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In order to support a wide range of applications, Distributed Object Comput-

ing (DOC) middleware frameworks such as ACE and TAO have grown to include

a vast number of features. For any one application, though, unused functionality

either contributes to code bloat, degrades performance or both. When applied to

embedded and realtime systems, these issues can preclude the use of middleware al-

together. Currently, to address these concerns, middleware developers continually

refactor code to relegate functionality to separate libraries. This process is tedious,

time-consuming, and adds complexity for both users and developers.

To address the difficulties of creating subsettable middleware, we have devel-

oped a novel method for constructing middleware using Aspect-Oriented Program-

ming (AOP) and applied it to develop a realtime CORBA Event Channel called the

Framework for Aspect Composition for an EvenT channel (FACET). FACET consists



of a small, essential core that represents the basic structure and functionality of any

event channel. By using aspects, additional features are woven into the core so that

the resulting event channel supports all of the features needed by a given embedded

application.

A feature-management framework was developed to cover all supported fea-

tures and validate their combinations. To ensure correct operation, every feature has

a corresponding set of unit tests. Since arbitrary compositions of features may lead

to unforseen behaviors, the FACET test framework can enumerate and test all valid

feature combinations of the middleware. This provides a high degree of confidence in

the event channel in any environment.

Additionally, we present quantitative results on the impact of features on the

footprint and performance of FACET. Several typical configurations are also identi-

fied and compared to show their significant advantages over fixed feature set event

channels. Finally, several key design patterns for the development of middleware

using AOP are presented.
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Chapter 1

Introduction

Traditionally Successful Distributed Object Computing (DOC) middleware, such as

the Common Object Request Broker Architecture (CORBA) [35], COM+ [33], and

Java Remote Method Invocation (RMI) [50], provides a rich feature-set to increase

its applicability across diverse problem domains. Not surprisingly, any particular

application tends to use only a limited subset of features. This observation, coupled

with the practical reality that computation and memory resources are limited, leads

software architects and designers to include frameworks for customizing a feature

set for a particular application. This thesis describes new techniques for building

customizable middleware using Aspect-Oriented Programming (AOP) and describes

the design and performance of the Framework for Aspect Composition for an EvenT

channel (FACET), an event notification service built using AOP.

An increasingly important area for DOC middleware is embedded and real-

time systems. In general, these systems have stricter requirements for predictability

and often impose harsher limitations on the available resources for computation and

storage. To support these environments, middleware such as the ADAPTIVE Com-

munication Environment (ACE) [44] and The ACE Object Request Broker (ORB)

(TAO) [14] have both been designed with customizability in mind and have been

subsetted extensively. However, current techniques for subsetting middleware such

as ACE and TAO have numerous shortcomings:

1. Standard subsetting techniques such as the use of macros to include code selec-

tively, or the use of design patterns [22] such as Strategy or Template Method



2

require a priori knowledge of customization points. 1 If subsetting is not con-

sidered in an application’s design up front, the code around the customization

point must be refactored [21] to be amenable to applying these design pat-

terns. By using AOP, new functionality can be added to the core application

after it has been written, without any refactoring. In other words, feature cus-

tomization points need not be known ahead of time, and customization can be

accomplished subsequently without refactoring.

2. As a result of adding macros and strategizing customization points, the basic

functionality of core code can be obfuscated by the customization infrastruc-

ture. This complicates program maintenance and evolution. As demonstrated

in FACET, this problem can be eliminated by AOP, and implementing new

extensions can be further simplified in several ways.

3. The Strategy and Template Method patterns introduce code that is present at

runtime, even for those features excluded from a particular runtime configura-

tion. At best, this introduces an insignificant amount of runtime overhead—for

example, to check a strategy—and this overhead may be acceptable. However,

if a customization point is in a performance-critical loop, or if the call is made to

another software context (such as across shared libraries), then the additional

method-call can impact system performance and predictability.

Chapter 2 provides further background on developing customizable middleware and

the requirements of embedded systems. Additionally, observations and experience

from subsetting significant components of TAO are described.

Then, Chapter 3 describes the high level architecture of FACET and the in-

teractions between the major components. This framework for using AOP to build

customizable middleware is general enough that it can be applied to other types of

middleware as well.

Another often-overlooked issue when subsetting middleware features is to pro-

vide a mechanism to identify dependences between features and to signal errors when

two mutually exclusive features are selected. The most common technique for solv-

ing this problem is to use conditional compilation macros to check for all possible

violations. This method is error prone, due to the amount of manual work involved.

Additionally, as shown in FACET, AOP allows one to develop many fine-grain features

1An overview of design patterns can be found in Chapter 6.
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making the feature-management problem more severe. To solve this problem, this

thesis presents a feature-management framework that automatically validates feature

configurations and simplifies management of the features’ dependences. Chapter 4

describes this framework in detail.

Next, reliability is always a concern when developing software, especially for

embedded or realtime systems that may be located in remote locations or perform

safety-critical tasks. An important tool to ensure software quality is the creation and

automated execution of unit tests. Additionally, to ensure the quality of customizable

middleware, not only should every feature be validated, but also all meaningful com-

binations of features should be checked to identify unintentional interference between

features. A naive approach of exhaustive feature enumeration is intractable, since

the number of (valid and invalid) feature combinations grows exponentially.

However, by using the feature-management framework in FACET, it is pos-

sible identify only those feature combinations that produce a viable configuration.

This thesis provides empirical evidence that it is feasible to test all viable combina-

tions of feature in FACET. By reducing thorough testing to an automatic, relatively

efficent process, it is likely that software developers will perform testing routinely

and frequently, thus shortening development time and increasing the reliability of the

delivered middleware.

An additional issue that arises when enabling testing over all combinations

of features is when one feature changes the expected behavior of another feature’s

unit tests. For example, FACET has a feature that allows for the specification of

the maximum number of event channels that an event can pass through before being

dropped. Tests that are written without knowledge of this feature, do not initialize

it, and therefore have their events dropped when it is enabled. This issue actually

arises frequently, typically because an enbabled feature requres that some additional

work be performed at initialization, or before uses of some core functionality. Tra-

ditionally, testing techniques for middleware overlook testing in this area due to the

added complexity for allowing for these cases. The complexity of feature interaction is

often sufficiently daunting that developers tend to bundle sets of interactive features

without testing their interactions. However, by taking advantage of AOP techniques,

FACET can automatically update unit tests to handle modifications to core func-

tionality by other unrelated features. Chapter 5 describes both the test framework

behind FACET, and this use of AOP to update unit tests.
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During the development and refinement of FACET, several new patterns were

identified, involving the use of AOP to develop customizable middleware. Since

aspect-oriented software development is relatively new, these patterns will likely be

useful to many projects that use AOP. Chapter 6 describes these design patterns, the

mistakes that were made before using them, and their use throughout the FACET

implementation.

Many performance and footprint improvements were achieved by having the

ability to configure the FACET event channel to the exact desired set of features.

Chapter 7 provides measurements of FACET under various configurations and ana-

lyzes the impact that individual features have on the middleware.

Finally, Chapter 8 summarizes our work on FACET and describes future work

applying aspects to flexible middleware components and services.
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Chapter 2

Background

This chapter provides background information on the development and evolution of

Distributed Object Computing (DOC) middleware. Based on current practices and

experiences from the development of this middleware in the DOC Group, the problems

associated with evolving and maintaining the software are presented. New program-

ming techniques such as Advanced Separation of Concerns (ASoC) and, in particular,

aspects [27] are then described as a mechanism for addressing these shortcomings.

Finally, this chapter provides an overview of the specific type of middleware, Event

Services, that were studied to develop the Framework for Aspect Composition for an

EvenT channel (FACET).

2.1 Middleware

Developing large software projects is notoriously difficult [9]. Programming platforms

vary widely, outdated and unwieldy programming interfaces abound, and frameworks

for addressing communication issues either may not be available or may not be inter-

operable. It is for these types of problems where middleware has proven to be very

useful in practice [45].

DOC middleware is a specific category of middleware that addresses the many

accidental and inherent complexities [10] of network and distributed programming.

Accidental complexity refers to the programming issues with using tools, languages,

interfaces, and frameworks that are difficult to use and prone to errors. Network

programming has historically been difficult due to the lack of availability of anything

besides low level socket interfaces. On the other hand, inherent complexities arise

out of inherent difficulties with developing any program in the domain regardless
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of language, tools, or libraries. For networking, these include issues such as fault

tolerance, security, concurrency, and program distribution.

the ADAPTIVE Communication Environment (ACE) [44] and The ACE Ob-

ject Request Broker (ORB) (TAO) [14] are two of many examples of DOC middleware

frameworks that address the difficulties of distributed network programming. Both

of these frameworks have matured over many years of use for both research and in-

dustry applications [24, 18]. Issues identified during their development and evolution,

though, have led to current research and this work.

The development of ACE and TAO parallels many of the issues in the de-

velopment of large software systems. In both cases, the first releases may not have

all of the necessary features, but the overall design was elegant and areas for future

extension had infrastructure to support that extension. As time continued, more and

more features were piled into the original code. Some of the original code was also

refactored to allow for extensibility where there was none before.

This evolution continues, but middleware also has to deal with forces not

present in the context of single applications. These include being used in varying ap-

plications, platforms, and environments where each environment may have different

functionality requirements. Additionally, as middleware becomes more popular, it

begins to be put into environments that were not even conceived of early in develop-

ment. In the case of ACE and TAO, both frameworks are being used in more resource

constrained environments than initially expected. At the same time, though, their

popularity has encouraged the introduction of more and more features that take up

more memory and processing. This has led to a cycle of adding functionality, followed

by further subsetting to maintain and shrink the overall resource usage. This process

is time consuming and not ideal for the evolution of complex middleware. Many

times, the end result may not even be small or fast enough. The following section

describes the practices and issues that have arisen during this process.

2.2 Current Practices to Subset Middleware

The need to subset (or extend) middleware selectively has existed for some time [21],

and many design patterns have been identified that document successful strategies.

These include patterns such as Strategy [22], Interceptors, Extension Interface, Com-

ponent Configurator and others [46]. Although such patterns have been used exten-

sively in middleware such as ACE and TAO, the patterns carry several disadvantages:
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1. They require additional infrastructure within the framework to support their

presence. For example, the Strategy and Interceptor patterns require method-

invocation hooks to be placed at key locations throughout the code. From a

programmer standpoint, these hooks and the additional infrastructure lessen

the readability and maintainability of the code.

2. If the locations where subsetting should have occurred are not preconceived,

time-consuming refactoring may be needed to partition functionality into sep-

arate libraries.

3. The hooks and infrastructure themselves can lead to degraded performance and

increased footprint size.

2.2.1 Subsetting Techniques

Currently, subsetting a middleware feature generally involves the following steps:

1. Transforming the code to decouple feature-specific logic, classes, and data from

the core library.

2. Informing the base or core implementation that the feature is present when it

has been included.

3. Fitting the feature into the base implementation’s loading and configuration

services, if any.

The first item is the most time consuming and for the most part, it involves many

simple code transformations to ease the extraction of optional features to external

libraries. A byproduct of these transformations is that the core code becomes more

flexible and extensible. Well-known techniques such as those documented in the

refactoring literature [21] address these issues and are heavily used in the subsetting

process. A common example of such refactoring is to decompose a method into multi-

ple, smaller methods so that it is possible to apply the Strategy or Template Method

patterns. Code specific to a feature can then be removed from the core class to a

separate library. Once in the separate library, that feature’s code can be reregistered

with the core middleware using the techniques associated with the Strategy or Tem-

plate Method patterns. A limitation of this refactoring is that additional registration

infrastructure is needed in the core middleware for each extended class.
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Figure 2.1: Subsetting code fragments from multiple classes to a separate feature.

A variation on this style of refactoring—also in common use—is to combine

feature-specific code from multiple core classes into a common hooks class. A Sin-

gleton [22] is then used throughout the core to access the currently operating hooks

class. When a feature is configured, it registers its implementation of the hooks class

with the singleton. Figure 2.1 depicts this subsetting operation: on the left is the

original code that has pieces of the feature spread across several classes. The sub-

setting operation involves creating an interface, Abstract Hooks that has methods for

each section of code that will be removed from the core. A concrete implementation

of this interface is then created that contains all of the feature specific code. When

the middleware is executed, the core makes invocations into this concrete implemen-

tation, so that the feature can provide its functionality. Another way to describe

the concrete implementation, Extracted Feature Hooks, is to say that it encapsulates

many of the crosscutting concerns of the feature.

Much of the infrastructure needed to support subsetting a piece of middleware

can be shown using this same example. Figure 2.2 is a UML diagram of the static

structure of this infrastructure and the feature extension code. On the left is the

Component Configurator design pattern [46] which provides the infrastructure to

load and configure a feature statically or dynamically. This consists of the Component
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Figure 2.2: Resulting structure of code after subsetting.

Repository that keeps track of the components or features that have been loaded, a

Component that defines a common interface to extensions, the Extracted Feature that

contains the logic to initialize and register the subsetted feature with the core. The

Abstract Hooks and Extracted Feature Hooks fill the same roles as described before.

A Default Hooks is usually created to provide some default (possibly null) behavior,

so that the core can work when the subsetted feature is disabled. Finally, a Hooks

Registry is needed so that the core code can retrieve the current hooks code and so

that the subsetted feature can register its own hooks.

Figure 2.2 also reflects many of the limitations of current subsetting techniques,

because so much infrastructure is required in the core library. Of the classes in the

diagram, only Extracted Feature and Extracted Feature Hooks are part of the subsetted

feature’s library code. Although this does not have to be the case, it is often true that

the Abstract Hooks and Default Hooks classes are specific to one feature. Thus, the

core middleware must have these classes for each subsetted feature. This is clearly

not ideal from a theoretical or a practical standpoint, since feature code (albeit less)

is still present in the core, and significant infrastructure needs to be created and

maintained once the feature has been extracted.
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2.2.2 Case Study: Subsetting TAO

TAO is a full-featured the Common Object Request Broker Architecture (CORBA)

ORB developed by the DOC Group at Washington University and University of

California at Irvine. Although much of it was designed to be configurable from the

beginning, it has nonetheless grown to the point that its footprint size has become

too large for many embedded systems (as well as some desktop systems). As a result,

functionality has been subsetted from its core many times. In fact, this is an ongoing

effort, as TAO is increasingly considered for use in environments with tighter memory

constraints.

One feature recently subsetted from TAO is support for the Real-Time CORBA

1.0 (RTCORBA) specification [35]. RTCORBA defines standard mechanisms that

allow applications to control the priorities at which CORBA requests are processed

and how threads are allocated internally in an ORB. Many applications do not need

the features of RTCORBA, and developers of such applications find that the overhead

in footprint and processing of those features is burdensome.

The time and effort required to subset RTCORBA features from TAO was

significant: it took two expert ORB developers nearly five months’ time to refactor

code throughout the ORB and its associated libraries, and to verify its operation on

all supported platforms. This work consisted of the following tasks:

1. Writing service code to support dynamic loading and initialization of the library,

2. Moving those files and classes having to do with RTCORBA and already de-

coupled from the core code to separate directories,

3. Creating an RTCORBA-specific hooks class that can be used to register call-

backs from the core ORB to the RTCORBA library,

4. Identifying RTCORBA code-fragments that can be refactored into calls to the

hooks class,

5. Restructuring code, using the Strategy pattern, to support code that has com-

pletely different behavior with RTCORBA enabled,

6. Refactoring switch statements that have RTCORBA specific cases into registries

where appropriate, and
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7. Removing RTCORBA fields from core data structures and provide an extension

mechanism to the data structures to attach the RTCORBA specific data at

runtime.

After RTCORBA was removed, the size of the core library was reduced by about 10%,

and many method calls were removed from the critical path of the ORB resulting in

a small but noticable performance improvement.

A benefit of this process is that the core TAO code became more extendable for

future features. However, in addition to having to go through the tedious subsetting

process, the resulting TAO code is now:

1. More complicated due to the additional strategy classes and RTCORBA inter-

ception points,

2. Not as fast as possible due to the overhead of maintaining the hooks for RTCORBA

even when RTCORBA is not being used,

3. Suffering from additional overhead from new calls between the core code and

the RTCORBA library when RTCORBA is in use.

In this thesis we describe how Aspect-Oriented Programming (AOP) techniques can

alleviate the problems encountered with subsetting TAO.

2.3 Advanced Separation of Concerns

Separation of concerns [17] is the general term given to the process of identifying

and encapsulating related ideas and concepts together. Separation of concerns for

Object-Oriented Programming (OOP) involves identifying the structure of classes

and interfaces that define an application. However, separating concerns based on

structural elements is only one of many dimension where separation can occur. The

inability of OOP to separate other concerns has led to significant research in identi-

fying new approaches [19, 16, 27, 42, 15]. These approaches are collectively termed

Advanced Separation of Concerns (ASoC) due to their ability to enable more flex-

ible separations. A premise of this thesis is that the difficult subsetting practices

described in Section 2.2.1 occur when concerns are not properly separated. By using

languages and tools that possess ASoC expressiveness, composable middleware can

be constructed more readily.
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Before describing the languages and paradigms used to encapsulate nonstruc-

tural concerns, it is useful to describe other types (or dimensions) of concerns. These

can be broadly categorized as systemic and functional concerns [41].

• Systemic concerns include synchronization, realtime, scheduling, transaction se-

mantics, caching and prefetching strategies and memory management concerns.

• Functional concerns comprise application logic and features. These differ from

systemic concerns in their scope and intention. For example, a application logic

such as a new business rule may effect several computations and decisions in

separate classes, but a systemic concern such as synchronization affects many

classes systemwide.

Both of these types of concerns crosscut many classes, and by encapsulating them

into separately compilable units, one can selectively enable or disable their behavior.

A key observation is that software requirement tracability is much more apparent for

languages that support separation of nonstructural concerns [42]. The following sec-

tions provide an overview of the types of languages that are useful to distill functional

and systemic concerns from middleware.

2.3.1 AOP and AspectJ

AOP [27] is a software development paradigm that enables one to separate concerns

that crosscut sets of classes and encapsulate those concerns in self-contained modules

called aspects. The AspectJ [48] programming language adds AOP constructs to

Java [4] and uses the following terminology. Within an aspect, the locations at which

advice should be applied are defined using pointcuts. Each pointcut is made up of one

or more joinpoints, which are well-defined locations in the execution of a program.

The code applied at a pointcut is called advice. In addition to applying advice,

languages supporting AOP often allow new methods or other language features to

be introduced into existing classes. Of all of the separation of concerns languages

suitable for developing middleware, AspectJ is currently the most mature and was

thus selected for the experiments documented in this thesis.

As described in Section 2.2.1, reducing the coupling between classes in a li-

brary can reduce the footprint of applications that use selected parts of that library.

AOP provides a novel mechanism to reduce footprint size even further by enabling
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crosscutting concerns between modules to be encapsulated into user-selectable as-

pects. Following chapters will describe how we can use AOP to identify the core

functionality of a middleware framework and then to codify all additional functional-

ity into separate aspects. The advantage of using AOP is that the hooks and callbacks

required for subsetting (using standard, object-oriented techniques) are no longer re-

quired. This removes the need to preconceive where points of variation are needed

in the code and also removes the need to refactor large amounts of existing code to

insert these hooks after the fact. The patterns described in Chapter 6 make achieving

these advantages in AspectJ easier.

Desirable combinations of these aspects are then selected by middleware users

so to include the minimum functionality needed to support a given application. By

performing a fine-grain decomposition of the functionality, a middleware framework

could add very little bloat to an application, and thereby free the embedded developer

from concerns about excessive overhead. Unfortunately, fine-grain decompositions

can also add complexity for both the middleware user and developer. We address this

issue in Chapter 4 by providing a framework to manage features, their relationships,

and by integrating this knowledge into the build environment.

Previous work in subsetting applications using AOP has been done for the

GNU sort utility [12]. The authors identified 60 fine-grain separate concerns and

decomposed many of them using AOP programming techniques. That work has

many similarities with the initial event channel decomposition efforts in this thesis.

2.3.2 Multi-Dimensional Separation of Concerns

Multi-Dimensional Separation of Concerns (MDSOC) using Hyperspaces [40] provides

another mechanism for encapsuling crosscutting functionality. In the MDSOC model,

all possible concerns are located at points throughout hyperspace. For example, when

writing an application, a programmer chooses a particular way (out of many possible

ways) to separate concerns. Likewise, hyperspace can be sliced in many ways to form

units called hyperslices. Additionally, since concerns can be separated using different

points of view, hyperspace is considered multi-dimensional. In order to create a

program using MDSOC, many hyperslices are needed. These are composed together

to form a hypermodule. An important contribution of this model is that hyperslices

need not be orthogonal to be combined in a hypermodule. When overlap occurs

(for example, two hyperslices augment a class with different methods that have the
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same signature), the hypermodule can specify the resolution. The resolution can be

something as simple as running all overlapping methods and sending all results to a

summarization function. AOP does not provide this capability, and therefore some

ingenuity is required to address non-orthogonal aspects.

When constructing middleware, hyperslices can be used in a similar way as

aspects in AOP. That is, optional functionality can be relegated to independently

selectable hyperslices. The main disadvantage of using hyperslices is that knowledge

of how to compose hyperslices is specified in the description of the hypermodule. This

benefits normal applications that reuse hyperslices, since their incorporation into the

final application can be precisely specified. For middleware, though, it is the user

who chooses the desired functionality. Since the number of hyperslices may be large,

it is impractical to create a hypermodule for every possible configuration. Likewise,

relegating hypermodule creation to the user adds significant complexity. Techniques

to automate this process may make it more practical.

2.3.3 Composition Filters

Composition Filters [5, 1] provide yet another model through which crosscutting

concerns can be encapsulated into separate software modules. Here, all method in-

vocations are treated as if they were passing messages. Filters can then be set up to

monitor and modify messages depending on such things as the sender of the message,

the recipient, or the contents of the message. Additionally, filters can be attached to

classes as enhancements.

Developing composable middleware using this model can be achieved in a sim-

ilar manner as with AOP. In both cases, a base implementation is developed that

has the essential functionality and structure of the middleware framework, and then

filters are enabled to supply additional functionality. Unlike hyperslices, filters must

be orthogonal to each other, so special care is required for some feature combinations.

Although composition filters were not used in this work, other work [6] has

investigated their use to construct middleware. This thesis is different in that func-

tionality is separated in a more fine-grained manner, and aspect management and

testing are given much higher priority than solely encapsulating crosscutting features.
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2.4 Compositional Middleware

Previous research in compositional middleware has also addressed building config-

urable middleware. One of these approaches was used in the Coyote system [7] and

the more recent Cactus system [32]. Both systems address network services and pro-

tocol middleware by providing fine grain decompositions of their functionality that

can later be composed. The way that they accomplish this, though, is very different

from that provided in this thesis. In the Cactus system, functional components are

separated into modules called micro-protocols. Each micro-protocol contains a set

of event handlers that are bound to events in the Cactus runtime. By composing

these micro-protocols in various ways, the required functionality can be attained. To

contrast, the work presented here uses AOP techniques to compose features with the

base implementation. This frees the base from needing to preconceive all of the pos-

sible interception points ahead of time, and provides more flexibility for the feature

writer.

Another approach to decomposing middleware functionality into features and

allowing arbitrary combinations to be enabled is in Feature-Oriented Programming

(FOP) [43]. This approach adds language support to make features first class entities,

and has many similarities to the Separation of Concerns languages mentioned previ-

ously. The difference is that it has been designed specifically for composing features

in middleware. In FOP, a feature is like an abstract subclass, but it also has the

ability to override methods in other classes in addition to the parent. For the most

part, though, FOP has not been used to build full systems like has been done for

this thesis. Moreover, AOP appears to provide a much more generic and powerful

mechanism for attaching features to core middleware.

2.5 Event Channels

FACET is an implementation of a CORBA [35] event channel that uses AOP to

achieve a high level of customizability. Its functionality is based on features found

in the Object Management Group (OMG) Event Service [38], the OMG Notification

Service [34, 23], and the TAO Real-time Event Service [39] [25].

At a high level, an event channel is a common middleware framework that de-

couples event suppliers and consumers. The event channel acts as a mediator through
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which all events are transported. Figure 2.3 shows the main participants in the frame-

work. In the simplest case, suppliers push events to the event channel, and then the

event channel pushes those events to consumers. Event channel implementations dif-

fer in the types of events that they handle and in the processing and forwarding that

occurs within the channel.

The following sections describe various CORBA event services and their fea-

tures.

2.5.1 OMG Event Service

The OMG Event Service is the simplest standardized CORBA event service. It

provides the basic interfaces for consumers and suppliers to subscribe to an event

channel and then to receive and send events. With the exception of event services

that support typed events1, this event service only transports CORBA Any data types.

A CORBA Any is a self-describing data type that can hold any CORBA Interface

Definition Language (IDL) describable data (e.g., basic types, structures, unions, and

arrays.) The contents of the events are hidden from the event channel, and as such,

the event channel can perform no specialized treatment for events. It merely forwards

all of the events to all of the consumers that are registered. To limit the propogation

of events to uninterested consumers, applications typically instantiate multiple event

channels for each event category. Additionally, event delivery is purely on a best

effort basis.

To support the various event transport models, the OMG Event Service sup-

ports both push- and pull - style interfaces. Suppliers and consumers can arbitrarily

mix their usage of either interface style. For example, a push supplier can send events

through the event channel to a pull style consumer.

Additionally, all event transfers occur synchronously. That is, unless the appli-

cation specifically uses the CORBA Asynchronous Method Invocation (AMI) facility,

calls that send events will block until the event is received by the channel. This can

affect the performance of both the supplier and the event channel if network pro-

pogation delays are significant. For realtime applications, this can also increase the

likelihood of priority inversions [47]. As such, the standard CORBA event service is

not commonly used in realtime environments.

1Typed event service implementations are much less common than what is described here.
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For embedded applications, the footprint size of an event service is important

and may limit the ability to use an event channel if it is too large. One data point

for the size of a high-quality implementation of the OMG Event Service is the im-

plementation in TAO. Under Linux, the amount of code and initialized data for the

Event Service is currently 8,590,080 bytes.

2.5.2 OMG Notification Service

The OMG Notification Service is an extension to the OMG Event Service with the

goals of providing mechanisms to filter events and of allowing some quality of service

(QoS) metrics to be communicated to the event channel. It provides interfaces that

support the transport of structured events that contain fields visible to the event

channel. A structured event consists of an event header that contains fields such as

the event type, name, and a variable section that has options for handling the event.

The event body contains a variable number of user-defined, filterable fields and a

CORBA Any payload.

Event filtering is specified using Extended Trader Constraint Language (ETCL).

By using the filtering capabilities, an application need not create a separate event

channel for each category of event. Additionally, ETCL provides the Notification

Service with one of the most flexible filtering specification languages of any CORBA

event service. This flexibility, however, adds significantly to the footprint and run-

time costs of the event channel. The TAO implementation of the OMG Notification

Service addresses some of these performance issues [23].

QoS parameters such as event priority, delivery time, and persistence can also

be specified using Notification Service interfaces. The consumer can configure its

associated delivery queues to reorder events based on priority or the earliest deadline.

However, this feature may depend on the quality of the implementation of the service.

For high reliability uses of the Notification Service, the suppliers and consumers

can also create persistent connections and avoid missing any events due to transient

failures and unintended disconnects.

The main downside to using the Notification Service is its shear volume of

code. The TAO implementation is 24,000,311 bytes, and this does not include the

additional overhead of the ETCL support code. As a result, the use of the Notification

Service in embedded environments is severely limited.



19

2.5.3 TAO Real-time Event Channel

The TAO Real-Time Event Channel (RTEC) adds event delivery guarantees to the

standard Event Service model so that it is suitable for use in realtime environments.

Like the Notification Service, it also uses well-defined structured events. These events

have been further optimized, for example, by using a fixed header and by using

a CORBA Octet Sequence type instead of a CORBA Any to transport the event

payload.2

In addition to supporting event filtering, the TAO RTEC also supports event

correllation. This allows consumers to register with the event channel that they should

not be notified until a specified sequence of events arrives. By using this mechanism,

consumers can reduce network communication and limit processing events until all

data is available.

Since event reception drives consumer processing, the TAO RTEC also sup-

ports scheduling event delivery and hence scheduling the consumers. Scheduling is

performed offline using Rate Monotonic Scheduling (RMS) [29], and then the com-

puted schedule is configured at runtime.

Although the RTEC provides much more functionality than the OMG Event

Service, its implementation for TAO has only a slightly larger footprint of 9,010,532

bytes.

2.5.4 Feature Summary

Each of the previously described event services provides a fixed set of features that

are summarized in Figure 2.4. Ideally, when designing a system that needs an event

service, an application developer selects the channel that has a feature set close enough

to the requirements of the application. The result of the selection has the following

outcomes:

1. The feature set exactly matches the application’s requirements.

2. The feature set lacks some functionality.

3. The feature set has some functionality that is not needed or used.

4. The feature set both lacks some functionality and provides unneeded function-

ality.

2Results from this thesis indicate that these changes can significantly increase the performance
of an event channel at the expense of providing a more complex interface to the user.
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Only the first of these outcomes is desirable, but this outcome is also the lease likely.

If the chosen event service lacks some functionality, the application developer needs to

develop mechanisms to support it, and if there is unused functionality, the footprint

size and possibly the performance may be degraded. This thesis addresses both of

these issues by presenting practical methods for developing and using composable

middleware using AOP techniques.

Feature OMG Event
Service

OMG Notification
Service

TAO Real-time
Event Service

Basic Event Service Structure yes yes yes
CORBA Anys used for events yes yes no
Push interfaces yes yes yes
Pull interfaces yes yes no
Structured events no yes yes
Event filtering with boolean ex-
pressions

no yes yes

Event filtering with ETCL no yes no
Consumer registration introspec-
tion

no yes no

Supplier registration introspec-
tion

no yes no

Event sets (sequences of events) no yes yes
Event message translation no yes no
Event domain specified in header no yes no
Event type specified in header no yes yes
Event name in header no yes no
Variable length header no yes no
Filterable values in event bodyes no yes no
Persistent events no yes† no
Prioritized events no yes† yes
Event delivery timeouts no yes† no
Persistent event channel connec-
tions

no yes† no

Bounded consumer event queues no yes† no
Scheduled event delivery no yes† no
Event pacing no yes† no
Event correlation no no yes
Event channel timers no no yes
Offline event scheduling no no yes

† indicates optional feature.

Figure 2.4: High level event channel feature summary.
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Chapter 3

FACET Architecture

This chapter describes the architecture of the the Framework for Aspect Composition

for an EvenT channel (FACET) event channel. First, a high level overview of the

components that make up FACET is presented, and then subsequent sections describe

the architecture of these components. Of particular interest are the important design

tradeoffs and decisions.

3.1 High Level Overview

Figure 3.1 depicts the five major components that are fundemental to the FACET

middleware. Each of these components interacts in some way with each of the other

components, and without such interaction, some major functionality would be lost.

The implementation of the event channel is first separated into a base and a

set of selectable features. The base represents an essential level of functionality. Each

feature adds a structural and/or functional enhancement to the base or to other

features, and Aspect-Oriented Programming (AOP) language constructs integrate or

weave feature code into the appropriate places in the base as well as the features.

In FACET, the base consists of a simple implementation of interfaces similar

to those found in the the Common Object Request Broker Architecture (CORBA)

Event Service with a few caveats:

• The pull interfaces and their implementation are not included, since they are

much less frequently used.

• Since the event payload type varies with each application, it too has been des-

ignated to a feature.
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Test Framework
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Feature Registry
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Figure 3.1: The main components in FACET.
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Our version of the base can thus be equated more accurately to an interrupt service,

where consumers are only notified that something happened without any details of

what happened.

To support functionality not found in the base implementation, FACET pro-

vides a set of features that can be enabled and combined, subject to some dependence

constraints. These features include:

1. Interfaces and implementation to support pulling events through the event chan-

nel.

2. Various event-payload types such as CORBA Anys, CORBA octet sequences

and strings.

3. Event structures such as headers that are made visible to the event channel

and used by other features. These include event type-labels for dispatch and

filtering, a time to live (TTL) field to support federated event channels, and

timestamp fields for profiling.

4. Dispatch strategies that trade off channel performance and memory usage.

5. Event-correlation support that allows consumers to specify sequences of events

that should be received by a channel before notification.

6. Event-channel profiling and statistics generation.

7. Tracing hooks to aid application debugging.

In addition to the base and features, Figure 3.1 illustrates three other major

components in FACET. The Feature Registry maintains all of the relationships and

metadata concerning every feature. It has the responsibility for validating event-

channel configurations and providing dependence relation information to the other

components. The Build System is then responsible for selecting and compiling the

appropriate source files that correspond to the desired feature configuration. Both of

these components are described in detail in Chapter 4.

Finally, the Test Framework has the responsibility of verifying that each fea-

ture and its compositions perform actually as intended. It is used to gain a high

level of confidence that changes to the base or to other features do not have unin-

tended consequences in any configuration. Chapter 5 provides a description of this

component.
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3.2 Defining the Base

One of the most important decisions to make when constructing highly subsettable

middleware using AOP techniques is to define the functional boundaries of the base

implementation. Furthermore, since every feature implicitly or explicitly references

the base, it is one of the first software units that must be designed. It is important

that the base stabilize, since changes to the base may involve changing every feature.

Additionally, the use of AOP—in particular, AspectJ—affects the design of the base

due to restrictions on the kind of manipulations that can occur in features. The

following design forces are, therefore, important to address when designing the base:

1. The base should not contain functionality that is disabled by features. This

design force is based on the additive nature of AOP techniques. As stated

before, AOP allows one to add code at pointcuts and introduce new methods

and class variables but not remove code. By using around advice, this restriction

can be mitigated somewhat, but the result can become confusing. For example,

if one feature disables a method call and another feature adds some specialized

advice to it before each invocation, should the later feature’s advice be run?

AspectJ provides language constructs for specifying the choice, but each feature

needs to know about the other. This coupling is undesirable; furthermore,

features added in the future may have to be modified to run or not run the

appropriate code.

A simpler solution is to exclude the optional method in the base. A feature

can thus be included only if it is needed. If another feature adds advice to

that method, and the method is absent, then that advice is not applied. If the

features needs its advice to always be applied, then a different pointcut should

be found (i.e. in the base implementation.)

2. The base should contain a sufficient number of joinpoints to enable the process

of writing feature aspects. AspectJ and other AOP languages generally limit

where advice can be applied. For example, AspectJ limits advice application

to method calls and variable accesses. Thus, the base must have enough of

these to make it easy (or at least possible) to write the necessary aspects in the

features.

Luckily, good programming practices such as writing small methods and cre-

ating a rich type hierarchy are helpful in this regard. Also, using a consistent
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class structure for the base and all features helps ensure that attaching to the

joinpoints in the base results in the same semantics as when other features are

enabled. For example, in FACET, the base class structure very closely resem-

bles the class structure of the CORBA Event Service even though only a subset

of the functionality is present. Adding features to FACET only augments this

structure rather than changing the procedure for sending events through the

channel. In retrospect, the main changes to the base were to decompose existing

methods to add more joinpoints.

3. The base should perform some functionality that represents the processing of the

middleware framework. This design force is the result of the practical necessity

for the base to be simple to understand. The design forces considered so far

tend to reduce the base in scope, since that provides the most flexibility when

adding new features. In fact, a theoretically pleasing base may be devoid of any

functionality, since this gives the most flexibility by far to the feature set.

A limitation of aspects in separating concerns, however, is that when used

too heavily, it becomes difficult to determine what any method actually does.

Programming tools such as the emacs extensions that come with AspectJ help

ameliorate this limitation, but currently, it is still necessary to view several files

to determine everything that a method does when it has been modified by an

aspect. Since this is cumbersome, the base of FACET has some functionality

that is representative of an event channel. Through the process of building it,

though, that functionality has been reduced to the point of a interrupt service,

as noted in Section 3.2.

3.3 Features

Nearly every usable configuration of FACET contains at least one feature. This

section describes the important pieces found in every FACET feature as shown in

Figure 3.2. Note that a detailed description of the currently available features can

be found in Appendix B. The main implementation of each feature is comprised

of aspects, Java classes and interfaces, and Interface Definition Language (IDL) in-

troductions. Unit tests are associated with each feature, which can be excluded for

release builds. Finally, every feature contains metadata describing its dependendence

on other features.
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Figure 3.2: Components of FACET features.



27

In the implementation, aspects enable features to insert hooks (in the form of

advice) at convenient locations in the base and to introduce fields into existing classes

or data structures. The ability to insert hooks at key pointcuts is crucial for a feature

to affect the operation of the base event-channel.

For example, one feature adds filtering to the event channel. It does this by

wrapping a call to push events to consumers in the default dispatching mechanism.

If an event does not survive the filter, it is simply dropped. Otherwise, events are

forwarded to their appropriate consumer by invoking the existing, wrapped, method

in the base to pass the events onward.

The statistics-collection feature also uses aspects to advise key points in the

reception and delivery of events to adjust counters appropriately. Again, the main

benefit of using aspects is that the advised code need not be aware that it is receiving

advice, and as such, the standard hooks and strategies do not need to be designed

upfront.

Aspect introduction or the ability to introduce new methods and variables to

existing classes is useful when features need to store extra information about options

in event and parameter structures. This is used to store quality of service parameters

for easier access during the critical event delivery path and also to event fields such

as the event type and TTL.

Java classes and interfaces are also key components of each feature. These are

needed when the code that would be in an aspect is complex enough to warrant sup-

porting classes. A prime example of this is the correlation feature, which has many

support classes for the construction and evaluation of event-matching grammars. It

should be noted that during the initial stages of constructing FACET, it was thought

that features would be implemented solely in terms of aspects. From a code mainta-

nence perspective, this quickly became impractical. The result for many features is

that aspects are used to group together all of the interception points and high-level

feature-logic, and auxiliary classes are used for the lower level implementation.

Since FACET is a CORBA event service, it supplies IDL specifications for its

external interfaces. The base defines interfaces for the standard event-channel admin-

stration and registration components. Most features provide some introductions to

the base IDL to export entities such as event types, payloads, additional adminstra-

tion methods, the pull interfaces and more. Of course, once a feature adds definitions

to the IDL, it must also use aspects and classes to implement those interfaces. The
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pull feature is a prime example of IDL introductions. It not only adds new inter-

faces to support pull suppliers and consumers, but also adds the factory methods

to the event channel adminstration interfaces to instantiate those interfaces. The

pull supplier and pull consumer interfaces are implemented using Java classes, and

the factory methods are implemented using aspect introduction to the event channel

adminstration implementation in the base.

The next main component of a FACET feature is called an Upgrader. It is

usually one aspect that adds advice to existing applications and test code that was

written without knowledge of the feature. The advice handles any new initialization

and registration that is needed for this feature to work in an expected, default way.

A prime example of the necessity of an Upgrader is for the TTL feature. This feature

simply adds a TTL field to every event structure and decrements that field at every

event channel hop. Since events get dropped when their TTL is zero, this adds the

precondition that before sending any event, the TTL field needs to be greater than

zero. The problem occurs when an application was written without knowledge of the

TTL feature and never sets it. Then, as soon as the TTL feature is enabled, all events

are dropped since the field default in Java is zero. The TTL feature’s upgrader adds

code to do this in every class that creates an event but does not know to set the field.

The Upgrader concept is crucial for the proper operation of the test framework and

is documented there.

Feature metadata will be described in detail in Chapter 4; here we describe

its two main pieces. The first is a feature interface that is named after the feature

and extends the feature interfaces of all other features on which it depends. Note

that although not all dependence relationships are the same, the fact that feature

interfaces inherit from their dependences will be very useful for feature management

and resolving composition issues in testing. The other part of the feature method

is an aspect that registers the feature with the Feature Registry. This is needed to

construct the feature dependence graph that is used by the build system and the test

framework.

Finally, the last component of any feature is a set of unit tests. During the

development of FACET, verifying all of the combinations (currently, over 9,000 valid

combinations) of event channels became very tedious. The use of automated unit

tests made this process significantly easier. The use of unit tests is also a good

development practice for any software project.
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3.4 Adding New Features to FACET

The process for adding new features to FACET is surprisingly simple. One of the

main advantages of using aspects is that very few irrelevent details or hook methods

are present in the base or feature code that is augmented. Overall, this procedure

consists of the following steps:

1. Decide what existing FACET features are required. To allow for the broadest

possible use of the new feature, it is important that this set of features be as

small as possible. A side effect of this is that debugging is simpler since less

code is involved.

2. Create a feature interface class that extends the feature interfaces of dependent

features.

3. Within the feature interface class, create an aspect to register this feature with

the FeatureRegistry. If the feature is an abstract feature, it is necessary to imple-

ment a dependent concrete feature so that a valid event channel configuration

can be actually be compiled and tested.

Also, if the feature contains another feature, it must notify the FeatureRegistry

of the relationship here. If that contains relationship is with an abstract feature,

then the feature should not assume any functionality that makes that abstract

feature concrete. See Section 4.1.2 for more information on this issue.

4. Write the code using ordinary Java classes and aspects to implement the feature.

5. Write a testcase to validate the feature. Just as the feature code only assumes

the minimum number of dependent features, so should the test case. In FACET,

test classes always begin with the word Test so that the build system can easily

remove them when not needed by the application.

6. Write an aspect to mark the test case classes and any other relevent classes as

Upgradeable. This aspect should modify these classes to implement the empty

Upgradeable interface and implement the feature interfaces that this feature

depends upon. This is necessary to allow features that change how registration

occurs, add parameters to common requests, or change event registration to fix

up code that was written without their knowledge. This is described in detail

in Chapter 5.
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7. Write an Upgrader aspect to modify code in other features to work when com-

bined with this feature. Advice should be applied to only those classes that are

Upgradeable and do not implement this feature’s feature interface class.
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Chapter 4

Feature Management

As the number of features supported by the Framework for Aspect Composition for

an EvenT channel (FACET) grew, managing the different combinations and their

dependences quickly became tedious and error prone. It was apparent that tradi-

tional software configuration techniques would not address the concerns of highly

configurable software and that it would be necessary to build a feature-management

infrastructure for FACET. This chapter describes this infrastructure and the issues

it addresses in managing large numbers of features.

4.1 Feature Registry

The Feature Registry maintains all of the relationships between features and provides

interfaces to query those relationships. All of the functionality provided by the reg-

istry is completely generic and not tied to the FACET event channel. Yet, nearly

every part of FACET takes advantage of the Feature Registry, including the build

environment, test environment, and statistics-collection framework. Additionally, ev-

ery feature must interact with the Feature Registry to inform it of its requirements.

In this sense, FACET provides a higher level Aspect-Oriented Programming (AOP)

meta-programming framework for middleware. The following sections describe how

features are modeled internally and what information the Feature Registry maintains.
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4.1.1 Types of Features

Features in FACET can relate to each other and to the base in several different ways.

These relationships are important, since they essentially determine valid configura-

tions of the middleware. Fundamentally, each feature can be assigned to one of the

following categories based on the usage requirements of the feature:

1. Concrete Features:These features can be included in any configuration, given

the stipulation that any feature on which they depend are also included.

2. Abstract Features: These features provide a structural or functional enhance-

ment that is incomplete and cannot exist on its own. A concrete feature must

augment this feature for the configuration to be valid.

As an example, consider the introduction of a header to a structured event.

Initially, the header is empty. Until the header contains at least one data field

from another feature, it is not useful and does not even compile with the the

Common Object Request Broker Architecture (CORBA) Interface Definition

Language (IDL) compiler.

3. Mutual Exclusion Features: Such features are mutually exclusive in the sense

that at most one can appear in a valid configuration. For example, the type of

event passed through FACET may be either a structured event or a CORBA

Any, but not both at the same time.

4. Inferred Features: These features exist only within FACET and are created

when one feature refers to a nonexistent feature. That nonexistent feature is

inferred, and if it is never loaded, it signals a configuration error. This would

occur if the user forgets to specify a dependent feature in their configuration.

The FeatureRegistry would create an inferred feature as a place holder for the

missing feature, and when validating the dependence graph, it would detect

the error. Note that the FACET build system actually protects the user from

this type of mistake by automatically including all dependent features, but they

may be created temporarily while the dependence graph is built since features

need not register in topological order.

The base is modeled as a concrete feature with no dependences. Every other

feature depends on another feature or on the base, and it is always possible to reach

the base from any feature by following dependence relationships.
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4.1.2 Relationships between Features

There are two types of dependence relationships:

1. Depends: Most relationships between features are of this type. A feature that

depends on another cannot exist in a valid configuration unless all of its depen-

dences are also part of the configuration. Furthermore, this relationship serves

to satisfy the requirements of the feature types described above. For example,

a feature that depends on an abstract feature also indicates that it supplies the

necessary code and data to be able to use that abstract feature. The event

source-field feature is an example of a feature that depends on the abstract

event-header feature. Its inclusion satisfies the requirement that the abstract

event header is completed by at least one conrete feature.

2. Contains: Some features create or use data structures that contain data struc-

tures introduced by some other feature. These features still depend on the

presence of the other feature but cannot be used to fulfill dependence require-

ments of that other feature. An example of this is the pull feature that allows

users to be able to pull events through the event channel. This feature does

not care what kind of event is used, but it does care that an event type feature

has been enabled.1 Since enabling the pull feature does not complete the event

type, the depends relationship cannot be used, and therefore, it is said that the

pull feature contains the event feature.

After the dependence graph has been constructed, it can be validated in time

linear to the number of features. This is performed by inspecting the in-degree of

each feature node. For example, mutual exclusion features require an in-degree of

exactly 1 depends relationship, abstract features require an in-degree of 1 or more

depends relationships, concrete features have no requirement, and inferred features

require an in-degree of 0 of any dependence relationship. Note that this model is easily

extended to include other conceivable types of features that differ in their in-degree

requirements.

1Theoretically, the pull feature could be implemented to handle the case where no event type has
been selected. However, this case has very limited usefulness compared to the amount of complexity
added to the feature code.
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4.1.3 Feature Cycles

In the general case, it is possible for a cycle to be created in the feature graph. At

its simplest, this occurs if each of two features depends on the presence of the other.

For example, in large software projects, this can happen if two development teams

are tasked to develop a relatively large feature. Although these two features would

ideally be represented by only one feature, the practical organization of the project

coerces the division. As this division is unnecessary, cycles such as these (and all other

cycles) are not supported or considered in the Feature Registry. Fortunately, cycles

in the feature graph are infrequent (and difficult to create by accident) in practice.

4.1.4 Feature Registration

In order for the Feature Registry to manage feature dependences, every feature must

register its dependences at initialization. This is accomplished using the Template

Advice pattern (see Section 6.2) so that the registration is performed in the feature as

opposed to a centralized location. This has the advantage that the feature metadata

(a feature concern) is kept with the feature implementation.

Every feature defines an empty interface that serves to identify itself uniquely.

This interface, called the feature interface, is used by the Feature Registry internally,

by other features when they register their dependences, by the build system, and

by the test environment. The feature interface extends all of the immediate feature

interfaces on which it depends. Figure 4.1 shows a feature interface for the Event

Pull feature and its associated registration aspect. Since the Event Pull feature

cannot work without the Event Struct feature, its interface extends the Event Struct’s

associated feature interface.

Figure 4.1 also shows the aspect that is used to register this feature with the

Feature Registry. The Register aspect extends the AutoRegisterAspect abstract aspect

as part of the Template Advice pattern. Abstract aspects are similar to abstract

classes in Object-Oriented Programming (OOP) languages. In the Template Advice

pattern, the pointcut and the advice location are defined in the abstract aspect.

Derived aspects, such as Register, fill in the processing that should occur. In this case,

such processing serves to register the feature interface with the Feature Registry. The

registerFeature method accomplishes just this.

Other methods register abstract and mutual exclusion features. The second

method call in Figure 4.1 marks the dependence relation between the Event Pull
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public interface CorbaEventPullFeature extends CorbaEventStructFeature {

static aspect Register extends AutoRegisterAspect {
protected void register(FeatureRegistry fr) {

fr.registerFeature(CorbaEventPullFeature.class);

fr.markContainsRelationship(CorbaEventPullFeature.class,
CorbaEventStructFeature.class);

}
}

}

Figure 4.1: A feature interface and registration aspect.

feature and the Event Struct feature as a contains relationship. The Feature Registry

uses the Java reflection mechanism to determine all of the dependences of a feature

interface by looking at all of its parent interfaces. Since the most common dependence

relationship is the depends relationship, it assumes this relation unless told otherwise

as in the above example.

4.1.5 FACET Feature Dependence Graph

Figure 4.2: Feature Dependence Graph: Oval nodes are concrete features, diamond
nodes are abstract features, and rectangular nodes are mutual exclusion features.
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Figure 4.2 is a feature dependence graph, which shows the relationships between

the base and the current features implemented in FACET. In this graph, oval nodes

are concrete features, diamond nodes are abstract features, and rectangular nodes

are mutual exclusion features. Nodes that are related by the depends relationship are

shown with a solid arrow, and those related by the contains relationship are shown

with a dotted arrow. The features themselves are described in detail in Appendex B.

4.1.6 Combining Features

As evaluated in this thesis, FACET has 21 different features. Ideally, we would like

to verify every possible combination of features and measure the resulting effects on

performance and footprint. A naive approach would try all 221 or 2M combinations.2

However, due to the dependence relationships between features, the actual number of

valid configurations is much less in practice. It is possible to enumerate all possible

combinations by traversing the dependence graph. Performing this with the current

feature set yields only 4,596 distinct, valid configurations.

For users of FACET, it is important to validate that the chosen feature set

actually does satisfy all dependence constraints. The Feature Registry supports this

by iterating over the features that have been registered. Note that the build envi-

ronment ensures that only the code from the selected features gets compiled, and

because of these, only the selected features register with the Feature Registry. At a

high level, the Feature Registry checks for the following conditions:

1. The dependence graph contains no inferred features. Equivalently, the targets

of all feature dependences have been registered.

2. All abstract features have at least one feature that depends on them.

3. All mutual exclusion features have only one feature that depends on them.

Currently, since feature meta-data is kept in Java interfaces, it cannot be checked

until runtime. With FACET, this checking is performed automatically at build-time

after the FACET library has been built.

Moreover, it is important to note that not all feature miscombinations result

in compile- or build-time errors. For example, the AspectJ compiler does not issue a

2Although the order in which features are applied is important for the compiler, for any one set
of features, the resulting event channel configuration is the same. Hence, the number of potential
feature combinations is not influenced by the ordering of those features.
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warning or error it a specific pointcut is missing. This could be the case if a dependent

feature was not enabled. Another example of a error not caught is the inclusion of

dead code from a feature that should have been invoked by a missing feature.

To further verify that every configuration is truly viable and defect-free, each

feature provides one or more unit tests. Chapter 5 describes the verification process

and the use of the Feature Registry to automate testing. When statistic collection

is performed on each configuration, all relevant unit tests are also run. Chapter 7

documents these results.

4.2 Build Environment

In most systems, a project’s build environment is a secondary concern. When devel-

oping customizable software, however, the build environment is usually charged with

determining what features are included in the delivered library or executable. For

FACET, the environment has an even greater importance, due to the large number

of features that are available. If the build environment does not provide a logical,

simple configuration mechanism, it will likely frustrate potential users.

The FACET build environment was designed with several goals in mind:

1. Feature identification should be as automated as possible. For example, adding

new features to FACET require as few changes as possible to the build environ-

ment.

2. The environment should be portable.

3. The resulting code should be validated against unit tests for all selected and

dependent features.

4. The user should be able to specify only those features that are direclty needed.

Dependent features should be added automatically.

Of these, portability is achieved by using the ant build tool [2] which is essentially a

make utility designed specifically for building Java applications. Feature-set testing

and verification uses information found in the Feature Registry and is described in

detail in Chapter 5. The following sections address the remaining goals.
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4.2.1 Feature Organization

In the early versions of FACET, feature addition involved registering the feature with

the Feature Registry and with the build system, and then registering the added fea-

ture’s source files with the build script. This process was tedious and error prone, but

still easier than the default means of selecting features in AspectJ by using source-file

lists. A fundamental problem with using the Feature Registry is that its information

is supplied by the features as they register themselves at run-time; unfortunately, the

build system requires similar information at compile-time. This section describes the

evolution of the feature organization and how it is used to automate the build process

so that as much information about each feature can be reused as possible.

To separate feature code from the base FACET code, every feature is imple-

mented in a separate directory and separate Java package. As per common Java

practice, the package name of a class and the location of the source files for that class

within the directory hierarchy are closely related.3 The build system takes advantage

of this and uses the package name of a feature to refer to it. When a feature is

enabled, the build system uses wildcard expression-matches to find and then build

all source files in the feature’s directory.

The build system cannot know which directories contain features without input

from the Feature Registry. To provide this input, a special ant build target can be

invoked in the build files to scan the FACET subdirectories for feature interfaces and

compile them with the Feature Registry. By compiling all feature interfaces and the

Feature Registry code, the Feature Registry will know all of features available for use

in FACET and their dependence relationships. A simple Java program is then run

that distills this information into a build file. In many ways, this process is analogous

to the makedepend utility except that it informs the build system of the locations of

features as well as their dependences.

Following are the simple devices used to automate feature inclusion in the build

system:

1. Including the word Feature in the name of all feature interfaces so that the build

system can easily find them for the Feature Registery.

2. Identifying features by their package name. This allows the Feature Registry to

find the features’ names by introspection, and it allows the build system to find

3For example, the package edu.wustl.doc.facet.corba ttl has the directory offset of
edu/wustl/doc/facet/corba ttl.
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the feature code due to the Java convention of naming directories to correspond

to packages.

4.2.2 Feature Selection

Features are enabled and disabled by using a configuration file. Figure 4.3 shows one

such configuration file. Each listed directive corresponds to a desired feature that is

identified by “use ” and the identifying part of the package for that feature.

use_event_pull=yes
use_tracing=yes
use_eventbody_any=yes
use_corba_eventtype=yes

Figure 4.3: An example configuration file.

As in the previous section, the Feature Registry is used to add support for

these directives in the build system. Additionally, the build system automatically

includes all dependent features for those that are listed. This greatly reduces the

chance of specifying invalid FACET configurations. It does not completely eliminate

it, though, due to the contains relationship. For example, the Event Pull feature

contains the abstract Event Struct feature. Its interfaces contain only references to

Event structures, so some other feature is needed to make the Event Struct concrete.

In Figure 4.3, the features that do this are the Body Any (use eventbody any) and

the Event Type (use corba eventtype) features. If a user specifies only the Event Pull

feature, then neither the Feature Registry nor the build system could know which

features to include to make the Event Struct feature concrete. In this case, this error

is caught by invoking the verify operation on the Feature Registry.

4.3 Aspect Support for Multi-Languages Environ-

ments

A final issue encountered in managing features in FACET was handling multiple

languages. Since FACET uses CORBA, it must specify its external interfaces using

IDL. Many features need to introduce new methods, new classes, and new structures

to the IDL interfaces. This cannot be accomplished with AspectJ. The approach
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taken with FACET is to provide Python [30] scripts that are integrated with the

build system to introduce IDL definitions into the appropriate files. This procedure

is error prone and will eventually become difficult to scale. Ideally, it should be

possible to encapsulate concerns that cross language boundaries such as these. This,

however, is not addressed by this thesis and is an area for future research.
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Chapter 5

Testing

Software verification is necessary and important for any application. Proper testing

is even more important for the Framework for Aspect Composition for an EvenT

channel (FACET) than for many other software projects for two main reasons:

1. FACET supports a large number of different configurations of features that

interact with each other in numerous ways. Validating a subset of legitimate

configurations does not guarantee that every configuration will work or even

compile.

2. It is difficult to verify that a change made to the base or a feature does not

remove or change the semantics of a joinpoint used in another feature.

Because of these reasons, FACET provides a test framework that automates

the test process.

5.1 Test Framework

jUnit[20] is a commonly used framework to automate the regression-testing process

for Java applications. Its Application Programming Interface (API) provides various

methods to validate code and report errors. Additionally, it comes with GUI and

text based tools that can run one or more tests, create testing reports, and quickly

summarize test-run results. FACET uses jUnit as the basis for its test framework,

and by default, the build system invokes a jUnit test runner to execute all relevant

tests for a configuration after every build.

Although jUnit is very useful, it does not address several issues that arise when

developing highly reconfigurable middleware. These issues include:
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1. Support for automatically running tests that correspond to the set of features

that were enabled.

2. Support for upgrading tests written using one configuration to work under an-

other configuration that includes other features.

Both of these issues are addressed in FACET by using Aspect-Oriented Programming

(AOP) techniques. The latter issue, in particular, would have been very difficult to

support with standard object-oriented techniques, but with AOP, it is relatively

simple. The following sections describe how the FACET test framework manages

both of these issues.

5.1.1 Running the Appropriate Subset of Tests

The main requirement for this issue is that when validating an event channel config-

uration, every test associated with every feature within that configuration must be

run. Several options are possible for achieving this:

1. Create a jUnit test suite to call each appropriate test. This is the standard

jUnit method for running more than one test. It has the major disadvantage

that FACET has thousands of configurations that can be selected. Writing test

suites would have to be automated to be practical.

2. Modify the build system to search the directory hierarchy for Java source files

that begin with the word Test and invoke a jUnit test runner on each of them.

Unfortunately, this option adds complexity to the build system, is slow since it

has to launch a new JVM for each test, and does not allow jUnit to summarize

the results.

3. Use an aspect to automatically register each task with a well-known test suite.

By using standard object-oriented techniques, it is possible to come up with another

option that sounds promising but actually does not work in Java. This is to create

a static registration method to add test cases to the main test suite and then to add

a static block to each of the test cases that has a call to this method. This does not

work, since Java does not run static blocks until class load time, and if no other code

references the class, the static blocks will never be run. Thus, the third option above

is by far the most desirable one.
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In FACET, aspects are used to add unit tests automatically by using the

Template Advice Pattern (described in Section 6.2.) Figure 5.1 shows the code for

the TestSuiteAdder abstract aspect. This aspect encapsulates the knowledge of where

and when unit-test registration should occur. Unit tests should “subclass” this aspect

and implement the addTestSuites method to register their test or tests with the jUnit

TestSuite.

import junit.framework.TestSuite;

public abstract aspect TestSuiteAdder {
abstract protected void addTestSuites(TestSuite suite);

private pointcut addTestSuitesCut(TestSuite suite) :
call(void AllTests.addTestSuites(TestSuite)) && args(suite);

before (TestSuite suite) : addTestSuitesCut(suite) {
this.addTestSuites(suite);

}
}

Figure 5.1: TestSuiteAdder aspect.

Figure 5.2 shows a common use of the TestSuiteAdder. For almost all unit

tests, the test suite registration code is implemented as a static inner aspect to the

unit test class. In this case, the time to live (TTL) feature has only one unit test

that it needs to register, so the implementation of addTestSuites is very simple.

public class TestEventTtl extends EventChannelTestCase {

/* Test case implementation */

static aspect AddTests extends TestSuiteAdder {
protected void addTestSuites(TestSuite suite) {

suite.addTestSuite(TestEventTtl.class);
}

}
}

Figure 5.2: Typical use of the TestSuiteAdder.

The use of the Template Advice Pattern also illustrates a technical limitation

with AspectJ. For example, it seems it should be possible to write an aspect that
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automatically registers every unit test.1 This is not the case, since aspects can only

add advice or make introductions to their target classes. Since both advice and intro-

duction require that the class be loaded at the very least, both have the same problem

as the use of a static block in the approach described above. Finally, this limitation

in practice is not much of an issue, since defining unit test classes is much more diffi-

cult. For example, FACET provides various subclasses of the top-level, unit-test class

to simplify the process of starting up the event channel and supplier and consumer

threads. Also, during development, it is useful to disable certain complicated unit-

tests to focus on fixing bugs. Both of these examples illustrate how automatically

creating unit tests using a centralized aspect is difficult and hence motivate why the

Template Advice Pattern was used.

5.1.2 Automatically Upgrading Tests

Combinations of features can easily break unit tests. Yet, to validate the operation

of FACET, we would like to run every unit test for every feature successfully. An

example of this problem is to consider the interaction between the event type feature

and the TTL feature.

The event type feature simply adds an event type field to the EventHeader

structure. A unit test for the event type feature may send events between suppliers

and consumers and test whether the values stored in the field arrive unchanged at

the consumers. Such a unit test would have no knowledge of the TTL feature (nor

should it).

The TTL feature adds a TTL field to the EventHeader structure and adds

code to decrement and check it as events pass through the event channel. A unit

test for the TTL feature may check that events with a TTL of zero get dropped and

events with other TTL values arrive at the consumer with their TTL decremented.

Note that the TTL field must be set by the supplier or it will receive the default

value of zero. Since the TTL field is part of the the Common Object Request Broker

Architecture (CORBA) Interface Definition Language (IDL) specification for FACET,

and CORBA IDL does not provide a way to specify default values, this setting cannot

be overriden using normal mechanisms.

In configurations that have only one of these two features, their unit tests will

work. The problem arises when both features are combined in one event channel.

1It is possible to identify a unit test class either based on its name or its parent classes and
interfaces.
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This causes the event type feature unit tests to break, since they do not set the TTL

field in the EventHeader to a positive value. As might be expected, all of its events

would then be dropped.

One solution is to write an aspect to intercept executions of the EventHeader

constructor and set the TTL field to a non-zero default. This solution has two main

problems. The first is that not all feature conflicts can be resolved by modifying

a default value. The second is that this change in processing can be seen by user

applications. Since the Java IDL mapping specifications specify that the default field

value is zero, this change makes the FACET API appear inconsistant with expecta-

tions associated with CORBA programming. Also, when the tests are not compiled

with the FACET library, the code to automatically set the TTL field may not be

included which may then break user code that relies on this behavior.

The solution to this problem is to use the Interface Tag Pattern (described

in Section 6.3) to selectively mark the features that a test case supports, and use

upgrader aspects to update unit test code to support new features. The Interface Tag

Pattern is actually used twice:

• To mark those classes that should be upgraded by implementing the Upgradeable

interface.

• To mark the features that are known to the unit test by implementing their

feature interfaces.

The feature interfaces are the same interfaces that contain an inner aspect

to register a feature with the FeatureRegistry as shown in Chapter 4. Figure 5.3

shows the feature interface for the event type feature. Since this feature depends

on the event header feature, it extends the CorbaEventHeaderFeature interface. The

CorbaEventHeaderFeature interface also extends all of the feature interfaces that it

depends upon and so on. Note that the inner aspect is included in this interface only

as a convenience, so that all feature management related code can be together. Other

than this, this inner aspect is irrelevent to this part of the FACET test framework.

The actual upgrader aspect specifies that any code that it modifies must be

inside classes that implement Upgradeable and do not implement its associated feature

interface. Figure 5.4 shows the code for the TTL feature’s upgrader. Other feature

upgraders are similar. The upgradeLocations pointcut limits the applicability of the

aspect to appropriately tagged classes. It is separated from the advice for clarity and

since more than one advice block may need to use it. Following the pointcut, the
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public interface CorbaEventTypeFeature extends CorbaEventHeaderFeature {

static aspect Register extends AutoRegisterAspect {
public void register(FeatureRegistry ar) {

ar.registerAspect(CorbaEventTypeFeature.class);
}

}
}

Figure 5.3: The feature interface for the event type feature.

advice in the CorbaTtlUpgrader intercepts all calls to the EventHeader constructor and

initializes the TTL field to a sufficiently large number for any test.

aspect CorbaTtlUpgrader {

pointcut upgradeLocations() :
this(Upgradable) &&
!this(CorbaTtlFeature);

after () returning (EventHeader header) :
call(EventHeader.new()) &&
upgradeLocations() {
header.ttl = 255;

}
}

Figure 5.4: The upgrader aspect for the TTL feature.

As general practice, all test cases should be marked as Upgradeable. When a

feature unit test contains many classes, though, the upgradability of the tests is itself

a crosscutting concern and can be encapsulated in an aspect. Figure 5.5 shows one

way of writing an aspect to capture this concern for the event type feature’s unit

tests.

In addition to test cases, the upgraders themselves may need to be upgraded.

This is the case for the event header feature upgrader. This upgrader creates new

EventHeader instances for Event class instances used by test cases that do not know

about the event header feature. When, for example, the TTL feature is enabled, the

EventHeader instance created by this upgrader now needs to set the TTL field. This

is accomplished by marking the event header upgrader aspect as Upgradeable itself as

in Figure 5.6.
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aspect TestUpgradeAspect {

declare parents:
((edu.wustl.doc.facet.corba_eventtype.Test* ||
edu.wustl.doc.facet.corba_eventtype.Test*.*) &&

!TestUpgradeAspect)
implements Upgradable, CorbaEventTypeFeature;

}

Figure 5.5: Encapsulating the upgradable concern within an aspect.

aspect EventHeaderUpgrader implements Upgradable, CorbaEventHeaderFeature {

pointcut upgradeLocations() :
this(Upgradable) &&
!this(CorbaEventHeaderFeature);

after () returning (Event ev) :
call(Event.new()) &&
upgradeLocations() {
ev.header = new EventHeader();

}
}

Figure 5.6: Upgrading an upgrader.
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5.2 Verifying All Combinations

As discussed earlier, it is important to verify that any valid FACET configuration

will indeed work. Testing a change using a few combinations can add confidence that

the change does not break other configurations. Based on experience with FACET,

testing the minimal possible configuration that uses the change and a configuration

with almost all features enabled tends to find most problems.

However, this approach does not yield 100% confidence that any possible con-

figuration will work. For this level of confidence, all configurations need to be tested.

This is done by enumerating all possible configurations using the feature dependence

graph and then using a script to compile and test each one. Using a 933Mhz Pen-

tium III, each compile and test cycle takes between 30 to 45 seconds. This allows for

about 2,000 configurations to be tested per day, so the current 4,596 configurations

can be completely verified in just over 2 days. What is remarkable about this is not

that it can be done, but that it is actually practical to do so.

Since the number of configurations can grow quickly, especially when features

are added with few dependences, testing all of them may become time-consuming if

computing resources are lacking. A number of options exist to speed up test process:

1. Run multiple test scripts simultaneously to take advantage of the inherent par-

allelism in the test process.

2. Incrementally retest only those combinations that that include features that

have been modified since the last test run.

3. Mark features to indicate that they should not be tested. The trace feature is an

example where this may be desirable. The trace feature only adds functionally

useful for debugging, but doubles the number of possible combinations, so it

has a big impact on the amount of time full testing takes.

4. Randomly select the combination test order. This does not reduce the amount

of time compiling and testing, but it enables a wider variety of combinations to

be tested early in the process. From experiences with FACET, random testing

enabled most bugs to be discovered very early in the process so that not much

time was spent waiting on the test only to have to restart it after a bug.

5. Mark concrete features as abstract when they are very rarely used alone. The

main example of this is the profiling support feature. It provides the framework
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for accessing various event counters, but does not actually provide any counters.

It is concrete but of limited use without a feature like the basic counters feature.

Marking it abstract currently reduces the total number of combinations by a

third.

6. Randomly sample combinations and determine the resulting confidence level

based on the number of samples run.

5.3 Common Mistakes when Writing Feature Unit-

Tests

Over the course of developing FACET, several mistakes were made that were not

detected until all combinations were tested. Learning from these mistakes is certainly

of interest to future feature writers. Application developers may also be interested

so that they can avoid errors when enabling new features in FACET. These mistakes

include:

1. Using convenience methods generated by the CORBA IDL compiler. Of the

convenience methods, the ones that cause the most trouble are the non-default

constructors for IDL structures. Figure 5.7 shows the convenience constructor

for the Event structure using a configuration with a Any payload and an Event-

Header. Under other configurations, the Event structure may have more or less

fields, and the IDL generated constructor will be different. The argument or-

dering is not even guaranteed, so non-default constructors should always be

avoided, by initializing public fields after construction.

2. Using functionality in test cases that is not available under every valid config-

uration. This is very easy to do if not testing with the minimal configuration

as has been recommended. If the feature has any contains relationships with

an abstract feature, this is even easier to do and may not be detected if the

abstract feature only has one feature that can make it concrete.

3. Not marking a class as Upgradeable. This particular error usually is not de-

tected until a new feature is introduced into FACET. Since it may only affect a

certain combination of features, it may not be detected until all configurations

are tested. The procedure for reducing this error is to always mark unit tests
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as Upgradeable even if it appears that they will not need it. Using an aspect to

mark all unit tests for a feature makes this easy to do. Additionally, the over-

head of doing this is minor: it adds a minor increase to the size of the resulting

Java class files and causes a few more interfaces to be loaded at runtime.

public final class Event
implements org.omg.CORBA.portable.IDLEntity

{
public Event(org.omg.CORBA.Any payload,

edu.wustl.doc.facet.EventComm.EventHeader header)
{

this.payload = payload;
this.header = header;

}
}

Figure 5.7: IDL generated convenience constructor.

5.4 Genericity of the Testing Framework

Although the description of the testing framework has focused on its use for the

FACET event channel, this is not a requirement. Any piece of reconfigurable middle-

ware has to deal with testing issues, and it can reuse the provided framework. The

extraction of the feature-management and test framework code and aspects from

FACET into a seperate feature management framework would be useful and benefi-

cial to the development of future subsettable middleware.

The ability of the test framework to upgrade test cases automatically to sup-

port new features can also offer big advantages for an application. By marking unit

tests as Upgradeable and with the appropriate features’ interfaces, an application

programmer can quickly experiment with new capabilities offered by a middleware

framework. This can also be advantagous when integrating two applications that

use FACET. If the two applications make use of different feature sets, they can be

automatically upgraded to a configuration supporting the union of the feature sets.
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Chapter 6

Aspect Oriented Design Patterns

Design patterns are solutions to recurring problems [22]. Patterns are usually identi-

fied by reflecting on experiences from previous programming projects where a common

problem has repeatedly arisen. Since Aspect-Oriented Programming (AOP) has only

found its way into programming projects recently, there is a lack of significant experi-

ence to draw upon yet. Indeed, one of the main obstacles to adopting AOP technology

in new projects and in the Framework for Aspect Composition for an EvenT channel

(FACET) is the lack of knowledge of how to successfully use it.

Over the course of developing FACET, many of the core interfaces and aspects

had to be significantly refactored to surmount difficulties when implementing new

features. The ability to add new features to FACET using AOP is critical to its

ability to be precisely customizable for its users. As a result, much attention was

focused on ways of using AOP mechanisms to enhance feature flexibility, scalability,

efficiency, and maintainability. The patterns identified in this chapter represent the

most common and useful of those found in developing FACET. Additionally, although

these patterns are useful in the development of aspect-oriented middleware, they are

applicable to the development of any software that uses AOP, as they fundamentally

address problems that arise from developing new functionality that crosscuts a base

system.

The ensuing sections document the useful patterns in FACET using a standard

format for pattern presentation [22]. This format serves to clarify a pattern’s role in

software development as well as to convince members of the patterns community that

the pattern is “real” in the sense that it has application beyond its present usage in

FACET.
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6.1 Encapsulated Parameter Pattern

Intent

Allow new features to add parameters to Application Programming Interface (API)

calls while keeping the programmer’s interface simple.

Motivation

It should be possible to add parameters to API method calls to support new function-

ality added by using aspects. For example, consider an API call to print a formatted

message to the terminal. A useful capability to add to this print routine may be to

be able to redirect its output else where. By using AOP, one can conveniently create

a piece of advice to intercept the call that actually prints the text to the terminal

and add logic to support redirection. However, the redirection code still needs to

know where to redirect the output. This information needs to be acquired from the

programmer somehow. The following are possible approaches to solving this problem:

1. Introduce a new method to the API to set the parameter. In this approach,

the API user would call the introduced method before calls to the existing

method for configuration. In the example, this would involve introducing a

method such as setPrintLocation and then having the user call it before calls to

print. Although such an approach may be acceptable for parameters that rarely

change, it is tedious for the programmer to remember to use setPrintLocation

before each call. Additionally, it is error prone, since the print location may be

changed within method calls.

2. Introduce a new method with the extra parameter and add advice to the old

method to call the new one with a default value. This approach solves the

tedium associated with adding another method as above. Additionally, in the

example, the user may choose whether to set the output location when calling

the print method, and both versions will work. However, this approach has at

least the following limitations:

• Most importantly, it can be used only to add parameters for one feature.

This is because each feature needs to introduce a method to override the
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base method. If two features need to add different parameters, the re-

sult will be two methods with different parameters, but no method with

parameters for both features.

• Moreover, this approach requires that code be duplicated in the introduced

method since the original method needs to be completely overridden to call

the new method with a default.

• Finally, since the contents of the original method are no longer called, the

approach tends to create code bloat as methods are overridden.

3. Use a cflow aspect [48] to determine parameters from the context of the caller.

A cflow or control flow construct allows one to attach code to two different

contexts that are related based on one calling into the other (possibly through

several intermediate method calls). In AspectJ, it is possible to use cflow to

extract parameters from a context within the calling application and then use

them later, deep within the middleware.

Applying this to the print method, one would add an aspect that would look

at the user’s code to determine where the output of the print method should

be directed. A clue to where the output should go could be based on the

hypothetical observation that it is always desirable to output to the device that

is passed as an argument to any of the user’s methods. The obvious downside

to this approach is that we cannot control how the user writes his or her code,

so it is inevitable that we will misinterpret the user’s intentions at some point.

Additionally, cflow has a performance impact due to its need to maintain a

stack internally to save state.

4. Hard code all possible method parameters to the base methods. This approach

simply adds all of the parameters ever needed by any possible feature to base

methods. The base code ignores these parameters, but their presence enables

feature aspects to apply functionality to them. Additionally, the API is sta-

ble, in that it does not change from the perspective of the user. It just gains

functionality as features are enabled. However, this approach greatly reduces

the ease with which new features can be added since every feature must modify

the base if it adds a parameter. In fact, this approach ends up adding pieces

of individual features throughout the base and reduces the advantages of using

AOP in the first place.
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The Encapsulated Parameter pattern avoids the liabilities of the above ap-

proaches by merely passing a structure (or Java class with public member variables)

to API methods. Additional parameters can then be added to those methods by in-

troducing new member variables to the passed structure. If a parameter has a default

value, it can be initialized in the constructor for the parameter class, so that the user

does not need to set it.

Applicability

Use the Encapsulated Parameter pattern when

1. A method call will need to be passed additional parameters to support func-

tionality added using aspects.

2. The new parameters to the method are most logically set when that method is

called.

3. The parameters cannot be determined from the calling context or the calling

context is unknown.
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Structure

Figure 6.1 shows the structure for the Encapsulated Parameter pattern. Since Unified

Modeling Language (UML) [36] does not currently support the depiction of AOP in-

teractions, these interactions are shown using stereotypes for advising and introducing

functionality to existing classes.

EncapsulatedParameterInvoker «uses»

+doOperation()

API Facade Internal Class

«uses»

«uses»

«call»«call»

Enhancement Aspect
«introduces»

«advises»

Figure 6.1: Encapsulated Parameter pattern structure.

Participants

Encapsulated Parameter: holds parameters introduced by the Enhancement As-

pect.

Invoker: initializes an Encapsulated Parameter instance and passes it to the appro-

priate API method.

Enhancement Aspect: introduces parameters to the Encapsulated Parameter and

adds advice to use the parameters in the Internal Class.

Internal Class: one or more classes that are not directly accessable through the

API Facade.
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API Facade: defines an interface to a part of the framework to the user.

Collaborations

The Invoker creates an Encapsulated Parameter object and passes it to a method

in the API Facade. The API Facade then may pass the Encapsulated Parameter

to other Internal Classes. One or more Enhancement Aspect instances can add new

parameters to the Encapsulated Parameter class and then use those parameters in-

ternally.

Consequences

The Encapsulated Parameter pattern has the following consequences:

1. Makes it possible to extend the parameters of API calls.

2. Simplifies the procedure of writing enhancement aspects, since parameters are

easy to access.

3. Allows default parameters to be specified in the Encapsulated Parameter class

to simplify the introduction of new enhancements.

4. Complicates the API somewhat, since parameters are not stored in the definition

of the Encapsulated Parameter class.

Implementation

Consider the following issues when implementing the Encapsulated Paramater pat-

tern:

1. Passing the Encapsulated Parameter internally. Once the Encapsulated Param-

eter is part of the API, a decision needs to be made as to how far it should

propagate through nested calls beyond the API. Often, it cannot be determined

ahead of time where the Encapsulated Parameter class will be needed. By using

a cflow joinpoint, an enhancement aspect can always access these parameters

in internal classes that are in the control flow of the API call. Unfortunately,

using cflow can be computationally expensive, so it may be necessary to pass

the Encapsulated Parameter manually.
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2. Including the Encapsulated Parameter in the base. When the Encapsulated

Parameter contains no parameters as is often the case in the base, it is tempting

to remove the class entirely from the base. By introducing the Encapsulated

Parameter class in a feature, it is necessary to introduce new API functions

with the parameter. Since aspects are only additive, the old API functions

that do not have the parameter cannot be removed and are still exposed to the

user. This confuses the API and if it is normally the case that the Encapsulated

Parameter is used, then the simplification of the base is useless.

Known Uses

The Encapsulated Parameter pattern is used in several places in FACET.

1. Event passing. The Event class in FACET is itself an instance of the Encap-

sulated Parameter pattern. It is passed into a ProxyPushConsumer instance by

the user to send the event, then passed through the event channel and finally

through a ProxyPushSupplier instance to another user. The base code of FACET

sends empty events, and features introduce fields into the Event class to hold a

payload, headers, source and destination fields, etc.

2. Consumer registration parameters. The connect push consumer method to reg-

ister consumers with the event channel takes a ConsumerQOS class to pass in

quality of service (QoS), filtering and correlation parameters. Initially, this class

is empty, and, for example, when filtering is enabled, parameters are added to

this structure to specify what events are desired.

Related Patterns

The Encapsulated Parameter pattern has some similarity to the Command pat-

tern [22], since both patterns encapsulate data in a class that is passed like a pa-

rameter. The patterns differ in context, and also since the Command pattern passes

code in the class, and it is not meant to be extended through the use of aspects.

At the API interface, this pattern is similar to using named parameters in

languages that support this. Named parameters can be specified in any order and

can take on default values in the same way as the encapsulated parameter. If Java

had support for named parameters, they could be used as an alternative to the
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Encapsulated Parameter pattern. However, passing parameters in structures as done

in this pattern is convenient and is easy and efficient to pass around internally.
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6.2 Template Advice Pattern

Intent

Export key interception points to API users and extension developers and decouple

advice from hard coded pointcuts.

Motivation

One of the benefits of using AOP is that it provides a mechanism for extending

existing code without explicit modifiation by using an aspect compiler to weave new

code at the desirable joinpoints. This ability to break through layers of encapsulation

to add cross-cutting functionality is what makes AOP useful. However, specification

of joinpoints can be very tricky, especially when the joinpoint applies to unfamiliar

code. Additionally, if the base code is undergoing actively developed, that joinpoint

may not exist in the next release. Even worse, the joinpoint may be reached in

a completely different way in a subsequent release, causing the advice to behave

unexpectedly.

AspectJ provides a potential solution to this problem by allowing pointcuts

to be specified in abstract aspects and then concretized by sub-aspects. By using

this mechanism, a core-code developer can specify an interception point by creating

an abstract aspect with the appropriate pointcut. A user of that interception point

can then create an aspect and inherit the pointcut. This approach still requires

that the user know whether before, after, or around advice should be used and if

any preprocessing needs to be done to convert parameters from the pointcut to an

appropriate external form.

Applicability

Use the Template Advice pattern when

1. An interception point may be used by many aspects.

2. It is desirable to decouple the join point and advice location from the actual

advice implementation. This may be the case if the base and feature code are

developed independently.
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3. Common processing is needed to adapt internal variables, parameters and the

join point to an exportable form.

4. It is desirable to expose interception points as part of an aspect oriented API.

Structure

-advice()
#doAction()

-pointcut

AbstractAspect

#doAction()

ConcreteAspect

InternalClass«advises»

Figure 6.2: Template Advice pattern structure.

Participants

AbstractAspect: defines a pointcut and a skeleton advice implementation that calls

abstract methods (doAction) to be filled in by the ConcreteAspect.

ConcreteAspect: implements the logic that should be applied at the interception

locations defined by the AbstractAspect.

InternalClass: contains the pointcuts defined by the AbstractAspect and receives

the advice from the ConcreteAspect.

Collaborations

The ConcreteAspect relies on the AbstractAspect to execute its methods at the ap-

propriate interception points.
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Consequences

The Template Advice pattern has the following consequences:

1. Decouples the pointcut and advice location from the actual implementation of

the advice. This adds the flexibility to change internal code without worrying

about breaking important pointcuts and retains the advantages of being able

to use aspects.

2. Simplifies the extension of a framework by exposing common interception point-

cuts.

3. Can limit the parameters accessable to the ConcreteAspect’s implementation.

This can be advantageous since it reduces the number of variables that need to

be considered when extending a framework.

Implementation

Consider the following issues when implementing the Template Advice pattern:

1. Use access control. Like the Template Method pattern [22], access control can

prevent unintended uses of pointcuts and advice. For example, the pointcut

should be declared as private, and the abstract methods in the AbstractAspect

should be protected.

2. One aspect per pointcut. To reduce the complexity of using the Template Advice

pattern, define one abstract aspect per interesting pointcut. Most likely, only

one abstract method will be needed for the implementation of the advice.

3. Provide access to enough parameters to advice implementation. In order for the

ConcreteAspect to implement its advice, it will need some parameters from the

interception point. An implementation must decide how many internal details

it should reveal to the ConcreteAspect.

Known Uses

The Template Advice pattern is used in FACET to register features with the Feature-

Registry. The FeatureRegistry has an empty method that it calls whenever it needs

to build a list of the features in the system. As shown in Figure 6.3, the AutoReg-

isterAspect abstract aspect contains the pointcut for this empty method. Individual
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features derive concrete aspects from AutoRegisterAspect and implement the appro-

priate registration code. An example of this is shown in Figure 6.4. Note that the

actual feature registration encompasses many more details that have been left out

here for simplicity.

public abstract aspect AutoRegisterAspect {

abstract protected void register(FeatureRegistry fr);

private pointcut registry(FeatureRegistry fr) :
execution(void FeatureRegistry.buildGraph()) && target(fr);

after(FeatureRegistry fr) : registry(fr) {
register(fr);

}
}

Figure 6.3: AutoRegisterAspect abstract aspect.

aspect RegisterTtlFeature extends AutoRegisterAspect {
protected void register(FeatureRegistry fr) {

fr.registerFeature(CorbaTtlFeature.class);
}

}

Figure 6.4: RegisterTtlFeature registration implementation.

Related Patterns

The Template Advice pattern has many similarities to the Template Method pattern.

Both patterns define a general skeleton that defers an operation definition to derived

types. They differ in their mechanism (use of aspects) and in intent. The intent of

the Template Advice pattern is to decouple the knowledge of a pointcut and where

advice should be placed from the actual implementation of that advice.

The Template Advice pattern is also related to the Interceptor pattern [46] in

its use. Both patterns provide mechanisms to add logic at predefined interception

points. The Template Advice pattern, though, takes advantage of AOP techniques

to avoid requiring a registry to manage interceptors or the need to add interceptor

callbacks throughout the code. Consequently, since Template Advice is applied at
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compile-time, it has a higher performance than an equivalent implementation that

uses interceptors. Finally, many of the high level design techniques for the Interceptor

pattern are also useful for the Template Advice pattern.
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6.3 Interface Tag Pattern

Intent

Tag a set of arbitrary classes and aspects as possible recipients of advice.

Motivation

AspectJ enables one to specify the places at which advice is applied in aspects by

defining joinpoints. When joinpoints are not precisely known by an aspect, a standard

technique is to create an abstract pointcut and then to specialize the pointcut in

derived aspects. In many cases, though, the specialization serves simply to identify

those classes into which an aspect should be woven. For example, a trace aspect

that logs a message whenever a method is entered or exited may specify before and

after advice around method calls, but the classes to which it is applied may vary. If

the classes to which the advice is applied are arbitrary, each particular class’s name

needs to be hardcoded in the aspect’s pointcut. As indicated above, aspect inheritance

could be used to help decouple the pointcut locations by creating a derived aspect

each time a new location is discovered. This solution can become cumbersome when

the number of aspects that need to be created becomes large.

An alternative solution used in the Interface Tag pattern is to create an empty

interface class or a tag and use the tag to mark every class that should be affected by

the aspect’s advice. For example, in the trace aspect example, a Traceable interface

could be created and any class that would like to be traced need only implement the

Traceable interface. The trace aspect itself would only need to specify that its advice

apply to all classes that implement Traceable to work.

In this example, the tracing concern is still encapsulated in the tracing aspect.

However, the pointcut to which the tracing concern applies has been decoupled from

the aspect. As classes are added to the system, the decision whether or not the

tracing aspect should be applied can be made. Note that it is also possible that the

tracing aspect is not enabled or has a stricter pointcut that may not apply to all

classes that request it. In cases where the aspect is not applied, the presence of the

interface tag results does not add any runtime overhead.

Applicability

Use the Interface Tag pattern when
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1. An aspect’s advice applies to arbitrary classes that are difficult or impossible

to categorize in a central location.

2. The class intends to have advice applied to it that is consistent with the tag.

3. Knowledge of classes to which a pointcut applies breaks the encapsulation

boundaries of what an aspect should know.

Structure

«interface»
Interface Tag

TaggedClass1 TaggedClass2 Aspect«advises»

Figure 6.5: Interface Tag pattern structure.

Participants

Interface Tag: defines an empty interface that is implemented by a class to tag it.

TaggedClass1 and TaggedClass2: implement the Interface Tag interface.

Aspect: implements advice that affects classes that implement the Interface Tag

interface.

Collaborations

The Aspect advises joinpoints within the tagged classes.
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Consequences

The Interface Tag pattern has the following consequences:

1. The Pointcut is more general. By using the Interface Tag pattern, the pointcut

in the aspect can be specified without specifically referencing target classes.

This allows new classes to be added without revising the pointcut.

2. The Aspect is more reusable. Since the aspect does not contain references to

specific classes, it is no longer coupled tightly with the code that it advises.

3. Standard aspect semantics are inverted. Normally, aspects apply their advice to

target pointcuts that they specify. By using the Interface Tag pattern, classes

request that aspects be applied to them.

Implementation

Consider the following issues when implementing the Interface Tag pattern:

1. Tag all application classes. It is easy to miss tagging some classes such as inner

classes in Java. To be sure that classes are not missed, it may be possible to

write a tagging aspect that tags all affected classes in a particular set of source

files. The motivation for this pattern precludes tagging all classes in one aspect,

but it may be possible to localize the tagging.

2. Take advantage of classes that act like tags. In some cases, classes may already

exist that tag other classes. This obviates the need to define a specific Interface

Tag.

Known Uses

The Interface Tag pattern is used identify classes and aspects in FACET that should

be upgraded when unrelated features are included in the system. For this purpose, it is

actually used twice. The first usage is to mark a class as upgradable by implementing

the Upgradeable interface, and the second is to mark which features that class knows

about. This latter marking is done by implementing an interface defined by each

feature. Additionally, if a feature depends upon another feature, its interface will,

in turn, extend that feature. Chapter 5 describes the Upgradeable interface in detail

and provides more information on the automated upgrading of unit tests.
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Related Patterns

The intent behind the Interface Tag pattern is similar to that used in Java to mark

classes that can have their state serialized to or from a stream. Such classes are iden-

tified to the JVM by implementing the java.io.Serializable empty interface. Another

such interface in Java is java.lang.Cloneable.
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Chapter 7

Experimental Results

By enabling the user to select only those features that are necessary, the Frame-

work for Aspect Composition for an EvenT channel (FACET) enables both code

footprint and performance advantages over traditional middleware implementations.

This chapter quantifies those benefits by using statistics generated during the com-

pilation and testing of all FACET combinations.

7.1 Footprint

One method for measuring the footprint size of a Java application is to sum the size

of all of the .class files that are loaded. Embedded systems that use Java interpreters

or just-in-time compilers could use this metric to size an application ROM and to a

lesser extent, the amount of RAM needed. By default, the AspectJ compiler includes

debugging metadata in each .class file. The Jopt [31] .class file optimizer was used

to strip the .class files of this information, remove unused constant pool entries, and

perform minor optimizations on the generated bytecodes. After these optimizations,

the .class file sizes are believed to be very close to the lower bound of the amount of

information needed to use the Java code and data that the class files contain.

Another method consists of generating native code, as with the GNU Java

compiler GCJ [49]. The size of the resulting executable image can then be measured,

and since it contains only native code, it is more suitable for comparisons with C

and C++ code. Moreover, embedded realtime applications are likely to precompile

to native code for execution predictability. An overall observation is that the GCJ
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produced object1 files were generally larger than their corresponding .class files. This

is commensurate with the design of .class files to be small—to speed transmission

over networks.

Without any features enabled, the base FACET event channel code consists

of only 110,125 bytes of .class files or 162,840 bytes of code and initialized data in

GCJ-produced object files. Note that this measurement and the others that follow do

not include the unit tests that are associated with FACET and its features. These are

compiled together so that correct operation can be verified, but would not be present

in real applications. At the other extreme, one of the heaviest FACET configurations

consists of 470,133 bytes of .class files and 572,646 bytes of GCJ produced object

files.

7.1.1 Quantifying the Footprint Increase of Individual Fea-

tures

Studies that quantify the effect of features on footprint are typically difficult to find.

The ability of FACET to test and gather statistics automatically on all viable com-

binations of features, however, makes this information easily obtainable. Figure 7.1

shows the average number of bytes added to the total footprint of the FACET mid-

dleware library for individual features or indivisible sets of features. Note that it

may not be possible to determine the size of every feature since some are abstract.

Figure 7.2 provides the short names for each set of features displayed in the chart.

Appendix B describes each of these features in further detail.

To calculate the footprint overhead imposed by a feature or indivisible set of

features, pairs of FACET configurations were compared that differed only by the

feature set of interest. Figure 7.1 shows the results of averaging over all possible

pairs for each feature set. Depending on where the feature set appears in the feature

dependence graph, there may have been over a thousand combinations that were

compared to determine the average. Besides the tracing feature, most features show

little variation between combinations. This indicates that most features augment the

base consistently. The main exception to this is the tracing feature, and its effect will

be discussed in the following sections.

1Footprint size measurements were taken using the Unix size command. This command displays
the actual text, data and bss sizes without including debug and other irrelevant information.
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Figure 7.1: Feature set sizes.

Feature Set Description
A Supplier Dispatch
B Correlation Filter
C Event Sets
D Event Pull
E Event Struct and Body Octet Seq
F Event Struct and Body Any
G Event Struct and Body String
H Event the Common Object Request Broker Architecture (CORBA) Any
I Event Header
J Event Type
K Timestamp
L Time-To-Live
M Profiling Support
N Basic Counters

Figure 7.2: Feature sets.
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From Figure 7.1, it can be seen that the event pull feature and the event corre-

lation feature contribute the most to the size of the footprint. This is not surprising

since both features add significant functionality throughout the event channel. Specif-

ically, the event pull feature adds several new Interface Definition Language (IDL)

interfaces, event-buffering code for consumers, and event-polling code to obtain new

events from suppliers. The new IDL interfaces tend to produce significant amounts

of code in the generated stubs, skeletons, and helper classes. The event correlation

feature makes few additions to the IDL interfaces, but it contains many classes that

represent and check sequences of events.

When comparing footprint contributions of features, it is important to include

code from dependent features. For example, based on the feature dependence graph,

the event correlation feature cannot be included in isolation: one must therefore

include, at a minimum, support for structured events, an event header, an event type

field, and event set support.

Figure 7.3 and Figure 7.4 show the measurements for the additional footprint

added when features or feature sets (containing no more than one concrete feature)

are enabled. All measurements are in bytes. The total number of measurements used

to determine the results in each row is denoted in the last column. The total possible

is the number of pairs of FACET combinations that differ by only the specified feature

for all tested combinations of the event channel. Again, the tracing feature has been

left out of these measurements, since it significantly skews the results and would only

be used for debugging in practice.

7.1.2 Footprint Sizes for Common Configurations

In the end, the combined footprint of the desired feature set is what is important to

an embedded middleware user. Indeed, FACET event channels can vary in size by

a factor of four depending on the selected features. Based on feedback from several

developers in the The the ADAPTIVE Communication Environment (ACE) Object

Request Broker (ORB) (TAO) user community who are using event channels in their

applications, the following were identified as interesting configurations:

1. Configuration 0 (Base): Although the applications requested by developers all

required more functionality than the base, it is useful in that it is a lower

bound on the footprint. Note that all subsequent tests use the full functionality

provided by the base.
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Feature Set Minimum Maximum Mean StdDev Samples (Used/Total)
Supplier Dispatch 4559 4559 4559 0.0 384/384
Event Type Filter
Correlation Filter
Depend
Consumer Qos

47140 48739 47968 615.8 192/192

Supplier Dispatch
Event Type Filter
Depend
Consumer Qos

25253 25994 25623 274.6 384/384

Profiling Support 28927 28944 28931 7.3 766/766
Correlation Filter 26446 27304 26904 351.3 384/384
Event Sets 7952 8572 8370 110.4 762/762
Event Pull 55377 57058 56192 518.1 1146/1146
Event Struct
Event Type Mutex
Body String

13463 13469 13465 2.8 3/3

Event Struct
Event Type Mutex
Body Any

13610 13616 13612 2.8 3/3

Event Struct
Event Type Mutex
Body Octet Seq

16170 16176 16172 2.8 3/3

Event CORBA Any
Event Type Mutex

7392 7398 7394 2.8 3/3

Event Type 3398 3689 3532 85.4 288/288
Body String 2729 3060 2910 98.3 1140/1140
Body Octet Seq 5245 5967 5436 112.5 1140/1140
Body Any 2721 3213 2861 86.8 1140/1140
Time-To-Live 3934 4079 4034 43.0 1056/1056
Time-To-Live
Event Header

9961 10584 10148 141.9 84/84

Event Type
Event Header

9425 10224 9694 188.9 84/84

Event Header
Timestamp

8940 9570 9130 144.0 84/84

Timestamp 2979 3152 3093 59.9 1056/1056
Consumer Filtering 2881 2881 2881 0.0 768/768
Basic Counters 3220 3395 3336 82.5 766/766

Figure 7.3: Class file measurements for FACET feature sets.



73

Feature Set Minimum Maximum Mean StdDev Samples (Used/Total)
Event Channel Trac-
ing

0 0 0 0.0 0/0

Supplier Dispatch 6172 6188 6178 6.1 384/384
Event Type Filter
Correlation Filter
Depend
Consumer Qos

60812 63046 61918 628.6 192/192

Supplier Dispatch
Event Type Filter
Depend
Consumer Qos

32040 34186 33104 618.9 384/384

Profiling Support 31936 34692 34679 99.4 766/766
Correlation Filter 34884 35044 34967 43.2 384/384
Event Sets 12080 14028 13175 400.0 762/762
Event Pull 69052 69840 69546 287.1 1146/1146
Event Struct
Event Type Mutex
Body String

13752 16560 15605 1310.7 3/3

Event Struct
Event Type Mutex
Body Any

13812 16620 15665 1310.7 3/3

Event Struct
Event Type Mutex
Body Octet Seq

17160 19968 19013 1310.7 3/3

Event CORBA Any
Event Type Mutex

5960 8784 7820 1315.5 3/3

Event Type 4746 5362 4996 196.6 288/288
Body String 3650 4134 3895 131.9 1140/1140
Body Octet Seq 7062 7704 7434 209.0 1140/1140
Body Any 3724 4206 3966 135.5 1140/1140
Time-To-Live 5194 6484 6042 410.6 1056/1056
Time-To-Live
Event Header

12898 13616 13259 306.9 84/84

Event Type
Event Header

12394 13228 12809 354.6 84/84

Event Header
Timestamp

11562 12286 11926 309.9 84/84

Timestamp 3858 5144 4698 415.3 1056/1056
Consumer Filtering 3308 3376 3339 26.0 768/768
Basic Counters 4392 4480 4445 34.3 766/766

Figure 7.4: GCJ object file measurements for FACET feature sets.
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2. Configuration 1: Several developers only needed configurations similar to the

standard CORBA COS Event Service specification. This configuration has

CORBA Any payloads and does not support filtering. For these developers, the

pull interfaces were not used and were not included.

3. Configuration 2: This configuration is the same as the previous except with the

tracing feature enabled.

4. Configuration 3: Structured events and event sets are enabled. This configura-

tion also adds the time to live (TTL) field processing to eliminate loops created

by federating event channels. This configuration is still minimal, however, and

does not support any kind of event filtering.

5. Configuration 4: This configuration has support for dispatching events based

on event type. It uses a CORBA octet sequence as the payload type and is a

common optimization over using a CORBA Any. This configuration is similar

to that used in the TAO Real-Time Event Channel (RTEC).

6. Configuration 5: This configuration adds support for the event pull interfaces

to configuration 4 and uses a CORBA Any as the payload.

7. Configuration 6: This configuration enhances configuration 4 by replacing the

simple event type dispatch feature with the event correlation feature. In the

corresponding application, event timestamping information was also needed,

but the event pull feature was not.

8. Configuration 7: This configuration represents one of the largest realistic config-

urations of FACET. It supports the pull interfaces, uses event correlation, and

adds support for statistics collection and reporting. It uses structured events

carrying CORBA Anypayloads and headers with all possible fields enabled.

9. Configuration 8: This configuration adds the tracing feature to configuration 7.

Figure 7.5 shows which specific features are enabled for each above configura-

tion. (See Appendix B for more information on each feature.) Figure 7.6 compares

the footprint size of the library for these important configurations.
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Figure 7.5: Enabled features under various configurations.

7.1.3 Impact of External Libraries

Features can have an even more substantial impact on the overall footprint when

they depend on auxiliary libraries to provide some functionality. An example of this

is the tracing feature, since it pulls in the log4j logging libraries [3] that require an

additional 290 kilobytes of .class files. In non-embedded Java applications, the Java

class loader can limit the amount of code and data in memory by dynamically loading

only what is needed. On the other hand, embedded applications often require that

all possibly executed code be linked or packaged together prior to runtime, so that

such code can be deployed in ROM or some other local memory device. Therefore,

a middleware user also needs to consider external libraries that are referenced as

byproducts of enabling features.

In addition to referencing other libraries, features may make more or less use

of libraries required in the base. This becomes apparent in FACET’s use of the

JacORB [11] CORBA ORB. For example, CORBA Anys require support from the

ORB and additional code to be generated from IDL files to marshal and demarshal

Any variables. Since FACET can be configured to avoid using CORBA Anys, it would

be desirable to remove all Any support from the ORB to reduce code footprint. As

the ORB libraries contribute a substantial amount of code to the end application, it

is desirable to trim other functionality as well. This is not possible in the JacORB
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Figure 7.6: FACET Library sizes under different configurations.
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implementation, however, since the degree to which these concerns can be separated

from the ORB is not as significant as what can be accomplished using Aspect-Oriented

Programming (AOP) techniques—as in FACET.

Increases in external library usage from various feature combinations can be

determined by the following:

m = s− t− f

where m is the footprint increase attributed to additional code from external libraries,

s is the size of a simple executable linked against a FACET configuration, t is the

size of a trivial executable, and f is the size attributed to code in the FACET library.

For the following measurements, the trivial executable is what is created by GCJ

using an empty main function and linking against JacORB. Linking against JacORB

was performed, since it is a large library that is sufficiently entangled so that the

most casual reference (say, to initialize the library) causes nearly the whole library to

be linked. Even though JacORB is an external library, including it as such distorts

variations in the usage of other external libraries that can be partially linked. The

design of the ZEN ORB [13] appears likely to be able to mitigate many of these issues

with JacORB.

Figure 7.7 shows external library usage based on the configurations defined in

Section 7.1.2. As described earlier, the most substantial increases in external library

code are seen when the tracing feature is enabled. Other increases result from adding

reference to more classes from Doug Lea’s util.concurrency library [28].

7.2 Performance

Performance measurements were attained by running an event throughput test. By

marking the test as upgradeable, feature upgraders could automatically augment the

test to take advantage of their features. In the test, no data is passed from the

suppliers to the consumers so that the base configuration could be supported. In the

cases where the upgraders added payload fields, those fields would be initialized to

empty or zero length values. For example, when strings are used as payloads, they

are initialized to the empty string.

All measurements were performed on a dual 933Mhz Pentium III workstation

with 512MB of RAM running an SMP version of the Linux 2.4.9 kernel. The Sun

JDK 1.3.1 01 virtual machine ran the throughput tests using native threads, and the
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Figure 7.7: Increase in external library under various configurations.
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CORBA ORB used was JacORB 1.3.30. If the tracing feature was enabled, its output

was configured to go to a file on the local disk rather than to write to the terminal.

Overall, the base FACET configuration performed the fastest with an average

throughput of 1330 events/second. Ignoring the tracing feature, one of the most fully

featured configurations was over 20% slower at 1041 events/second. The tracing fea-

ture had a significant impact on the performance of all configurations. In particular,

it reduced the performance of the base configuration to 555 events/second and the

fully featured configuration to 268 events/second. The following sections present the

throughput results in detail.

7.2.1 Performance Effect of Enabling Features

Just as for the footprint measurements, the throughput test was run on every con-

figuration so that the effect of each feature on the performance could be determined.

The tracing feature has been ignored as its effect is so severe that it distorts the

results. Figure 7.8 shows the results on many of the more important features. As

before, Figure 7.2 provides a short description of each set of features displayed in the

chart.

From the figure, most of the features degrade the throughput only slightly,

if at all. Of these, event pull support (D), event set support (C), and statistics

infrastructure (M) do not add any code to the critical path of the throughput test.

The filtering and correlation features (A and B) both degrade performance by less

that 1% on average. Interestingly, accessing the current time to mark a timestamp

reduces the performance by almost 2%. But by far the worst effect on performance is

seen when enabling event payloads. Of these, using strings (G) is slightly faster than

using octet sequences (E) – possibly due to internal Java support for strings. Using

CORBA Any types is the worst and reduces performance by around 15%.

7.2.2 Performance of Common Configurations

Figure 7.10 shows the performance results for the common configurations identified

in Section 7.1.2. The throughput of each configuration is scaled to the performance of

the base configuration (Configuration 0). The results shown here support what would

be found by combining each feature’s performance degradation from the previous

section to arrive at the indicated configuration. Note that the tracing feature has a
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Figure 7.8: Feature impact on throughput.
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Feature Set Minimum Maximum Mean StdDev Samples (Used/Total)
Supplier Dispatch -0.073 0.054 -0.004 0.020 384/384
Event Type Filter
Correlation Filter
Depend
Consumer Qos

-0.064 0.063 -0.010 0.020 192/192

Supplier Dispatch
Event Type Filter
Depend
Consumer Qos

-0.071 0.042 -0.008 0.019 384/384

Profiling Support -0.070 0.065 0.001 0.020 766/766
Correlation Filter -0.067 0.061 -0.006 0.020 384/384
Event Sets -0.057 0.057 -0.001 0.019 762/762
Event Pull -0.068 0.070 0.000 0.020 1146/1146
Event Struct
Event Type Mutex
Body String

-0.079 -0.031 -0.054 0.019 3/3

Event Struct
Event Type Mutex
Body Any

-0.189 -0.146 -0.165 0.018 3/3

Event Struct
Event Type Mutex
Body Octet Seq

-0.068 -0.050 -0.059 0.007 3/3

Event CORBA Any
Event Type Mutex

-0.178 -0.123 -0.154 0.023 3/3

Event Type -0.051 0.050 -0.002 0.018 288/288
Body String -0.071 0.069 -0.005 0.020 1140/1140
Body Octet Seq -0.061 0.068 -0.006 0.019 1140/1140
Body Any -0.185 -0.069 -0.132 0.017 1140/1140
Time-To-Live -0.078 0.069 -0.004 0.020 1056/1056
Time-To-Live
Event Header

-0.052 0.070 -0.006 0.023 84/84

Event Type
Event Header

-0.051 0.039 -0.004 0.021 84/84

Event Header
Timestamp

-0.058 0.053 -0.015 0.020 84/84

Timestamp -0.084 0.056 -0.016 0.019 1056/1056
Consumer Filtering -0.071 0.076 -0.002 0.020 768/768
Basic Counters -0.072 0.064 -0.002 0.020 766/766

Figure 7.9: Throughput degradation measurements for FACET feature sets.
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significant impact on configurations 2 and 8. Figure 7.11 shows the actual throughput

measurements for each of the configurations.

Figure 7.10: Throughput results normalized to the base throughput.

7.3 Savings from Using Aspects

By using aspects to weave features together, FACET does not require the program-

ming infrastructure to support varying functionality that traditional middleware

needs. This includes if statements to choose alternate paths, virtual function calls to

strategized methods, and abstract factories to select functionality at runtime. This

entire infrastructure impacts the performance and code size of the middleware both

when extended features are enabled and when they are not included.

Determining the overhead saved by using AOP instead of traditional techniques

in FACET is not straightforward. At a minimum, several features introduce fields to
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Configuration Throughput (Events/Second)
0 1330
1 1094
2 478
3 1116
4 1282
5 1074
6 1039
7 1041
8 268

Figure 7.11: Measured throughput of common configurations.

existing data structures such as the Event structure. Any Java-only implementation

of FACET could not allow this flexibility.2 Other features have mutually exclusive

relationships that cannot be easily rewritten for the same functionality just using

object-oriented techniques. Additionally, the flexibility of aspects to augment code

directly at the appropriate interception points serves to minimize the commonality

of interception points between aspects. If converted directly to an object-oriented

program with similar flexibility, this would result in a high number of hooks to call

extensions. An object-oriented designer would probably try to reduce the number of

these hooks and find more commonalities between features to reduce the complexity

of the resulting code.

In spite of these issues, some information about the overhead saved using

aspects can be determined simply. In most Java programs that output trace messages,

the code that generates those messages is surrounded by if tests to check if tracing

has been enabled. For performance reasons, these if tests are in the client code to

avoid any unnecessary method calls. By using aspects, all of these if tests can be

eliminated along with all of the tracing code if tracing is not desired. To measure

the overhead of having if tests, the standard FACET tracing feature was duplicated,

and if blocks were added around the calls to the tracing advice by using the AspectJ

if pointcut designator.

Figure 7.12 shows the results of adding if tests around calls to tracing advice

and how it compares to the standard FACET Tracing feature. One of the heaviest

2Languages such as C and C++ that support preprocessor macros could allow for this flexibility
at a major cost to code readability.
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FACET configurations (Configuration 7 from Section 7.1.2) was used for all the mea-

surements, since it has the most method calls that get traced. The main disadvantage

of using the if statements is that the tracing code is included even when it isn’t used.

Additionally, the if statements slightly impact (1-2%) the throughput of the channel

both when logging is enabled and disabled.

Configuration
Sum of Class File Sizes

(Bytes)
Throughput

(Events/Second)
FACET Tracing feature disabled 289,524 1055
FACET Tracing feature enabled 470,133 267
Tracing with if guards disabled 476,727 1029
Tracing with if guards enabled 476,727 264

Figure 7.12: Overhead of using if statements for tracing rather than aspects.



85

Chapter 8

Conclusions and Future Work

As embedded software becomes more complex, it becomes increasingly desirable to

use middleware and, in particular, Distributed Object Computing (DOC) middleware

in distributed embedded applications. Two major impediments to using middleware

frameworks such as the ADAPTIVE Communication Environment (ACE) and The

ACE Object Request Broker (ORB) (TAO) are their footprint size and the inability to

subset them enough to fit on platforms with limited program storage. Unfortunately,

existing object-oriented techniques to subset middleware are time consuming and can

make existing code more complex.

In this thesis, we have developed a novel approach to constructing middleware

by using Aspect-Oriented Programming (AOP) techniques. By designing an essential

base implementation and using aspects to encapsulate optional features, the middle-

ware user now has the ability to select only those features that are truly needed. This

has distinct advantages in that the resulting middleware contains very little code bloat

for unused features—they are simply not compiled. Additionally, by using aspects,

the hooks, strategies, registries, and other infrastructure needed to support subset-

ting object oriented middleware are no longer needed. This simplifies the readability

of both the feature and the base code.

To research the feasability of developing middleware using AOP, we built the

Framework for Aspect Composition for an EvenT channel (FACET), a the Common

Object Request Broker Architecture (CORBA) event channel modelled after the Ob-

ject Management Group (OMG) Event and Notification Services and the TAO Real-

time Event Channel. The base FACET implementation is essentially an interrupt

service that can notify consumers when events happen but not pass any information.
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Features are then used to send payloads, provide correllation and filtering, support

statistics collection, provide pull interfaces, and more.

Managing the many features in FACET is itself an issue, since dependences

between features make some event channel combinations invalid. A framework was

developed to describe the characteristics of features within the system and their

relationships to other features. In FACET, every feature registers its characteristics

and dependences with the FeatureRegistry. With this information, the FeatureRegistry

can be used to validate configurations and automatically select missing dependent

features.

Managing features alone, however, is not enough for developing highly cus-

tomizable middleware. Especially for high reliability environments, verification that

selected configurations actually do work is also needed. In FACET, this is provided

by including a test framework that is used by every feature. For any particular com-

bination of features, the build system can run all relevant unit tests. Additionally,

FACET can itself verify that every possible combination of features and associated

unit tests compiles and runs by using information from the FeatureRegistry.

To aid the development of future middleware that uses AOP, several design

patterns were identified and documented that proved very useful in the development

of FACET. These include lessons learned when extending Application Programming

Interface (API) calls to contain new parameters, encapsulating and exposing join-

points and advice, and using aspects to augment arbitrary code.

Lastly, footprint and performance measurements were taken that quantify the

advantages of using AOP to selectively enable and disable middleware functionality.

These measurements show that disabling complex unneeded middleware features can

significantly improve middleware’s applicability to more constrained environments.

Also, performance and footprint results were shown for several real configurations

of event channels described by members of the TAO user community. By modeling

the dependences between features in FACET, we have built, tested and gathered

measurements for all viable configurations. In this paper, we have presented these

measurements for event service configurations presently in use by members of the

TAO user community. Of note, a variation of over four times was seen between the

most and least feature-rich configurations.

Many areas exist for future work. First, for highly embedded environments,

using CORBA is unnecessary and contributes too much overhead. It would be desir-

able to encapsulate the CORBA aspects of FACET into one or more features. Many
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impediments make this difficult, though, since the CORBA Interface Definition Lan-

guage (IDL) compiler generates stub and skeleton code that have different creation,

use, and destruction semantics from standard Java classes. Once this is acheived, it

is desirable to support other types of distributed middleware such as Java RMI [50].

An additional advantage of having this ability is that the event channel filtering,

dispatching, and statistics collection code can be reused in widely different environ-

ments. Such a capability is currently not possible, since applications tend to be

tightly coupled with their choice of distributed middleware.

Another area of research is the integration the FACET event dispatching mech-

anisms with the Real-Time Specification for JavaTM (RTSJ) [8]. This would allow

FACET to provide realtime guarantees to suppliers and consumers. By using FACET

features to select the degree to which realtime assurances are important to an ap-

plication, programmers could trade off the performance advantages of soft realtime

systems with the absolute guarantees needed in hard realtime systems.

One of the issues found when using FACET is that currently a general shared

library cannot be created that supports all possible configurations. For example, it

would be ideal if an application could specify its required features, and an aspect-

aware linker (or dynamic library loader) could weave in the features to create the

desired event channel. Currently, a separate library needs to be created for every de-

sired configuration, and an application needs to link against the library that supplies

the right features. In FACET, since every configuration is in the same package, only

one configuration can be in use at a time. Simply creating a different package for

every configuration is impractical due to the large number of configurations and the

space required.

Also of interest is applying the experience of developing FACET using AspectJ

and Java to C++ by using AspectC++ [37]. This process will likely identify many

other challenges to developing highly subsettable middleware using AOP, since more

low-level language details will have to be addressed when writing features. It also

broadens the appeal of FACET, due to the number of embedded environments that

already using C++.

Finally, related research within the DOC Group will use many of the lessons

learned from using AOP in FACET to build a highly subsettable ORB. The project

investigates combining AOP techniques with Generic Programming techniques to

separate feature concerns further and more cleanly than using either technique alone.

An example of where this might be useful in FACET is to decompose the filtering
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features. Currently FACET requires a feature to add a filterable field (i.e. the event

type field) and a filter that checks that field. A Generic Programming technique to

avoid creating separate filters would be to make the filtering feature parameterizable.
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Appendix A

Glossary

advice: Code contained in an aspect that is executed at the locations of its associ-

ated joinpoints.

aspect: An aspect is a specification of a cross-cutting concern.

base: As used in this thesis, the base refers to the core set of code that supports a

fundemental level of functionality. This functionality is indivisible, and features are

used to extend and enhance it.

cflow: A cflow or control flow specification describes an execution path joinpoint.

Variables and data available at both the beginning and end of the execution path can

be used in advice.

feature: A feature is a cohesive set of code (classes and aspects) that provides a

specific functional or structural enhancement to the base.

introduction: An introduction statically adds member variables or methods to

existing classes and interfaces.

joinpoint: A joinpoint is a well-defined point in a program such as a invoking a

method or accessing a class member variable.

pointcut: A pointcut is an expression containing joinpoints that can identify a set

of well-defined points.
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Appendix B

FACET Features

Figure Figure B.1 shows the dependence relationships between the features implement

in FACET. This appendix provides a brief description of each of these features.

Unless noted otherwise, all classes and interfaces are specified relative to the

edu.wustl.doc.facet package.

Figure B.1: Feature Dependence Graph.
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B.1 Basic Counters

Feature interface: basic counters.BasicCountersFeature

Type: Concrete

Depends: Profiling Support

Contains: None

Description: The Basic Counters feature registers event counters with the Profiling

Support feature to measure statistics such as the number of events that pass

through the event channel. It uses aspects to intercept internal event channel

calls and increment counter.

B.2 Body Any

Feature interface: eventbody any.CorbaEventBodyAnyFeature

Type: Concrete

Depends: Event Struct

Contains: None

Description: This feature introduces a CORBA Any payload to the Event structure.

Any payloads automatically carry type information, but are generally not as fast

as other payload types to marshal and demarshal.

B.3 Body Octet Seq

Feature interface: eventbody octetseq.CorbaEventBodyOctetSeqFeature

Type: Concrete

Depends: Event Struct

Contains: None

Description: This feature introduces a CORBA Octet Sequence payload to the

Event structure. This is a common optimization for event channels to pass

large amounts of data.
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B.4 Body String

Feature interface: eventbody string.CorbaEventBodyStringFeature

Type: Concrete

Depends: Event Struct

Contains: None

Description: This feature introduces a CORBA String payload to the Eventstructure

and is convenient for event channel use cases where all information can be con-

tained in a string. The Context Free Filter feature can be used to filter strings

based on particular patterns.

B.5 Consumer Filtering

Feature interface: consumer dispatch.CorbaConsumerDispatchFeature

Type: Concrete

Depends: Event Type Filter

Contains: None

Description: This feature adds support for filtering events for consumers. The fil-

tering occurs after event dispatching has occurred. It is useful for environments

where the additional overhead to maintain dispatch tables is large or almost all

consumers receive all events. In most cases, the Supplier Dispatch feature will

be preferable to this one.

B.6 Consumer Qos

Feature interface: consumer qos.CorbaConsumerQosFeature

Type: Abstract

Depends: Base

Contains: None
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Description: This feature provides the IDL interfaces and basic infrastructure in

FACET to allow consumers to register quality of service requirements with the

event channel.

B.7 Context Free Filter

Feature interface: cffilter.ContextFreeFilterFeature

Type: Concrete

Depends: Consumer Qos and Body String

Contains: None

Description: This feature enables consumers to specify grammars that should be

run on payloads of incoming events. Events are forward to a consumer only if

the pattern matches. The filter uses an efficient parsing technique described in

[26] that was extended and implemented in Java by Dan Rosenstein and further

enhanced by Martin Linenweber.

B.8 CORBA Oneway

Feature interface: corba oneway.CorbaOnewayFeature

Type: Concrete

Depends: Base

Contains: None

Description: This feature specifies that the event push methods should be marked

as CORBA oneways. This can result in a performance improvement, since

the sender no longer needs to wait for replies from the event channel or the

consumer. Since CORBA oneways are not guaranteed to reach their destination,

events can be dropped.
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B.9 Correlation Filter

Feature interface: filter.CorrelationFilterFeature

Type: Concrete

Depends: Event Sets and Event Type Filter

Contains: None

Description: This features supports the creation of correlation filters so that con-

sumers can specify that they should not be notified until a sequence of events

is received. This feature may require the event channel to buffer many events,

and the processing requirements are greater for it than other filtering features.

B.10 Depend

Feature interface: corba depend.CorbaDependFeature

Type: Abstract

Depends: Consumer Qos and Event Struct

Contains: None

Description: This feature adds the infrastructure to allow consumers to specify their

dependences upon events. It is used by most of the filtering features to specify

their grammars.

B.11 Event Channel Tracing

Feature interface: tracing.EventChannelTraceFeature

Type: Concrete

Depends: Base

Contains: None

Description: This feature adds logging code to allow one to trace and debug all

calls within the base and enabled features in FACET. The logging facility uses

the log4j library to support sending log events to a variety of destinations.
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B.12 Event CORBA Any

Feature interface: event any.CorbaEventAnyFeature

Type: Concrete

Depends: Event Type Mutex

Contains: None

Description: This feature specifies that the event push interfaces should use CORBA

Any data types to pass events. By enabling this feature, FACET’s API is very

similar to the API of the CORBA Event Service.

B.13 Event Header

Feature interface: corba eventheader.CorbaEventHeaderFeature

Type: Abstract

Depends: Event Struct

Contains: None

Description: This feature introduces a header field to the Event structure. The

intention is that fields in the header are visible to the event channel. Fields not

in the header are considered as payload and are generally opaque.

B.14 Event Pull

Feature interface: event pull.CorbaEventPullFeature

Type: Concrete

Depends: Base

Contains: Event Struct

Description: This feature adds the pull style interfaces to suppliers and consumers.

It also adds the implementation to support polling pull suppliers for events and

queuing events to pull consumers.
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B.15 Event Sets

Feature interface: corba eventvec.CorbaEventVecFeature

Type: Concrete

Depends: Base

Contains: Event Struct

Description: This feature adds the capability for more than one event to be sent

to the channel or to consumers simultaneously. This feature can be used to

optimize event transmission by allowing for more events to be sent at a time.

The Correlation Feature uses Event Sets to bundle the sequence of events that

causes a match together for transport to the consumer.

B.16 Event Struct

Feature interface: corba struct.CorbaEventStructFeature

Type: Abstract

Depends: Event Type Mutex

Contains: None

Description: This feature adds support for transporting Event structures to the

supplier and consumer interfaces of the event channel and internally. This style

of sending events is very similar to that used in the TAO Real-time Event

Service and cannot be used simultaneously with the Event Corba Any feature.

B.17 Event Type

Feature interface: corba eventtype.CorbaEventTypeFeature

Type: Concrete

Depends: Event Header

Contains: None

Description: This feature adds an event type field to the Event structure’s header.
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B.18 Event Type Filter

Feature interface: eventtype filter.CorbaEventTypeFilterFeature

Type: Abstract

Depends: Event Type

Contains: None

Description: This feature contains common code used by all of the event type fil-

tering features. It does not provide any useful functionality by itself.

B.19 Event Type Mutex

Feature interface: eventtype mutex.EventTypeMutexFeature

Type: Mutual Exclusion

Depends: Base

Contains: None

Description: This mutual exclusion feature prevents the Event Struct feature and

the Event Corba Any feature from being enabled simultaneously. Without it,

it would be possible to produce event channels that do not compile.

B.20 Profiling Support

Feature interface: profiling support.CorbaProfilingSupportFeature

Type: Concrete

Depends: Base

Contains: None

Description: This feature provides the interfaces and registration implementation

for adding profiling counters to FACET. Although this feature is concrete, it

does not provide any performance counters itself. In most configurations, an-

other feature that provides counters would be enabled as well.
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B.21 Supplier Dispatch

Feature interface: supplier dispatch.CorbaSupplierDispatchFeature

Type: Concrete

Depends: Event Type Filter

Contains: None

Description: This feature adds the ability to dispach events to consumers. It is

different from the Consumer Dispatch feature since the dispatching occurs when

the event is received by the event channel. If there are many consumers or each

consumer only receives a small subset of events, it can enable performance gains

over the Consumer Dispatch feature.

B.22 Timestamp

Feature interface: corba timestamp.CorbaTimestampFeature

Type: Concrete

Depends: Event Header

Contains: None

Description: This feature adds a timestamp field to the event header and adds code

to mark this field with the current time when the event is received by the event

channel.

B.23 Time-To-Live

Feature interface: corba ttl.CorbaTtlFeature

Type: Concrete

Depends: Event Header

Contains: None
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Description: This feature introduces a time to live (TTL) field to the event header

and adds code to decrement the field at each event channel hop. If the TTL field

is zero. then the Event is dropped. This feature is necessary if event channel

loops are possible in federated configurations.
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