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ABSTRACT

This paper presents a straightforward approach to
determining how best to utilize an MIMD multiprocessor in
the solution of one dimensional optimization problems
involving continuous unimodal functions and nongradient
search techniques. A methodology is presented which
allows one to consider a variety of speedup functions
which may occur in parallel function and systems
evaluation. It is shown how the best of two parallel
optimization strategies can be determined for a given

accuracy, number of processors and speedup function.
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ONE DIMENSIONAL OPTIMIZATION OF MULTIPROCESSOR SYSTEMS

by

M. A. Franklin and N. Soong
I. INTRODUCTION

The advent of large and very large scale semiconductor integration
techniques has significantly reduced the cost of digital logic. One result
of this has been a growing interest in obtaining enhanced computational
power through the use of multiprocessor computer systems [1, 2, 3]. This
enhanced computational power is needed since many of the engineering, social,
economic and environmental systems currently being studied are highly complex.
The computer costs associated with studying such systems can be high. Often
they require the solution of large numbers of nonlinear equations, many are
stochastic in nature and all require numerous computer execution runs for
system model verification and analysis.

This paper examines the question of what strategies to follow when
faced with a system or function optimization problem to be solved in an
MIMD (multiple instruction stream—-multiple data stream) computer environ-
ment [4]. The goal is to select the lower cost of two well defined one
dimensional optimization strategies. The objective function to be optimized
is assumed to be continuous and unimodal, although the continuity assumption
can be relaxed without much difficulty. The MIMD computer is assumed to
consist of Nc identical processors and a general interprocessor communications
network [5]. The optimization methods used are of the direct search,
nongradient variety.

A number of optimization questions have already been considered in the
parallel processing environment. For instance, work has been done on the
question of optimal searching and sorting of files [ 6, 7]. Other work has
centered on the numerical properties of various parallel function optimization
algorithms [ 8, 9, 10, 11].

This paper considers a fundamental strategy altermative available when

performing one dimensional function optimization studies on an MIMD machine.
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One strategy involves parallel evaluation of the function to be optimized,
and the use of a sequential optimization scheme. An alternative strategy
involves sequential evaluation of the function to be optimized, and the use
of a parallel optimization scheme. The remainder of this paper formalizes
these alternative strategies and presents a procedure for selecting the better
of the two. Section II that follows defines the problem and specifies the
alternatives available. Section III considers the general problem of optimal
strategies, and three special cases. Section IV concludes the paper and

indicates some related problems.
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II. THE PROBLEM

A. The System To Be Optimized

Consider the general objective function F(a) which is to be optimized

with respect to a scalar parameter o where o is restricted to the finite range
[O’Rb]' The function F is taken to be a continuous unimodal function of «,
although the continuity property can be relaxed without much difficulty. Note
that F may be quite complicated, and may involve solution of a system of
operator equations such as differential equations.

Assume that a parallel algorithm is available so that F can be evaluated
in an MIMD enviromnment. Such parallel algorithms have been explored for example
for both systems of differential equations [12, 13, 14] and partial differential
equations [15, 16], systems of algebraic equations [17] as well as other types
of systems [1].

Assoclated with such parallel algorithms is a speedup function, Sp. Sp
relates the solution speed in the single computer case to the solution speed
with Nc computers present (i.e. an MIMD machine). If tp(Nc) is the time it
takes to evaluate the function with Nc computers, then the speedup
Sp = tp(l)/tp(Nc)° Obtaining the speedup function is a difficult matter
and is dependent on an understanding of the function to be optimized, and
a detailed analysis of appropriate parallel evaluation algorithms. The re-
ferences cited above contain some typical approaches to obtaining Sp and the
analysis that follows assumes that such § curves are available.

The optimization problem concerns finding a value of the parameter a
such that the general objective function, F(a) is within a range [O’RN] of
the true optimum. This if a* is the parameter value at which F{a) is opti-

mized, the problem is to find an & such that

|o~a®*| < Ry 1)

B, Two Optimization Procedures

The optimization procedures considered are in the class of nongradient
search techniques. These lend themselves to one dimensional optimization
problems, and are often key elements upon which multidimensional gradient

approaches are based. In addition these techniques have the property that
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the rate of convergence to the optimal is not dependent on the characteris—
tics of the function to be optimized. The result is that a quantitative com~
parison can be made between alternative optimization strategies on a function
independent basis. Finally it should be noted that there are many functions
which are only piecewise smooth (e.g. piecewise linear functions) and are often
not efficiently solved using gradient and other higher order methods. The
non gradient techniques discussed next are applicable to these functions even
though for presentation simplicity, the derivations assume the presence of con~
tinuous functions.

Iwo types of nongradient searches are considered; sequential and parallel
or simultaneous. For both the goal is to find an a,0 € [O,R ], which is within
the optimality range RN That is we want to reduce the orlglnal o interval
from Ro to RN Define B to be the ratio of RN/Ro'

It is well-known that the "best" sequential search from the point of view
of minimizing the number of function evaluations for a given B is the Fibonacci
search (18). With this search procedure, the optimality or uncertainty range
after N_ function evaluations (RN), the original range of the a parameter (R ),

and the N L Fibonacci number (F ) are related as follows:

S
B = éR-N- = Fl——
N
& s
_ N+ _N-1 -1
= (lzﬂ) _(.lzz'./.i) (2)

The subscript S indicates that a sequential search is involved. For NS>> 1,
equation 2 can be simplified to the Golden Section search and NS solved for
explicitly.

= (.324 - 1nB)/.481 (3
Thus given the parameters initial and final ranges the number of function
evaluations required can be obtained.

The second type of search procedure to be considered is a parallel or
simultaneous search. Herelic function evaluations are produced in parallel,
each one using a different o parameter value. Successive groups of function
evaluations are performed over successively smaller parameter ranges, until
the parameter is within the acceptable optimization range (Ro)' A simple

approach which is optimal in the Fibonacci or minimax sense {9, 10] consists of
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successive divisions of Rb into Nc+1 intervals with function evaluations
being performed at the Nc internal points. Using the unimodal property of the
function involved, a new o interval containing the optimal a is selected at
each iteration, with Np iterations being necessary for a given B. 1If Nc is
taken to be an even integer then the following equation holds:

N
P
w2 4)

Solving for the number of iterations results in equation 5.

- 1ln B
Np In 2 - ln(Nc+2) (5)

C. Computer Implementation and Optimization Strategy Selection

Two main strategies are to be compared. These relate to whether parallel
or sequential funetion evaluation algorithms and optimization schemes are to
be used. The two strategies are illustrated in Figure 1.

In Figure la, the Nc processors of the MIMD machine work together using
a parallel algorithm for evaluating the function. A single function evaluation
is thus obtained for a single parameter value. The results of this single eval-
uation are used by the sequential Fibonacci optimization scheme to select a
successor parameter value, and the function is then evaluated again. This con-
tinues for Ns cycles until the parameter value is obtained which satisfies the
given B requirements.

The multiple processors in this case speed up the optimization process by
permitting the implementation of a parallel function evaluation algorithm. Thus
speed of solution is directly related to the speedup curve, Sp vs Nc, which re-
sults from the implementation of the parallel algorithm on the particular MIMD
machine used. For this case the solution or evaluation method is parallel,
while the optimization method is sequential. The total time to perform the
optimization (Tp/s) is given below.

Tp/s = NS*[tp(Nc) + t;] (6)
tp(Nc) is the time it takes to perform the function evaluation with the parallel
algorithm utilizing Nc processors. t; is the time it takes to perform calcula-
tions related to the Fibonacci search procedure. Substituting the value for

Ns from (3), and noting that for most practical situations tP(Nc)>>t; one obtains:
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Tp/s = (.324-1nB)*tp(Nc)/.481 (7N

In terms of the speedup function Sp:
Tp/s _ «324~1nB (8)

tp(l) .481*Sp(Nc)

The second approach is illustrated in Figure lb. Here a sequential func-
tion evaluation scheme is used with the Nc processors simultaneously evaluating
the function for a different value of a. The Nc values cbtained are used by
a parallel optimization scheme to select a new group of Nc parameters concen—
trated now over a smaller subinterval of the parameter range. The function
is again evaluated with each processor now handling one of the new parameter
values selected. This continues for Np cycles until a parameter value is ob-
tained which satisfies the given B requirements.

The multiple processors in this case speed up the optimization process by
allowing for Nc separate simultaneous function evaluations. Contrasted with
the previous method the evaluation method is sequential and the optimization
scheme is parallel. The total time to perform the optimization (Ts/p) is:

TS/p = Np*[tp(l) + tg] (%

tp(l) is the single processor time to evaluate the function, while t; is the
time it takes to perform calculations related to the parallel search procedure.
Now t~ involves comparing at most Nc adjacent function values, to select the
next optimal subinterval. tp(l) on the other hand may involve the time asso-—
ciated with solving a set of equations. Thus for most cases of interest

tp(l)>>t;, and substituting the value for Np from (5), one obtains:

1ng
S/P - (10)

tp(l) 1n2-1n (Nc+2)

T

The question to be resolved is which of these two strategies is better
from the point of view of requiring less time to perform the optimization.
The strategies will be referred to as the P/S (i.e., parallel evaluation/
sequential optimization) and S/P (i.e., sequential evaluation/parallel
optimization) strategies. The next section shows how their selection is
related to the function and speedup curve, to the optimality requirements (g),

and to the number of processors present (Nc)'



ITI. OPTIMAL STRATEGIES

A. General Approach

For a given speedup function it is clear from [8] and [10] that the
strategy selection process involves twoe principal variables, 8 and Nc. The
selection process can be understood by examining the curve obtained when Tp/S

is equated to Ts/p as given below.

1ng _ .324 - 1ng

In2 - In(N 42) ~ .481%5_(N ) (11)
c p ¢
This in turn can be solved explicitly for B. Thus:
-1 |.324
B =1n 149 (12)
where:
L481%s (N )
p ¢

Q=17 - In(N_*2)
The remainder of this paper examines how this curve segments the strategy

e
gions will differ for differing speedup functions. The sections to follow con-

space into regions where either T , >T or T , <T . The shape of these re-
p/s—s/p s/p “p/s

sider three example speedup functions and just what optimization strategy to

follow for these cases. The approach is straightforward and can be used when

other speedup functions are encountered.

B. Logarithmic Speedup Functions

Certain parallel algorithms appear to have a logarithmic speedup as the
number of processors available increases as given in formula below.
S =1+ A*InN (13)
P c

A is a constant determined by the parallel algorithm used.

An example of this is given in reference 12. In this situation, function
evaluation involves solution of a2 set of first order differential equations.
One solution method considered, the Equation Segmentation method, is based on
partitioning the set of differential equations and allocating equation subsets
to the Nc available computers. Speedup is achieved by performing the deri-
vative evaluations associated with each subset in parallel. Information is
exchanged between computers at each integration step. A test of this method

using a benchmark of six relatively small problems yielded average speedup
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for Nc =1, 2, 4 and 8, of Sp =1, 1.74, 2.82 and 4.09. With these results,
a least-squares fit to (13) yields an A value of 1.407. Similar logarithmic
like speedup curves have been observed by Raskin [15] for certain systems of
partial differential equatioms.

Obtaining the decision curve is a simple matter of substituting SP from
(13) into (12), and for a given value of A and successive values of N solving
for 8. The results for A = 1.407 are plotted in Figure 2 together with other
values of A. As indicated, the decision curve descends monotonically, even—
tually crossing the horizontal axis at about 25 computers. The space is neatly
segmented into two regions. To the left of the curve the P/S strategy should
be used while to the right the S/P strategy should be used. For instance if
16 processors were available and a 8 of .00l was acceptable, then the best
strategy would be to use a parallel function evaluation scheme with the
sequential Fibonacci search algorithm (i.e., P/S strategy). On the other
hand if the number of processors were raised to 32 the S/P strategy would be
preferable. Note that since in most practical situations a B less than .05
will be sought, using 25 processors as a single decision point will yield near
optimal strategies.

The reasons for the decision space segmentation as described above relate
to the interaction of two items. The first is the relative efficiencies of the
two search algorithms in terms of the total number of function evaluations per-
formed for a given 8. In these terms the Fibonacci algorithm is the most effi-
cient procedure. The second 1s the shape of the speedup curve. When the num-—
ber of processors is small, additional processors have a large effect on the
speedup. This coupled with a more efficient search algorithm make the P/S
strategy more effective for relatively small numbers of processors. As the
number of processors gets larger, however, the diminishing returns effect of
the speedup curve comes into play. Now increases in the number of processors
has negligible effect on parallel function evaluvation speed, thus the times
associated with the P/S strategy stabilize and there is no gain associated
with having more processors. On the other hand the S/P strategy is always
able to utilize additional processors since each additional processor provides
for an additional simultaneous function evaluation with an added parameter
value. The interplay of these items results in the family of curves of Figure

2.



C. Linear Speedup Functions

Paralle]l algorithms with near linear speedup as a function of the
number of processors are possible and have been reported in the literature.
An example of this is reported in reference 13 and discussed further in
reference 12. Given that Sp = 1 when Nc = 1, the linear speedup function
follows:

Sp =1 + mﬁ(Nc-l) 14)

where m is the slope of the linear functiom.

The decision curve is obtained by substituting S from (14) into (12),
and for a given value of the slope m and values of Nc solving for B. The re-
sults for a sequence of m values are given in Figure 3. The m = .927 curve
corresponds to a differential equations algorithm discussed (12).

Unlike the logarithmic case, the decision curve here monotonically in-
creases with the number of computers. For any particular m value, to the right
and below the decision curve implies that the P/S strategy should be followed,
while to the left and above the curve indicates the S/P strategy would be pre-
ferable. For the case m = .927, any practical B value would result in a paral-
lel solution method combined with Fibonacci search as the better strategy inde-
pendent of the number of processors present. For lower values of m, however,
the strategy would depend on Nc. For m = .258 and B_;"TCOI, for_zgétance,
if Nc < 13, the S/P strategy should be used with the P/S strategy being used
otherwise.

The explanation of these curves again relates to the interplay between
search algorithm efficiencies and speedup curve properties. WNote first that
for high values of the slope and a reasonable B range (R < .l1), the P/S strategy
would be selected independent of Nc' This is because the higher efficiency of
the Fibonacci algorithm combines with an effective use of processors for paral-
lel function evaluation (i.e., high m) to reinforce each other. The result is
that the P/S strategy is the better one.

The situation changes as the slope becomes low. Here processors are used
less effectively in parallel function evaluations with different parameter
values. At some point therefore a region is introduced where the S/P strategy
is the advantageous one. For such low m values, however, the S/P strategy will

give way to the P/S strategy as Nc inereases. The reason for this is that the
slope, though relatively small, results in a linearly increasing speedup with
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higher Nc and is therefore linearly effecting solution speed in the P/S method.
On the other hand, increases in Nc with the S/P strategy effect solution speed

only in a logarithmic manmer.

D. Composite Speedup Functions
The final speedup curve of interest is a combination of the logarithmic

and linear curves. Consider a situation where two parallel solution methods
are available, one having a logarithmic, and the other having linear speedup
functions. In certain situations it may be possible to combine the two methods
to achieve a further enhanced parallel solution method. Such a method would
take advantage of the rapid logarithmic rise in speedup which occurs with a
relatively small number of processors. However, instead of being subject to
agymptotic behavior of the logarthmic curve, it would maintain a linear speed-
up as the number of processors gets large. Such a composite method, for in-
stance, might be used to solve large sets of differential equatioms. Initially
the set of equations would be partitioned into tightly coupled subsets re-
presenting perhaps naturally close physical subsystems. These subsets of equa-
tions would then be allocated to groups of computers where, within the group,

a linear speedup solution method would be utilized.

Given that the total number of computers available is Nc, let Nc* be the
number of problem partitions, or computer groups. For simplicity assume that
each group consists of an equal number of processors. This assumption will
generally hold if the partitioning process results in an equivalent amount of
computational work to be performed by each processor group.

If S10 and Sli are the logarithmic and linear speedup functioms, res-—
pectively, then the overall speedup curve for the composite method is defined
by:

SP - Slo(NC*)*Sli (ch/chJ)
or

S, = (1+A 1n N *)*(14m(|N_/N *|-1)) (15)

The brackets L J indicate that an integer number of computers must be present
in each computer group. Notice that the number of computer groups, Nc*, must
still be specified. Since P/S strategy performance will improve as Spincreases,

Nc* must be chosen to maximize Sp for given values of A, m and Nc.



11

Once Nc* has been calculated, the optimized SP can be used to obtain the
decision curve by substituting into equation (12). The results are plotted in
Figure 4. The general shape of the curves corresponds to what one might expect
from a superposition of the logarithmic and linear decision curves of Figures
2 and 3. For small values of Nc the logarithmic speedup dominates, while for
large values of Nc the linear speedup dominates. One interesting feature that
results is that for values of m below a certain cutoff (i.e., m < .2 with
A = 1.407). The decision space is partitioned into three regions. Thus for
m = .100, A = 1,407 and B = .1, below ten processors and above sixty four
processors the P/S strategy is best, while between these two processor limits
the S/P strategy should be used. The explanation for this behavior directly

follows the previous discussion under logarithmic and linear speedup functions.
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IV. SUMMARY AND CONCLUSIONS

This paper presented a straightforward approach to determing how best to
utilize an MIMD multiprocessor system in the solution of one dimensional opti-
mization problems involving continuous unimodal functions and nongradient search
techniques. A methodology was presented which allows one to consider a variety
of speedup functions which may occur in parallel function and systems evaluation.

The best of two optimization strategies can be simply determined for a given
accuracy, number of processors and speedup function. The first strategy

involved parallel evaluation of the function to be optimized, and a sequen-
tial Fibonacci optimization scheme (P/S). The second involved sequential
evaluation of the function to be optimized, and a parallel optimization
scheme (S/P). Graphs were provided so that the best of the two strategies
could be selected for several common speedup functions. Further work along
these lines with multidimensional problems and gradient search techniques

‘appears possible but difficult.
Other problems exist which are directly amalogous to the one considered.

One relates to DO LOOP implementation on MIMD machines where each iteration
through the loop corresponds to an increase in some performance measure. The
loop can be implemented either by replication on the available processors, or
by parallel evaluation of the tasks contained in the loop. An example of this
is the class of statistical problems where multiple runs are necessary to
achieve a given level of statistical convergence and the function or system in-
volved can be solving parallel fashion. In these situations a decision similar

to the P/S , S/P one discussed above can be examined.
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