Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-89-46

1989-10-01

U.S. Tax Law as an Expert System

Karin M. Hartzell and Susan T. Miles

Tax law is a particular application well-suited for an expert system because of the large among
of knowledge and the many variables involved. The following presents the results of
implementing a small portion of tax code, with a brief look at whether or not it can be fully
recreated in an accurate system with an acceptable response time. The actual prototype
implementation has been done using the expert shell NEXPERT, making use of the IF/THEN rule
construct which seems to fall naturally from the tax code.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Hartzell, Karin M. and Miles, Susan T., "U.S. Tax Law as an Expert System" Report Number: WUCS-89-46
(1989). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/756

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/756?utm_source=openscholarship.wustl.edu%2Fcse_research%2F756&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

U.S. TAX LAW AS AN EXPERT SYSTEM

Karin M. Hartzell
Susan T. Miles

WUCS-89-46

October 1989

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 83130-4899

Supmitted to the Fourteenth Annual Internaitonal Computer Software and Applica-
tions Conference to be held in Chicago, Illinois, October 1990. This project was com-
pleted in partial fulfillment of the requirements for the Graduate Certificate in
Artificial Intelligence.

U.S. Tax Law as an Expert System

Karin M. Hartzell
Susan T. Miles

Department of Computer Science
Washington University
Saint Louis, Missouri*

ABSTRACT

Tax law is a particular application well-suited for an expert system because of the large amount of
knowledge and the many variables involved. The following presents the results of implementing a
small portion of tax code, with a brief look at whether or not it can be fully recreated in an accurate
system with an acceptable response time. The actual prototype implementation has been done
using the expert shell NEXPERT, making use of the IF/THEN rule construct which seems to fall
naturally from the tax code.

INTRODUCTION

U.S. tax law as currently put forth by the Internal Revenue Service is quite complex and can be
difficult for the average taxpayer to fully understand, especially in light of the continual revisions
made to it. More people are having to turn to tax advisors for help in understandin g exactly how
the laws apply to them [1]. Normally such an advisor answers the questions by using knowledge
stored in her memory, turning to abundant tax law books and pamphlets, or, in extreme cases,
asking someone more knowledgeable. These methods can be time consuming and are prone to
providing incorrect information; in 1988, the LR.S. telephone assistance helpline was rated 'B+'
in accuracy by [2], suggesting that there is room for improvement.

In the past, work has been done on systems which deal with specific angles of the law. Programs
exist which solely compute taxes and provide printouts of completed forms. At a more
sophisticated level, McCarty's TAXMAN was designed to evaluate the tax implications which
might result from a corporate reorganization [3]. TAXADVISOR, which provides estate planning
for the client with the goal of increasing client profit, relies upon rules of thumb supplied by
experts in the field rather than strict implementation of the law [4]. Still, this is not all-
encompassing. As opposed to singling out one subdomain of tax law, the current work being
described is a prototype which will assist tax advisors in answering questions concerning all
aspects of the tax code, quickly and accurately.

* Correspondence to: 8. T. Miles, 9515 Antigo Drive, Saint Louis, Missouri 63123

CONCEPTUALIZATION

Tax law can be represented as a goal-driven IF/THEN rule-based system once some restructuring
has taken place. When someone wants to know if he must file a tax return for the year, he asks his
advisor, "Must I file?", and this becomes the tax advisor’s goal. To establish or reject the goal,
she must gather only the pertinent facts from the client. As it currently stands, tax law seems to
contain ambiguities. For example, one criterion that a person must meet in order to be considered a
dependent is the gross income test which states that his income must be less than $1,950.00.
However, according to another section of tax law, a dependent age 65 or older must file a return if
his gross income is greater than $3,750.00 [5]. The discrepancy occurs with the term dependent.
In many instances these alleged ambiguities can be resolved, but only after in-depth research into
appropriate Treasury regulations, relevant court cases, and L.R.S. promulgations; in those that are
unresolvable, alternate solutions need to be made known [1]. Once the discrepancies have been
satisfactorily eliminated, it becomes possible to write all of tax law as IF/THEN rules. For
example, if a person is a U.S. citizen, single, under age 65, and has a gross income equal to or
greater than $4950.00, then he must file a return for the tax year in question.

In a prototype, such as this is, it is impractical to implement every tax law and, in turn, have the
system be able to respond to every possible question a taxpayer may have. For this reason, the
realm of tax law this prototype covers was scoped down. In order to make the system readily
expandable, instead of choosing one area of tax law and going into great detail, implementing
every law that falls into that category, many areas of tax law were addressed, but without depth.
The more general types of questions a person might have, such as "Must I file a return?," are
covered, as opposed to very person-specific issues such as "Is my home equity loan fully
deductible on my tax return?". In the future it will be easier to add more laws within an area by
building on the current existing framework; this is like modular programming in a high level
procedural language.

[1] enumerates several criteria necessary for a successful tax advisor expert system. With Neuron
Data's expert shell NEXPERT OBJECTs ability to perform forward and backward chaining
simultaneously, control the search strategy, list an "audit trail", and tell how a fact was deduced
and why a fact was needed [6,7], NEXPERT meets MacRae's criteria. This, and its development
environment, made NEXPERT running on a Macintosh IT with 1200K of memory the tool of
choice for this prototype.

The user interface needs to contribute to the goal of providing information quickly. Using the
system should require minimal computer knowledge on the part of the user, the tax advisor; fact
input should require minimal time-consurning typing; the user should be guided through a session;
all of which leads to the answer being provided in less time than traditional methods.

IMPLEMENTATION

To begin implementation, various methods for communication between the tax advisor and the
system were investigated. For ease-of-use and the desire to minimize typing, a multi-valued menu
was chosen to drive the system. The top-level tax topics, such as "Filing Requirements"”,

“Income”, "Standard Deductions", and "Credits" became the main menu. To get to the topic the

FILING REQUIREMENTS
AGE REQUIREMENTS
WHO MUST FILE IN GENERAL
REQUIREMENTS FOR DEPENDENTS
EXEMPTIONS
PERSONAL EXEMPTIONS
DEPENDENTS
INCOME .
WAGES, SALARIES, AND OTHER EARNINGS

INTEREST INCOME
SOCIAL SECURITY INCOME

SALE OF PROPERTY
Investment Property
Business Property
Rental Property
STOCKS
STANDARD DEDUCTION
CREDITS
CHILD & DEPENDENT CARE CREDIT
CREDIT FOR THE ELDERLY OR DISABLED

REGULATED INVESTMENT COMPANY CREDIT

Figure 1. Excerpts from the menu hierarchy.

question relates to is simply a matter of following the menu hierarchy (Figure 1). If the question
posed to the tax advisor concerns Social Security income, she would select the category "Income”
from the main menu. A second menu appears, the result of firing one of the front-end menu rules
with the category object instantiated to “Income”, and the tax advisor then selects "Social Security
Income". If at any time in the front-end menu system the user decides she has selected the wrong
category, it is possible to backtrack to the previous menu by selecting the NOTKNOWN box. The
topic is quickly narrowed and NEXPERT begins inferencing based on the selected goal, requesting
any pertinent information to establish or reject this goal. Once the goal has been reached, the
answer to the client's question is presented in a text box.

Currently this menu system is implemented inside of NEXPERT. The rules for the top level of the
menu hierarchy are tied to the rule conclusion, known as the hypothesis in NEXPERT
terminology, "task_complete”. The system'is started and the main menu is displayed when the
user begins a Knowcess-ing session after suggesting the hypothesis "task_complete".
Unfortunately this method is ungainly and slows NEXPERT considerably. A future enhancement
for the system is an external interface written in C which takes advantage of NEXPERT's callable

interface and handlers.

NEXPERT makes use of classes and objects. Every variable referenced in the rules is
automatically deemed an object by NEXPERT, however it is also possible to predefine objects
with multi-valued attributes, similar to "struct” in C or "record" in Pascal. For instance, a person
object was created since most questions asked relate in some way to the person asking the
question: "Can I claim my daughter as a dependent?," "Must my son file a return?,” and so on.

The information the person gives his tax consultant to help her answer his question becomes fields,
or properties, in the person object, such as his age, marital status, any dependents, and earned
income. In the rules, the person's age is then referenced as person.age and it will be consistent
throughout the rule base; the structures are available for use when more tax laws are implemented,

When attempting to establish a rule conclusion, NEXPERT prompts the user for values needed to
confirm facts on the left hand side of a rule in the agenda. These facts, which are objects or object
properties, can be of type boolean, integer, float, string, date, time, or special; the objects currently
in the system are all of the first four types listed. In providing the value for a boolean-type object,
the user is permitted to select one of three available answers: TRUE, FALSE, and NOTKNOWN.
For an integer or float, she is given both a blank line on which she can type the value from the
keyboard and a NOTKNOWN box. To supply a value for a string, the user has three options:
typing the value on the blank line, using the mouse to click the appropriate answer from a list
NEXPERT provides, or selecting the NOTKNOWN box. NEXPERT gets the strings in the list
by searching the rule base for all rule conditions of the form "IS object string" and "ISNOT
object string", where object is the object for which a value is being requested, and string is a
specific instantiation of that object. If a value is entered which is not known to NEXPERT as a
possible value for the string, .all rules which require a known value fail. For all object types,
NOTKNOWN is always a possible value. When it is chosen as the value for a particular object,
NEXPERT assumes that the condition has been satisfied and proceeds as such. This can lead to
erroneous results, especially in an area like tax law. If the client says that the value of his gross
income is NOTKNOWN and the system assumes then that the condition "< person.gross_income
400" is true when in reality the person's gross income is $100,000, the answer the system gives
the client may not at all be relevant; for instance, the amount of tax the client owes on $100,000 is
expected to be much more than what he would owe if his income were indeed $400, and vice
versa; the government considers it to be tax evasion when a person pays taxes on $400 worth of
income and lets the other $99,600 go. Unfortunately, there is no way to remove the presence of
this NOTKNOWN box, which leaves several options. The selection of that box can be tied to an
action, such as setting the value of some variable or bringing up another screen. For instance, in
the menu system, the NOTKNOWN box is tied to the previous menu screen. Another approach is
to have a text box appear stating that the requested value for the item must be given in order for
inferencing to continue, otherwise the session will be terminated.

NEXPERT formats its prompts for object values based on the name of the object. In general, this
looks like, "What is the Value of object.property?”. This can be awkward for the user, especially
when the object and property names are unclear. Because the tax advisor is using this system from
within the development environment, all the prompts were modified so that they appear in a more
natural manner. :

CONCLUSION

As discussed above, a very small percentage of tax code has been implemented in this tax advising
system. For system verification, two experts from a local tax firm were brought in to experiment.
The results were quite positive; they learned the mechanics of the system quickly, repeatedly
commented on its ease-of-use, and were impressed with the consistently correct answers.

However, they stressed the fact that tax law is a huge area and that this prototype scrapes only the
tip of the iceberg.

Considering the amount of tax law covered, its knowledge base counterpart was huge in
comparison, consisting of over 300 rules. This created difficulties in loading and processing, It
quickly became necessary to use a dedicated machine, as other processes running in the
background prevented enough memory from being available to perform loading. Even on a
dedicated machine, though, the response time during a "consulting” session increased noticeably
with the increase of rules. The hardware necessary then to store and run a complete system would
need to be quite large. Another problem with tax law is its dynamic nature. With the constant
modification of laws, those implemented quickly become obsolete. Keeping the system updated as
the tax laws change becomes a full-time effort. Politically, a major change in legal attitudes is
required to have new laws written in a form which is easily implemented without restructuring.

Although MacRae's criteria for the application of rule-based systems to tax problem solving have
been realized in this prototype, the above difficulties indicate that an expert system implementing
the complete I.R.S. tax code would require enormous effort at this time.

ACKNOWLEDGEMENTS

The help of S. B. Cousins, Deparhncnt of Cor_nptiter Science and Department of Internal Medicine,
Washington University, in preparing this paper is gratefully acknowledged.

The assistance of N. Curl and W. Holmes in the development of this system is gratefully
acknowledged.

The advice and resources provided by our tax experts is gratefully acknowledged.

REFERENCES

[1] C.D. MacRae, "Tax Problem Solving with an If-then System," Computing Power and Legal
Reasoning, St. Paul: West Publishing Company, 1985, pp. 595-620.

[2] P.P. Storer, "IRS Telephone Answers Rate a B-Plus," 39 Tax Notes No. 3, 393, 1988.

[31 L. T. McCarty, "Reflections on TAXMAN: “An Experiment in AT and Legal Reasoning,"
Harvard Law Review, March 1977, pp. 837-893.

[4] R.Michaelsen and D. Michie, "Expert Systems in Business," Datamation, vol. 29, issue 11,
November 1983, pp. 240-246.

[5] Your Federal Income Tax, Department of the Treasury Internal Revenue Service, Publication
17, Revision November 1988. :

[6] NEXPERT OBJECT Fundamentdls, California: Neuron Data Inc., 1988.

[7]1 P. Harmon, R. Maus, and W. Morrissey, Expert Systems Tools and Applications, New
York: John Wiley & Sons, Inc., 1988. ‘ :

	U.S. Tax Law as an Expert System
	Recommended Citation

	tmp.1459809062.pdf.eH0NU

