
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-56

2004-09-27

Supporting Live Development of SOAP and CORBA Clients Supporting Live Development of SOAP and CORBA Clients

Sajeeva L. Pallemulle, Vanessa H. Clark, and Kenneth J. Goldman

We present middleware for a Client Development Environment that facilitates live development

of client applications for SOAP or CORBA servers. We use JPie, a tightly integrated

programming environment for live software construction in Java, as the target platform for our

design. JPie provides dynamic classes whose signature and implementation can be modified at

run time, with changes taking effect immediately upon existing instances of the class. We

extend this model to automate addition, mutation, and deletion of dynamic server methods

within dynamic clients. Our implementation simplifies distributed application development by

masking technical differences between local and remote method invocations.... Read complete Read complete

abstract on page 2. abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Pallemulle, Sajeeva L.; Clark, Vanessa H.; and Goldman, Kenneth J., "Supporting Live Development of
SOAP and CORBA Clients" Report Number: WUCSE-2004-56 (2004). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1028

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1028?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1028

Supporting Live Development of SOAP and CORBA Clients Supporting Live Development of SOAP and CORBA Clients

Sajeeva L. Pallemulle, Vanessa H. Clark, and Kenneth J. Goldman

Complete Abstract: Complete Abstract:

We present middleware for a Client Development Environment that facilitates live development of client
applications for SOAP or CORBA servers. We use JPie, a tightly integrated programming environment for
live software construction in Java, as the target platform for our design. JPie provides dynamic classes
whose signature and implementation can be modified at run time, with changes taking effect immediately
upon existing instances of the class. We extend this model to automate addition, mutation, and deletion
of dynamic server methods within dynamic clients. Our implementation simplifies distributed application
development by masking technical differences between local and remote method invocations. Moreover,
the live development model allows server-side changes to be dynamically integrated into a running client
to support simultaneous live development of both the client and server.

https://openscholarship.wustl.edu/cse_research/1028?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1028?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Supporting Live Development of SOAP and CORBA Clients

Sajeeva L. Pallemulle
sajeeva@cse.wustl.edu

Vanessa H. Clark
vclark@wustl.edu

Kenneth J. Goldman
kjg@cse.wustl.edu

Department of Computer Science and Engineering
Washington University in St. Louis

Abstract

We present middleware for a Client Development
Environment that facilitates live development of client
applications for SOAP or CORBA servers. We use JPie, a
tightly integrated programming environment for live
software construction in Java, as the target platform for
our design. JPie provides dynamic classes whose
signature and implementation can be modified at run time,
with changes taking effect immediately upon existing
instances of the class. We extend this model to automate
addition, mutation, and deletion of dynamic server
methods within dynamic clients. Our implementation
simplifies distributed application development by masking
technical differences between local and remote method
invocations. Moreover, the live development model allows
server-side changes to be dynamically integrated into a
running client to support simultaneous live development of
both the client and server.

1. Introduction

Remote method invocation (RMI) using the client-
server paradigm has become a prominent model for
developing distributed applications. The Simple Object
Access Protocol (SOAP) [1] and the Common Object
Request Broker Architecture (CORBA) [2] are two
leading technologies that support this model. Although
SOAP and CORBA differ significantly in design and
usage, the implementation of RMI applications using these
technologies follows a similar pattern.

The development of client-server applications using
the RMI model requires the creation of separate client and
server applications. Therefore, synchronizing the common
interface at both endpoints is necessary for simultaneous
development. The traditional approach to this problem has
been to interleave the editing and testing phases through
the deployment of the two applications at various stages of
development. However, this approach delays completion
and does not fully eliminate the possibility of violating the
common interface. Hence, an approach that combines the
editing and testing phases into one unified step is

particularly attractive in order to streamline application
development.

We present a Client Development Environment
(CDE) as an extension of JPie, a tightly integrated
development environment supporting live construction of
Java applications. JPie embodies the notion of a dynamic
class whose signature and implementation can be modified
at run time, with changes taking effect immediately upon
existing instances of the class. [3] We extend JPie to
dynamically and automatically add, update, and delete
server methods within dynamic client classes in response
to server-side changes. Just as methods and their
respective calls are developed live within a single
application in JPie, we support a live integrated
development process in which the client and server
applications can be developed simultaneously, with server-
side interface changes taking immediate effect on the
client program, preserving consistency.

This paper presents the CDE architecture and
implementation. In particular, we explain how CDE
automatically maps the server interface to the server
methods within the client-side dynamic classes. This
allows for seamless integration of dynamic changes in the
server interface with live instances of the client
application, requiring minimal developer involvement.
CDE does this while presenting a unified method
invocation mechanism for both remote and local calls.

Our architecture supports technologies that use an
interface definition language (IDL) to communicate the
server interface to the clients. SOAP and CORBA are
widely used technologies that satisfy this criteria and the
initial implementation of CDE supports both. For SOAP
support, we build on the Apache Axis [4] implementation
of SOAP. Similarly, we use the OpenORB [5]
implementation of CORBA as the basis of our CORBA
support. Our design can also be extended to integrate other
technologies that use interface definition languages and
the remote method invocation model.

The remainder of the paper is organized as follows. In
Section 2, we review distributed application development
in SOAP and CORBA and present a brief overview of
JPie. Section 3 provides an overview of related work.
Section 4 focuses on the CDE user interaction mechanism

2

Client Machine

Server Machine

for creating client applications. In Section 5, we present
the CDE architecture and discuss the mechanism used to
integrate server interface changes with client-side dynamic
classes. Section 6 focuses on the performance and
overhead of CDE. We conclude, in Section 7, with a
summary and directions for future work.

2. Background

For our initial implementation of CDE, we decided to
concentrate on both SOAP and CORBA. We chose two
technologies rather than one to help ensure that the design
was sufficiently extensible to support other technologies in
the future. Both SOAP and CORBA make use of interface
definition mechanisms, yet have different overall
frameworks. This section presents the necessary
background on SOAP and CORBA, as well as on JPie.

2.1. SOAP

Servers that use SOAP are popularly known as Web
Services. Web Services use the Extensible Markup
Language, (XML) [6] to present the server interface to the
clients as well as to communicate with those clients. As
shown in Figure 1, when a Web Service is established, it
uses the Web Services Definition Language (WSDL) [7]
standard to publish a WSDL document that potential client
applications can use to gather information they require to
invoke methods on the web service.

WSDL is an XML-based schema that contains
information such as the location of the web service, the
methods that can be remotely invoked on that web service,
and how to invoke those methods. The WSDL standard
supports direct encoding of a small subset of Java object
types and permits the encoding of complex data structures
using XML. These complex types enable web services to
exchange user defined object or data structures with
clients as parameters and or return values.

The client applications use the information published
in the WSDL document to form a XML document known
as a SOAP Request that encapsulates the remote method
call in a standard textual format. The SOAP Request is
then sent to the web service.

The web service uses the method and parameter
information encoded in the SOAP Request to invoke the
method call with the appropriate parameters. Then it
constructs an XML document called the SOAP Response
that encapsulates the data returned from the method call in
a standard XML format. The SOAP Response is then sent
back to the client. The client receives the SOAP Response,
decodes it, and returns the data to the calling program.

The underlying transport medium that supports this
publish-request-response mechanism is provided by the
Hyper Text Transport Protocol (HTTP) [8].

Fig. 1: The client-server interaction using SOAP proceeds in
three steps. First, the server interface definition is obtained by
the client. Then the client parses this definition and uses the
resulting method stubs to make remote method requests using
SOAP.

2.2. CORBA-RMI

The Common Object Request Broker Architecture
(CORBA) defines a high-level communication model for
distributed computing. For the scope of this paper we
consider only the RMI aspect of CORBA. The most
important notion in the CORBA-RMI specification is an
Object Request Broker (ORB) [9]. In a client-server
system that uses CORBA-RMI, the Client ORB and the
Server ORB form the communication endpoints. They
direct invocations and results between remote objects
located on client and server sides. ORB implementations
use IIOP (Internet Inter-Orb Protocol) [9] to communicate
over a network. Unlike HTTP, which only allows text to
be transported over it, IIOP supports a wide range of
primitives, data structures and object references.

Unlike SOAP, CORBA decouples the interface
definition from the location information. CORBA-RMI
servers use CORBA Interface Definition Language
(CORBA-IDL) [9] to describe object interfaces and an
Interoperable Object Reference [9] (IOR) declaration to
encode and provide the server URL and port data to the
clients. A CORBA-RMI client must attain both a CORBA-
IDL document as well as an IOR in order to establish a
communication link with a server.
 The CORBA-IDL document consists of a standard set
of elements. The module element is the root element of
any CORBA-IDL document. CORBA developers using
Java as the host language will notice that each interface
element, similar to a Java class, encapsulates instance
variable declarations and method declarations. The module
may contain number of uniquely identified interfaces.

WSDL
Compiler

SOAP Client

Server Method
Stubs

Server Method
Implementation

WSDL Document

(2)
SOAP

Request
Message

(3)
SOAP
Reply

Message

 HTTP

(1)
WSDL

Document

SOAP End Point

3

Server Machine

Client Machine

Fig. 2: Initially the CORBA-IDL and IOR definitions are
retrieved from the server. Using the IOR the client ORB is
initialized. Remote methods defined in the CORBA-IDL are
invoked on the client ORB, which contacts the CORBA
Servant though the server ORB to obtain the return object.

The CORBA-IDL to Java mapping permits the type of
the instance variables, method parameters, and return
values to be the Java Strings and primitive types int,
double, float, char, and boolean, or any Java type that is
declared by an interface element within the module
element of a CORBA-IDL document.

As shown in Figure 2, to establish a communication
link to the server, a client uses an IOR to initialize the
client ORB. The client ORB then establishes a
communication link with the server ORB described by the
IOR. After the initialization, the client application invokes
the methods defined in the CORBA-IDL document. When
such an invocation is made, the call is intercepted by the
client ORB and sent to the server ORB over an IIOP
connection. The server ORB intercepts the call, finds the
object that can handle the request, invokes the
corresponding method with the parameters passed in, and
returns the results to the client ORB. The client ORB then
passes the return object back to the calling program.

2.3. JPie

JPie is a tightly integrated programming environment
for live construction of Java applications [10]. JPie treats
programming as an application in its own right, providing
a visual representation of class definitions and supporting
direct manipulation of graphical representations of
programming abstractions and constructs. Exploiting
Java's reflection mechanism, JPie supports the notion of a
dynamic class that can be modified while the program is

running. Dynamic classes are built from components such
as dynamic methods and dynamic fields, which directly
correspond to the respective classes in the Java’s reflection
mechanism. However, the dynamic versions can be
instantiated and mutated. This functionality can be used to,
among other things, change method signatures within live
object instances. Dynamic classes fully interoperate with
compiled classes, including polymorphism, and methods
may be overridden on the fly.

Of particular interest is the fact that JPie maintains
consistency of declaration and use. For example, if the
name or parameter list of a method is changed, JPie
automatically updates all calls to that method accordingly.
This is different from typical textual programming
environments, in which the programmer must update
every call whenever a method name is changed or a formal
parameter list is reordered. One of the important goals of
the present work is to maintain this level of consistency
for client development in client-server applications, even
in the face of server-side interface changes that must be
reflected in the client.

3. Related Work

In spite of the fact that RMI is a natural extension of
standard method call semantics, setting up the
development tools for technologies such as SOAP and
CORBA can be a daunting task. Therefore, client
development environments that encapsulate the low-level
details of the technology and the execution environment
have proven popular among developers. Providing direct
access to the server interface in a manner that is familiar to
the developers has been a natural next step that some such
systems have adopted with varying degrees of success. In
this section, we discuss several systems that do not address
the issue of live client/server development but help
streamline distributed application development using RMI.

Visual Studio.Net [11] builds upon the Microsoft
.NET framework [12] to reduce the web services
development time. In client-side development, Visual
Studio.Net uses Web References [13], which are proxy
classes created on the client to connect to the web service.
Web References present the client developers with an
object interface that contains the server method
declarations. Hence, Web References can be used as
regular objects within the client application. This
implementation is similar to the approach we take in CDE.
However, an important difference between the two is that
Web References must be refreshed with each change in the
server interface. Additionally, the client code may need
recompilation to account for conflicts. Therefore, the
Visual Studio.Net approach is not particularly suitable for
developing client applications against a dynamically
evolving server interface.

IDL
Compiler

CORBA-RMI
Client

Server Method
Stubs

Server Method
Implementation

CORBA-RMI Servant

(2)
Send

Parameters

(3)
Return
Value

 IIOP

(1)
CORBA

IDL Client ORB

 HTTP

(1) IOR

Server ORB

4

(b)

CapeConnect [14] offers a set of tools for integrating
existing middleware components such as CORBA objects
and Enterprise Java Beans [15] to a web service front end.
CapeConnect is supplemented by two different client
development tools. The Web Client Generator can be used
to create thin clients implemented with HTML pages and
JavaScript [16]. The SOAPDirect [17] Application
Programming Interface (API) provides a simplified
development model for communicating with CapeConnect
using SOAP. SOAPDirect API includes a generic
SDRequest object that can be configured to invoke
different server methods and receive a reference to the
return value. In addition, the API defines an SDDataType
object that can be used in creating complex data types.
Hence, the SOAPDirect API abstracts away the details of
creating SOAP Requests and parsing SOAP Responses.
However, client development with SOAPDirect requires
the application developer to gain an understanding of the
WSDL standard as well as direct knowledge of the
available server methods. It also does not address the issue
of handing dynamic changes to the server interface.

WebObjects [18] is another set of tools that facilitates
simplified development of web services. For client
development, WebObjects provides a class named
WOWebServiceClient, which can be instantiated with the
server URL. Once such an object is created, a call to its
invoke method with the service name, operation and an
object array containing the arguments will result in a
SOAP call to the server. Thus, WebObjects abstracts away
the low-level implementation details to some degree.
However, to handle server interface changes, the RMI
calls within the client code must be manually changed and
recompiled. Hence, WebObjects is particularly suited for
only client development against a static server interface.

The Apache Axis implementation of SOAP introduces
a Call object [19], which can be customized to call any
server method defined in a single web service. This
implementation allows developers to construct RMI calls
at runtime. This feature also abstracts away the low-level
details of converting RMI calls into SOAP Requests.
However, if the server interface changes, the programmer
must manually change the client code and if new data
types were introduced by the server, then the new WSDL
document must be parsed and the appropriate client stubs
must be generated and compiled. Therefore, Apache Axis
is not suited for client development against a dynamic
server interface without enhancements.

The Dynamic Invocation Interface (DII) [20] is an
evolution of the CORBA-RMI model that facilitates the
runtime construction of RMI calls. This model allows
developers to forgo the creation of client stubs and instead
construct RMI calls using Request objects that encapsulate
all the information regarding the relevant server method.
This is made possible by the use of an Any object, which
can be configured to hold any object type. Although this

feature allows developers to forgo any changes to the
client backend on a server interface change, the client
application itself may have to be changed and recompiled.
Hence, DII does not reach the level of flexibility that we
introduce in CDE.

The technologies that we have discussed hide low-
level details of the RMI model, either by using an
Integrated Development Environment (IDE) and or a well-
defined API to invoke remote methods. Our CDE achieves
this goal by allowing developers to use the local method
invocation semantics to invoke remote methods. However,
none of these RMI technologies addresses the issue of
integrating dynamic changes of the server interface into
live client instances. We build on the Apache Axis Call
objects and the CORBA DII facility to address this issue
through the mechanisms described in Section 5.6.

4. Developing Clients with CDE

Before discussing the middleware implementation
details, we describe the interaction between JPie users and
CDE in developing client applications.

To create a client application that uses SOAP, the user
extends a provided class that acts as a gateway to the CDE
system (Figure 3a). When the new subclass is being
loaded into JPie, the CDE subsystem detects this and
prompts the user to enter the WSDL location as shown in
Figure 3b. CDE then adds stub methods for each method
available in the server interface into the subclass. These
stub methods act as any other method defined in the class
from the user perspective. Figure 4 shows the stub
methods and usage for a sample class.

Fig. 3: A subclass of a technology specific class (e.g. SOAP or
CORBA) must be created to interact with CDE as shown in (a).
Once this class is created, the user is prompted for the
relevant initialization information as shown in (b)

(a)

5

Client Machine

Server Machine

 JPie

Fig 4: Stubs that represent server methods can be used
similarly to any local method in the class.

To create a CORBA-RMI client, the user must

subclass a different provided CDE gateway class and both
the CORBA-IDL and IOR locations must be specified.
The rest of the user interaction parallels the SOAP client
development scenario. In both cases the information
provided by the user is saved onto disk allowing CDE to
automatically retrieve the relevant information, without
user input, when the client class is reloaded.
 As the server interface changes, CDE merges these
changes into the relevant subclass. If the signatures of the
stub methods are changed, and there are live instances of
the client, then the JPie debugger will automatically
prompt the user to resolve the conflicts (if any) caused by
the change. If the server method represented by a stub
method no longer exists, then the user is given the option
of deleting the stub method. CDE will also inform the user
when a parameter within a stub method must be removed.
 Once the clients are loaded in JPie, the user can
control the automatic updates as well as the update
frequency using the CDE Manager Interface. In addition,
the CDE Manager Interface allows users to force an
immediate update and view the IDL that correspond to
each client loaded in JPie.

5. CDE Architecture

In this section, we first introduce the high-level
components of CDE by focusing on initialization, and
information flow in method invocations. We present the
SOAP and CORBA-RMI subsystems separately and
compare them with the generic architecture models
discussed earlier. Then we describe implementation details
in the context of CDE’s class hierarchy, which
accommodates the two subsystems into a single

framework. Finally, we present our strategy for integrating
server-side interface changes into live client instances.

5.1. SOAP Subsystem Overview

 As seen in Figure 5, the SOAP subsystem consists of
five high-level client components. The CDE Manager
oversees the subsystem initialization as well as integration
of server interface changes for all client applications. The
SOAP RM Invoker acts as the base class for dynamic
classes that interact with the SOAP subsystem. The WSDL
Parser is in charge of providing the CDE Manager with the
available server methods by parsing the WSDL document,
as well as translating method calls provided by the SOAP
Remote Caller into SOAP Requests. The SOAP Remote
Caller sends SOAP Requests and translates SOAP Replies
into return objects. Finally, the Request Handler acts as a
communication protocol independent liaison between the
SOAP RM Invoker and the SOAP Remote Caller.

Fig. 5: There are two information paths in the SOAP
Subsystem. The solid lines show the path used in updating the
server interface and the dotted lines show the path used in
invoking server methods.

WSDL

Parser

Server
End Point

Server Method
Implementation

WSDL Document

WSDL
Definition

SOAP
Remote
Caller

Request
Handler

Method Name
Parameters

Return
Object

SOAP RM Invoker

Method Name
Parameters

CDE
Manager

Method Name
Parameters

Call Object

Server
Methods

SOAP
RequestHTTP SOAP

Response

Return
Object

WSDL
Location

Server
Methods

WSDL
Location

6

Server Machine

 JPie

Client Machine
 JPie

5.1.1. Initialization. The CDE Manager is initialized
when a subclass of SOAP RM Invoker (or the equivalent
CORBA-RMI class as discussed in Section 5.2.1) is first
loaded in JPie. This occurs when the user either opens an
old client class or initiates the creation of a new client
class as discussed in Section 4.
 In order to reduce the workload placed on the CDE
Manager, the initialization sequence is designed to be
initiated by the CDE Manager and carried forward by the
rest of the components in the subsystem. When a user
extends the SOAP RM Invoker to create a dynamic class
within JPie, an event is generated to signal the CDE
Manager to include the new dynamic class in its list of
managed classes. Then the CDE Manager prompts the user
for the location of the WSDL document. Using that
location, the CDE Manager creates a WSDL Parser, and
passes a reference to that parser back to the SOAP RM
Invoker. The SOAP RM Invoker then creates the Request
Handler and the SOAP Remote Caller using that reference.
During the internal initialization of the WSDL Parser, it
fetches the WSDL document from the server, and parses
the WSDL to generate a list of server methods. The CDE
Manager uses this list to include the available server
methods within the corresponding dynamic class as
described in Section 5.5.

5.1.2. Server Interface Updates. Although we could have
used a model where the WSDL is examined only on user
demand, we chose an approach where the CDE Manager
periodically prompts the WSDL Parser to check for
changes in the WSDL document after initialization. If
changes are detected, the document is parsed and the new
list of methods is used by the CDE Manager to integrate
the changes with the corresponding dynamic class using
the mechanism described in Section 5.6. This approach
ensures the consistency of the server interface to a higher
degree and relieves the user from the burden of
periodically prompting for updates. If the server supports a
subscription model, then events from the server could be
used to trigger updates.

5.1.3. Request/Response Handling. The RMI call path
within both SOAP and CORBA subsystems was designed
to maximize a separation of concerns as described in
Section 5.3. In the SOAP subsystem, the dynamic class,
which is a subclass of the SOAP RM Invoker, passes the
server method invocations to the Request Handler. The
Request Handler receives the call, extracts the method
name and parameter details, and passes them to the SOAP
Remote Caller. The SOAP Remote Caller passes that
information to the WSDL Parser, which returns an Axis
Call object encapsulating the call. The successful
invocation of the Call object generates a return object. The
SOAP Remote Caller inspects the Call object to detect
whether an exception has occurred. If an error is not

detected, the return object is passed back to the Request
Handler. If an error has occurred, then a new exception
that encapsulates the error is sent back to the Request
Handler. The Request Handler forwards the return value or
exception back to the dynamic class.

5.2. CORBA-RMI Subsystem Overview

The CORBA subsystem is structurally similar to the
SOAP subsystem. However, there are differences in the
interaction among components. Figure 6 shows the
structure and information flow in the CORBA subsystem.

Fig. 6: There are two information paths in the CORBA
Subsystem. The solid lines show the path used in updating the
server interface and the dotted lines show the path used in
invoking server methods.

5.2.1. Initialization. Once again, the initialization of the
CDE manager is performed under the same circumstances
described in Section 5.1.1. As before, we strive to decrease
the workload of the CDE manager during initialization by
decoupling the initialization of the Client ORB and the
IDL Parser. When a user extends the CORBA RM Invoker
to create a dynamic class within JPie, an event is generated
to signal the CDE Manager to include the new dynamic
class in its list of managed classes. When this event is

IDL

Parser

Server ORB

Server Method
Implementation

CORBA-RMI Servant

IDL
Definition

HTTP

CORBA
Remote
Caller

Request
Handler

Method Call Return
Object

CORBA RM Invoker

CDE
Manager

Server Methods

CORBA
Request

IIOP

CORBA
Response

IIOP

Return
Object

Server
Methods

Method Call

IOR
Location

7

detected, the CDE Manager prompts the user for the
location of the IDL and the IOR. The CDE Manager uses
the IDL location to create the IDL Parser and the IOR
location to create the CORBA Remote Caller, which uses
the IOR fetched from that location to initialize the Client
ORB. A reference to the CORBA Remote Caller is passed
back to the CORBA RM Invoker to be used in initializing
the Request Handler. During the internal initialization of
the IDL Parser, it fetches the IDL document from the
server and parses it to generate a list of server methods.
The CDE Manager uses this list to include the available
server methods, within the corresponding dynamic class,
through the CORBA RM Invoker.

5.2.2. Server Interface Updates. We chose our update
model to mirror the model used in the SOAP subsystem
since the concerns discussed in Section 5.1.2 are still valid
for the CORBA subsystem. After initialization, the CDE
Manager periodically prompts the IDL Parser to check for
changes in the IDL document. If changes are detected, the
document is parsed and the new list of methods is used by
the CDE Manager to integrate the changes with the
corresponding dynamic class using the mechanism
described in Section 5.6. Again, server events could also
be used to trigger updates.

5.2.3. Request/Response Handling. Once again, the
components that take part in making RMI calls mirror the
components used in the SOAP subsystem. In this case, the
dynamic class that is a subclass of CORBA RM Invoker
passes the server method invocations to the Request
Handler. The Request Handler passes the call to the
CORBA Remote Caller. The CORBA Remote Caller uses
that information to make a method call on the Client ORB.
The Client ORB sends the request out over IIOP and
receives a reply object. Then it simply passes this object
back to the Request Handler (through the CORBA Remote
Caller) if no errors have occurred. If an error has occurred,
then a new exception is generated using the available error
information and sent back to the Request Handler. The
Request Handler forwards the return object or exception
back to the dynamic class.

5.3 Class Hierarchy

To implement the components described in section
4.1 and 4.2, we designed a class hierarchy that allows
SOAP, CORBA, and other technologies to be easily
integrated into the system. This allows key components
such as the CDE Manager to be technology independent.
Figure 7 shows the three interfaces that each technology
must implement. Each interface provides the blueprint to a
component that performs a critical role within the CDE
architecture. The Request Handler’s role as the technology
independent focal point of CDE is also highlighted.

 Implements
 Has–a

Fig. 7: Each technology incorporated into CDE must
implement a parser for the server interface, an adapter that will
convert a Java method call to the appropriate request and the
response to the relevant Java type, and an extensible class
that will serve as the base type for dynamic classes using that
technology.

5.4. Concurrency in Client Applications

CDE supports concurrency in client applications by
allowing multiple active RMI calls to exist at any given
time. In the SOAP subsystem, we achieve this by creating
a new Call object for every request that the SOAP Remote
Caller receives. Each call object creates a new connection
to the server, and hence its performance is not affected by
other Call objects that are active at that time.

For the CORBA subsystem, we used the
multithreading capabilities of the OpenORB
implementation to directly support multithreading in the
client application.

5.5. Representing Remote Methods in JPie Clients

As discussed in Section 2.3, instances of the class
DynamicMethod represent the methods defined in
dynamic classes. In JPie, not only can dynamic methods
be added and removed on the fly, but their formal
parameter lists and method bodies can be changed
dynamically as well. In the case of CDE, we wanted
special dynamic methods that could be added and
removed, and whose formal parameter lists could be
changed in response to server-side changes. However, we
did not want the CDE user to be able to change the
parameter lists or to open and edit the method bodies since
these are defined by the server. Therefore, we extended
DynamicMethod to define CDEStubs, which embody a
client-side implementation for generating server requests
corresponding to a particular server method. We add
CDEStubs to each appropriate subclass of

SOAPRemoteCaller CORBARemoteCaller

RemoteCaller

DLParser

RMInvoker

IDLParser WSDLParser

SOAPRMInvoker CORBARMInvoker

RequestHandler

8

SOAPRMInvoker or CORBARMInvoker to represent
methods that can be called on the corresponding server.
These CDEStubs are automatically added, removed, and
modified over time by CDE in order to maintain
consistency with the server’s published interface.

5.6. Dynamic Changes to the Server Interface

When method signatures in the server interface
change, CDE aggressively attempts to make the
corresponding changes in the client applications as
seamlessly as possible as follows.

The CDEManager performs all the changes, additions,
and deletions of CDEStubs in all subclasses of
SOAPRMInvoker and CORBARMInvoker. When the
DLParser parses the DL document, it creates a list of
CDEMethods, where each CDEMethod holds the method
signature of the corresponding server method. The
CDEManager uses a matching algorithm, as explained
below, to pair up each existing stub on the client side with
the closest matching method in the newly published server
interface. This automates the process of merging the
differences between the elements in this list and the list of
current CDEStubs in the dynamic class.

5.6.1. Considerations in Interface Matching. Care must
be taken in resolving differences between the current list
of CDEStubs and the new list of CDEMethods. Suppose a
JPie user creates a Java statement that calls a remote
method, which subsequently changes on the server. If the
CDEManager simply deleted the old method and replaced
it with a new one, the user would have to manually edit the
call site to call the new method, transferring the
appropriate parameter values from the method call no
longer in use. However, if the CDEmanager is able to
match up the old calls to the new ones, reordering actual
parameters and removing extra actual parameters as
needed, the user can simply be alerted through the built in
debugger in JPie to add values for newly added formal
parameters.

5.6.2. Matching CDEStubs and CDEMethods. We use
the Stable Marriage algorithm [21] to match CDEStubs
and CDEMethods. To support this operation, we use a new
Java interface called MethodHolder that is implemented
by both CDEStub and CDEMethod. Since the Stable
Marriage algorithm expects to match up elements sets of
equal size, we use a new Java class, named
TempMethodHolder that implements MethodHolder, to
pad the sets when the number of CDEMethods and
CDEStubs are not equal.

For comparison of CDEStubs and CDEMethods
during the Stable Marriage algorithm, we use a heuristic
ranking system for both CDEStubs and CDEMethods. To
accomplish this, each CDEMethod forms a set of rankings

by calculating a ranking for each element in the CDEStub
list. We then perform the same operation for each element
in the CDEStub list.

To calculate the rankings, we first assign weights to
corresponding attributes between sets of two
MethodHolders taken from opposite lists. A match in the
method name carries the highest possible weight. The next
height weight is assigned to matching return types and the
third highest weight is assigned for matching parameters
that have the same type. The smallest weight is available if
the parameter name is the same. If an exact match is not
found for each of these instances, then a weight of zero is
assigned for that attribute. The total weight for each
MethodHolder is the sum of its attribute weights. The
rankings are then calculated by each MethodHolder by
ordering the corresponding MethodHolders in the order of
decreasing total weights. Thereby, TempMethodHolders
rank all the corresponding MethodHolders (CDEStubs or
CDEMethods) the same and both CDEStubs and
CDEMethods assign the worst possible ranking to
TempMethodHolders.

Once the Stable Marriage algorithm has generated the
required mapping, the CDEManager must decide how to
add, update, or delete CDEStubs according to how they
were matched. There are three cases.

Case 1 - A CDEStub was matched with a
TempMethodHolder (i.e. the server has discarded the
method): In this case, we inform the user before removing
the corresponding CDEStub from the dynamic class.

Case 2 - A CDEMethod was matched with a
TempMethodHolder (i.e. the server has added a method):
In this case, we simply construct a new CDEStub using the
method signature of the CDEMethod and add it to the
dynamic class.

Case 3 - A CDEMethod was matched with a CDEStub
(i.e. the server has modified a method): This case may
indicate a change to the method name, return type or the
formal parameter list.
o Case 3.1 - The method name has changed: We simply

reflect this change in the CDEStub.
o Case 3.2 - The return type has changed: We reflect

this change in the CDEStub and inform the user.
o Case 3.3 - The formal parameter list has changed: We

use the Stable Marriage algorithm to match the new
parameters with the old ones.

5.6.3. Changing Parameters of a Stub. For Case 3.3, we
introduce a Java interface named ParameterHolder and
three classes named StubParameter, MethodParameter,
and TempParameter that implement this interface. We
then construct MethodParameter and StubParameter lists
using the CDEMethod and the CDEStub. If the numbers

9

of StubParameters and MethodParameters are unequal,
TempParameters are added to the shorter list.

The rankings for the stable marriage algorithm are
once again based on aggregate weights. The highest
attribute weight is available if the Java types of two
ParameterHolders match. A smaller attribute weight is
added if the names of the parameters match. The aggregate
weights are calculated for each ParameterHolder in the
opposite list and the rankings are assigned based on the
decreasing order of total weights. This means that the
TempParameters are assigned the worst ranking by both
StubParameters and MethodParameters. TempParameters
assign the same ranking to all other ParameterHolders.
 Once the Stable Marriage algorithm has finished
matching up the parameters, the CDEManager must
decide how to add, update, or delete CDEStubs according
to how they were matched. There are three cases.

Case 3.3.1 - A StubParameter was matched with a
TempParameter: In this case, we inform the user before
removing the corresponding parameter from the CDEStub.

Case 3.3.2 - A MethodParameter was matched with a
TempParameter: In this case, we simply add a new
parameter to the corresponding CDEStub.

Case 3.3.3 - A MethodParameter was matched with a
StubParameter: This case implies that the parameter name,
the parameter type, or both have changed. In all these
cases we simply apply this change to the corresponding
parameter in the CDEStub and inform the user to make the
appropriate changes in the actual parameter expressions.

 Many changes made to the dynamic class with this

mechanism are virtually transparent to the JPie user. User
input is only required when a CDEStub is to be deleted or
when a parameter within the CDEStub must be changed or
deleted. If there is a missing actual parameter due to a new
formal parameter being added, this will be detected by the
JPie debugger at the next execution of that method call
and the execution will pause while the user supplies the
appropriate arguments.

 If the client application was offline while the server
interface was changed, then CDE will merge the changes
at the next startup of the client application according to the
mechanism we presented earlier.

6. Performance

 Since CDE introduces a level of complexity into the
RMI call structure, an increase in the round trip time
(RTT) of a RMI call is inevitable. We were conscious of
this fact during the design of CDE and further
experimentation has shown that this decrease is within
reasonable bounds.

 To gauge the performance of CDE we measured the
average RTT of SOAP calls to three web services found at
the XMethods [22] online web services directory. Each
web service was built using a different implementation of
SOAP as indicated in Table 1.
 We measured the RTT using three different
techniques. First, we used a simple Java program that
measured the average time taken to send a predefined
SOAP request to the server and receive the relevant reply.
Second, we used a static Apache Axis client application
that measured the average RTT by making a RMI call
using the same predefined parameter values. Third, we
used a CDE client and the same predefined parameter
values to measure the average RTT. To measure the time
we used Java’s getTimeInMillis system call and the
average time was calculated over one hundred trials.

Table 1: RTT times for SOAP Calls

RTT (seconds)
Server Java

Client
Axis

Client
CDE
Client

AirportInfo (.NET) 1.66 2.00 2.40
AirportWeather (CapeConnect) 2.00 2.35 2.59
WHOIS (Axis) 2.88 3.25 3.57

 At the end of the development phase the dynamic
CDE client can be converted into a static Axis client
through the JPie application export mechanism. Hence, the
performance overhead introduced by CDE is only present
during the development phase. In this context, the per-call
overheads listed in Table 1 are acceptable.
 Although we have not carried out comprehensive
testing for the CORBA subsystem, we expect the
performance overhead to similar. Further, experimentation
is also needed to gauge the performance of CDE and JPie
as the number of managed clients increase.

7. Conclusions

This paper introduced the concept of live client
development using the RMI model. We also presented a
novel approach to presenting the server interface to the
developer that simplifies RMI development into a natural
extension of mainstream Java application development.

One of our goals for CDE was to reduce the learning
curve involved in developing distributed applications
using the RMI model. The construction of Client
applications for fully developed web services and CORBA
servers using CDE, provides developers a virtually local
application development experience by mimicking the
local method invocation structure for RMI. We have
constructed a variety of sample applications, using
established servers [23] that use different implementations
of SOAP and CORBA, to test the validity of our claim.

10

 Our experience indicates a significant reduction in
development time (including the JPie setup time) from the
traditional modes of distributed application development.
 Our second goal of integrating changes in the server
interface into live client instances has also been
successfully implemented in CDE. We tested our
implementation through our Server Development
Environment (SDE) [24], which was a natural extension to
CDE. CDE and SDE combine to support live client and
server development effectively.
 An additional feature that is being investigated is the
ability to interchange the technology being used to
communicate between the client and the server while live
development and information exchange is taking place.
Although CapeConnect and other SOAP to CORBA
bridging technologies [25] offer technology bridging
capabilities, we feel that live modification will result in a
more fluid development experience. We are currently
implementing a medium-sized mail service application in
JPie using CDE. Our experience with that application will
help motivate future work on CDE, SDE, and JPie in
general.

Acknowledgements

We thank Dr. Christopher Gill and Michael Plezbert
for their support during our background study. This work
was supported in part by the National Science Foundation
under CISE Educational Innovation grant 0305954.

References

[1] World Wide Web Consortium, Simple Object Access

Protocol (SOAP) 1.2, http://www.w3.org/TR/SOAP/, June
2003.

[2] Object Management Group, Common Object Request
Broker Architecture: Core Specification, 3.0.3 ed.,
http://www.omg.org/docs/formal/04-03-01.pdf, March
2004.

[3] Kenneth J. Goldman. Live Software Development with
Dynamic Classes, Aug. 2004, Submitted for publication.

[4] Apache Software Foundation, Apache Web Services Axis
Project, http://ws.apache.org/axis/index.html, March 2004.

[5] The Community OpenORB Project,
http://openorb.sourceforge.net, March 2004.

[6] Wide Web Consortium, Extensible Markup Language
(XML) 1.0, 3 ed., http://www.w3.org/TR/REC-xml, Feb.
2004.

[7] Wide Web Consortium, Web Services Definition
Language (WSDL) v.1.1, http://www.w3.org/TR/wsdl,
Mar. 2001.

[8] Wide Web Consortium, Hypertext Transfer Protocol
(HTTP), http://www.w3.org/Protocols, April 2004.

[9] Common Object Request Broker Architecture
(CORBA/IIOP) Specification, v. 3.0.2,
http://www.omg.org/technology/documents/formal/corba_i
iop.htm, Mar. 2004.

[10] Kenneth J. Goldman. An interactive environment for
beginning Java programmers. Science of Computer
Programming, 53(1):3–24, October 2004.

[11] Microsoft Corporation, Microsoft Visual Studio .NET
Overview, http://msdn.microsoft.com/vstudio/, Mar. 2004.

[12] Microsoft Corporation, .NET Framework 1.1 Overview,
http://msdn.microsoft.com/netframework/technologyinfo/o
verview/default.aspx, Mar 2004.

 [13] Strahl, R, Creating and using Web Services with the .NET
framework and Visual Studio.Net,
http://www.westwind.com/presentations/dotnetwebservice
s/DotNetWebServices.asp, July 2002.

[14] Cape Clear Software Ltd, Cape Clear Business Integration
Suite Version 4 Overview,
http://www.capeclear.com/products/index.shtml, Dec.
2003.

[15] Sun Microsystems, Enterprise JavaBeans Specification,
v.2.1, Nov. 2003.

[16] Netscape Communications Corporation, JavaScript
Specification, v.1.1, Mar 2001.

[17] Cape Clear Software Ltd, Using Web Services with
SOAPDirect,
http://www.capeclear.com/products/manuals/three/Users_
Guide/html/soapdirect_three_clients.html, Mar 2004.

 [18] Apple Computer, Inc, Developing Direct to Web Services
Applications, v 1.0, Nov 2002.

[19] Apache Software Foundation, Apache Axis API
Documentation,
http://ws.apache.org/axis/java/apiDocs/org/apache/axis/clie
nt/Call.html, Jan. 2004.

[20] Kris Magnusson et. al. Java Enterprise in a Nutshell.
O’Reilly, 2002.

[21] D. G. McVite and L.B Wilson. The Stable Marriage
Problem, Communications of the ACM Volume 14 , Issue
7. July 1971, pp. 486 – 490.

[22] XMethods,
http://www.xmethods.com/ve2/index.po;jsessionid=9YCp
uT-mGMAOb5JjUAe-E7gl(QhxieSRM), Mar. 2004.

[23] Sajeeva L. Pallemulle, Kenneth J. Goldman. Live
 Development of SOAP and CORBA Servers, In
 preparation.
[24] SOAP to CORBA Bridging Software Project. Mar 2004.
 Open Source Development Network.
 http://sourceforge.net/projects/soap2corba, Mar 2004.

	Supporting Live Development of SOAP and CORBA Clients
	Recommended Citation
	Supporting Live Development of SOAP and CORBA Clients

	tmp.1470340445.pdf.KJhFr

	Abstract: Abstract: We present middleware for a Client Development Environment that facilitates live development of client applications for SOAP or CORBA servers. We use JPie, a tightly integrated programming environment for live software construction in Java, as the target platform for our design. JPie provides dynamic classes whose signature and implementation can be modified at run time, with changes taking effect immediately upon existing instances of the class. We extend this model to automate addition, mutation, and deletion of dynamic server methods within dynamic clients. Our implementation simplifies distributed application development by masking technical differences between local and remote method invocations. Moreover, the live development model allows server-side changes to be dynamically integrated into a running client to support simultaneous live development of both the client and server.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: September 27, 2004
	Author: Authors: Sajeeva L. Pallemulle, Vanessa H. Clark, Kenneth J. Goldman
	Title: Supporting Live Development of SOAP and CORBA Clients
	ReportNumber: 2004-56
	DepartmentName: Department of Computer Science & Engineering

