Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-29

1987-01-01

The WUDMA Image Processing System

Andrew Laine, Steve Reichenbach, and Seymour Pollack

The WUDMA Image Processing System provides a framework that allows many image
processing packages to function as the single system. It currently contains several packages
that provide a powerful range of image processing tools for use in teaching and research. The
WUDMA System overcomes the lack of standardization in image processing by providing
bridges between diverse software packages and shielding the user from incompatibilities
inherent in the software. As such, it may be considered as a paradigm from integrating
packages in other application areas.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Laine, Andrew; Reichenbach, Steve; and Pollack, Seymour, "The WUDMA Image Processing System"
Report Number: WUCS-87-29 (1987). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/814

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/814?utm_source=openscholarship.wustl.edu%2Fcse_research%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

THE WUDMA IMAGE PROCESSING SYSTEM

Andrew Laine, Steve Reichenbach
and Seymour Pollack

WUCS-87-29

Department of Computfer Science
‘Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Supported by the Defense Mapping Aeronautical Center Contract DMA 700-84-C0037.

Abstract

The WUDMA Image Processing System provides a framework that allows many image processing
packages to function as a single system. It currently contains several packages that provide a powerfal
range of image processing tools for use in teaching and research. The WUDMA System overcomes the
lack of standardization in image processing by providing bridges between diverse software packages and
shielding the user from incompatabilities inherent in the software. As such, it may be considered as a
paradigm for integrating packages in other application arcas.

INTRODUCTION

The WUDMA Image Processing System is a large package of image processing commands [1]. Ttis
comprehensive and flexible, containing tools that apply established image processing techniques as well as
those of a more experimental nature. The package is worth examining not only because it is a useful image
processing resource, but also because it integrates distinct software packages. Combining complementary
packages is cheaper than creating new code to fill the gaps in a single package. The WUDMA System
provides a uniquely complete resource for image processing and can serve as a model for integrating
separate software packages.

The WUDMA Image Processing System was developed to meet the specialized needs of an intensive
course of instruction in image processing offered by Washington University (WU) for selected technical
employees of the Defense Mapping Agency (DMA). The fifieen-week Professional Development Program
[2] extends the education of DMA technical personnel in line with the agency’s increasing use of digital
techniques for image processing and cartography [3]. Toward this end, it includes many topics found in
the WU undergraduate and graduate computer science curricula, with special emphasis on image
processing and cartographic databases.

The backgrounds of the students, the goals of the course, and the emphasis on laboratory experience
and student projects place special demands on the image processing software system. To meet the
curricular needs, the system has to be broad in scope; sophisticated and comprehensive, yet easily learned;
and flexible enough to support student project research, development, and implementation. To accomplish
this, the WUDMA System incorporates several software packages as subsystems and provides a uniform
user-interface and an environment in which programs from distinct packages can operate as one system.

SOFTWARE ACQUISITION

With only three months until the first offering of the course, design and implementation of a new
image processing package was not feasible. No commercial image processing packages could be found
that met all the needs of the course, A survey of universities turned up many useful systems, but once
again none met all of the needs of the course. Although each of these software packages offered useful
algorithms that in many cases complemented those provided by other packages, they could not be merged
because each was based on its own image formats, command language, and data types. Therefore, the
initial offering of the course employed several distinct image processing systems. This was a valuable
experience for those involved with the course in that it helped underscore what was and was not desirable
in image processing systems.,

These packages were selected in tandem with the hardware acquisition. The WUDMA Image
Processing Laboratory is built around a VAX 750™ processor equipped with a ﬁoaﬁnﬁ-point accelerator
and a second UNIBUS ™ to accommodate direct memory access by a DeAnza IP8500™ image processor.
The VAX now has eight megabytes of main memory and over 900 megabytes of high-speed disk storage.
A tape drive provides long-term storage. The DeAnza IP8500 is a pipeline, matrix processor designed for
high-speed image processing. The WUDMA IP8500 is equipped with six 512x512x8-bit refresh memory
boards, a digital video processor, one video output controller, an a,]l_g?anumeric generator, dual cursors, a
trackball, and a nineteen-inch RGB monitor. A MicroVAX II'™ satellite processor networked via
Ethernet™™ provides additional computing power. Image processing programs can be executed on the
MicroVAX if the load on the VAX 750 justifies it. The lab contains four graphics workstations, each
consisting of an alphanumeric terminal, a Vectrix 3g4™ high-speed graphics device, and a thirteen-inch
RGB monitor. A self-contained, table-top camera provides picture-taking capability. The system is
accessible via the LA-100™ console, six terminals, four lines on the local network, and four dial-in lines.
Both DMA and WU preferred the UNIX ™ operating system and the University of Califomia, Berkeley,
4.2 UNIX has proven to be a flexible and productive implementation of this system.

® VAX 750, UNIBUS, MicroVAXII, and L.A-1G0 are trademarks of Digital Equipment Corporation. DeAnza IP8500 is a
trademark of Gould Incorporated, Ethemet is a trademark of Xerox Corporation. Vectrix 384 is a trademark of the Vectrix
Corporation. UNIX is a trademark of AT&T Bell Laboratories.

-7

Several image processing packages were acquired from outside sources for the first session of the
course. The Pictre Display System (PDS) developed by Anthony Reeves [4] and the Visual Sheil (VSH)
from the University of North Carolina [5] provided most of the fundamental image processing programs.
The DeAnza Driver and Display package from PAR Corporation [6] provided the interface to the IP85C0.
Portions of other packages were used and additional programs were written to expand processing
capabilities and to make the packages easier to use.

The VSH and PDS packages are similar in many ways. Both consist of UNIX command level
programs written primarily in C and both store an image as a single file containing header information and
pixel intensities. The VSH package has two attractive features. First, the intensity histogram is stored with
the image, speeding many algoerithms such as histogram equalization and intensity stretching. Second, the
header and image are accessed via subroutine calls. This allows changing the header and file structure
without altering the image processing programs. The image is accessed via calls that specify the limits of
the desired sub-image. For example, one can access a two-dimensional 512x512 image by reading or
writing a single row (e.g., first row = 0, last row = 0, first column = 0, last column = 511), a subimage (first
row = 64, last row = 191, first column = 0, last column = 127), or the entire image (first row = 0, last row =
511, fisst column = 0, last column = 511). The input or output is handled by the subroutine.

Despite these features, those who have worked with both systems prefer the software model used by
the PDS package. Most commands writien at WU use the PDS subroutines, image formats, and data
structures. The basic PDS pixel datatype is one byte and can therefore be displayed directly on the DeAnza
and Vectrix devices. (The VSH package uses a two-byte short integer that has to be mapped to one byte
for display.) The PDS package also allows UNIX pipes between programs.

The UNIX pipe enables output from one program to be used as input to another program as soon 4s it
is generated [7]. Thus, PDS allows the sequence

trans -v if=inpotimage | mean | threshold -t 128 of=ouiputimage

to transpose the image contained in the file inputimage about the vertical cenier-line, then perform a mean
filter, and finally threshold at 128 and store the result in the file outputimage. The use of pipes can speed
processing by running all three programs at once with each program reading input as it is needed and
available.

The PDS programs access the header in the image file directly, reading it as a single data structure.
Most of the PDS programs access the image directly, using C system calls rather than special subroutines.
Changing the header or file structure could mean changing all of the programs, but direct access to the
header and image has the advantage of simplicity.

SYSTEM INTEGRATION

Each of the individual packages provided algorithms lacking in the others, but having several
software packages for image processing was inconvenient and inefficient. Figure 1 depicts the software
environment prior to development of the WUDMA System. Users had to deal directly with several
systems, each having different command-line conventions and image-file formats, Users had to be familiar
with several processing packages and know the format of all of the image files used. Although format
conversion programs were written, a processing sequence using several algorithms still might involve
several explicidy invoked format conversions,

In response to the clear need for a unified software system, the Defense Mapping Agency
Aeronautical Center anthorized development of the WUDMA System [8]. Several objectives were
defined:

» Image file formats should be invisible 1o the user. The user should not be responsible for any

file format, header format, or image format specification or conversion.

o Command conventions and syntax should be uniform. Users should not have to leam

different command Ianguages for different commands.

-3-

» The system should be easily maintained. Most of the original software lacked makefiles (files
specifying compiling, linking, and installation} for system regeneration [9] and none was under
any version control system (such as the Revision Control System developed by Walter Tichy
at Purdue University [10]).

e The system should provide complete on-line docomentation. Most of the programs had
manual pages, but some of the programs were poorly documented and more system
documentation was needed. A single facility for all of the image processing documentation
was needed.

» It should be easy to incorporate new programs into the system. User contributions are
strongly encouraged throughout the course. Guidelines and tools for writing and integrating
programs into the system were needed.

The project for development of a single image processing system was constrained by familiar
factors: time, money, and personnel. The system had to be finished and working in three months with
minimal cost and staffing. Three options were considered:

1. Design a new framework specifying command conventions, image file formats, header
structures, data structures, and utilities. This new system could incorporate attractive features
from the many individual packages that had been used or examined. This option would allow
specification of a superior framework for future development, but the programs already in use
would have to be rewritten or substantially revised.,

2. Choose one of the frameworks already in use and convert programs from the other
packages into that framework. By committing to one of the packages already in use, a great
deal of recoding could be avoided. However, each of the packages has its own strengths and
choosing one would mean incorporating only those strengths into the unified system.

3. Design a system to overlay all of the packages. This system would maintain the integrity of
the individual packages and accomplish all necessary command interpretation and format
conversion. The existing programs would not need revision and bug fixes and enhancements
could be exchanged with the source institutions. However, this scheme would entail
computational overhead. Execution of the underlying programs would be unchanged, but any
command interpretation or format conversion would require additional computation,

The first option involved unnecessary work. Although any of the frameworks might be improved, it
was not necessary to ‘‘reinvent the wheel.’” The cost of such an effort would not be worth the
improvement it would yield. The second option was also rejected. Because the VSH programs did not
access the image files directly, we explored the possibility of rewriting the access subroutines to use PDS
files. However, format conversions were still necessary, For example, histograms are not contained in
PDS files and would have to be generated. A more serious problem was that many of the VSH programs
implicitly assumed sixteen-bit pixels. If the data type was changed to one byte, the computations would
cause data overflow.

The third option met all of the design objectives. The system, not the user, would handle image
formats. A command interpreter would hide command conventions of the different packages. System
maintenance would be easier because versions would be compatible with the originating organizations.
Existing documentation could be revised to reflect the unified system and combined into a single, on-line
source, Contributors could select a subsystemn with which they were comfortable and use it as a framework
for new programs.

One of the primary considerations was interactive use, so the computational overhead of the
integrating system was an important factor. The processing commands required from a few seconds to
several minutes, depending on the size of the image and the complexity of the algorithm, Command
interpretation and format conversion added from a few seconds, if little conversion was required, up to
about twenty seconds if a great deal of conversion was needed {(e.g. format change for a large image). We
decided that this overhead was tolerable.

Figure 2 illustrates how the WUDMA System integrates many image processing packages. Though

the underlying subsystems use different command conventions and file formats, the uvser sees a single
system. A unified manual, available in print or online, documents the whole system. The organization of

-4-

the sysiem provides a coherent software environment that is easily maintained and expanded.

The integrated software system uses C Shell programs or scripts. The C Shell command interpreter
provides for variables, string and arithmetic operations, conditional execution, and loops [7]. The
WUDMA C Shell programs execute in three steps, First, they (ranslate the command-line specification of
parameters and options from the global, system conventions to the specific, subsystem conventions.
Second, they insure that input images are of the proper format, performing any necessary conversions.
Third, they call the appropriate subsystem program, passing it the translated command line and the
properly formatted files. Figure 3 traces this process. In this manmer, the system uses image processing
programs from several packages, but presents a uniform package to the user.

All documentation has been coalesced into a single document [1]. The WUDMA Image Processing
Software manual is a valuable reference for new users, old hands, and system hackers alike. This manual is
available both in print and online. Modeled on the UNIX manual, it contains pages describing the
commands, system and library subroutines, special files, file formats and conventions, and system
maintenance. Supplementary documents describe parts of the system in detail. The manual also
documents the organization of the WUDMA System and provides instruction in its use. Online
documentation is available via a command modeled on the UNIX man command. The documentation
accompanying the original packages has been revised to reflect the integrated WUDMA System and to
address users’ concerns. Users send commenis, criticisms, and bug discoveries via the UNIX mail facility
to imanual, a pseudo-user account established to serve as the WUDMA System manager.

The UNIX make command, a tool for maintaining computer programs, has been useful in
constructing a system that is easy to maintain and expand. This command uses instructions provided by
makefiles to generate and install libraries and executable code. Makefiles specify such things as where
source cede, included files, and subroutines are located; how they are compiled and linked; and where the
result is installed. To illustrate the utility of the make command, consider the situation where a subroutine
is found to contain a bug, After the subroutine’s source code is fixed, the system manager runs the make
command. Using the makefile, the make command determines that the subroutine’s source code has been
revised and then recompiles and installs the subroutine in its library and all of the programs using it, The
WUDMA System contains a network of makefiles so that all or parts can easily be regenerated.

The WUDMA System is easily managed because it is well organized. A single directory tree holds
the entire system. One subdirectory contains all of the executable code, another all of the C Shell
progeams, another all of the subroutine libraries, and another all of the included files. A subtree, modeled
on the UNIX fusriman tree, holds all of the documentation. Another subtree contains all of the source
code.

New image processing packages can easily be added to the WUDMA System. Each subsystem
maintains its identity and compatibility with the source institution. In fact, it is a simple matter to use a
subsystem directly as if it were not part of the larger system. Because the respective frameworks of the
subsystems are unchanged, it is casy to exchange code with any institution using any of the subsystems.
New programs can be added to the WUDMA System via any of the subsystem frameworks, Prototype
programs for each of the subsystems facilitate coding of new image processing programs. These prototype
programs already contain the code that most image processing programs will need, such as calls necessary
to parse arguments and open files for reading and writing; the user need only specify options and add the
code for the particular application. A prototype manual page makes documentation of new programs
easier.

Many new programs have been written at WU and incorporated into the system. These include
general image processing routines executing on the VAX and programs using the processing capabilities of
the DeAnza digital video processor. Commands have been written to interface with the display units for
such tasks as reading and writing images, accessing intensity transformation and color-lookup tables,
graphic display of histograms, and locator and trackball programs. The format conversion routines can
also be accessed directly within the system.

CONCLUSIONS AND DIRECTIONS

The WUDMA System now contains more than 150 image processing commands. It has arithmetic,
logical, bitwise, and neighborhood operators; edge detectors and region growers; commands to read and
write image buffers, color-lookup tables, and intensity-transform tables; programs that translate, scale,
rotate, zoom, roam, and locate; color transforms and histogram and intensity operators; Fourier transform
programs; commands for file manipulation; graphics programs; and system help and documentation
commands. Appendix 1 lists a few of the commands. The system has proven to be comprehensive and
flexible. It includes basic algorithms and sophisticated tools for interactive image-processing research,
The system is simple to learn, use, and expand,

There are few standards in the image processing community. There is no standard file format, set of
subroutines, or image data structure. No package of commands or operations is complete. The WUDMA
System solves this problem by providing a framework that integrates many packages into 2 single system.
Until industry standards for image processing are established, the WUDMA System will provide a dynamic
image processing environment.

Besides contributing substantially to the success of the Professional Development Program, the
WUDMA Image Processing System is also being utilized by ongoing research projects at WU. Currently,
we are expanding the WUDMA System by implementing additional algorithms on the high-speed DeAnza
processor. By taking advantage of the special DeAnza architecture, algorithms can run in one tenth the
time or less than on the VAX. Some commands run several minutes on the VAX, too long for interactive
work. Frequently, work of this type is submitted to the UNIX system in background execution, which is
effectively batch processing. The same algorithms on the DeAnza may require only a few seconds. As
more algorithms are implemented on the DeAnza, this type of baich job can be avoided and a more
interactive work environment achieved.

A new project at WU to develop a semi-automatic photo interpreter has suggested new directions for
the WUDMA System. Plans are being made for utilization of the system by expert systems for feature
extraction and feature verification. Proposals for a language for image processing are being studied. Such
a lIanguage would provide a higher-level user interface allowing more efficient use of the system, Work
implementing an image database system has also begun,

[0 The WUDMA System is available to non-profit institutions. A license agreement must be executed and
there is a distribution fee. For more information write:

The WUDMA Image Processing System

Box 1045

Department of Computer Science

Washington University

St. Louis, MO 63130

L1 We would like to thank the many people associated with the WUDMA project. We would especially
like to acknowledge the help of Barry Kalman, manager of the Professional Development Project. Qur
thanks also to the WUDMA teaching staff and students, DMA administrators working with the program,
and Art Toga of the WU Dept. of Neurology.

-6-

REFERENCES

1. A.F. Laine and S. E. Reichenbach, WUDMA Image Processing Software - User's Manual, Technical
Report WUCS-87-30, Dept. of Computer Science, Washington University, St. Louis, MO.

2. B. A. Kalman et al,, "Defense Mapping Goes to School: An Educational Model for Automation”
Computer Graphics World, Vol. 8, No. 12, December 19835, pp. 27-30.

3. M. B. Faintich, "Defense Mapping Undergoes a Digital Revolution" Computer Graphics World, Vol. 8,
No. 6, June 1985, pp. 10-28.

4. A. P. Reeves, The PPS-PDS Users’ Manual, Version 2.2, School of Electrical Engineering, Cornell
University, Ithaca, NY.

5. I. Zimmerman et al., V Shell Reference Manual, Version 2, Dept. of Computer Science, University of
North Carolina, Chapel Hill, NC,

6. R. Gray and P. Lentz, A Package for Image Displays, Release 1b, Par Technology Corp., New Hartford,
NY.

7. W. Joy, "An Introduction to the C Shell" UNIX User's Manual, Supplementary Documents, 4.2 BSD,
Dept. of Electrical Engineering and Computer Science, University of California, Berkeley,

8. A.F. Laine and S. V. Pollack, The Enhanced WUDMA Image Processing System, Technical Report
WUCS-85-01, Dept. of Computer Science, Washington University, St. Louis.

9. S. I. Feldman, "Make—A Program for Maintaining Computer Programs” UNIX Programmer's Manual,
Tth ed., Vol. 2, Holt, Rinehart and Winston, New York, 1983.

10. W. F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System"” Proceedings of

the 6th International Conference on Software Engineering, IEEE, Sept. 1982.

PDS
Processing
Programs

PDS
Formatted
Images

Display

00 O00

Format
Conversion
Programs

Terminal

VSH
Formatted
Images

VSH
Processing
Programs

Figure 1, The image processing environment before the WUDMA System.

PDS
Processing
Programs

PDS
Formatted
Images

Display

C0 auo

Format
Conversion
Programs

WUDMA
System

Terminal

VSH
Formatted
Images

Figure 2. The WUDMA System image processing environment.

VSH
Processing
Programg

User invokes a WUDMA C Shell program., For
example, suppose the user gives the command:
threshold -t 128 imagel image2
This command specifies that the image in the file
imagel be thresholded at intensity 728 and that
the resulting image be placed in the file image2.

The arguments arc converted from the WUDMA system
conventions to the argument conventions used by
the appropriate subsystem. Using the example above,
the parameter -t 128 is changed to th=128.

If any input files are not of the proper format, a
temporary file of the proper format is created. Suppose
for our example that image! is a VSH formatted
image and threshold expects a PDS formattted image.

If a temporary file is created, the name of the
temporary file replaces the name of the inpaut file in
the command line. For our example, the command line
would now be: threshold th=128 if=tempfile of=image2

\
The appropriate program from one of the subsystems
is invoked with the new command line,
{
If a temporary file was created, it must be removed. —_—

Remove the temporary file. In our example, tempfile
would be removed.

END

Figure 3. WUDMA C Shell execution.

Appendix 1: Some WUDMA Image Processing Commands

add i . e e et e i e e e e e s e w s s . . . addition operator
ahe adaptivehistogram equalization
and 4 = e e e+ e s s s s s s s e v s s+ s+« .« bytewiselogical AND operator
bgrtohue RGBandIHS space transformations
bnds it i st v e s e e .. drawboundariesonDeAnza
butter 4 4 4 e e e s s e s+« « . Butterworth low-pass filter
€8 4 v« 4+ 4+ 4 v 4 v e e s e s s+« « . . Robert'scross gradient edge-detector
clut e e e s m e s e s s s w s s« s s s« setVectrix or DeAnza color lookup table
CMAZ . « = « « « « « o+ + o+ +« « + « - Inagnitude of two-channel, complex image
COMIOUT v & v 4w 4 4« v o 4 & &+ = + o =+ s + s o« o« 2 s s+ s + s » « « plotcontours
ctobw “ 4 4 e s v s 4 s e e e s e s s e s e s« .. . colortoblack and white
dvpconv DeAnzadvpspatial convolution with user-specified mask
AvPmax . . . v v s v et e e e e e e e e e e e e e s s s . local maximum
dvpmed 0 s e e i et e e e e e e e e e e o« . local median
dvpstdv e e e e e e s s s s s v s e s s s s+ o« local standard deviation
embed st s 4 s s e 4 e s e s s e« « . . embedoneimage within another
EXITaCt & & v 4 v 4 s s 4 e s 4 s s 4 s s s s s s s & s« « . extractasubimage
fft a e s e e e e e e 4 e s e s s s e s e s s s« o« fastFourier transform
gauss s s 4 4t e s s e s e s e s e s e s e e s s+ » addGaussian noise
get_cur e s s 4 e s e e s s e e s s s s s s s« DeAnzatrackball locator
greymap © e e e e e e e e e e e e e s e e s e s . . ey-scale intensity mapping
header+ ...+ writedescription of animage to stdout
hgram+ graphicintensity histogram
histeg ¢ . v o i it o v v w s s . s . . intensity histogram equalization
hough_circle 4t 4 s 4 4 4 4 a4 4 e e s e s+ Houghcurve-detector

iman &« e e e st e e a4 s a4 s e+ findimage manuval information by keywords
IMVEIT 4 & 4 v o 4 v o 4 v e e e s e e e e e e e e s w . . . oOnescomplement
it 4 e s s e s s e a e e e w e e s« s« readfwrite itt tables from DeAnza

kirsch e 4 e s e s e 4 s e s s e s w s e s s e e s s s+« Kirschedge-detector
loc © . . s e e e e e e e e 4 e e e e e e e e e e w o« v« Vectix locator
meddev. mediandeviation from the local median
motion s v 4 e e e e e e e e e w s e oae s e e e s . optical flow calculator
MSE + v 4 4 4 = s + o o + + » + & + s s+ & « + » = « « « - . meansquared error
mul e e e e st e e e s s s aae e s s s s s+« . muliplication operator
pscale Gt e+ 4 s e 4 e e st s e v e e e v w o« . . transform and scale intensities
elax 4 s e i e i i 4 4 e s e e e e e e s e« Rosenfeld relaxation
reshape © + + « s« s s s « .« . . increase or decrease size by bilinear interpolation
reting G s e s s e s e e s s e e e e e s s+« Marr-Hildreth edge-detector
TOMIE . & & & & v 4 4 s s s s s s s s s s s s e s s s s s « . TIotateanimage
rsmooth & ¢ e + s s s s s« s o+« o« . smoothsregions while maintaining edges
sobelp it e i s e e v e e o v s« Sobeledge-detector (PDS)
threshold Gt e e e e e e e e a4 e s e e e e s as e e s s« o Iniensity threshold
FANS . . « + « &« « + o s s s+ « s « + « « . diagonal, horizontal, or vertical transpose
unsharp o 4 4 4 4 e v 4 s e s s s s s e s« o o o unsharp masking filter
vsfmean s 4 4 4 4 4 s 4 s e s e 4w e s s s s« « . variable shape mean filter
vxlut e+ 4 4 e 4 e 4 e 4 e e 4 s s e w2 v+ s v+ load Vectrix color look-up-table
wiilter e h et e e s e 4 s e s e s e e e s e s e s e e s o« Wienerfilter variant
ZCAl . . 4 4 4 4 4 4 4 4 4 &+ .+ concatenate images into multichannel image
ZeXtract . . .« .+ 4. o <+« o+ . . o extract channel(s) from a multi-channel file
zr et e e e e e e s s e s e s s e s e e s o« zoomand roam on DeAnza

Appendix 2: A Sample C Shell Program

#
csh program to threshold an image producing a binary image
#
onintr cleanup
set path = (fusr/fimage/bin /bin fust/bin)
calls PDS threshold program
set cmd=(threshold)
#
i options
#
while ($#argv > 2)
if ("$argv[1]" =""-t") then
if ($ffargv < 2) goto usage
set cmd=($cmd th=%argv[2])
shift argv
shift argv
else
echo *unrecognized option’ $argv[i]
goto usage
endif
end
#
input image, output image
#

if ($#argv I= 2) goto usage
if { isapds $argv[1] } then
set cmd=($cmd if=$argv{1])

else
if (1 { vshpds Sargv[1] fimp/Suser.pds.$3 }) exit{1)
set crnd=($cmd if=/tmp/$user.pds.$3)

endif

set cmd=(3cmd of=%argv[2])

it

execute

#

$emd

#

cleanup and terminate

#

cleanup:
if (- /tmp/$user.pds.$$) rm Amp/$user.pds.$$
exit(0)

usage:

echo "usage: threshold [-t NJ if of”
exit(1)

	The WUDMA Image Processing System
	Recommended Citation

	tmp.1462913377.pdf.JxIhW

