This section concludes by describing how

a user submits one-time and persistent queries.

Defining the Context

Before issuing a query, the user must define a context for the query to be issued over.

This requires the programmer to provide network, host, and application constraints.
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public abstract class Cost {
int compareTo(Cost cost)

}

public abstract class Metric {
private String[] monitorNames;

public void setMonitorNames(String[] names);

public abstract Cost weightFunction(HostID otherHost);

public abstract Cost costFunction(Cost currentD,

Cost weight);

}

Figure 4.10: The Cost and Metric Interfaces

The network constraints are used to define the network overlay data structure that en-

capsulates the context, while the host and application constraints are used to further

restrict the context.

Network Constraints. In providing a mechanism to impose network constraints on

the ad hoc network, we build upon the approach presented in [12] to specify and

construct a context. The context is constructed using a spanning tree. This requires

defining a Metric class and a Cost class that are used to construct the tree. The

Cost class is used to define a property that contributes to the cost of a path in the

overlay data structure. The Metric class details how to utilize the cost evaluated at

the previous hop and the cost of a link weight to determine a new cost.

To define a context, a programmer must extend the Cost and Metric classes shown

in Figure 4.10. Defining a Cost subclass simply requires the programmer to define a

method which compares the Cost object to another Cost object. Defining a Metric

subclass is a bit more complex, requiring the application programmer to provide the

names of environmental monitors it will use to evaluate the metric. At each host, the

query manager component of the query service uses a MonitorRegistry provided by

the supporting CONSUL environmental monitoring package to provide the metric with

access to local (on the same host) or remote (on a reachable remote host) monitors

with the specified names. The Metric abstract base class also requires an extending

class to implement a weight function and cost function. The weightFunction method
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determines the weight of the link between the evaluating host and a neighboring host.

The costFunction takes the cost of the path to the current host and uses the weight

calculated by the weight function to determine the cost associated with including a

neighbor in the context.

public class HopCountMetric extends Metric{
public HopCountMetric(){
}
public Cost weightFunction(HostID otherHost){
//calculate the weight on the link
HopCost weight = 1;
return weight;

}
public Cost costFunction(Cost currentD,

Cost weight){
HopCost newCost = currentD + weight;
return newCost;

}
}

Figure 4.11: An Example HopCountMetric Class

To illustrate the use of network constraints, consider an application that wants to

limit its context to a particular number of hops, h. The metric to capture this

simple context definition is shown in Figure 4.11. We have omitted the definition

of the HopCost class, which adheres to the Cost interface by storing an integer and

implementing the compareTo method.

The implementation of the hop count metric does not require the programmer to

utilize any monitors. However, more sophisticated metrics may require access to

properties of the network links. Consider, for example, an application that requires

the end-to-end link latency be within a threshold to guarantee a minimum level

of performance. An example metric which captures an additive latency metric is

shown in Figure 4.12. The metric uses the LinkMonitor and LinkProperties classes

introduced earlier. The LatencyCost class, which is omitted from the figure, holds a

double value and provides a compareTo method.

Constraints on Hosts. Defining constraints on the kinds of hosts that can participate

in a context is relatively straightforward. Each host in the ad hoc network provides a

host profile containing properties that describe the host, e.g., its unique id, disk space,



55

public class LatencyMetric extends Metric{
public LatencyMetric(){
}
public Cost weightFunction(HostID otherHost){
//calculate the weight on the link
QueryManager mgr = QueryManager.getManager();
LinkMonitor monitor =
mgr.getMonitorRegistry().getMonitor(‘‘LinkMonitor’’);
LinkProperties properties =
(LinkProperties) monitor.getValue();
DoubleValue latency = properties.getLatency();
LatencyCost weight = new LatencyCost(latency);
return weight;

}
public Cost costFunction(Cost currentD,

Cost weight){
LatencyCost newCost = currentD + weight;
return newCost;

}
}

Figure 4.12: An Example LatencyMetric Class

platform, etc. This profile is captured as a tuple using the HostProfile class that ex-

tends a tuple class provided by a supporting tuple space package. Therefore, to impose

host constraints, a programmer simply provides a template that describes required

host properties. To provide a template, the programmer uses the HostConstraints

class (a subclass of a template class provided by the tuple space package) to indicate

which tuple fields in a host profile are of interest and to provide a constraint function

that determines if the host profile field meets the needs of the application. The query

service uses pattern matching of a host profile tuple against a host constraint tem-

plate and the provided constraint function to determine satisfaction of constraints.

Since we need to support arbitrarily defined constraint functions, these are defined

as mobile code elements.

HostConstraint hc = new HostConstraint();
hc.addConstraint(new EConstraint(‘‘platform’’,

new EquivalencyConstraintFunction(‘‘firetruck’’)));

Figure 4.13: An Example Host Constraint
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An example use of host constraints is shown in Figure 4.13. The host constraint

dictates that only hosts that identify themselves as firetrucks in their host profiles are

included in the context.

Constraints on Applications. Constraints that dictate what kind of applications may

participate in the context are defined much like host constraints. Each application

provides an application profile that includes application properties such as application

id, application type, user, etc. The application profile is captured as a tuple, and

application constraints are captured as a template. As before, pattern matching and

a piece of mobile code implementing a constraint function is used by the system to

determine constraint satisfaction.

ApplicationConstraint ac = new ApplicationConstraint();
ac.addConstraint(new EConstraint(‘‘AppType’’,

new EquivalencyConstraintFunction(‘‘patient monitoring’’)));

Figure 4.14: An Example Application Constraint

An example application constraint is shown in Figure 4.14. The constraint shown

dictates that the application must be described as being a patient monitoring appli-

cation.

We provide a collection of commonly used network constraints in our QueryME mid-

dleware for use by the application developer. The developer can use inheritance to

extend the collection of metric and bound classes used to construct the overlay data

structure. Likewise, we provide a collection of commonly used constraint functions

that can be included in the definition of a host or application constraint.

At this point, the programmer has provided everything needed to define a context for

a query’s execution. The programmer can now use the query service API to obtain a

static reference to the QueryMananger running on the local host. Once the manager is

obtained, the programmer registers a context definition with the manager using the

createContext method, providing network, host, and application constraints that

comprise a context policy as parameters. A ContextID is returned to the application

to identify the registered context. The application supplies this context identifier
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public interface QueryProcessor {
public Vector limitPropagation(Vector

potentialChildren);

}

Figure 4.15: The QueryPropagator Interface

when issuing a query over the context. However, before issuing a query, the program-

mer must first define how the query’s execution is to be controlled, dictating how

queries can be propagated and how replies are processed.

Defining the Query Propagation Policy

To define a query propagation policy, a programmer must define a class which im-

plements the QueryPropagator interface shown in Figure 4.15. To define the query

propagation policy, a programmer must define a limitPropagation method. This

method uses a set of potential context children provided by the QueryME middleware

which satisfy the network constraints and imposes the propagation policy on this set

to determine a new set of context children. This set is returned to the QueryME

QueryManager. If the context children set calculated by the limitPropagation

method is empty, the query is not to be propagated any further.

A number of query propagators that incorporate standard query propagation schemes

are provided with the QueryME middleware. The context-aware application devel-

oper can simply choose to use one of the provided mobile code fragments. However,

the set of query propagators can also be easily extended to incorporate mechanisms

tailored to a particular application.

To illustrate the development of propagators, a controlled flooding propagation

scheme is shown in the limitPropagation method in Figure 4.18. The code shows

that when a local result is found that satisfies the query, the propagator initiates the

reply process and suspends propagation by returning an empty vector of context chil-

dren to the query manager. Otherwise, the set of context children remains unchanged

and is returned to the query manager to use in continuing propagation of the query.
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public class ControlledPropagator extends QueryPropagator{
QueryID qID;

public ControlledPropagator(QueryID qID){
this.qID = qID;

}

public Vector limitPropagation(Vector contextChildren) {
QueryManager mgr = QueryManager.getManager();
Vector actualChildren = new Vector();
Reply localResult = mgr.getLocalQueryResult(qID);
if (localResult.getResultTuple() != null){
mgr.sendReply(Reply);
return (actualChildren);
}

else
actualChildren = contextChildren;
return actualChildren;

}
}

Figure 4.16: An Example Query Propagator

public interface ReplyProcessor {
public void processReply(QueryID qID, Reply r);

}

Figure 4.17: The ReplyProcessor Interface

Defining the Reply Processing Policy

To define a reply processing policy, a programmer must implement the processReply

method of the ReplyProcessor interface shown in Figure 4.17. The processReply

method determines how replies received by the query manager on the local hosts

are processed. If the reply is to a query that was not issued by the local host, the

processReply method is responsible for calling the sendReply method on the query

manager to continue to propagate the reply along the path to the query issuer.
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A number of standard in-network reply processing policies are available as part of the

query service. It is possible to extend the set of available query processors by con-

structing new mobile code fragments that implement the ReplyProcessor interface.

public class AggregateProcessor extends QueryProcessor{
QueryID qID;
Hashtable receivedReplies = new Hashtable();
Vector children;
QueryManager mgr = QueryManager.getManager();

public AggregateProcessor(QueryID qID){
this.qID = qID;
children = mgr.getChildren(qID);

}

public void processReply(Reply r) {
if children.contains(r.getSender()) {
receivedReplies.add(r.getSender(), r);

}

if receivedReplies.size() == children.size()) {
for(i=0; i<children.size(); i++) {
HostID hID = children.elementAt(i);
Reply childReply = receivedReplies.get(hID);
currentResult = aggregate(childReply);
}
mgr.sendReply(currentResult);

}

public Reply aggregate(Reply reply) {
Reply r = ...aggregate currentResult with reply... ;

return r;
}

}

Figure 4.18: An example AggregateProcessor Class

Describing the Desired Data

The purpose of a query is to acquire some piece of context data according to a content-

based description of the desired data. One way to think of a content-based description

is as a constraint over data, and the results returned for a query must satisfy that
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data constraint. In QueryME, queries are actually executed over the metadata of

context data items. Since metadata is represented as a tuple in QueryME, the data

constraint portion of a query is captured as a template. The application designs the

data constraint template to give constraints over named, typed fields in the metadata

of the desired context data item. As stated previously, the system will apply the

MetadataConstraintFunction to evaluate a submitted data constraint. The data

constraint is satisfied over a context data item tuple if for every field in the data

constraint template, there exists a field in the metadata tuple of the context data

item tuple that has the same name and type, and a value that satisfies the constraint

given for that field in the data constraint template.

Issuing a Query

To issue a one-time query, the application uses its handle to the query manager on the

local host and uses its sendQuery method. The application supplies the ContextID

acquired when creating a context policy, the data constraints that form the content-

based request for data, the desired query operation (GET or GETALL), and the

specialized processors. The query also registers a reply listener that will only be

invoked when replies are returned to the reference application.

Registering a Persistent Query

To issue a persistent query, the application calls the registerQuery method on the

local query manager. The application must supply all the information given for a one-

time query, as well as a mobile code element that manages changes to reported data.

An application that registers a persistent query can expect to receive notifications of

newly available data results and reports generated due to the deletion or unavailability

of previously delivered query results. At the time that a persistent query is registered,

a programmer must provide a policy for handling updated query results. To do so, the

application programmer implements the PersistentReplyListener interface shown

in Figure 4.19 and provides the listener to the query manager when the query is regis-

tered. The processReply method determines how new data replies (each represented

as a DataReply) are processed. Reports on the unavailability of data and deleted
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public interface PersistentReplyListener {
public void replyReceived(QueryID qID, DataReply dReply);

public void unavailableReplyReceived(QueryID qID,

UnavailableReply unReply);

public void deletedReplyReceived(QueryID qID,

DeletedReply delReply);

}

Figure 4.19: The PersistentReplyListener Interface

data are processed according to the instructions in the processUnavailableReply

and processDeletedReply methods, respectively.

4.4 Chapter Summary

The QueryME middleware is a realization of the query-centric model presented in the

previous chapter. The implementation uses mobile code to support tailored process-

ing of queries within a limited scope, tuples to support the encapsulation of various

context data types and content-based retrieval using metadata, and reactions to sup-

port prolonged evaluation of queries in a continuously changing environment. In this

chapter, we presented the design and implementation of our QueryME middleware

and described the programming interface that an application developer can use to

construct context-aware applications. The QueryME approach is extensible and flex-

ible, allowing for additional mobile code specializations for to be plugged in at the

time of query execution. Though this requires the application programmer to sup-

ply several mobile code elements as part of query for tailored processing, a small

library of commonly used specializations can be easily constructed and provided to

the application developer to use and extend in order to simplify the process.
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Chapter 5

Gander: A Context-Aware Search

Engine

The World Wide Web (WWW) has proven to be a successful metaphor for accessing

information distributed across the entire planet. Today, almost one billion people

acquire information from the Internet [27] using web pages. In recent years, the

applicability of this mode of information storage and retrieval has been extended to

the wireless environment. In fact, it is now possible to surf the web using a mobile

phone while on the go through a cell phone tower connected to the wired Internet.

Such impressive growth in the use of the World Wide Web is a testament to its utility

and importance to our modern life.

While ad hoc networks lack connectivity to the Internet, the ability to extend the

WWW metaphor to such an environment can be highly beneficial. In an ad hoc net-

work, connections are formed opportunistically between mobile devices within wireless

communication range, without any assistance from a wired infrastructure. By treat-

ing the ad hoc network as if it were a WWW-like distributed information repository,

a user who is part of an ad hoc network can easily take advantage of the wealth of

information provided by mobile and stationary hosts encountered in the surrounding

operational environment.

This chapter introduces Gander, a search engine designed to retrieve web pages dis-

tributed across devices in a mobile ad hoc network. In Gander, search is personalized

according to user-supplied preferences used to limit the extent of the search and prop-

erties of the data being searched for. A weary shopper looking for a soothing place
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to relax with a cup of coffee may specify, for instance, the need to know about web

pages posted by coffee shops within a four block area. Once preferences are specified,

a user can either submit a simple immediate search for such data or can request a

persistent search which generates a dynamically maintained list of web pages meeting

the stated preferences, continuously updated to reflect the changing environment as

the shopper makes her way along the avenue and as coffee shops open for business.

With either kind of search, the user can simply click on any one of the returned web

pages in the list to display it.

At heart, Gander is a context-aware application, adapting its behavior according

to changes sensed in its environment. From a software engineering perspective, the

development of Gander demonstrates how one can exploit a general purpose query-

centric middleware to construct applications that share the need to be responsive to

context changes. Gander is implemented using QueryME, the middleware introduced

in this dissertation that is specifically designed to give an application access to contex-

tual information tailored to evolving application needs. As discussed in the previous

chapter, QueryME takes a query-centric approach to supporting context-aware ap-

plication development. Context policies provided by Gander users are used by the

middleware to restrict the scope of the query evaluation both in terms of network

coverage and host participation. The middleware constructs an overlay network in

accordance with the application-supplied policy (e.g., within two hops, within four

blocks) which captures the application’s context. The use of such policies keeps the

associated context interaction costs in line with the actual needs of the application,

which are likely to involve a limited and often localized spatial domain. A Gander

submitted search is actually a query evaluated over the overlay network, rather than

across the entire ad hoc network. A simple query immediately examines the hosts

included in the overlay network and returns the results to the issuing application.

Persistent queries are evaluated by maintaining the overlay network as the physical

ad hoc network evolves, and by continuously sending reports to the issuing applica-

tion as pertinent data becomes available (e.g., as coffee shops are approached during

the walk) or as previously reported results become irrelevant (e.g., coffee shops that

are now too far or in the wrong direction). The middleware shields the applica-

tion programmer from the details of maintaining the network overlay, yet allows for
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user-customized strategies for query propagation and evaluation through the use of a

protocol which exploits mobile code technology.

The remainder of this chapter is organized as follows. Gander is introduced in Sec-

tion 5.1. Section 5.2 shows how the query language constructs provided by our mid-

dleware can be used to implement search functionality in the Gander application.

Evaluation of the Gander application is presented in Section 5.3. The chapter is

summarized in Section 5.4.

5.1 A Context-Aware Search Engine

The Internet has experienced rapid growth over the last decade. In the course of this

time span, Internet search engines have become indispensable to many users in helping

them find webpages that provide the information, products, or services they need. A

number of popular search engines have emerged over the years. Google, Yahoo!, and

MSN Search are the leading search tools, each service handling millions of searches

per day [27]. The popularity of these and other search engines may be attributed to

the ease of use that they offer. Instead of requiring a user to know the exact Internet

address of a website that provides information or services of interest to a user, search

engines allow for content-based retrieval of webpages. Though designed for use in an

Internet environment, th work presented in this chapter is based on the belief that

the abstraction provided by Internet search engines can benefit users operating in

an environment without Internet connectivity; people whose wireless mobile devices

form ad hoc networks could use search engines to find relevant information, products,

and services provided by other users within the same ad hoc network.

To understand how to use search engines in the ad hoc network setting, it is necessary

to understand first how search engines operate in an Internet environment. Internet

search engines typically work by building a directory of webpages that are available on

web servers across the Internet, and indexing the webpages according to their content.

The process of building the directory is usually automated. For example, Google uses

a web crawler which periodically scans the Internet for webpages and uses an indexing

algorithm to build a directory. The resulting search engine service directory is stored
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on a collection of servers. Users perform a search by entering a query in the search

engine interface, usually within a web browser. To search engine users, it appears

that they are searching the web, but in reality they are searching the directory of

webpages stored on the search engine service’s bank of servers. When presented with

search results, users are given a list of links to webpages indexed within the directory

that meet the search criteria.

The characteristics of ad hoc networks make it impractical to utilize these kinds of

search engines directly. An ad hoc network is comprised solely of mobile devices and

does not utilize a fixed infrastructure. Reliance on a logically centralized directory

of webpages is not feasible in this environment, where roving users equipped with

mobile devices may move out of connectivity range of the directory servers or may

never encounter a directory server at all. Moreover, rapid configuration changes that

frequently occur in ad hoc networks invalidate the typical web crawler approach to

maintaining a directory which is reasonably consistent with the webpages that are

currently available in the environment. Finally, while an Internet search engine uses

stored information from the entire network to execute every search, roving users of

a search engine in an ad hoc network are often concerned only with results that are

available within their current locality.

To address these issues, we have developed Gander. Gander is an application designed

to allow mobile device users to search for webpages that provide useful information

about businesses and services of interest in the user’s surrounding area without con-

nectivity to the Internet. Gander users act both as providers and as searchers of

webpages. In a provider role, a user is giving permission to the Gander application

to make a particular webpage public. When acting in a searcher role, a user is asking

Gander to find webpages that meet given search criteria. This section outlines how

providers and searchers use the Gander interface.

A user may provide web pages for viewing by others by allowing Gander to include the

pages in distributed search operations. The process of providing webpages consists

of three steps: choosing a webpage to share, providing information that may impact

selection in a search, and describing the content of the webpage. The process for

sharing webpages via the Gander interface is shown in Figure 5.1 and is described in

detail below.
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To share a webpage, a provider first selects the “Share Webpages” option from the

Gander menu to begin the process. The user then selects the HTML file stored on the

local file system to be shared from a dialog box. Next, since Gander allows a searcher

to tailor search results to include only webpages from described providers, Gander is

supplied with properties that characterize the provider of a webpage and potentially

reflect the relevance or quality of search results provided by the user. These properties

may be acquired by Gander directly from the provider or may be obtained through

observation of prior interactions with the provider. Currently, a Gander provider

supplies such information directly by selecting a descriptor from a list that identifies

the kind of business or service that the user represents. For instance, the owner of a

local coffee shop may chose to use Gander to share her webpage advertising the shop’s

menu and another webpage advertising upcoming live entertainment events hosted

at the shop; this provider describes herself as a coffee shop and restaurant. The list

of webpages that the user has chosen to share with Gander is updated to reflect the

addition; in the case of the coffee shop owner, the list reflects two entries: both the

menu and entertainment webpages. A user can easily stop sharing the webpage at any

time by simply selecting the page from the list and clicking the “Unshare” button.

The final step in the process of sharing webpages is describing the content of the

webpage; this description is used by Gander to match a user’s search request to a

webpage. Such content-based search has proven to be essential in searching the vast

expanse of the Internet; given the flexibility such an approach offers, it is important

to incorporate this concept in Gander when matching provided webpages to search

queries. In Internet search engines that provide content-based search, each webpage

is cataloged in a directory using metadata which describes its content. Typically, a

webcrawler-based approach creates an entry in a search directory that associates the

webpage with every word included in the content of the webpage (commonly used

words, e.g., “the”, “was”, etc., are excluded). In a simplified view of the process,

search queries submitted by users are parsed and the resulting components are used

to retrieve matching webpages from the directory. This approach to creating metadata

to support content-based search cannot be applied in Gander, since creating such a

large search index would be infeasible in resource-poor ad hoc networks.
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Several options could be incorporated into Gander to support the construction of

searchable metadata descriptions of webpages. One option is manual entry of meta-

data, in which a provider describes a webpage using a small number of search terms

when it becomes shared. At the other end of the spectrum is automated construc-

tion of metadata in which the Gander software parses the information contained in

the webpage to construct a short description. In either case, metadata may be con-

structed by using the content of the webpage to determine a collection of descriptive

terms, either by providing a list of words, selecting a category from a list, or selecting

particular terms from a list. Gander is designed to offer flexibility when determining

how a webpage is described as searchable metadata. Metadata construction is en-

capsulated within a separate component, allowing for a “plug-and-play” approach to

selecting a descriptive strategy. Currently, Gander is provided with a default compo-

nent which implements a manual metadata construction approach: users are required

to provide strings describing the webpage as metadata upon sharing the page.

Gander users who wish to search for information in the surrounding environment may

provide preferences for directed, personalized searches that are sensitive to context

changes. Gander offers two kinds of preference settings: network and application

preferences. The user can select network preferences to limit the scope of the search to

the specified portion of the network surrounding the user. The Gander user interface

allows the user to limit searches to an area surrounding the user bounded by a selected

number of network hops, city blocks, miles, or kilometers. As shown in Figure 5.2, a

weary shopper using Gander is tired of walking and wants to find a place to sit and

have a cup of coffee within the next 3 blocks. Application preferences can be used in

Gander to limit search to providers that are likely to provide data of interest. In the

current implementation of Gander, the user can describe data providers of interest by

selecting any number of attributes from a list. As shown in Figure 5.3, the shopper

is hoping to find a cup of coffee prepared for her in a coffee shop or restaurant rather

than going to a grocery store to get the supplies to prepare the coffee for herself. If

our shopper (or any other user) does not set the network or application preferences

before submitting a search request then the default settings will be used: the network

preferences set to five network hops and application preferences set to include all

public pages.
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Figure 5.1: Sharing Webpages in Gander

A user can submit a search request at any time. Two kinds of searches are possible:

immediate and persistent. An immediate search request terminates once results are

returned, while a durable search request provides continually updated search results.

To perform an immediate search, the user provides a search string and clicks the

“Find” button. A persistent search is performed similarly, except the user clicks the

“Track” button. A weary shopper using Gander to find a nearby cup of coffee enters

the word “coffee” and clicks to start the search. The ad hoc network is searched

for webpages that match the request using the search input (e.g., “coffee”) and the

metadata associated with webpages (e.g., “coffee”, “mocha”, “latte”, etc.). At the

conclusion of the immediate search, a list of results are displayed and remain until the
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Figure 5.2: Network Preferences in Gander

user clicks the “Clear” button. With a persistent search, the list of results is populated

and updated as the environment changes, mostly due to mobility of users which

impacts the availability of results. For example, the weary shopper’s search results

for “coffee” at coffee shops within two blocks changes as she continues walking. The

user can scroll through the list of returned results and view the associated webpage

by clicking the “View” button. Figure 5.4 shows the shopper’s search for a coffee

given her network (3 blocks) and application (coffee shop or restaurant) preference,

and the displayed search results.
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Figure 5.3: Application Preferences in Gander

Gander has been built using the QueryME middleware system presented in Sec-

tion 4 that is designed to support context-aware applications. The following section

demonstrates how the middleware is used to support Gander’s ad hoc network search

functionality.
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Figure 5.4: An Example Search in Gander

5.2 Using QueryME to Implement Gander

Gander is implemented in Java and uses the QueryME middleware to collect context

information from the surrounding environment. Because QueryME is used by Gander

for this purpose, most of the code required to implement the search engine is focused

on using QueryME constructs and on providing a graphical user interface. QueryME

is well-suited to support the development of Gander since searching for information

can easily be implemented through the use of queries. In this section, we detail how

QueryME is used in the implementation of Gander.
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The Gander class extends the Application class in QueryME. The Gander construc-

tor calls the constructor of its parent class, which results in the initialization of the

local QueryME QueryManager. The Gander constructor also sets up the default net-

work, host, and application constraints that are used to focus a Gander search. The

default constraints are designed to give wide search coverage without overburdening

the application with results. By default, the network constraints dictate that the

search is limited to 10 hops. Host and application constraints require only that a

host provide a unique host identifier in its profile and an application provide a unique

application identifier in its host profile.

As stated in the previous section, a Gander user limits the scope of a Gander search

by customizing the constraints through the user interface. Gander provides a lim-

ited number of frequently used constraints that may be useful to a mobile user in a

particular scenario. The provision of constraints through the Gander user interface re-

sults in calling Gander’s updateNetworkConstraints and updateHostConstraints

methods. These methods store the updated constraints, which will be provided to the

QueryME middleware when the user performs a simple or persistent search. These

constraints comprise the context policy that will be used by QueryME to scope the

execution of a query that corresponds to a Gander search request.

Gander supports the provision of webpages to be searched for and used by others

in the network. When the user elects to share webpages, Gander allows the user to

select the HTML file from the local filesystem and to supply a textual description

of the contents and purpose of the webpage. Gander will supply this description to

QueryME as the webpage’s associated metadata. To do so, it converts the string

into an ELights ETuple. Commas within the provided string are used as delimiters so

that multi-word phrases can be captured as a metadata field. Each field in a tuple

has a name, type, and value. In the metadata tuples that Gander provides, all fields

are of type String and the name and values are the same: a phrase in the provided

string description of the webpage. Once the metadata tuple is constructed, Gander

converts the HTML file that is provided by the user into a Java HTMLDocument ob-

ject. The HTMLDocument is serializable, meaning that it can be transferred over the

network without loss of information. Gander then packages the metadata ETuple

and the HTMLDocument together by creating a QueryME ContextDataItem. Gander

then provides the webpage as context by using its handle to the local QueryME query
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manager and using the insert operation on the manager. Once the query manager

performs the insert operation, the webpage will be available to other Gander applica-

tions in the mobile ad hoc network, as well as any other context-aware applications

that are implemented using QueryME.

public class EquivalencyConstraintFunction extends ConstraintFunction{
private Serializable value;

public EquivalencyConstraintFunction(Serializable value){
this.value = value;

}

public Serializable getValue() {
return value;

}

//Determines whether the value of the specified field is
//equal to the value provided to the constraint function
//upon its construction.
public boolean evaluate(EField field) {
boolean toReturn = field.getValue().equals(value);

}

}

Figure 5.5: The Equivalence Constraint Function used for Metadata Templates

As mentioned in the previous section, a Gander user can choose to discontinue sharing

a data item by selecting an entry in the list of shared webpages and clicking on the

“Unshare” button. Behind the scenes, Gander looks up the metadata associated with

that particular entry and uses it to construct a corresponding metadata template.

This template, in the form of an ELights ETemplate, is provided to Gander’s local

query manager in a delete operation. The constraint function over each field in

the template is an EquivalencyConstraintFunction (shown in Figure 5.5, which

requires that each field in a tuple must have a data value equivalent to that provided

by the template. The delete operation will remove all ContextDataItems that are

owned by the application and whose metadata tuple matches the template from the

local tuple space. Once this deletion operation is performed, the webpage is no longer

available to others in the network.
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public SimplePropagator implements QueryPropagator{
SimplePropagator() {
}

public void limitPropagation(QueryID qID, Vector children) {
return children;

}
}

Figure 5.6: The Simple Query Propagator used by Gander

public SimpleReplyProcessor implements ReplyProcessor{
private QueryManager manager;

SimpleReplyProcessor(QueryManager manager) {
this.manager = manager;

}

public void processReply(QueryID qID, Reply r) {
mananger.sendReply(r);

}
}

Figure 5.7: The Simple Reply Processor used by Gander

A Gander user can either perform a simple or persistent search for webpages that

have been made available in the mobile ad hoc network. When the user performs

a search by entering search terms and clicking on the “search” or “track” button,

Gander submits either a one-time or persistent query, respectively, to the QueryME

QueryManager.

To submit a query, Gander must provide its mobile code specializations. If the user

has provided customized network and application constraints for the search, Gander

will retrieve the appropriate mobile code elements and provide them as part of the

query. Gander propagates all queries in the same way: all nodes that meet the

constraints should receive the query. The query propagator that implements this

approach (shown in Figure 5.6) is supplied with all queries submitted by Gander.

Gander also takes a standardized approach to processing webpages returned as a
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result of a QueryME query: replies are simply propagated back along the return path

to the issuer of the query. This simple approach to query processing is demonstrated

in Figure 5.7.

Gander uses the search text string to construct a data constraint for the query. Es-

sentially, Gander is creating a metadata template to be matched over the meta-

data fields of ContextDataItems. Again, commas are used as delimiters in the

search string so that multi-word search phrases can be used. Gander uses the

EquivalencyConstraintFunction as the constraint for each template field. This

constraint function will be evaluated over each field in a metadata tuple.

Gander uses the sendQuery operation on the QueryManager when a simple search

is requested by the user. The mobile code specializations are packaged with the

data request and Gander specifies that the operation should return all query results.

Because this search request is treated as a one-time query, Gander also registers a

listener for query results for its query. This listener is executed by QueryME only

when query results arrive at the local host of the query issuer. When the listener is

notified that results have arrived, Gander takes the results and updates the display

so that the user can click and view the returned webpages.

When a persistent search is requested by the user, Gander uses the registerQuery

operation on the QueryManager. Again, the mobile code specializations are provided

as parameters as well as the data request and the type of operation to be performed

(i.e., GETALL, which returns all matching results). Since this search requested is

a persistent query, Gander must register a PersistentReplyListener that dictates

how data results are to be handled as well as reports of unavailable and deleted

results. The persistent reply listener used by Gander will update the display to add

newly available results to the list of webpages returned by the search and will remove

results which have been deleted or are unavailable from the list as well.

5.3 Evaluation of Gander

Though the primary goal behind the development of Gander is to provide a novel

search engine application with interesting features, a secondary goal is to use the
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Figure 5.8: Gander Lines of Code With QueryME versus Without QueryME

Table 5.1: Comparison of Gander Development Effort
Gander with QueryME Gander from Scratch

Source Lines of Code 1271 4276
Development Effort Estimate
(Person-Months) 3.09 11.04
Schedule Estimate
(Months) 3.84 6.23
Total Estimated Cost* $34,753 $124,231

*cost based on average annual developer salary of $56,286
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Figure 5.9: Focus of Programmer Effort for Gander When Using QueryME
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application to demonstrate QueryME’s potential for reducing programmer effort. We

use the Gander implementation to evaluate how QueryME can benefit a context-aware

application developer. We use a widely accepted line count-based software metrics

tool called SLOCCount [39] to perform our evaluation of software development effort.

The SLOCCount tool evaluates an application based on a count of the source lines of

code (SLOC) used to implement the application. SLOCCount counts only physical

lines of code, which means that blank lines and comments are omitted from the count.

Using the SLOC data, SLOCCount uses a well known software cost model, the original

Constructive Cost Model (COCOMO 81) [3], to estimate developer effort, project

schedule, and project cost. Though a more recent version of COCOMO model exists,

it requires a count of logical lines of code, or the number of statements. Counting

statements versus physical lines of code is a more complex task and SLOCCount

is currently unable to calculate this metric, as are many other automatic source

code analysis tools. However, using physical SLOC data to compute effort using

the original COCOMO model still yields results which are useful in estimating the

magnitude of programmer effort.

We first used the SLOCCount tool to compare the programmer effort expended by

implementing the Gander application from scratch versus using the QueryME mid-

dleware to support the context acquisition tasks in Gander. Figure 5.8 shows the

physical source lines of code counted by SLOCCount for two implementations of Gan-

der: Gander SLOC implemented with QueryME and Gander implemented without

QueryME. The programmer effort is reduced from 4,276 SLOCs without QueryME

to 1,271 when the QueryME middleware is used. In other words, the amount of

code that an application programmer must write to develop the Gander application

when using QueryME is approximately one-third of what a programmer that does

not use QueryME must write in order to develop Gander. The results of applying

the COCOMO model to these physical SLOC counts are shown in Table 5.1. As the

table illustrates, the development costs associated with Gander can be significantly

reduced by using the QueryME middleware.

We next used the SLOCCount tool to determine how much of a programmer’s effort

was focused on using QueryME constructs versus implementing the application. We

found that implementing Gander using QueryME required very little programming

effort in order to acquire webpages from others within the mobile ad hoc network
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Figure 5.10: Evaluating Gander on a Small Ad Hoc Network

using QueryME constructs. In fact, as shown in Figure 5.9, less than 20 percent of

the source lines of code required to implement the application were focused on context

acquisition. The remaining lines of code focused on application specific tasks; most

lines of code were dedicated to implementing the user interface. This calculation

of programmer effort in lines of code includes all QueryME related code, including

mobile code specializations. These mobile code specializations comprise 13 percent

of the entire code required to develop Gander. Since the mobile code specializations

used here are actually quite simple and were already made available to QueryME

users, we can reasonably argue that only 6 percent of developer effort was targeted

towards using the QueryME application programmer interface for context acquisition.

To perform an empirical evaluation of Gander, we deployed the application on mul-

tiple hosts equipped with wireless communication capabilities. Because forming an

actual mobile ad hoc network requires a large amount of space, we limited our evalu-

ation to occur over a small number of hosts. We arranged three laptops in a straight

line configuration to form a small mobile ad hoc network. Each of these hosts is

equipped with the Gander application. On two of the hosts, we use Gander to pro-

vide webpages. Though these hosts are portable laptops, we keep them stationary

to simplify the experiment. We use a fourth host, a small ultra mobile pc equipped
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with Gander, to search the network for webpages. To simplify discussion, we refer to

this host as the reference host throughout this section.

To evaluate the reliability with which the Gander finds requested webpages in a

tailored context, we specified using the Gander interface that the reference host should

limit the search to occur within two hops and should only acquire webpages from

injury monitoring applications. All of the hosts in the network provide injury report

webpages and only one of these hosts within two hops of the reference host supports

an injury monitoring application. The configuration of the reference host and these

providers is shown in Figure 5.10.

After issuing a simple search using Gander, we found that the application displayed

only the webpage that was provided by Host 2 which runs the injury monitoring

application. To evaluate Gander’s persistent search, we moved the reference host in

and out of communication range of Host 1. This resulted in the discovery of a new

result each time the reference host was moved into communication range of Host 1

(the single result that meets the provided constraints provided by the application

on Host 2) and the removal of the result from the list each time the reference host

moved out of communication range of Host 1 making the result provided by Host 2

unreachable.

5.4 Chapter Summary

This chapter introduced the Gander search engine for mobile ad hoc networks. Gander

supports dynamic search for webpages over an application-specified portion of the

network. Searches may be simple searches which query the network and return a set

of available webpages, or may be persistent searches which adaptively display the set

of webpages that are currently available in the mobile ad hoc network. Gander is

the first search engine of its kind; it performs adaptive context-aware searches across

a mobile ad hoc network. Though interesting in its own right, the development of

Gander demonstrates the use of the QueryME middleware to develop context-aware

applications.



81

Chapter 6

A Context Acquisition Protocol

One step that is necessary to promote the adoption of the query-centric perspective

by application programmers is to evaluate the QueryME middleware system. This

chapter presents an evaluation of the context acquisition protocol that supports the

evaluation of the QueryME constructs over the mobile ad hoc network. We begin this

section with a description of the context acquisition protocol. Next, we discuss the

evaluation of the protocol through simulation. We then present optimizations of the

protocol that aim to reduce the overhead associated with maintaining the network

overlay when issuing persistent queries. Our protocol for context acquisition is based

on a protocol for building and maintaining a shortest cost tree overlay in mobile ad

hoc networks, presented in [12]. We utilize the same mechanisms for constructing

and maintaining a network overlay according to network constraints. Our protocol,

however, includes extensions to support host and application constraints, as well as

notifications of changes in data. As discussed in the previous chapter, our proto-

col also supports the use of application-specified query propagation strategies. These

propagation are applied to the set of network entities that satisfy a query’s associated

context policy to further restrict the propagation of a query. For simplicity of pre-

sentation, we omit discussion of various query propagation strategies in the problem

and protocol descriptions in this chapter. We focus instead on presenting a solution

for context acquition that applies to the general case in which a query is propagated

to all network nodes that satisfy the query’s associated context policy.
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6.1 Problem Description and Solution Overview

We treat the mobile ad hoc network as a graph, with the nodes of the graph rep-

resenting hosts and the edges representing physical network links. Formally, let V

be the set containing all nodes representing mobile hosts and let E be a set contain-

ing all communication links that are up at a particular instant in time. Clearly E

changes over time, as hosts change physical location and connections are dropped or

established. The combination of V and E forms a connectivity graph, G = (V, E).

Each connected subgraph of G represents a mobile ad hoc network.

Properties of network links such as latency, bandwidth, throughput, delay, jitter, etc.

are represented as edge weights on the graph. Formally, let us assume that each edge

ei,j in E is associated with a weight wi,j that captures a network link property of

interest. Properties of hosts such as its unique identifier, remaining battery power,

processing capacity, or available storage, are formally represented as a profile in a

variable hi that is associated with node vi in V . Properties of an application such

as its unique identifier, expected lifetime, system support requirements, provided

interface, or native data format are captured in a profile represented as as a variable

ai,α that corresponds to an application α that is associated with a node vi in V .

We are interested in issuing queries from a particular node in the network. As such,

we are interested in forming a network overlay structure rooted at that reference

node. Therefore, the remainder of this discussion focuses on the use of the connected

subgraph of G that contains the reference node. We refer to this connected subgraph

as G′ = (V ′, E ′) where V ′ is the of nodes and E ′ is the set of edges that form the

connected subgraph in which the reference node is a member.

The network constraints provided as part of a context policy are represented as a

metric recursively defined over edge weights in G′. The problem of determining how to

propagate a query over an application-specified portion of the mobile ad hoc network

can be solved by using the cost of the paths as determined by the metric over edge

weights wi,j to construct a shortest path cost tree. For a path pi,j originating at

node i and ending at node j, the path cost is denoted ci,j. To calculate the cost of a

path pi,k, a node uses the metric over the cost of pi,j and wj,k, i.e., the weight of the

edge between node j and k. To ensure that construction of the tree terminates, the
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metric must be strictly increasing and must be bounded. The resulting subgraph of

G′ (call it Ḡ′) represents the reference node’s context that corresponds to the network

constraints of its context policy.

To determine which nodes in Ḡ′ can allow its applications to process the query and

deliver results, we associate a boolean variable hSati with each node vi in Ḡ′ that

states whether or not the host constraints portion of a context policy is satisfied by

the node’s associated host profile hi. Nodes for which the value of hSati is true can

propagate query results on behalf of the applications running on the local node. The

nodes for which hSati is false may still propagate the query and route its replies for

other hosts in the context but cannot be the originating host of replies to a query. The

nodes for which hSati is true, along with the edges connecting them, form a subgraph

of Ḡ′. Only applications residing on nodes within this subgraph whose application

profiles satisfy the application constraints portion of the context policy are eligible to

contribute query results. To determine which applications operating on a node can

process the query and deliver results, we associate a boolean variable aSati,α with

each node vi in G′ that states whether or not the application constraints portion of a

context policy is satisfied by the application α’s profile on the node vi. Applications

for which the value of aSati is true can submit query results to be propagated to the

query issuer.

6.2 Context Acquisition Protocol

The context acquisition protocol constructs a network overlay that corresponds to an

application-supplied context policy that is provided at the time a query is submitted

for execution. The protocol constructs the overlay in a distributed fashion, propa-

gating the query as hosts are determined to be eligible for inclusion in the overlay.

The constructed overlay is used to deliver replies back to the issuer of the query. For

persistent queries, the overlay is maintained in the face of changes to the network,

hosts, and applications. We begin by describing how queries are used to construct the

overlay and initiate replies. We then describe how the network overlay is maintained

for persistent queries.
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6.2.1 Building the Network Overlay

Each query is comprised of a unique query identifier and the unique identifier of the

issuing application. The query also contains the identifier of the host that sent the

query. Notice that this field is not necessarily the same as the initiator of the query;

as the query is propagated throughout the network, the state of this field is updated.

The query also includes the path to the current node, and the cost of the path. So that

the network constraints can be evaluated at each node, the metric used to evaluate

the cost of the path to neighboring hosts is included in the query along with the

bound on the metric. To support the evaluation of host and application constraints

at each node, these pieces of information are included in the query as well. The query

also includes, of course, the application’s content-based request for data.

Each host that receives a query uses the information provided as part of the query

as well as some local information to determine which of its neighbors also satisfy

the network constraints and thus should receive the query. The local information

required to update the query and determine which neighbors are eligible to receive it

includes a record of the host’s unique identifier (used to update the sender and path

fields of the query); the host’s parent in the shortest cost tree (used to maintain the

tree, as discussed in the next section); the cost of the path to the current host (to

update the path cost information encapsulated in the query); and a set of connected

neighbors, the weight of the link that connects the current host to each neighbor, the

metric, and the bound on the metric (to determine which neighbors should receive the

updated query). Since there may be multiple paths available to each of the neighbors

through the current node with differing costs, the host also keeps track of all paths

to neighboring nodes and their costs. Keeping track of all paths allows the protocol

to ensure that a query that arrives at a host will always be sent along the shortest

cost path to its neighbors. For each neighbor that satisfies the network constraints

(i.e., the cost of the path to the neighbor is within the bound), the host propagates

the query to the neighbor along the shortest cost path.

Once a host has evaluated the network constraints metric and propagated the query to

other nodes, it evaluates the host constraints against the local host profile. If the host

constraints are satisfied, the application constraints are evaluated for each application

running on the local host. If an application’s profile satisfies the constraints, the
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application’s content-based data request can be matched against the application’s

data. At this point, a reply is generated and the host can propagate the reply to the

query issuer using the return path associated with the query.

6.2.2 Maintaining the Network Overlay

We assume that hosts connected by a network link are both notified of changes on

the associated edge weight. When a weight change notification arrives, each node

takes action to reconfigure the network overlay. The action that the node takes is

determined by what kind of weight change has occurred. The various weight changes

are described below along with the response that a node should make to reconfigure

the network overlay. The actions taken by network nodes to respond to changes in

edge weights that correspond to network constraints are handled exactly as in [12].

Change in Weight of Edge to Parent

The weight change will causes the cost of the path to the current node to the parent

to be increased or decreased, and each of these cases is handled differently.

Path cost increases. If the cost of the path through the parent is increased, then

it is possible that the host has already received notice of a shorter cost path to the

query issuer. The host records the new, increased path cost through the parent and

stores this information in its list of possible paths to the query issuer. The host then

searches its lists of alternate paths to the query issuer. If a shorter cost path exists,

then the hosts sets the cost of the alternate path as its new cost, sets a new parent,

calculates the cost of the paths to neighboring nodes using the query’s association

metric, and propagates the updated path and path costs to all neighbors within the

bound. Notice that since a shorter cost path is available, the network overlay may

grow to include nodes to which the path cost was previously outside the bound.

If the host does not find a shorter cost path and the new, increased path cost is still

within the bound, the host propagates the new, increased path cost to neighboring
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nodes that should be in the context. Notice that this can result in the context shrink-

ing, since nodes that were previously part of the context are no longer considered

part of the context. In this case, the node propagates a clean-up message to nodes

that are no longer considered to be part of the context.

Path cost decreases. If the cost of the path through the parent is decreased, then

the shortest path just became shorter. The parent remains the same and the current

cost of the path is updated. This updated path cost is sent to all neighbors whose

updated path cost falls within the bound. Notice that the network overlay may grow

in this case, since neighbors whose path cost were previously outside of the bound

may now satisfy the network constraints.

Change in Weight of Edge to Non-parent

The weight change will either cause the cost of the path through the non-parent to

the current node to be increased or decreased.

Path cost through non-parent increases. If the path cost through a non-parent in-

creases, then the weight change did not result in a shorter cost path. The host stores

the path and its cost, however, as an alternate path that may be used in the future.

Path cost through non-parent decreases. If the path cost through a non-parent de-

creases, then a shorter cost path to the query issuer may be available. The host

compares the new, decreased path cost to its current path cost to the query issuer.

If the new cost is less than the current cost, then the host sets the sender as its new

parent, sets the path as its new path, and sets the cost as its new cost. The host

then uses the new cost to calculate the cost of the paths to neighboring nodes using

the query’s association metric, and propagates the updated path and path costs to

neighbors within the bound. Once again, since a shorter cost path is available, the

network overlay may grow to include nodes to which the path cost was previously

outside of the bound. The host sends a clean-up notification to these nodes.
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6.2.3 Accounting for Host, Application, and Data Changes

If the host constraints are satisfied at a particular host, the application constraints

are evaluated for each application running on the local host. If an application’s profile

satisfies the constraints, the application’s content-based data request can be matched

against the application’s data. However, the profiles of hosts and applications may

change over time. Each time that a host or application profile is changed, the corre-

sponding constraint is evaluated over the updated profile. If the constraints are still

satisfied, no action is taken. However, if either of the constraints is no longer satis-

fied, a report is generated for the query issuer. If the host constraint is not satisfied,

the report indicates that data provided by applications running on that host is no

longer valid. If the host constraint is satisfied but the application constraint is not,

the report indicates that data provided by that application is no longer valid.

As new data satisfying the content-based data request of the query becomes available,

a reply is generated and propagated to the query issuer. If data that was previously

reported as a result is deleted, a reply indicating the unavailability of data is generated

and propagated to the query issuer. When a host that has previously provided results

to a query on behalf of applications running on it becomes disconnected from the query

issuer, a report is generated by the host’s parent in the network overlay to indicate

that results reported by the disconnected node (and its subtree) are no longer valid.

6.3 Protocol Evaluation

We used the ns-2 network simulator [6, 24] to evaluate our protocol over a 100 node

mobile ad hoc network contained within a 1000x1000m2 area. We used transmission

range to adjust the density of the mobile ad hoc network and give results for sparsely,

optimally, and densely connected networks. Results for static ad hoc networks show

that the optimum number of neighbors for each node is 6 [20]. More recent work in

mobile ad hoc networks shows us that that there is not a global optimum number of

neighbors [31]; rather, the optimum number of neighbors is dependent on the mobility

of the nodes in the network. For our simulations, we vary the transmission range

among 50, 150, and 250 meters to model sparsely, optimally, and densely connected
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networks, respectively. Results from [12] show network densities versus transmission

range under the same simulations settings used here. At 50 meters, each network node

on average has 1 neighbor. At 150 meters, each node has about 9 neighbors. At 250

meters, each node has about 24 neighbors. These densities correspond appropriately

with the expected optimum for the mobility model and speed that we use in our

simulations, a random waypoint mobility model with 0s pause time and speed in the

range of 1 to 20 m/s. Each result shown in the graphs in the following sections is

the average of 50 simulation trials. To simplify the simulations, we define contexts

by using a network constraint over hop count.

We begin by investigating how accurately the network overlay constructed as a result

of one-time query evaluation reflects the context that existed at the time the query

was issued. If we use the simulator to take a snapshot at the instant we issue the query,

we can see which hosts satisfy the context policy and should belong to the context.

We can compare this snapshot of the environment with the set of participants in the

context and quantify the result. We call this the consistency of the context. For

each node that is present in the snapshot of the environment but does not receive the

query, we consider an error in constructing a consistent network overlay.

Next, we describe how reliably the results for a one-time query are returned to the

application by our context acquisition protocol. We use the simulator to take a

snapshot to determine which nodes should provide a result to the query issuer and

then compare this set of expected results with the received results.

We conclude by evaluating the tradeoffs between using one-time and persistent queries

to acquire continuous data. We calculate the overhead required to construct the

context and deliver replies for both one-time queries and persistent queries. We also

show how often a one-time query must be issued to mimic the semantics of persistent

queries.

6.3.1 Evaluating Context Consistency for One-time Queries

Because the context acquisition protocol relies on the use of an underlying neigh-

bor discovery package, we created a network discovery package in the simulator that
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Figure 6.1: Measuring the Impact of Beaconing Rate on Consistency for One-time
Queries in a Sparsely Connected Network

maintains a neighborhood for each node. The network discovery component is dis-

tributed, so that each host maintains a list of one-hop neighbors in its neighborhood.

To be considered a neighbor, the network component must hear two beacons from

a one-hop neighbor in consecutive beaconing periods. A neighbor is no longer part

of a node’s neighborhood when no beacons are received from it in three consecutive

beaconing periods. This network discovery component is parameterizable, allowing

for the beaconing period to be adjusted. The beaconing period impacts how well the

neighborhood managed by the network discovery component reflects the state of the

environment. Since the list of neighbors within the neighborhood is used by our con-

text acquisition protocol to decide how to propagate the query, the beaconing period

in turn impacts the consistency with which the context acquisition protocol defines

the context as it exists at the time the query was issued.
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We varied the beacon rate so that one beacon is sent every 1000ms, 500 ms, 250 ms,

and 100 ms. Figures 6.1, 6.2, and 6.3 illustrate how the beaconing period affects

the consistency of the a constructed network overlay with respect to the state of the

environment. The graphs show the results for issuing a single query across contexts

of varying sizes in sparse (Figure 6.1), optimum (Figure 6.2), and dense networks

(Figure 6.3).

It is of interest to first note that independent of the beacon rate, the graphs show

that the accuracy of the context deteriorates as the context is defined to be larger.

In larger contexts, the query must be propagated across multiple hops to form the

network overlay. As the query is propagated across a larger portion of the network,

it becomes more likely that hosts may move in and out of communication range

during construction of the context. This decrease in consistency for larger contexts is

especially apparent as the network becomes more dense. As the density of the network

increases, a broad context definition results in a network overlay that contains a large

portion of the nodes in the network, and these nodes all broadcast to propagate a

message to one another at roughly the same time. This may result in what is referred

to as a broadcast storm, which is likely the reason for the extremely high error rate

for three- and five-hop contexts in an extremely dense network. These results suggest

that an application that requires extremely consistent results would be better served

using a small context definition. Applications that require strong guarantees should

avoid using large context definitions in densely populated networks.

The graphs show that as the beacon rate is gradually increased, the consistency of the

context improves for all network densities. At some point, however, increasing the

beaconing rate negatively impacts the accuracy of the context. This is likely due to

network congestion caused by very frequent beaconing. The 802.11 standard uses the

CSMA/CA MAC layer, which means that nodes must detect that the the medium is

available before they can broadcast a message. If the medium is not available, the

node backs off and waits to broadcast the message. While a node waits to broadcast

the message, hosts may move so that they are no longer in the context. The point

at which frequent broadcasting becomes a problem is, as expected, related to the

density of the network. In extremely dense networks, frequent beaconing becomes

a problem more rapidly since an increased number of neighbors are simultaneously

trying to send beaconing messages more frequently. As the network load is increased
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by issuing additional queries over the network, we can expect that the problem is

compounded.

We select the highest possible beaconing rate that provides an increase in context

consistency but does not create debilitating network congestion in sparse, optimum,

and dense networks. Unless otherwise specified, we use a beaconing rate of 500 ms in

the remainder of experiments. Though we are aware that increasing the beaconing

rate increases the overhead required to construct a context, we are willing to trade

overhead for consistency. It should be noted, however, that for scenarios in which

reduced overhead is more desirable, the results indicate that the consistency with

which the network overlay is constructed with the longest beaconing period (1000ms)

is still reasonable.

6.3.2 Evaluating the Reliability of Result Delivery for One-

time Queries

We are interested in the reliability with which replies are delivered to the query

issuer. Query results are routed along the reverse path used to propagate the query

to nodes in the context. This path information is recorded in the reply and does not

change. Since hosts may move as the result is being propagated back to the issuer, the

reverse path used to route the reply may not be available and replies may be dropped.

We measure the number of replies to a query that are generated and determine the

number that are delivered successfully. Since the reply route is static, altering the

beaconing rate does not impact the success of reply delivery. Therefore, we evaluate

reply success only for the previously chosen beacon period of 500 ms.

Figure 6.4 illustrates the reliability with with replies are delivered to a query issuer.

The graph show the results for issuing a single query across contexts of varying

sizes in sparse, optimum, and dense networks. The graph shows that the delivery

success rate is somewhat erratic in a sparsely connected network in comparison to

the delivery success results for optimal and densely connected networks. The delivery

success rate for one-hop contexts in sparsely connected networks is also much lower

than that for optimally and densely connected networks. In optimally connected and

densely connected networks, results are delivered approximately 96% and 94% of the
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Figure 6.4: Reply Delivery Rate for One-time Queries in Various Networks

time in one-hop contexts. As we would expect, the delivery success rate drops for

larger, three-hop contexts to about 88% and 84% for optimal and dense networks,

respectively. For densely connected networks, the reply delivery success rate continues

to drop as the context grows. Interestingly, the same is not true for sparsely or

optimally connected networks, in which the delivery success rates increase to 93% and

90%, respectively. The conclusion drawn from this data is that replies are delivered

with reasonable success in sparsely, optimally, and densely connected networks. To

improve the success of reply delivery, the application programmer should consider

the expected conditions of the network environment and choose a context of the

appropriate size to deliver the desired delivery success rate.

6.3.3 Comparing One-time and Persistent Queries

It is possible to mimic the semantics of a persistent query by using a one-time query

to poll for data. The accuracy with which a one-time query mimics a persistent query
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is dependent on the frequency with which the one-time query is issued and how often

the data changes. We compare the number of query results issued by the persistent

query to the number of new results obtained across multiple one-time queries. We call

this the response quality. Figures 6.5, 6.6, 6.7 show the quality for queries evaluated

in sparse, optimal, and dense networks. In these experiments, we randomize the rate

at which data changes and increase how frequently the one-time query is issued during

the evaluation of a persistent query. In our experiment, each piece of data changes at

a random rate between one change per second to one change every 10 seconds. We

compared a persistent query evaluated over 30 seconds to a polling approach that

repeatedly issues a one-time query evaluated every 500 ms, 1 s, and 5 s within the

same 30 second time span as the persistent query.

The graphs show that as the frequency with which a one-time query is issued is in-

creased, the response quality of a query increases. However, as the network becomes

more dense, issuing a query more frequently results in a decrease in the response

quality, especially for larger contexts. Once again, this is likely due to network con-

gestion.

Figure 6.8 shows the overhead associated with approximating persistent queries in

an optimally connected network when using a polling approach in which a one-time

query is issued every 500 ms. Again, the persistent query and the polling approach are

evaluated over a 30 second time interval with each node’s data changing at random

rate in the range of 1 data change per second to 10 data changes per second. The

number of overhead messages for the one-time query shown include those which are

required to construct the context. The number of overhead messages counted for the

persistent query include those required to initially construct the context as well as

those required to maintain it, i.e., those required to propagate edge weight change

notifications and queries. The one-time query that is shown in the graph was issued

three times during the execution of the persistent query. As shown in the graph, the

persistent query requires fewer messages to provide results which, as shown in the

previous subsection, are more consistent with the data available in the network. In

a 3 hop context, we see a savings of about 8,000 messages while at 5 hops we see a

savings of about 10,000 messages when using a persistent query. These results suggest

that the use of a persistent query is likely worth the cost of overhead associated
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with maintaining the context in order to acquire results that are consistent with

continuously changing data.

6.4 Protocol Optimizations

When evaluating persistent queries over an application-specified portion of the mo-

bile ad hoc network using our query model, it is imperative to address the frequent

disconnections that are likely to occur within the network overlay due to the mo-

bility of hosts. Such disconnection is handled through the reconfiguration protocol,

discussed earlier in this chapter, which mends the network overlay. However, the exe-

cution of a reconfiguration protocol can be expensive in a highly dynamic environment

and can disrupt the process of executing queries. To address this issue, we present

optimizations to the reconfiguration protocol that attempt to limit the amount of

reconfiguration required when changes occur in the network that impact the cost of

a path.

6.4.1 Truncating Propagation of a Path Cost Change Noti-

fication

In the maintenance protocol described in the previous section, each node is required

to propagate changes on edge weights that impact the cost of the path through the

node. A very simple optimization trades the possibility of a larger, more inclusive

context for fewer reconfigurations. In this optimization, if a node that is already

part of the context receives notice of an edge weight change that results in a shorter

cost path to the node, the node does not propagate the updated path cost to its

neighbors. Instead, the context determined prior to the edge weight change continues

to be maintained. This may result in a case in which nodes that are eligible for

inclusion in the context given the updated path cost are actually not included, but

the number of messages required to perform reconfiguration of the network overlay is

reduced. This optimization is available as part of the QueryME implementation.
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We evaluated this optimization using the ns-2 simulator and the network simulation

setup described in the previous section. Specifically, we compared the overhead in-

curred by issuing a persistent query and an optimized persistent query over a duration

of 30 seconds. The results are shown for sparsely connected networks in Figure 6.9, for

optimally connected networks in 6.10, and for densely connected networks in 6.11. As

the graphs show, the optimized persistent query provides a small amount of savings

in terms of message overhead, regardless of network density.

6.4.2 Building a More Stable Overlay

A common source of path cost change in mobile ad hoc networks is the disconnections

that occur in highly dynamic mobile environments. One way that we can reduce the

amount of reconfiguration is to attempt to limit the disconnections which occur within

the overlay by utilizing mobility information to build a more stable network overlay.

We provide each host in the network with the ability to generate a motion profile which

describes its future movements as a function of time and location. Our approach to

motion profiles is based on the work in [34], which uses motion profiles to support

long-lived use of mobile services. It is assumed that each host has absolute and perfect

knowledge about its future motions. Each motion profile is given as a function which

maps the given time to the host’s location in space.

We use an epidemic algorithm to gossip motion profiles. Using the motion profiles,

we attempt to construct a stable version of the network overlay in order to reduce the

need to employ an expensive reconfiguration protocol. Each host is equipped with an

inRange function that maps the host’s motion profile, the motion profile of another

host, and a time to a boolean value. Essentially, this function uses the provided

time parameter to find the location for that time in each of the motion profiles and

determines if those locations are within communication range of one another. We

integrate this function into our neighbor discovery component so that a host is only

added to the neighborhood if it satisfies the inRange function for a given period of

time that corresponds to the time it takes to evaluate a query. This time is related

to the time that it takes to process the query and return results over the application-

specified region. By integrating the function into the neighbor discovery support
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package that is used by the QueryME middleware, we ensure that only neighbors

which will be in range for a satisfactory period of time will be considered as part of

the context.

For both of the context acquisition protocol optimizations presented in this section,

there is a tradeoff between the consistency with which the application’s specified

context is reflected by the network overlay and the reduced overhead associated with

using motion profiles in neighbor discovery. In a highly dynamic, densely populated

mobile ad hoc network, a search application used by a shopper to find a cup of coffee

is likely best served by delivering only a fraction of the available context and so the

optimization should be employed. However, a search and rescue application operating

in similar network conditions must find all of the victims at a disaster site. In this

case, the optimization should not be applied. Overall, the decision of when to apply

the optimization is based on the needs of the application. The application using the

protocol to acquire context must determine which solution is more appropriate to

support its needs in the current environment.

6.5 Chapter Summary

This section describes the context acquisition protocol used by the QueryME middle-

ware to execute queries over the mobile ad hoc network. The mobile ad hoc network

is treated as a weighted graph, allowing for the construction of the network overlay

that encapsulates the network constraints portion of a context policy to be computed

using a specialized distributed algorithm for constructing a shortest cost path tree.

Host and application constraints are applied on top of the tree to determine which

nodes can evaluate the data request of a query. The reconfiguration protocol that

performs maintenance of the context for persistent queries is based upon the protocol

in [12]. The evaluation of the construction and reconfiguration protocols show the

utility of one-time and persistent queries in various scenarios. Optimizations of the

reconfiguration protocol are presented. Evaluation of these optimizations is needed to

quantify the tradeoff in the accuracy with which they can be used to deliver context

with the reduction in overhead that they provide.
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Chapter 7

Conclusions

This dissertation has introduced a new programming model for developing context-

aware applications based on the use of a query-centric abstraction that helps to reduce

domain programmer effort and errors. The development of such an abstraction allows

context-aware application developers to view the surrounding and constantly changing

environment as if it were a locally accessible database. Using this abstraction, a

programmer can largely ignore the complex tasks associated with context interactions

across a mobile ad hoc network and can instead focus on implementation details that

are specific to the application domain.

The key technical contribution of this dissertation is the extension of the traditional

query model to allow context-aware applications to deal with the dynamic and open

nature of ad hoc networks. First, since the ad hoc network can grow large, queries

are executed only over the portion of the network that the application has declared

to of interest by associating context policies with a submitted query. Second, to sup-

port the evaluation of queries over the continuously changing mobile ad hoc network

environment, we extend the typical query model so that an application is notified

when changes in the environment occur that may impact the availability and perti-

nence of delivered query results. To support this feature, queries are complemented

by the incorporation of a new notion of persistent query evaluation that reactively

reports newly available query results as well as changes in the state of previously

reported query results. Third, since the mobile ad hoc network is heterogeneous, we

adapt the query model to eliminate the need for a predetermined database schema

and allow applications to provide and retrieve different kinds of context information.

Our query-centric model provides a flexible and extensible approach to incorporating
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different types of context data by using an underlying representation of context in-

formation so that it can be treated in a uniform manner and associating each piece

of context data with metadata. Queries are evaluated only over the metadata and

tailored result processing strategies can be provided at the time the query is issued

that detail how to perform data-type specific tasks such as in-network aggregation of

data.

These concepts have been incorporated into the implementation of QueryME, a query-

centric middleware that can be used for general context-aware application support. To

capture the query-centric model within a middleware framework that can be generally

applied to develop a wide range of context-aware applications, we have developed

mechanisms to support application-specific definitions of context, protocols to collect

context in the face of environmental change, and infrastructure support for tailored

in-network processing of query results. Tailored query processing strategies that

dictate the query’s context policy, propagation policy, and reply processing policy are

captured as mobile code elements and are provided by the application to the query

system at the time the query is issued. These mobile code elements are dynamically

distributed and executed within the network as the query is evaluated. Employment

of mobile code allows us to support both a large class of query evaluation strategies

as well as a wide range of data.

In this dissertation, we performed an evaluation of QueryME operations through

simulation of its underlying protocols in a mobile ad hoc network. The simulation re-

sults suggest that it is feasible to utilize QueryME to support an application’s context

acquisition tasks. The use of QueryME middleware has also been demonstrated in

application development to support the implementation of Gander, a context-aware

search engine application that can be used to find webpages within a logical region

of interest in a mobile ad hoc network. From a software engineering perspective, the

development of Gander demonstrates how one can exploit a general purpose query-

centric model to construct applications that share the need to be responsive to context

changes.
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