
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-70

2003-10-14

Managing Access Control in the Presence of Mobility Managing Access Control in the Presence of Mobility

Christine Julien, Gruia-Catalin Roman, and Jamie Payton

The increased pervasiveness of wireless mobile computing devices draws new attention to the

need for coordination among small, networked components. The very nature of the environment

requires devices to interact even when they meet unpredictably. Because these networks are

often decoupled from a fixed infrastructure, reliance on centralized servers for authentication

and access policies is impractical. Access control is crucial in such systems, and applications

must directly manipulate and examine access policies because they require full control of their

data. In this paper, we explore the essential features of general access control policies tailored

to the needs of agent... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Julien, Christine; Roman, Gruia-Catalin; and Payton, Jamie, "Managing Access Control in the Presence of
Mobility" Report Number: WUCSE-2003-70 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1116

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233199772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1116?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1116

Managing Access Control in the Presence of Mobility Managing Access Control in the Presence of Mobility

Christine Julien, Gruia-Catalin Roman, and Jamie Payton

Complete Abstract: Complete Abstract:

The increased pervasiveness of wireless mobile computing devices draws new attention to the need for
coordination among small, networked components. The very nature of the environment requires devices
to interact even when they meet unpredictably. Because these networks are often decoupled from a fixed
infrastructure, reliance on centralized servers for authentication and access policies is impractical.
Access control is crucial in such systems, and applications must directly manipulate and examine access
policies because they require full control of their data. In this paper, we explore the essential features of
general access control policies tailored to the needs of agent coordination in the presence of physical and
logical mobility. We propose and evaluate novel constructs to support such policies in mobile
applications.

https://openscholarship.wustl.edu/cse_research/1116?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1116?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages

Managing Access Control in the Presence of Mobility

Christine Julien, Gruia-Catalin Roman, and Jamie Payton
Department of Computer Science and Engineering

Washington University in St. Louis
{julien, roman, payton}@wustl.edu

Abstract

The increased pervasiveness of wireless mobile com-
puting devices draws new attention to the need for coor-
dination among small, networked components. The very
nature of the environment requires devices to interact
even when they meet unpredictably. Because these net-
works are often decoupled from a fixed infrastructure, re-
liance on centralized servers for authentication and ac-
cess policies is impractical. Access control is crucial in
such systems, and applications must directly manipulate
and examine access policies because they require full con-
trol of their data. In this paper, we explore the essential
features of general access control policies tailored to the
needs of agent coordination in the presence of physical
and logical mobility. We propose and evaluate novel con-
structs to support such policies in mobile applications.

1. Introduction

Ubiquitous computing devices communicate wire-
lessly, opportunistically forming ad hoc networks not
connected to a wired infrastructure. In such envi-
ronments, distributed applications exchange informa-
tion or coordinate tasks. These networks can include
a handful of devices or thousands of heterogeneous
components, making coordinating and mediating their
competing needs a massive task. Much research focuses
on developing middleware to facilitate rapid applica-
tion development for this demanding environment.

This paper focuses on systems that use tuple spaces.
Linda [6] provides a centralized tuple space where ap-
plication agents exchange information using content-
based matching of patterns against data. Variations on
this theme adapt it to the mobile environment where a
central repository is not feasible. Due to the open and
dynamic nature of mobile systems, security concerns
of three types arise: protecting mobile hosts from ma-
licious agents, protecting agents from tampering hosts,
and securing data. D’Agents [7] uses public-key cryp-

tography to authenticate incoming agents to increase
host security. Undetachable threshold signatures [1]
prevent hosts from tampering with an agent’s data.

Protecting data include both ensuring data integrity
and controlling access. Much coordination research has
addressed the former by encrypting communication
within coordination spaces. SAMCat [12] and Yalta [3]
use encryption and authentication to securely trans-
mit tuples into and out of a data space. Our work fo-
cuses on the final issue: controlling data access. A solu-
tion to this problem is complicated by the fact that, in
the mobile environment, disconnection from a wired in-
frastructure renders a centralized solution impossible.

A common mechanism for addressing access control
uses access matrices to describe rights. The rows of the
matrix correspond to users and the columns to objects;
a cell in the matrix contains the access rights a user has
on an object. This approach generalizes several com-
monly used approaches, including access control lists
and capability definitions. In the mobile environment,
the number of possible agents and the amount of data
available over the lifetime of the system makes applying
these solutions directly impractical. The access control
function introduced in this paper overcomes the limi-
tations imposed by mobile systems by operating over
general descriptions of interacting parties and dynam-
ically adjusting to the changing context.

Section 2 introduces a general mobile coordination
model. Section 3 describes our access control mecha-
nism. In Section 4, we discuss the construct’s expres-
sive power and overhead. Section 5 overviews related
work, and conclusions appear in Section 6.

2. A Generalized Coordination Model

In this section, we capture the essential features of
tuple space coordination in order to explain access con-
trol requirements for mobile middleware. The result is
a generalization that spans the gamut from tuple defi-
nition to sophisticated operations. In the original Linda

model, processes generate tuples in a centralized repos-
itory and retrieve them using content-based operations
in which the retrieving process specifies a pattern that
the returned tuple must match. These operations are
synchronous in that they “block” the issuing process
until a tuple satisfies the operation and is returned.
The Linda operations decouple agents in a manner use-
ful in mobile networks, as demonstrated below.

The Tuple Space. Some mobile systems (e.g.,
MARS [4]) focus on logically mobile agents in a net-
work of physically stationary hosts, while other systems
(e.g., Lime [11] and EgoSpaces [9]) integrate physical
and logical mobility. All such systems associate a tuple
space with a network component that allows other com-
ponents to access the data. Tuple spaces can be perma-
nently bound to hosts, to agents, or distributed among
a combination of the two. The distribution of the tu-
ples is irrelevant with respect to access control; the key
aspect of the representation is how application agents
access data. We assume a tuple space bound to each
mobile agent. Using this model, we can simulate other
approaches, e.g., to simulate tuple spaces bound to a
host, we associate an agent permanently to a host and
use its tuple space as the host’s tuple space.

Tuples and Patterns. We generalize a tuple to
one in which a field is identified by a name. A tuple
is an unordered set of triples: 〈(name, type, value), . . .〉.
For each field, type is the data type of value. In a tu-
ple, each field name must be unique. Users access tu-
ple spaces by matching patterns against tuples. A pat-
tern has the form: 〈(name, type, constraint), . . .〉. The
constraints are functions that provide requirements a
field’s value must match for the tuple’s field to match
the pattern’s field. Specifically, the matching function
M is defined over a tuple θ and a pattern p as:
M(θ, p) ≡ 〈∀c : c ∈ p :: 〈∃f : f ∈ θ ∧ f .name = c.name

∧ f .type instanceof c.type
:: c.constraint(f .value)〉〉. 1

M requires that, for every constraint c in the pattern,
there is a field f in the tuple with the same name, the
same type or a derived type, and a value that satis-
fies c. While the function requires that each constraint
is satisfied, it does not require that every field in the
tuple is constrained, i.e., a tuple must contain all the
fields in the pattern but can contain additional fields.

Basic Operations. Next, we classify the available
operations, regardless of the tuple space structure.

1 In the notation 〈op quantified vars : range :: exp〉, the vari-
ables from quantified vars take on all values permitted by
range. Each instantiation of the variables is substituted in exp,
producing a multiset of values to which op is applied, yield-
ing the value of the three-part expression. If no instantiation of
the variables satisfies range, the value of the expression is the
identity element for op, e.g., true when op is ∀.

TupleGeneration. Agents create tuples using out op-
erations. Tuple generation generally places a tuple (t)
in a specific tuple space: out(T , t), where T is a tu-
ple space with a particular name located at a particu-
lar agent. In EgoSpaces, an out places the tuple in a lo-
cal tuple space controlled by the generating agent. In
Lime an out can place a tuple in any tuple space owned
by any agent on a connected host. In MARS the tuple
is created in the local host’s tuple space.

Tuple Retrieval. To read and remove tuples, agents
use rd and in operations respectively, which assume
three forms: blocking, atomic probing, and scattered
probing. The blocking form, rd(T , p), returns a tuple
matching the pattern p from the tuple space T . The
tuple space can be either local to the agent or con-
trolled by another network component. Atomic prob-
ing operations, rdp and inp, guarantee, if a matching
tuple exists, it is returned, but they can return ε if
no match immediately exists. Like the blocking opera-
tions, they are atomic with respect to the tuple space
on which they are issued; in some cases in the mobile
environment, guaranteeing this atomicity can be ex-
pensive. Scattered probing operations, rdsp and insp
offer weaker guarantees. While all of these access oper-
ations entail only single tuples, extensions to Linda al-
low simultaneous access to groups of tuples. These op-
erations come in all three forms described above and
are referred to as group operations, e.g., rdg refers to
a blocking non-destructive read operation that returns
all matching tuples from the tuple space.

Some models present tuple space operations to the
user in a different manner. In Lime, application agents
operate over a federation of connected tuple spaces,
while in EgoSpaces, agents operate over projections,
called views, of all available data. In these cases, the
more complex interactions can be reduced to the tu-
ple space operations described above.

3. Access Control Function

As dynamic components become increasingly per-
vasive, security concerns become of paramount impor-
tance. In our coordination model, an agent assumes re-
sponsibility for mediating access to its data. The ability
to control access in this manner is fundamental because
it allows the access policies to reflect an agent’s instan-
taneous needs. To accomplish this, each agent specifies
an individualized access control function.

We allow an agent to restrict which agents access
its data and the manner in which the access occurs. To
accomplish the former, a requesting agent must pro-
vide credentials identifying itself. To accomplish the
latter, the access control function accounts for the op-

eration being performed. In the end, each agent defines
a single access control function that takes as parame-
ters a tuple, a set of credentials identifying the request-
ing agent, the operation being performed, the pattern
used in the operation, and the owning agent’s profile
(defined next). This function returns a boolean indi-
cating whether the requested access is allowed.

Profiles. Before describing the access control func-
tion in more detail, we introduce a profile to maintain
properties of each agent, which we represent as a tuple.
Particular applications or coordination systems may re-
quire specific attributes in this profile. In general, we
assume a profile contains at least a unique host id iden-
tifying the agent’s host and a unique agent id.

Parameters. An access control function takes five
parameters: the credentials, operation, tuple, pattern,
and the owner’s profile.

Credentials. Credentials allow an agent to convey
information about itself. In simple cases, they can be
a standard set of attributes, e.g., the agent’s id or a
third-party authentication. When an agent has a pri-
ori knowledge of the access requirements, credentials
can be more complicated, e.g., a password. When con-
structing credentials, an agent must take care not to
give away too much information, e.g., if the agent has
multiple passwords, it should send only the correct one.
This identification is especially necessary in open and
dynamic mobile environments, where it is often not
possible to know a priori exactly which agents can ac-
cess restricted information. Instead, agents must prove
they have required privileges. Credentials are a subset
of an agent profile presented as a tuple of attributes,
which allows the access control function to use pat-
tern matching to evaluate credentials. The credentials
and their transmission with the operation are assumed
to be private. This security is outside the scope of this
paper but could be accomplished using cryptography
schemes already under development.

Operation. The access control function can also ac-
count for the operation requested. Often, some data
should be restricted to read-only access, yet current
systems do not inherently allow this restriction. Con-
sidering the operation when determining access allows
a dynamic application to permit one set of operations
for some agents, but different operations for others.

Requested Tuple. Because we focus on tuple space
models, the access control function can operate over
the tuple to be returned from an operation. Pattern-
matching allows this portion of the access control func-
tion to be easily defined while remaining flexible.

Pattern. A powerful component of the access control
function is its ability to account for the pattern used in
the content-based operation. The pattern provides in-

formation about an application’s prior knowledge of the
data. The owning agent may allow access only to agents
that know the “correct” way to access the data (e.g.,
providing a wild card pattern that matches any tuple
may not be acceptable). Some knowledge of the struc-
ture of the requested tuple might indicate that the re-
questing agent shares common application goals.

Owner’s Profile. The access control function also
considers the owner’s current state. Because the access
policy is determined dynamically, access can be granted
based on context information. In some cases, data may
never be sent wirelessly between devices unless they
are within a secure physical environment where eaves-
dropping is known to be impossible.

Access Control Function. The access control
function takes the five parameters described above, and
determines whether or not to allow the requested ac-
cess. Formally, this function can be represented as:
ACF : T × C × O × P × Π → {0, 1}, where T is
the universe of tuples, C is the universe of creden-
tials, O is the finite set of operations, P is the uni-
verse of patterns, and Π is the universe of profiles.
The access control function (ACF) maps the values
of the parameters to a boolean indicating the ac-
cess decision. The function can also be represented as:
access = ACF(credentialsr, op, tuple, pattern, profileo);
r is the requesting agent and o is the tuple’s owner.

We will briefly discuss the expressive power of this
construct later. For now we consider what it cannot
easily represent. Access decisions cannot be based on
properties of the requesting agent not included in its
credentials. The requesting agent must carefully con-
struct the credentials it sends with each operation re-
quest. The decision can also not rely on arbitrary en-
vironmental properties. For example, an agent cannot
base a decision on the number of copies of a tuple. The
access control function lends itself well to the mobile
environment because it allows access policies to adapt
to the context. Access decisions are transparent to re-
questing agents; if access is denied, a requester does
not even know that the matching tuple existed.

Using the Access Control Function. We first
show how the access control function benefits a par-
ticular middleware system, EgoSpaces. We then show
how restricting operations to administrative domains
can be implemented with the new construct.

Use in EgoSpaces. EgoSpaces addresses the needs
of agents in large-scale heterogeneous environments.
An agent operates over a context that can include,
in principle, all data in an entire network. EgoSpaces’
unique model of coordination, however, structures data
in terms of views, or projections of the maximal set of
data. Each agent defines its own views; these individu-

alized views abstract the dynamic environment by con-
straining properties of the network, hosts, agents, and
data. To further reduce programming costs, EgoSpaces
transparently maintains views; as hosts and agents
move, the view’s contents automatically reflect con-
text changes without the agent’s explicit intervention.
EgoSpaces can employ an agent-specified access control
function on a per-view basis. When an agent defines a
view, it attaches a set of credentials and a list of opera-
tions it intends to perform on the view. EgoSpaces uses
each contributing agent’s access control function to de-
termine which tuples belong in the view. In the end, the
view contains only tuples that qualify via their owning
agent’s access control function.

Administrative Domains. Some applications restrict
agent operations to administrative domains. For exam-
ple, assume nested domains defined as a university’s
computers, a department’s computers, and a research
group’s computers. To provide security guarantees, ap-
plications limit access to certain data to only comput-
ers on the university’s network. Still other data ought
to be restricted to departmental computers, or to re-
search group computers. A user in the research group,
working on a mobile computer, wants to use a soft-
ware license of which the research group has n copies.
The licenses are stored as tuples in a tuple space. Each
computer in the group carries a tuple space; the avail-
able licenses are initially distributed in some random
fashion. A user can take a license if it is not in use
and the user holding the license is within communica-
tion range. The agents controlling the licenses restrict
access to only group members who have departmen-
tal authentication (retrieved a priori), and are running
on computers in the university domain. To retrieve a li-
cense, a user provides these three properties as creden-
tials and attempts to in a license from a connected tu-
ple space. If successful, the number of available licenses
decreases by one. When the user finishes using the soft-
ware, it replaces the license in its local tuple space.

4. Discussion

The access control function provides a flexible mech-
anism for agents to specify privileges dynamically and
adaptively in mobile coordination models.

Expressiveness. While its expressiveness makes
the access control function more flexible and arguably
more useful in coordination among constantly chang-
ing mobile agents, this flexibility comes with some cost.

Credentials. On one hand, because credentials can
encode arbitrary information about an agent, partic-
ular applications can adapt credentials to their needs.
On the other hand, a requesting agent must not re-

veal too much information since any information sent
in credentials is no longer secret.

Functions. Because the access control function takes
a number of parameters, an agent can dynamically ad-
just its access policies. Again, flexibility comes with
a cost. While complex access control policies are pos-
sible, constructing the function (from the developer’s
perspective) can become difficult. Fortunately, the de-
sign of the function prevents this complexity from af-
fecting agents that do not require complex policies.

Overhead. Given the model’s expressiveness, it is
useful to evaluate its overhead. The addition of the ac-
cess control mechanism introduces some amount of pro-
gramming overhead. This overhead is difficult to quan-
tify without a case study involving users implementing
actual access control policies. While this is a useful fu-
ture task, it is outside the scope of this paper.

Additional Communication. The key aspect of the
communication overhead is the amount of data (in bits)
that must be sent. Before adding the access control
mechanism, the number of bits required to send an op-
eration request is: b = |op| + |pattern| + |agent idr|,
where |op| is the number of bits required to identify
the operation. |pattern| is the number of bits required
to represent the pattern. This depends on the num-
ber of fields in the pattern. |agent id | is the number of
bits required to identify the requesting agent so the re-
sponse can be returned. It is likely that the pattern,
which encodes the content-based nature of the request,
dominates this expression, as the op and agent idr are
simple data types with small, constant lengths.

We can write a similar term to express the number
of bits needed to be sent when using the access con-
trol function. This includes only the addition of the
number of bits necessary to encode the credentials:
bacf = |op|+ |pattern|+ |agent idr|+ |credentialsr|.

Credentials are a tuple. Because tuples are similar
to patterns the number of bits required to represent the
credentials is likely near the number of bits needed to
represent a pattern. If so, the overhead of using access
control is approximately 2. An application can directly
control the amount of overhead it incurs because it de-
termines what credentials to send with each request.
In this respect, the use of application intuition to re-
duce the credentials transmitted to exactly those re-
quired reduces the overhead of the communication.

Additional Computation. Evaluating the access con-
trol function also requires additional computation in
the form of an additional method invocation. Because
the function can contain arbitrary code, the computa-
tional overhead lies in the hands of the application pro-
grammer. From the programmer’s perspective, the op-
erating conditions of the application must be a primary

concern. If so desired, a system can include a mecha-
nism to prevent undesirable access control functions by
bounding the time they are allowed to run or by im-
posing restrictions on their capabilities.

5. Related Work

As discussed previously, the access matrix does not
directly lend itself to mobile systems. In one exam-
ple of attempting to apply such a method, TuCSoN
agents [5] are assigned capabilities defining tuple space
operations for particular patterns in a certain tuple
space. An access control list for the tuple space stores
these capabilities. This approach requires that all coor-
dinating parties are known in advance and that a cen-
tralized party determines access policies statically.

Other systems use encryption for access control. In
SecOS [2], tuples are unordered sequences of individu-
ally encrypted fields, and, to match an encrypted field,
a pattern must contain a correct key. Other work [8] as-
sociates keys with tuple spaces, and an agent must pro-
vide the key to access the tuple space. While both of
these models provide access control mechanisms, they
require secure key distribution and management, which
affects the scalability of the system.

Law Governed Interaction (LGI) [10] provides an
expressive approach to access control in which agents
must adhere to a law that imposes context-sensitive
constraints on the execution of tuple space operations.
A law dictates actions an agent performs in response to
the arrival or departure of tuple space operations. Pro-
gramming applications in LGI requires programming
specific actions in the access control policy and adding
a controller to mediate tuple space requests. In con-
trast, in our model, programming takes place in the
coordination model, and the agent’s requested opera-
tion is checked with the access control function.

6. Conclusion

In this paper, we first provided a generalized co-
ordination model representative of those used in dy-
namic pervasive computing environments. We then in-
troduced access control functions for mobile coordina-
tion and showed how they could be successfully used
in these systems. While this construct does incur some
overhead, the expense is not prohibitive when com-
pared with the benefits it offers. The novel access con-
trol function directly addresses the specific access con-
trol needs of mobile coordination models. In particular,
the construct provides increased scalability and decou-
pling when compared with previous approaches, with-
out sacrificing flexibility and expressiveness.

ACKNOWLEDGEMENTS

This research was supported in part by the Office of
Naval Research under ONR MURI research contract
N00014-02-1-0715. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the
views of the Office of Naval Research.

References

[1] N. Borselius, C. J. Mitchell, and A. Wilson. Unde-
tachable threshold signatures. In Cryptography and
Coding—Proc. of the 8th IMA Int’l. Conf., volume 2360
of LNCS, pages 239–244, 2001.

[2] C. Bryce, M. Oriol, and J. Vitek. A coordination model
for agents based on secure spaces. In P. Ciancarini and
A. Wolf, editors, Proc. of the 3rd Int’l. Conf. on Coor-
dination Models and Languages, pages 4–20. Springer-
Verlag, 1999.

[3] G. Byrd, F. Gong, C. Sargor, and T. Smith. Yalta: A se-
cure collaborative space for dynamic coalitions. In IEEE
2nd SMC Info. Assurance Workshop, 2001.

[4] G.Cabri,L.Leonardi, andF.Zambonelli. MARS:Apro-
grammable coordination architecture for mobile agents.
Internet Computing, 4(4):26–35, 2000.

[5] M. Cremonini, A. Omicini, and F. Zambonelli. Coordi-
nation and access control in open distributed agent sys-
tems: the TuCSoN approach. In A. Porto and G.-C. Ro-
man, editors, Coordination Languages and Models, vol-
ume1906ofLNCS, pages99–114.Springer-Verlag, 2000.

[6] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[7] R. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents:
Security in a multiple-language, mobile-agent system.
In G. Vigna, editor, Mobile Agents and Security, volume
1419 of LNCS, pages 154–187. Springer-Verlag, 1998.

[8] R. Handorean and G.-C. Roman. Secure servise provi-
sion in ad hoc networks. In Proceedings of the 1st Int’l
Conf. on Service Oriented Computing. (to appear).

[9] C. Julien and G.-C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In Proc.
of the 10th Int’l. Symp. on the Foundations of Software
Engineering, November 2002.

[10] N. Minsky, Y. Minsky, and V. Ungureanu. Safe
tuplespace-based coordination in multi agent systems.
Journal of AppliedArtificial Intelligence, 15(1), January
2001.

[11] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A
middleware for physical and logical mobility. In Proc. of
the 21st Int’l. Conf. on Distributed Computing Systems,
pages 524–533, 2001.

[12] National Center for Supercomputing Applications, In-
tegrated Decision Technologies Group. SAMCat: A se-
curable active metadata catalogue. 2002.

	Managing Access Control in the Presence of Mobility
	Recommended Citation
	Managing Access Control in the Presence of Mobility

	tmp.1471023011.pdf.nkVP0

	Abstract: Abstract: The increased pervasiveness of wireless mobile computing devices draws new attention to the need for coordination among small, networked components. The very nature of the environment requires devices to interact even when they meet unpredictably. Because these networks are often decoupled from a fixed infrastructure, reliance on centralized servers for authentication and access policies is impractical. Access control is crucial in such systems, and applications must directly manipulate and examine access policies because they require full control of their data. In this paper, we explore the essential features of general access control policies tailored to the needs of agent coordination in the presence of physical and logical mobility. We propose and evaluate novel constructs to support such policies in mobile applications.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: October 14, 2003
	Author: Authors: Julien, Christine; Roman, Gruia-Catalin; Payton, Jamie
	Title: Managing Access Control in the Presence of Mobility **PLEASE SEE WUCSE-04-11**
	ReportNumber: 2003-70
	DepartmentName: Department of Computer Science & Engineering

