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This thesis examines the effects of changing the numerical representation of

audio signals in digital hearing aids to minimize power consumption. Within the

hearing aid design a majority of the power used is consumed in the many finite

impulse response filters. The main processing involved in these filters is a multiply-

accumulate function. We examine the power consumption of 12 different multiply-

accumulate units that use the following numerical representations: a 16-bit linear

representation, a 9-bit logarithmic representation, and 10 different floating-point rep-

resentations ranging from 9 to 13 bits. A selection of the multiply-accumulators are

simulated using a continuous-circuit simulator. The power estimates from this are

compared with signal transition counts from a discrete event simulator to quantify



the relationship between transition counts and power consumption. This relationship

is then used to examine other numerical representations.
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Chapter 1

Introduction

Over 28 million Americans have some level of sensineural hearing loss. However, only

about 5 million of these people actually own a hearing aid and of those only a little

over half are happy with the performance of their aid [24]. The largest complaint has

to do with understandability of speech in noise. Activities like having a conversation

in a crowded restaurant or while walking down a busy street are not handled well by

current hearing aid designs. The aids cannot distinguish between speech and other

noise or speech that the user is interested in and speech that the user wants to ignore.

Current plans for overcoming these issues involve more signal processing which in

turn requires more power. Currently, batteries in full featured aids only last a few

days. With the joint pressures of more power required and trying to fit the whole aid

into the ear canal (which severely restricts battery volume) any opportunity to save

power is quite important.

This thesis examines using different numerical representations for the audio

signals in an attempt to exploit the properties of these representations to minimize

power consumption. We examine 12 different numerical representations: a 16-bit lin-

ear representation, a 9-bit logarithmic representation, and 10 different floating point
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representations ranging from 9 to 13 bits. For each representation we evaluate the

power requirements for multiply-accumulate operations, the dominant computation

required for audio signal processing applications.

1.1 How the Ear Works

The outer ear, seen in Figure 1.1 [5], is made up of the pinna, the ear canal, the ear

drum, and the three smallest bones in the human body, the malleus, the incus, and

the stapes. The pinna, with all of its folds, funnels compression waves down into the

ear canal. At the end of the ear canal is the ear drum, a very thin membrane that is

Figure 1.1: The outer ear.

vibrated by the compression waves traveling through air that make up sound. These

vibrations are passed to the small bones, the malleus, or hammer, the incus, or anvil,

and the stapes, or stirrup. These three bones amplify the incoming vibrations and

pass them along to the cochlea, seen in Figure 1.2 [5]. Inside the cochlea is a fluid
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Figure 1.2: The inner ear.

that helps with balance and allows the vibrations from the stapes to propagate along

the basilar membrane. All along the surface of the membrane are 20 to 30 thousand

little hairs. Each of these hairs is a different length and thus resonates at a different

frequency. The hairs respond non-linearly to changes in loudness [11]. These hairs

are what allow humans to normally hear between the frequencies of 20 Hz to 20 kHz.

The hairs are connected to the auditory nerve in such a way that when a sound at a

certain frequency resonates with a hair an electrical impulse is sent to the brain. The

brain uses what it knows of the shape of the pinna to help interpret the signals into

recognizable sounds and to determine the direction that the sound came from.

Normal hearing humans have a lower threshold of hearing at 0 dB sound pres-

sure level (SPL). This is point at which sounds just become noticeable. The upper

range is limited by the pain threshold at approximately 100 dB SPL. This is the level

at which sounds can be painful and physically damaging. Figure 1.3 shows some

common noises and their corresponding loudness in dB SPL. Sounds above 100 dB
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Figure 1.3: Some common sounds and their sound pressure level.

SPL can damage the hairs that react to different frequencies. With repeated damage

they have a decreased ability to respond to input.

Sensineural hearing loss, the most common form of hearing impairment, is

characterized by an increase in the lower threshold of hearing ability and little or no

increase in the pain threshold. This is illustrated in Figure 1.4. With an increased

lower threshold the user cannot hear quiet sounds without amplification. This increase

in the lower threshold is generally frequency dependent, often based on the original

sound that damaged the hairs. The most common form of hearing loss is a sloping

loss with high frequencies more attenuated than low frequencies. Figure 1.5 shows

an audiogram of an average hearing person, while Figure 1.6 shows an audiogram

of someone with this common loss. The audiograms chart the level (in dB SPL) at

which the individual can hear sounds based on frequency. In the normal audiogram
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Figure 1.4: Normal hearing range compared to an impaired hearing range.

the minimum threshold level is pretty constant throughout the frequency range at

around 10 dB showing that this person has a slight reduction in hearing ability. In

the impaired audiogram there is significant hearing loss at the higher frequencies (i.e.,

the minimum threshold is 65 dB SPL at 8 kHz), while at low frequencies there is still

some loss, but not as significant (i.e., the minimum threshold is 30 dB SPL at 250

Hz).

To compensate for the frequency dependence of hearing loss, modern hearing

aids separate the audio signals into separate frequency bands and provide a gain that

is tailored to the patient’s needs within each frequency band.

Early hearing aid designs provided linear amplification, however, loud sounds

can be amplified above the pain threshold as illustrated in Figure 1.7. This could allow

quiet sounds to be heard, but sounds that were previously able to be heard may now

damage the ear further. In an attempt to help prevent this, slowly adapting aids have

been designed. The idea behind these is that generally environments have a relatively

stable sound level. If a patient moves from a loud environment to a quiet environment
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Figure 1.5: Audiogram of a normal hearing person.

the aid will slowly increase the amount that it amplifies its input. Conversely, as the

patient moves from a quiet environment to a loud one the aid will decrease the amount

that it amplifies. However, the slow adaptation isn’t always fast enough. Sounds like

a phone ringing during a quiet conversation can still be amplified above the pain

threshold. To compensate for these shortcomings and to more accurately mimic the

cochlea, instantaneous non-linear amplification is currently being investigated [15].
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Figure 1.6: Audiogram of an impaired hearing person.

1.2 Hearing Aid Requirements

To mimic the normal range of human hearing a hearing aid should optimally have

an input dynamic range of 100 dB. It has been shown empirically that speech under-

standability does not improve with signal to quantization noise ratios (SQNR) greater

then 30 dB. So a hearing aid should have an SQNR of at least 30 dB [25].

Also for understandability reasons it is desirable to have the aid be able to

process 32 thousand samples per second. During non-linear amplification high order

odd-harmonics will be added to the signals. By having a sample rate so high above
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Figure 1.7: Normal hearing range compared to an amplified hearing range.

the Nyquist rate these harmonics will not be aliased down into the frequencies of

speech data.

1.3 Hearing Aid Architecture

In an attempt to overcome the issues present in current hearing aids the design in

Figure 1.8 is currently under investigation by Goldstein [15].

This design breaks the input signal into octave frequency bands, using band-

pass finite impulse response (FIR) filters, which are non-linearly amplified based on

the patient’s prescription. From the prescription three parameters are determined

which control the amplification. These parameters, A, B, and p, can be seen in

equation 1.1.

y =


Ax when|x| ≤ t

Bxp when|x| > t
(1.1)
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Figure 1.8: Unirate hearing aid architecture.

With p ≤ 1
2
, when the input signal, x, is below the threshold, t, it is linearly amplified

with gain A into the output signal, y. When the input signal is above the threshold,

t, it is compressed using a power law [14]. This amplification adds odd high order

harmonics to the signal which must be filtered out with the second bank of band-pass

FIR filters which are identical to the first bank. The outputs of the second set of

filters are added together to be converted back into sound. Each of the channels in

this design run at the same rate [12] so to keep the audio quality from being degraded

each lower channel FIR filters has twice as many taps as the filters in the channel

above.

The current plan of the hearing aid is a multi-rate design [13] that decreases

the power requirements for frequency band separation. Each channel can run at half
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the rate of the channel above due to down-sampling of the input data. With only half

the data to process, each lower channel consumes much less power than the channel

above. Figure 1.9 shows the block diagram for the design and the blocks are described

below.

Figure 1.9: Multirate hearing aid architecture.

Down-sampler and Low Pass Filter Except for the uppermost channel the input

signal is filtered by a finite impulse response (FIR) low-pass filter and down-sampled

to allow each lower channel to run at half the sample rate of the channel above it.

Equalization In all channels except for the lowest, the equalization all-pass filter

compensates for the group delay of the lower channels.
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FIR Filter The first bank of band-pass FIR filters restricts the input signal to an

octave frequency band for amplification.

Non-Linear Amplifier The non-linear amplifier performs the main function of the

hearing aid. Based on the patient’s prescription the different frequency bands can be

amplified different amounts to compensate for specific hearing loss.

Second FIR Filter The second band-pass FIR filter is identical to the first in

each channel. Its purpose is to remove any upper order harmonics introduced by the

non-linear amplification.

Up-sampler and Low Pass Filter The second low-pass filter up-samples the

signal for adding to the upper channels and then low pass filters to remove high

frequency noise added by the up-sampling process.

This thesis will focus on the power consumed in the filters, which all have simi-

lar designs. More specifically in the 4-8 kHz band-pass filter, the multiply-accumulate

function that claims the majority of the power consumed in the filter is explicitly mea-

sured and used as a model for the other filters. The impulse response of the filter

is shown in Figure 1.10 and the frequency response is shown in Figure 1.11. The

power consumed by the non-linear amplifiers and the channel as a whole is also being

studied [7].

1.4 Related Work

Others have investigated the use of custom numerical representations for a variety

of applications [19] and [6] including K-means clustering for images and video sig-

nal processing. These works focused on signal quality while this thesis examines the
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Figure 1.10: Impulse response of the 4-8 kHz band-pass FIR filter.

power consumption implications of the customization. Shang [17] examines estimat-

ing power consumption in VirtexTM-II FPGAs. They conclude that on average the

dynamic power dissipation of a control logic block is 5.9 µW per MHz. However,

there is no connection to signal transition count as is made in this thesis, just clock

frequency.

This investigation is based upon previous work with the logarithmic represen-

tation done by Robert Morley and his graduate students [4, 26, 23].

Logarithmic Representation Engel [4] discusses logarithmic encoding as an al-

ternative to µ-law and A-law compressive encoding. He finds that performance of

a logarithmic encoder is quite similar to that shown by the compressive encoders.

Through the examination of logarithmic representations Engel concludes that a 9-bit

representation with a base of .9412 will provide the desired characteristics for audio
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Figure 1.11: Frequency response of the 4-8 kHz band-pass FIR filter.

signals. Additionally, the majority of a logarithmic digital hearing aid was fabricated,

and noise characteristics and power consumption was measured.

Power Estimation Sullivan [26] examines estimating power consumption for VLSI

(very large scale integration) DSP (digital signal processor) design. Power consump-

tion is computed using Pcmos = Pdynamic + Pstatic. Pdynamic comes from charging and

discharging nodes within a circuit. Pstatic is consumed primarily by leakage currents

through off transistors. Sullivan uses a simple adder circuit to test this form of power

estimation. Then the building blocks of a DSP are broken down and a power esti-

mate is derived. From these estimates it is shown that a Baugh-Wooley multiplier

is more power efficient than comparable shift and add multipliers. Other parts ex-

amined include memory, bus, controller, and interconnects. This work also compares

systems using a linear representation with those using a logarithmic representation.

The logarithmic representation is found to use only 30% of the power necessary for

the linear representation.
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Logarithmic Analog to Digital Conversion Kwa [23] shows a method for build-

ing an analog to digital (A/D) converter that outputs in the logarithmic represen-

tation. He uses delta-sigma converters and compares power savings of a logarithmic

converter to an equivalent second order linear converter. The logarithmic design pro-

vides 30 dB of SQNR over a 57 dB dynamic range by embedding the logarithmic

transformation in a digital decimation filter. While this dynamic range isn’t ideal for

hearing aid design it shows that a direct to logarithmic A/D is possible. This exam-

ination finds over a factor of two power savings in the logarithmic filter versus the

equivalent linear A/D. This savings is a ”direct result of saving of the computational-

power per tap as well as the reduction of the number of taps in the second-stage, FIR,

decimation filter.” [23]

1.5 Contributions

The following specifies the contributions of the author’s work in this thesis.

• The original multiply-accumulate (MAC) operation for an FIR band-pass filter

implemented on the FPX [10]. This was the basis for the Perl script that can

now produce any of the floating point representations.

• The rewritten linear MAC with a Baugh-Wooley multiplier. This replaced a

more naive MAC provided by an EE 563 group that wrote the original linear

and logarithmic MACs.

• A new FIR controller for the various MACs for integration into a complete

channel. This replaced the original FIR controller that interfaced with the

FPX.
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• Perl programs to produce random inputs for the various numerical representa-

tions.

• Perl programs to translate input files and coefficients between the various nu-

merical representations.

• Perl golden models, to emulate the hardware, for verification of the linear and

logarithmic representations. These perform the same function as the hardware

in software. The two output files can then be compared to confirm the correct-

ness of the hardware output and thus the circuit.

• An integrated circuit layout of the 1-5-5 MAC.

• Both the continuous and discrete simulations along with shell scripts to auto-

mate the process of running all the various combinations of MAC, target, and

input set for the discrete simulator.

• Perl script to parse and sum signal transition count data from ModelSim output.

1.6 Organization

After describing why power consumption is vital to improving hearing aid perfor-

mance in the areas with the most need, such as speech in noise, this chapter described

the basic functioning of the ear and the issues that new hearing aids must be designed

to compensate for. Then basic hearing aid architecture was discussed with specific

emphasis on the new developments.
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Chapter 2 will discuss the various numerical representations (linear, logarith-

mic, and 10 different floating point) that will be compared in terms of power con-

sumption. This chapter will also compare the representations in terms of signal to

quantization noise ratio and dynamic range.

In chapter 3 this thesis will show the block diagrams and describe the working

of the FIR filters and the MACs for each representation. This chapter also discusses

the input sets and verification of the output for the various circuits.

Chapter 4 shows the relationship between power consumption and signal tran-

sition counts used to compare the different representations based on a discrete-event

simulation of the circuit and a continuous simulation. Then the different represen-

tations are compared using two different input sets based on signal transition counts

from the discrete model. These relationships lead to some conclusions that are re-

ported in Chapter 5 along with directions for possible future work.

1.7 Acronyms

• ASIC - Application Specific Integrated Circuit

• ATM - Asynchronous Transfer Mode

• CLB - Control Logic Block

• CMOS - Complementary Metal Oxide Semiconductor

• dB - deciBel

• DSP - Digital Signal Processor

• FIR - Finite Impulse Response
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• FPGA - Field Programmable Gate Array

• FPX - Field-programmable Port Extender

• MAC - Multiply Accumulate Unit

• SNR - Signal to Noise Ratio

• SPL - Sound Pressure Level

• SQNR - Signal to Quantization Noise Ratio

• VHDL - VHSIC Hardware Design Language

• VHSIC - Very High Speed Integrated Circuit

• VLSI - Very Large Scale Integration

• VI - Virtual Instrument

• WUGS - Washington University Gigabit Switch
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Chapter 2

Numerical Representations

There are three basic categories of numerical representations that this thesis will

examine; a linear representation, a logarithmic representation, and several floating

point representations. Each of the numerical representations is designed to represent

signals that can be normalized to the range -1 to 1. In each case the representation

will be carried throughout the design. As shown in Figure 2.1, an analog to digital

converter would digitize the incoming audio signal directly into the proper represen-

tation and all internal signals would be in that representation until the final digital

to analog converter takes the representation and converts it back to analog form.

This eliminates power consumption due to conversions between representations. The

ability to produce the representation directly from the analog to digital conversion is

assumed to exist and is beyond the scope of this thesis. This assumption is supported

by the work discussed in the introduction [23]. Throughout this chapter the numbers

-.6768, .0143, .5574, and .9826 will be converted into the appropriate representations

as examples.
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Figure 2.1: Block diagram of the hearing aid from microphone to speaker.

2.1 Linear Representation

The first represention that we will consider is a standard 16-bit two’s complement

representation. This representation is also called Q0.15. The 0 tells the number of

integer bits and the 15 is the number of fractional bits. This form is often shortened

to Q15 format with the 0 bits of integer understood. The input values range from

−1 up to 1 − (2−15) with a constant step size of 2−15. This representation has been

used extensively in digital signal processing applications and audio applications such

as standard red book audio CDs [3]. Values in the linear representation can be

computed from the binary representation to a real number by Equation 2.1.

x = −a152
0 +

14∑
i=0

ai · 2i−15 (2.1)

Linear Examples For each conversion from a real number to binary number we

start with a string of 16 bits:
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

where bit a14 has a value 1
2

= 2−1, bit a13 = 1
4

= 2−2, bit a12 = 1
8

= 2−3, and so on

down to bit a0 = 1
215 = 2−15. For -.6768 we start by observing that it is negative and

working with the absolute value. Now we have .6768. 1
2
· 1

215 is added to account for

any rounding issues so we now have .6768305177578. This is larger than 2−1 so bit a14

gets set to 1 and 2−1 is subtracted from the input. That leaves .1678305177578 which

is compared to 2−2. Since 2−2 is larger, bit a13 is set to 0. The input is next compared

to 2−3 and is larger. Bit a12 becomes a 1 and 2−3 is subtracted. The input is now

.051830517578. As 2−4 is larger than the input bit a11 becomes a zero. 2−5 is larger

then the input so bit a10 is set to 1 and 2−5 is subtracted to leave .020580517578.

Bit a9 is set to 1 as well since 2−6 is smaller than the input. After the subtraction

the input becomes .004955517578. Bit a8 is set to 0 and bit a7 is made to be 1 and

then the input is reduced again to .001049267578. Next bit a6 is set to 0 and bit

a5 to a 1 and then input is again reduced, this time to .000072705078. The next

three bits become 0 and bit a0 becomes a 1 and the final reduction in the input leaves

.000011669922, which is smaller than 2−15. This process produces the binary number:

0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

Remember that the initial input was negative. To take this into account the

NOT of the binary number is taken and 1 added. Notice that bit a15 becomes a 1

signifying the sign of the number.

1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
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Table 2.1: Linear representation examples
x x

-.6768 1010100101011111
.0143 0000000111010101
.5574 0100011101011001
.9826 0111110111000110

As an example of the reverse operation 0000000111010101 is converted to .0143

with Equation 2.1.

x = −0 · 20 + 0 · 214−15 + 0 · 213−15 + 0 · 212−15 + 0 · 211−15 + 0 · 210−15 + 0 · 29−15

+ 1 · 28−15 + 1 · 27−15 + 1 · 26−15 + 0 · 25−15 + 1 · 24−15 + 0 · 23−15

+ 1 · 22−15 + 0 · 21−15 + 1 · 20−15 = .014312744141

The result of this, .014312744141, is the closest value to .0143 in this representation.

The next smaller representable value would be .014282226563 which is slightly farther

from .0143 then the represented value. Table 2.1 shows the bit representation for each

of the four examples.

2.2 Logarithmic Representation

Looking at a logarithmic representation stems from the logarithmic perception re-

sponse of the human ear. The 9-bit logarithmic representation has a base of .941 as

suggested from previous research [4]. This represention is sign-magnitude with one

sign bit in the most significant place and 8 magnitude bits following. Throughout

this thesis logarithmic values will be denoted with a subscript l as in xl such that

xl = log.941(x). This representation allows signal values to range from -1 up to 1. It
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is important to note that with a base of .941 if x > y in linear space, then xl < yl

in logarithmic space. For example the maximum value, the number x = 1, is rep-

resented as xl = 000000000 while the minimum positive value, x = 1.8423 · 10−7, is

represented as xl = 011111111. On the other side of zero, the smallest magnitude

negative number, x = −1.8423 · 10−7, is written as xl = 111111111 while the largest

magnitude negative number, x = −1, is written as xl = 100000000. This relation can

be seen in Figure 2.2, while Figure 2.3 shows the same relationship with the linear

values plotted on a log scale. In this thesis when discussing relative comparisions of

numbers we will always use the linear values. Values in the logarithmic representation

can be computed from the binary representation to a real number by Equation 2.2.

xl = (−1)a8 · (.941)
∑7

i=0
ai·2i

(2.2)

Logarithmic Examples Each number is a string of 9 bits:

0 0 0 0 0 0 0 0 0

a8 a7 a6 a5 a4 a3 a2 a1 a0

The easiest way to convert into the logarithmic representation is to first convert

to an integer and into binary from there. This is done by taking the log.941 of the

input. In the script this is done by log10(input)
log10(.941)

. Since the first example, -.6768, is

negative bit a8 is set to 1. Then the absolute value is taken to give .6768 again. Now

log of this value is taken; log.941(.6768) = 6.41 . . .. This value is rounded to 6 and

converted to binary in a process very similar to that in the linear script. However,

now the bits have the values 1, 2, 4, 8, . . . , 128 from right to left. This gives the

logarithmic, binary representation of .6768 as:
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Figure 2.2: A comparison of linear inputs and their logarithmic equivalents.

1 0 0 0 0 0 1 1 0

a8 a7 a6 a5 a4 a3 a2 a1 a0

Table 2.2: Logarithmic representation examples
x xl

-.6768 100000110
.0143 001000110
.5574 000001010
.9826 000000000

As an example of the reverse operation 001000110 is converted to .0143 with

Equation 2.2.

−10 · .941(0·28+0·27+1·26+0·25+0·24+0·23+1·22+1·21+0·20) = .014166861232
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Figure 2.3: A comparison of linear inputs plotted on a log scale to their logarithmic
equivalents.

The result of this, .014166861232, is the closest value to .0143 representable by this

representation. Table 2.2 shows the logarithmic bit representations for each of the

four examples.

Notice that as the linear, positive values increased, the binary representation

decreased. In fact, .9826 is so close to one that it is appears to be zero in binary.

Figure 2.4 shows a close up of x = 1 from Figure 2.2. .9826 is within the error bar of

1 and therefore is represented at 1 which in binary logarithmic form is 000000000.

Figure 2.5 shows the other end of the Figure 2.2. Notice that each logarithmic

value has a much smaller span on the linear axis. Note, also, the fact that the smallest

representable value is not identically zero.
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Figure 2.4: Close up of x = 1 on linear vs logarithmic comparison.

2.3 Floating Point Representations

Floating point numbers have some characteristics of both linear and logarithmic rep-

resentations as will be shown below. The mantissas act like a linear part and the

exponents act like a logarithmic part. The values of these numbers aren’t evenly dis-

tributed along the real line, due to the logarithmic nature of the exponents and the

gaps between ranges of mantissa values. The IEEE floating point standard defines a

single precision 32-bit number with one sign bit, eight exponent bits, and 23 fractional

bits. The exponent is in excess notation with a bias of 127; i.e. if the exponent shows

0 then it represents -127 and if the exponent shows 200 then it represents 200-127

= 73. Since the mantissa is normalized it actually has 24 bits worth of data as an



26

Figure 2.5: Close up of x close to 0 on linear vs logarithmic comparison.

implicit 1 is always assumed to be the first bit, but isn’t stored. There are special

cases defined for non-normalized mantissas, zeros, and infinities.

We investigated 10 different floating point representations. Nine of these were

of the form 1 sign bit, E exponent bits, M mantissa bits and named as 1-E-M so that

a 1-4-5 representation would have 1 sign bit, 4 exponent bits, and 5 mantissa bits.

The representations considered range from 1-4-4 up to 1-6-6 with every combination

of 4, 5, and 6 bit exponents and mantissas. The mantissa is a sign-magnitude value

in conjunction with the sign bit. This design only supports normalized mantissas to

simplify the hardware and save on computation by eliminating the comparisons that

would be necessary to handle the special cases. This design also stores the leading

one of the mantissa since we aren’t concerned with storage space, and the bits would
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need to be added back in for computation. The exponent is in excess notation based

on the number of bits in the exponent.

To calculate the decimal value of the number we can use the formula

xf =
(−1)sign · mant

2M · 2exp−2E−1

k
(2.3)

where k (see equation 2.4) scales the input to be between -1 and 1.

k =
2M − 1

2M
· 2(2E−1)−2E−1

(2.4)

The values of mant and exp are the integer values of the appropriate bits, as seen

in Equations 2.5 and 2.6 respectively, and E and M are the number of bits of the

exponent and mantissa respectively. In the design under test the scaling factor k

was omitted in input set creation as the scale does not impact the calculations being

performed. The value of sign is either 0 for non-negative numbers or 1 for negative

numbers and is just the value of the sign bit.

mant =
M−1∑
i=0

mi · 2i (2.5)

exp =
E−1∑
i=0

ei · 2i (2.6)

Floating Point Examples Depending upon the representation chosen there can

be anywhere from 9 to 13 bits present. For these examples the 1-4-5 representation

will be used.

0 0 0 0 0 0 0 0 0 0

s e3 e2 e1 e0 m4 m3 m2 m1 m0

sign exponent mantissa
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Bit s must be made into a 1 since the input, -.6768, is negative. Then the

absolute value is taken. We now have:

.6768 =
mant
2M · 2exp−2E−1

k

Next, the scaling factor, k, for the representation must be calculated (see equa-

tion 2.4). For the 1-4-5 representation k = (25 − 1) · 2(24−1)−24−1

= 124. Now our

positive input is multiplied by k to give:

.6768 · 124 = 83.9232 =
mant

25
· 2exp−24−1

To find the mantissa we must first find the largest exponent that is smaller than the

scaled input value. So we want 83.9232
2exp−8 < 1. The exponent value must be an integer

between 0 and 15 inclusive. In this case the exponent must be 15, so bits e3 down to

e0 are all set to 1. We now have 83.9232 = mant
32

· 215−8. This leaves mant = 20.9808.

However, the mantissa must also be an integer so it is rounded up to 21. Now the

rest of the bits can be filled in to make 21, i.e. bits m0, m2, and m4 are set to 1.

1 1 1 1 1 1 0 1 0 1

s e3 e2 e1 e0 m4 m3 m2 m1 m0

sign exponent mantissa

Table 2.3: 1-4-5 floating point representation examples
x xf

-.6768 1111110101
.0143 0100111100
.5574 0111110001
.9826 0111111110
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As an example of the reverse operation 0100111100 is converted back to .0143

with Equation 2.5, 2.6, and 2.3, and that k = 124.

mant = 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 0 · 20 = 28

exp = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 9

xf =
(−1)0 · 28

25 · 29−24−1

124
= .014112903226

The result of this, .014112903226, is the closest value to .0143 representable by this

representation. The next closest value above .0143 would be .014616935484 in this

representation. Table 2.3 shows the floating point bit representations for the four

examples.

2.4 Revised Floating Point Representation

To try and realize the power benefits of a Baugh-Wooley multiplier [23] a second

floating point representation was developed. This representation uses two’s comple-

ment values for both the exponent and mantissa. This unites the sign bit with the

mantissa and thus converts a 1-4-5 into a 4-6 representation.

The new exponent and mantissa values can be calculated as shown in equa-

tions 2.7 and 2.8, respectively.

exp = −e32
3 +

2∑
i=0

ei · 2i (2.7)

mant = −m52
5 +

4∑
i=0

mi · 2i (2.8)
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Now the total value for a floating point number is:

xf =
mant
2M−1 · 2exp

j
(2.9)

Where j is slightly revised from the previous k. Again this factor was not used in the

design under test.

j =
2M−1 − 1

2M−1
· 2E − 1 (2.10)

Revised Floating Point Examples

0 0 0 0 0 0 0 0 0 0

e3 e2 e1 e0 m5 m4 m3 m2 m1 m0

exponent mantissa

First take note of the sign of the number -.6768 for later compensation and then work

with the absolute value, .6768. The scale factor in this case is j = 26−1−1
26−1 · 24−1 − 1 =

6.78125 so we multiply .6768 · 6.78125 = 4.58955. Again, we must find the largest

integer exponent that is smaller than the input value so 4.58955
2exp < 1. exp must be 3

for this to be true. Now 4.58955 = mant
26−1 · 23 and, therefore, mant = 18.3582 and is

rounded to 18.

0 0 1 1 0 1 0 0 1 0

e3 e2 e1 e0 m5 m4 m3 m2 m1 m0

exponent mantissa

But remember that the original value was negative so the mantissa must be

adjusted to reflect this.

0 0 1 1 1 0 1 1 1 0

e3 e2 e1 e0 m5 m4 m3 m2 m1 m0

exponent mantissa
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So 0011101110 = -.663594470046. The next larger value would be 0011101111

= -.700460829493. Table 2.4 shows the revised floating point bit representations for

the four examples.

Table 2.4: 4-6 revised floating point representation examples
x xf

-.6768 0011101110
.0143 1101011001
.5574 0010011110
.9826 0011011011

2.5 Representation Characteristics

2.5.1 Signal to Quantization Noise

Figures 2.6 through 2.10 show the the SQNR for the linear representation, the log-

arithmic, and the floating point representations with an exponent of four. All of

these ratios except the logarithmic were calculated using equation 2.11 assuming a

sinusoidal input with the quantization noise spread evenly between Vi and Vi+1.

SQNR = 20 · log10

 Vi√
2

Vi+1−Vi√
12

 (2.11)

For the logarithmic representation equation 2.12 is used to account for a dead zone

between the smallest representable value and zero.

SQNR = 20 · log10

 Vi√
2

max
(

Vi+1−Vi√
12

, vmin

)
 (2.12)

The standard 16 bit linear representation has a variable SQNR that ranges

from 0 up to 96 dB over the dynamic range. Low power input signals can be easily
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Figure 2.6: SQNR of Linear Representation.

lost in the noise with this SQNR characteristic. The logarithmic representation has

an SQNR of ≈ 33 dB over most of the dynamic range. This represents a close match

to the needs of human understanding of speech, and guided the choice of .941 as the

base of the logarithm [4]. Figure 2.7 does not show the dead zone near zero where

The floating point representations with exponents of 5 and 6 have very sim-

ilar SQNR to that of the representation with an exponent of 4 since the SQNR is

based primarily on the mantissa value. Similarly, the revised 4-6 representation has

the same SQNR as the 1-4-5 representation since it represents the same values as

the 1-4-5 representation. More exponent bits just expand the dynamic range of the

representation. This is shown quantitatively in the next section. We can see that

the floating point SQNRs vary around a central value. This behavior is explained
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Figure 2.7: SQNR of Logarithmic Representation.

by the linear behavior of the mantissa and the logarithmic behavior of the exponent.

Once the mantissa reaches the maximum value the exponent is incremented and the

mantissa starts over. This causes the sawtooth effect seen in the figures.

2.5.2 Dynamic Range

The linear representation has a dynamic range of 96 dB which is right below the de-

sired 100 dB. The ranges for the other representations can be seen in Figure 2.11. For

the floating point representations the dynamic range is primarily dependent on expo-

nent value. While the dynamic range rises slightly with increased mantissa range the

large jumps between the groups is due to the exponent increase. Again the revised 4-6

floating point representation has the same properties as the 1-4-5 that it can replace.
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Figure 2.8: SQNR of 1-4-4 Representation.

As we can see from the figure all of the representations including the logarithmic have

dynamic ranges that are as good or better than the linear representation.

These dynamic ranges were calculated with equation 2.13 where Vmax is the

maximum representable absolute value and Vmin is the minimum non-zero repre-

sentable absolute value.

dynamic range = 20 · log10

(
Vmax

Vmin

)
(2.13)
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Figure 2.9: SQNR of 1-4-5 Representation.



36

Figure 2.10: SQNR of 1-4-6 Representation.

Figure 2.11: Dynamic range of various representations.
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Chapter 3

Finite Impulse Response Filters

As shown in Figure 1.9, there are 28 filters in the multi-rate signal processing data

flow. Related work has shown that the filters use the vast majority of the power

consumed in the hearing aid [7], therefore, the remainder of this thesis will focus

on these filters. The band pass and low pass filters are all 21 tap FIR filters which

means that they all have 21 coefficients. All of the band-pass filters have the exact

same design. The different frequencies passed are based on the sample rate at which

the filters are run. By changing the coefficients the same basic design can be used

for the low-pass filters as well. The equalizers can be implemented with circular

buffers and are not considered further. These filters carry out the calculation shown

in equation 3.1.

Yj =
n−1∑
i=0

= Ci ·Xj−i (3.1)

where Yj is the jth output, Ci is the ith coefficient, and Xj−i is the (j − i)th last

input sample and n is the number of taps. Each output value is a sum of the most

recent input multiplied by the proper coefficient and the last 20 inputs multiplied by

their respective coefficients. With each new input value the the oldest one is dropped
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and the rest shifted to a new coefficient. The FIR filters are primarily multiply-

accumulate (MAC) operators, so that is where the largest power savings might be

found and where this thesis will focus.

3.1 Linear MAC

The linear MAC, shown in Figure 3.1, is a straightforward design. The Baugh-Wooley

multiplier [2] has been shown to reduce power consumption [26] and is designed to

streamline two’s complement multiplies. This multiplier brings the sign calculations

into a shift and add multiplier and can be built with fewer gates than comparable

multipliers such as a Wallace Tree.

Figure 3.1: Block diagram of linear MAC.

3.1.1 Baugh-Wooley Multiplier

A Baugh-Wooley multiplier takes two two’s complement numbers as input, in this

example the 5-bit numbers x = x4x3x2x1x0 and y = y4y3y2y1y0. These numbers have

the values

x = −24x4 +
3∑

i=0

xi2
i

y = −24y4 +
3∑

j=0

yj2
j
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So now if p = x · y

p =

(
−24x4 +

3∑
i=0

xi2
i

)
·

−24y4 +
3∑

j=0

yj2
j


= 28x4y4 +

3∑
i=0

3∑
j=0

xiyj2
i+j − 24

3∑
i=0

y4xi2
i − 24

3∑
j=0

x4yj2
j (3.2)

To avoid the subtraction in Equation 3.2, the two’s complement of those terms

is taken and added to the first two. Bitwise, with all of these additions, the final

array can be seen in Table 3.1.

Table 3.1: Final Baugh-Wooley Array of Partial Products
9 8 7 6 5 4 3 2 1 0

y4 y3 y2 y1 y0

∗ x4 x3 x2 x1 x0

x0y3 x0y2 x0y1 x0y0

x1y3 x1y2 x1y1 x1y0

x2y3 x2y2 x2y1 x2y0

x4y4 x3y3 x3y2 x3y1 x3y0

x4 x4y2 x4y2 x4y1 x4y0

1 y4 y4x3 y4x2 y4x1 y4x0

x4

+ y4

As the linear values are stored in two’s complement form already, using the

Baugh-Wooley multiplier is quite straightforward.

3.2 Logarithmic MAC

There are some basic facts about logarithmic math that suggest there might be signifi-

cant power savings from its implementation. When dealing with logarithmic numbers

what would be a multiplication in linear space becomes an addition. This is seen in
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equation 3.3.

log (X · Y ) = log X + log Y = Xl + Yl (3.3)

Since our power efficient Baugh-Wooley linear multiplier needs to do a 19 term ad-

dition as well as the 256 AND functions to find its value, reducing that to a single

addition should save a large amount of power.

However, the linear addition becomes much harder in the logarithmic space.

Equation 3.4 shows what calculations are necessary to perform the accumulate.

log (X + Y ) = log
(

X + Y

X

)
+ log X = log

(
1 +

Y

X

)
+ log X (3.4)

A lookup table is used to find the first term of the final sum in equation 3.4. The

lookup table is indexed by the difference Yl−Xl and produces the result of log
(
1 + Y

X

)
.

These values are related since log
(

X
Y

)
= log X − log Y = Xl − Yl.

As a further attempt to save power the lookup table can be bypassed when

the result of the addition of the lookup table value and log X doesn’t depend on

the lookup table value. This is the case if X � Y , and log (X + Y ) is within the

quantization error of log(X). In the case of the hearing aid design, if Yl − Xl > 56

then the lookup table can be bypassed [20].

Figure 3.2: Block diagram of logarithmic MAC.
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Figure 3.2 shows the block diagram of the logarithmic MAC. The input value

and the coefficient are first added together. Then this value and the previous ac-

cumulated value are compared. If the lookup table is necessary the difference is

passed to it and its output is added to the larger value. Otherwise the larger value

is passed directly to the accumulation register. The multiplexor is controlled by the

comparison.

3.3 Floating Point MAC

The block diagram in Figure 3.3 shows the main components of the original 9 floating

point MAC designs. The figure is specific to a 1-5-5 design, but the only differences

Figure 3.3: Block diagram of 1-5-5 MAC.

for the other representations are the widths of the signals and components.

For each incoming value/coefficient pair the numbers are first broken up into

their sign, exponent, and mantissa pieces. The mantissas are multiplied and the
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product is normalized. The exponents are added and shifted to compensate for the

normalization. Meanwhile the sign bits are XOR’d to determine the sign of the

result of the multiplication. Then the exponents from the multiplier and the previous

accumulated value are compared to determine whether the product or the previous

value need to be shifted for the accumulation. The smaller value is always shifted so

that its exponent is equal to that of the larger exponent. Then the shifted mantissa

and the other mantissa are added with the appropriate actions taken to account for

sign to find the accumulated value. This mantissa is re-normalized if necessary along

with any corresponding exponent shift that needs to occur. The new sign, exponent,

and mantissa are then latched into the accumulation register to be used for the next

accumulation. For an FIR filter, after the 21 multiply-accumulates are complete the

accumulation register output is latched to an output register to be used by the next

component in the hearing aid design.

3.4 Revised Floating Point MAC

The basic function of the revised floating point MAC is the same as all of the MACs.

Notice, in Figure 3.4, that the revised implementation uses a Baugh-Wooley multiplier

[2] (like the linear representation) to multiply the mantissas. This also precludes the

necessity of handling the sign values separately. Also the exponents now don’t need

the compensation for the excess notations in both values.
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Figure 3.4: Revised floating point block diagram for two’s complement representation.

3.5 Simulation Modeling

3.5.1 Input Sets

The first input set was a representative audio sample taken from the SPeech In Noise

(SPIN) audiological test for human speech understandability [1, 16]. The SPIN test

samples are an industry standard set of samples for testing hearing aid and patient’s

hearing abilities. This particular sample was a clean (i.e., no background noise)

sample. The sample taken was about 3 seconds long and sampled at 32 kSamp/sec.

This input set was not altered from the initial sampling so it does not cover the entire

dynamic range of the representation. Normal conversation also does not cover the

whole dynamic range of human ears so this limitation is justified. The second was

a set of uniformly distributed, random data that spanned the entire dynamic range

of the representation. The random data was generated to have the same number

of samples as the 3 seconds of audio data. Figure 3.5 shows the speech data and

Figure 3.6 shows the random data.
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Figure 3.5: The speech input set.

The input samples started as wave files that contained decimal numbers. The

initial conversion for the floating point representations was carried out by a LabVIEW

virtual instrument that read in a wave file and output the data in the appropriate

representation. The linear and logarithmic input was created from these files. In

practice these conversions are carried out by Perl scripts that first account for the

sign of the number and store the sign for later. Then the absolute value is taken to

assure the input is non-negative. Then half the least significant bit value is added to

the input to account for Perl’s lack of rounding capabilities. The the scripts compare

the input to the decimal value of each bit. If the input is larger than the value of

the bit being compared then that bit is set and the value subtracted from the input.

Otherwise the bit is not set and the next bit’s value is compared. This continues until

the final bit’s value is checked. Then if the sign is negative the appropriate actions

are taken depending upon representation.
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Figure 3.6: The random input set.

3.5.2 Verification Steps

Verifying the correctness of the output of the MACs with the above input necessitated

the creation of golden models that emulate the hardware design in software. For the

floating point representations one golden model that could be configured to cover the

range of representations was written in LabVIEW. This virtual instrument (VI) read

in the same input files that the hardware read and wrote the output to file formatted

for the power estimation tool, MachPA. The file had the same input, any necessary

control signals, and the output in it. When MachPA is run, the input is read in along

with the control and the calculated output is compared to the output in the file. Any

discrepancies are flagged and reported while the tool is running. If there are no flags

then hardware output exactly matches the golden model output. For the linear and

logarithmic representations a Perl script was written to act as the golden models.

This script only wrote out the output so some other Perl scripts were written to build

the MachPA input out of the golden model input and output files.

Further verification could be made with the discrete hardware simulation out-

put. The golden models were written to use the same input files as the testbenches
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and the testbenches wrote the output to a simple file. For the floating point verifica-

tion the output had to be extracted from the MachPA input, which was done with

a Perl script. Then the golden model output could be compared to the testbench

output either visually or with the unix program diff. This verification flow can be

seen in Figure 3.7.

Figure 3.7: The verification flow for ASIC testing.

As one further verification the original working representation, the 1-5-5, was

tested on hardware. The FPX, or field-programable port extender, is a field pro-

grammable gate array (FPGA) on a bridge between a network line card and the

switch fabric of the Washington University Gigabit Switch (WUGS) [10]. Generally

this platform is used for active networking applications such as routing Internet pack-

ets, compressing, encrypting, and/or buffering data, and providing different priority

queues for different types of data. The 1-5-5 MAC was instantiated in an FIR con-

troller and the hardware bit-file was loaded onto the FPGA. A sample of music was

encoded into asynchronous transfer mode (ATM) cells which were streamed over the

network to the filter and, after processing, the output was streamed back and recorded

to a file. This file was converted to a standard wav format and played to verify the
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pass-band of the 4-8 kHz filter. Also this output was compared as a waveform to the

data produced by the golden model. That comparison can be seen in Figure 3.8. The

apparent misalignment was shown to be a feature of the graphics capabilities of the

display.

Figure 3.8: Actual 1-5-5 hardware output overlaid with golden model output for a
music sample.
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Chapter 4

Power Measurements

Two mechanisms for power estimation were used to compare the different MACs de-

signed for different numerical representations. For each of these tests the two differ-

ent input sets were used and two different complementary metal oxide semiconductor

(CMOS) technologies were targeted.

4.1 Technologies

The MACs were targeted to both an application specific integrated circuit (ASIC)

and a field programmable gate array (FPGA). The ASIC design path made use of the

AMI .5µ standard cell library [18]. This library contains building blocks that can be

connected to produce the same logic as the design without the need to configure things

at the transistor level. The library includes blocks such as basic AND, OR, NAND,

NOR gates as well as more complicated structures such as adders and counters.

Targeting the FPGA also included a library of sorts. The synthsis tool was told

what brand and model of FPGA to target. Then it could use the proper control logic

blocks (CLBs) and lookup tables that the chip provides. An FPGA is made up of
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many blocks like the one shown in Figure 4.1 [9]. This block contains 3 lookup tables,

Figure 4.1: One unit of an FPGA.

two latches, and the necessary interconnects and multiplexors to connect them. By

using programmable lookup tables and control blocks, FPGAs have the ability to be

reconfigured. This allows for hardware tests to be performed much more convienently

than if a design had to be sent to a fabrication plant and a chip finally returned.

4.2 Signal Transition Counts

Basic physics tells that P = 1
2
fCV 2 with P = power, f = frequency, C = capac-

itive load, and V = voltage. With modern digital design, frequency and voltage

are primarily decided by the choice of the technology being used and the target of
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the application. These decisions are choices like choosing between an FPGA and an

ASIC or a .5µm process and a 90 nm process. The capacitive load of a single node

or wire is also determined by this decision, but the overall capacitance in the circuit

is determined also by the number of bits that are charged and discharged in a given

amount of time.

This line of thinking says that power consumption of different circuit designs

should change linearly with signal transition counts if the technology is held constant

and the length of the measurement is held constant. For this reason both input sets

contain the same number of values. Generally, signal transition counts are a measure

of energy, but by keeping the tests a constant length power changes linearly with

energy. These signal transition count tests were run with Mentor Graphics ModelSim

on post synthesis VHDL. The synthesizing tool takes information about the intended

target and returns a gate level VHDL file. (i.e., for an FPGA target the synthesizer

would determine which lookup tables to use and what to program them with; for

a standard cell ASIC the synthesizer would connect the necessary gates.) For the

FPGA path, Synplicity was used and was set for a Virtex 2000E FPGA. In the case

of the ASIC path, Leonardo Spectrum was used and a standard cell library for the

AMI .5µ process was targeted [18].

ModelSim is a discrete event simulator that can count the transitions on any or

all signals within a design, and depending on the organization of the design it is trivial

to find the distribution of power consumption based on components. This allowed for

removing any transitions counted in the testbench from the total count for the circuit.

The testbench was identical for each representation except for differing bit widths of

signals. The testbench passed representative input values to the MAC but did not

strictly emulate an FIR controller (i.e., approximately 5% of the multiply-accumulate

operations were represented in the input set). This includes controlling the pairing of
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coefficients and input values, controlling the accumulation and output registers, and

the clock and reset signals. Each representation was run with each input set, targeted

to both of the technologies. The output file with the transitions was the processed

with a perl script to extract the total transition count for each test. This would

take approximately 20 minutes to run the three seconds worth of data. Note that a

full FIR controller that includes the entire set of multiply-accumulate operations was

developed for 3 of the numerical representations. The power consumption of those

systems is consistant with what follows [7].

4.3 MachPA Power Simulation

To achieve more accurate estimates of power a spice-like simulator, MachPA, was

used. MachPA is a continuous circuit simulator that numerically solves the differential

equations that describe the circuit. To run MachPA on a design the synthesized

VHDL targeted for an ASIC was placed and routed in IC Station (the 1-5-5 layout

is shown in Figure 4.2), and the layout extracted. Then the golden model is used

to create the appropriate output for the given input because MachPA checks its

calculations against the desired output to check for correctness. Running MachPA

on a complete input set can take more than 8 hours, not considering the place and

route and golden model construction time.

4.4 Power vs. Signal Transition Counts

Due to the large difference in processing time it is desirable to be able to focus on

the signal transition counts. By running the same representations through both the

discrete simulation and the continuous simulation it is possible to both verify the
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Figure 4.2: 1-5-5 IC station layout.

expected linear relationship between signal transition counts and power consumption

and calibrate the conversion between the two. Figure 4.3 shows that this linear

relationship is quite evident. The data points are all from the ASIC targeted VHDL

and include 5 runs with the random input set and 5 with the speech input set. The

representations from the random set are the logarithmic, the 1-4-4, the 1-4-5, the

1-5-4, and the 1-5-5; and from the speech set include the logarithmic, the 1-4-4, the
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1-5-4, the 1-5-5, and the linear. The relationship y = .0649x + 1.7571 represents

Figure 4.3: The relationship between power and signal transition count.

the least mean squared error, straight line approximation of the set of points. It

takes as input the number of signal transitions divided by one million and returns the

estimated power in mW. The y-intercept being at 1.7571 as opposed to zero is a result

of the circuits having some signals, such as the clock, that will transition regardless

of any data being present. Also the continuous circuit simulator takes into account

any leakage currents present due to the feature size of the targeted technology. The

relationship shown here will be used to infer power consumption from signal transition

counts across all of the numerical representations. As an example of this the 1-6-5

MAC had 154,554,286 transitions with the random input set.

power = .0649 · 154, 554, 286

1, 000, 000
+ 1.7571 = 11.8mW
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4.5 Power Relationship Across Representations

Below are signal transition counts and estimated power for the various combinations

of representation, technology, and input set. These numbers only reflect the power

consumption of the various MACs. They do not report the power consumption of a

complete FIR filter as we are not modeling the controller for the MAC.

Figure 4.4: Estimated power for ASIC target with speech input for all representations.

For the ASIC target, Figures 4.4 and 4.5 show the power consumption of the

various representations for the speech input set and the random input set respectively.

The values shown were calculated with the linear line of best fit from Figure 4.3. The

same general trends are seen in both figures. The logarithmic representation consumes

the least power of any representation in both cases and the power consumption gen-

erally rises as the number of bits rise. Within the floating point representations each

group of equal number of exponent bits, lengthening mantissa increases the power

consumption. However, there isn’t a clear trend when jumping from a mantissa of 6

bits down to a mantissa of 4 bits with a longer exponent. Table 4.1 shows the power
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Figure 4.5: Estimated power for ASIC target with random input for all representa-
tions.

consumption of the two most power efficient representations, the revised 4-6 floating

point and the logarithmic, as a percentage of the power the linear representation uses.

Table 4.1: Power consumption with respect to the linear representation.
4-6 Logarithmic

Random 43% 19%
Speech 38% 36%

Between the sets of inputs there also isn’t a clear relationship as in some cases

the speech input set uses more power, and in other cases the random input set uses

more power. In the case of the logarithmic representation there appears to be a much

greater power savings with the random input set. This is due to the conditions in

which the look up table is accessed. Speech signals are highly correlated, which makes

skipping the look up table less likely, whereas the random input set would be more
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Figure 4.6: Breakdown of power consumption within logarithmic MAC with random
input.

likely to have large jumps in signal level and therefore be able to bypass the look up

table more often. This could have a large effect as the look up table and its control

accounts for an average of ≈ 94% of the signal transition counts in the logarithmic

MACs. Figures 4.6 and 4.7 show the breakdown of lookup table usage for the two

different input sets.

Figures 4.8 and 4.9 show the number of signal transitions from the discrete

simulations of the MAC targeted to the FPGA for the various representations. Again

there is the clear upward trend with the number of mantissa bits within groups with

the same number of exponent bits for the floating point representations. Also, again,
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Figure 4.7: Breakdown of power consumption within logarithmic MAC with speech
input.

the logarithmic representation is by far the clear choice based on power consump-

tion alone. However, there are some relationships that don’t agree with the results

from the ASIC simulations. For example, with the random input, the floating point

representations with 4 bits of exponent have more signal transitions than the repre-

sentations with 5 and 6 bits of exponent. Since the results of the speech tests agree

with what we expect this does not appear to be a design issue, however, to uses these

results conclusively an explanation is needed. This anomaly leads us to have higher

confidence in the conclusions from the ASIC design.
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Figure 4.8: Signal transition counts for FPGA target with speech input.

4.6 Power Consumption for Entire Aid

For both the uni-rate and multi-rate hearing aid designs we let Ctotal = C6 + C5 +

C4 + C3 + C2 + C1 where Cx = power consumed in channel x. Also, CFIR = power

consumed by one 21 tap FIR filter and CLA = power consumed by a hypothetical

linear amplifier. For the uni-rate design:

C6 = 2CFIR + CLA

C5 = 4CFIR + CLA

C4 = 8CFIR + CLA

C3 = 16CFIR + CLA

C2 = 32CFIR + CLA

C1 = 64CFIR + CLA
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Figure 4.9: Signal transition counts for FPGA target with random input.

The number of taps doubles for each lower channel to maintain the filter’s magnitude

response, thus the increasing multiplier on CFIR. From this, Ctotal = 126CFIR +6CLA

and CLA ≈ 1
21

CFIR since a linear amplifier is just a multiply and there are 21 multiply-

accumulates in one FIR. So for the uni-rate design

Ctotal = 126.2857CFIR (4.1)
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For the multi-rate design:

C6 = (3CFIR + CLA)

C5 = 1
2
(4CFIR + CLA)

C4 = 1
4
(4CFIR + CLA)

C3 = 1
8
(4CFIR + CLA)

C2 = 1
16

(4CFIR + CLA)

C1 = 1
32

(3CFIR + CLA)

Channels 6 and 1 only have 3 FIR filters associated with them due to the configuration

of the low-pass filters. The low-pass filter at the input is associated with the channel

above it since it comes before the down-sampler and therefore must run at the rate of

the channel above it. The low-pass filter near the output is after the up-sampler, but

every other input will be zero from the up-sampling, so it essentially runs at the rate

of the channel below it. For this design Ctotal = 6.84375CFIR + 1.96875CLA. Again

CLA ≈ 1
21

CFIR so:

Ctotal = 6.9375CFIR (4.2)

From this, the multi-rate design uses only 5% of the power needed by the uni-rate

design.

Table 4.2 shows the total power needed for a full hearing aid, using the equa-

tions 4.1 and 4.2 and based on the power consumption of the speech input, for the

linear, logarithmic, and the 4-6 revised floating point representations. Using a log-

arithmic, multi-rate design uses only 2% of the power needed for a linear, uni-rate

design.

While contemplating these conclusions it is important to realize that these

comparisons are in terms of power only. We are not investigating the area necessary
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Table 4.2: Power consumption of a full hearing aid.
Linear 4-6 Logarithmic

Uni-rate 1947 mW 739 mW 691 mW
Multi-rate 107 mW 41 mW 38 mW

for the storage associated with the multi-rate design and its buffers. The area re-

quired is potentially significant and may rule out the multi-rate design with current

technology and feature size.

4.7 Conclusions

From these results we can conclude a number of things on different levels. At the

lowest level, it is clear that the logarithmic representation consumes the least power

of the tested representations while having the audio characteristics that are necessary

for a successful hearing aid. The revised 4-6 floating point representation approaches

the savings of the logarithmic with speech input, however, the characteristics of the

representation aren’t quite as good as those of the logarithmic. While it may be pos-

sible to save more power with a floating point representation with 3 bits of exponent

or mantissa the SQNR and dynamic range would be far to low. If a higher SQNR or a

larger dynamic range than the logarithmic representation can provide is needed for an

application the floating point representations may be able to meet the specifications

while still using less power than the linear representation. We can also conclude that

the multi-rate design can lower power consumption dramatically.

At a higher level, this data suggests that if power consumption is a concern in a

digital signal processing application, audio or otherwise, using a customized numerical

representation can provide significant benefits.
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Chapter 5

Summary and Conclusions

This thesis has examined the power consumption ramifications of using different nu-

merical representations for audio signals in digital hearing aids. The hearing aid

design used for this examination is a multi-rate design which means that the six

channels run at different sample rates (i.e. the highest frequency channel processes

32 kilosamples per second; the channel below that processes 16 kilosamples per sec-

ond and so on). Within this design are 22 finite impulse response filters that consume

the majority of the power used by this design. This thesis focuses on the multiply-

accumulate function that is the bulk of the processing in the filters. The different

numerical representations that were tested consist of the standard 16-bit two’s com-

plement linear representation, a 9-bit sign-magnitude logarithmic representation with

a base of .941, 9 floating point representations with 1 sign bit and four to six bits of

both exponent and mantissa, and a tenth floating point representation with a 4-bit

two’s complement exponent and a 6-bit two’s complement mantissa. As further inves-

tigation two input sets were used in the testing of each multiply-accumulate unit. A

three second speech clip from the Speech in Noise audiological test for human speech

understandability was sampled at 32 kilosamples per second and a random number



63

generator was used to create a random input file with the same number of samples

as the speech input.

A selection of these multiply-accumulate units were synthesized, placed, routed,

and the layout was extracted to allow for a continuous circuit simulation of power

consumption. This data was compared to signal transition counts from a discrete

event simulator run on the post-synthesis design. A linear relationship was found

that was used to calibrate the signal transition counts from the other combinations

of numerical representation and input set. From these tests some conclusions can be

drawn with regards to hearing aid design. The logarithmic representation is the clear

winner in terms of audio characteristics and power consumption with both input sets.

With the speech input the logarithmic representation needs only 36% of the power

that the linear representation needs to process the same data. Also, by incorporating

the multi-rate design the components need to process much less data which would

use only 2% of the power needed for a uni-rate design. In broader terms of signal

processing, or even digital circuit design, using a custom numerical representation

can be very beneficial if power consumption is a constraint in the design. As the

savings can be quite input dependent, for other types of signal processing the ideal

representation will be highly application specific.

5.1 Future Work

There are a couple of directions that could take this work forward and expand upon

it. The simplest include testing other clean speech samples and speech samples in

noise to determine how input dependent the power savings are. More in-depth work

would involve:
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Non-Linear Amplifier If non-linear amplifiers were designed and tested for some

subset of these representations then the full 6 channels could be put together into one

design with some modifications for the up and down sampling filters. This would allow

for further verification and calibration of the transition count to power relationship.

Also the different needs of the NLA might favor a different representation which would

necessitate determining which component has more of an impact on the total power

consumption. This work is in progress for the linear, the logarithmic, and the 1-4-5

floating point representations[7].

A/D and D/A Before a hearing aid could be built to take full advantage of these

results, A/D and D/A converters will be necessary. Building on the work discussed in

the introduction [23], delta-sigma converters with the necessary SQNR and dynamic

range could be designed.

Hardware Testing The most accurate determination of power requirements is

through measurements made on a deployed system. One way of running on hardware

would start with the existing 1-5-5 full FIR filter that has been deployed on the

FPX platform and a selection of the other representations could be fully synthesized,

placed, and routed and loaded onto the FPGA for physical power measurements.

This would require that a full FIR controller be written for the linear and logarithmic

MACs that is compatible with the current signed floating point controller. More

ideally the current FIR controllers that fit in with the full channel designs would be

placed-and-routed for an FPGA and the whole channel could be run on hardware.

This would allow for actual measurements of current which can be easily translated

into power (P = IV ). Finally, of course the desire would be to get the whole aid

running on an FPGA from A/D to D/A in representative representations (i.e. linear,
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logarithmic, and a few floating point representations that fit the audio characteristics

well).
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