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Abstract

Many new network applications demand interprocess communication (IPC) services that are not sup-
ported by existing transport protocol mechanisms. Large bandwidth-delay products of high-speed net-
works also render the exisiing error control mechanisms inefficient. This paper presents the design,
evaluation, and implementation of an application-oriented error control scheme that can support effi-

cient 1PC for these applications in high-speed network environments.
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1. INTRODUCTION

The new generation of high-speed networks will interconnect machines with very high bandwidth over
long distances. The high data rates and long propagation -delays result in very large bandwidth-delay
products. This large bandwidth-delay product has a number of implications on error control strategy:
(1) Time for end-to-end control actions (iminimum of one round trip delay) becomes very significant with
respect to the high data rate; and therefore, frequent end-to-end control actions should be a,voidedl. 2)
It becomes very difficult to achieve efficient error control using only timer-based loss detection, because
high data rates make it more difficult to set timer accurately and also make it costly to have an inaccurate

timer. (3) It becomes very expensive to tecover every packets in error through retransmission.

On the other hand, new applications, such as network compuiing and visualization, require high
bandwidth and low latency communication with performance guarantess. They also deal with different
types of data streams (e.g., voice and video streams, image sequence, and data set) which have very
different error tolerances. It is thus highly desirable to have a flexible service interface provided by
the transport level that allows the application to accurately specify its error tolerance and thus avoid

unnecessary long recovery delay.

Existing error control schemes have not addressed these issues efficiently. A new application-oriented
error control scheme has been developed that addresses these issues with efficiency. The scheme has been
evaluated using analysis and simulation, and it has been implemented in software inside SunOS 4.0.3
kernel. This paper presenis the design and main results for the ervor control scheme. A more detailed

report is available in [8].

The rest of the paper is organized as follows. Section 2 reviews briefly the existing error control
schemes. Section 3 discusses how the proposed scheme addresses the key error control issues. Section 4
describes in detail the packet formats used as well as the operations of the proposed scheme. Section 5
describes the performance studies conducted for the proposed scheme and presents the results. Section 7

presents a summary for the paper.



2. BACKGROUND

2.1, Error Types

There are four types of errors in network communication: (1) out-of-sequence delivery caused by packets
taking multiple paths of different delays, (2) duplication caused by retransmission of packets, (3) cor-
ruption caused by bit errors in the channel, and (4) loss caused by dropping of packets along the path.

Error control involves two basic steps: the detection of errors and the recovery from these errors.

Duplication and out-of-sequence delivery errors are usually dealt with by use of sequence numbers.
Typically, when a large data set is divided into smaller blocks called packets for transmission, each data
packet carries a sequence number that uniquely identifies the data block within the large data set. Then,
the receiver will be able to interpret the incoming data packets in correct sequence, and to detect and
discard duplicate packets. Main issues concerning sequence numbers include initialization at connection
setup, re-synchronization after loss of packets or system crashes, and ambiguity due to wraparound of
sequence numbers. Nonetheless, there are fairly standard ways for addressing these issues. Therefore,
this paper will not dwell on these errors, Corruption in a packet is also easily detected by a checksum

or ¢RC field appended to it. For recovery, corrupted packets are treated as lost packets in this paper.

2.2. Existing Error Control Schemes

There are currently two classes of transport level error control services for applications. In one class,
no error control function is provided by the transport level. It is up to applications to decide if error
control is needed and do it by themselves as necessary. User Datagram Protocol (UDP) is an example of
such a transport protocol. The second class of error control provides 100% reliability. In this case, the
transport protocol performs recovery from every single error detected regardless of the error tolerance
of the application or the “cost” involved. The service provided by Transmission Control Protocol (TcP)

is an example of this type.

Figure 1 summarizes the schemes used by transport protocols to implement error control functions.
At the top level, there is the retransmission-based approach and the forward error correction (FEC)
approach. The retransmission-based approach, also called ARQ, is by far the most widely used and
explored. The FEC has mainly been used in deep space communications where the propagation delay

is very large (e.g., several hundred rmiliseconds), and its usefulness in high speed networks is currently
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Figure 1. Existing Error Control Schemes

being explored in protocols such as TP++ [2]. The alternative schemes under the retransmission-based

error control are examined next.

Loss detection can be based on a timer or on gaps in packet sequence numbers. With a timer-
based scheme, the timer can be located at either the sender or the receiver side. The timer value is set
according to the expected arrival time of an acknowledgment (or a data packet) and a loss is detected
when the timer expires. With a gap-based scheme, detection is performed at the receiver side. The
receiver assumes that the data packets will arrive in the order of their sequence number and a loss is

detected when there is a gap (i.e., a hole) in the sequence numbers of arriving packets.

There are two main alternatives for error recovery step. With a cumulative ACK scheme, the receiver
only accepts packets that are not corrupted and are in sequence. An acknowledgment to the sender
carries a single sequence number N which cumulatively acknowledges successful reception of all packets
with sequence numbers up to N — 1. Thus, when a packet with sequence number N is corrupted or
lost, the receiver will continue to send acknowledgment with sequence number N and discard all future
incoming packets until packet N is correctly received. The sender must relransmit packet N plus
all succeeding packets when it times out on an ACK for packet W. The selective ACK scheme is an
improvement to the cumulative ACK scheme. It selectively acknowledges packets received correctly and
requests retransmissions for only the lost ones. This adds to the receiver complexity as the receiver now

has to buffer and re-sequence the packets that arrive out of sequence.

Current implementation of TCP uses a cumulative ACK scheme with a loss timer at the sender side.
A number of more recent transport protocol designs have used selective ACK schemes with timer-based
loss detection. For example, vMTP [3] and sNR [11] have used loss detection timers at the sender side,

while NETBLT used a receiver side timer [4]. A gap-based loss detection method was first used in a link



level protocol cpy [1].

2.3. Error Control Objectives

To meet the communiication challenge of the new applications in high-speed networks, we set the following
new objective for an error control scheme: the error control is fo saiisfy the applications’ error {olerance
with minimum retransmission everhead, so as lo achieve high throughput and low end-lo-end delay for

a given nelwork connection.
3. ERROR CONTROL ISSUES

There are three major issues to the error control: characterization of application error tolerance, detection
of errors, and recovery from errors. Each of these issues is discussed next, along with a description of

how it is addressed in the proposed scheme.

3.1. Characterization Of Application Error Tolerance

In this paper, a segment is defined as the smallest unit of data that an application accesses independently.
Thus, a segment is the smallest meaningful unit of data for applications. Furthermore, we assume that
a sending stage always attempts to deliver a segment to its receiving stage as soon as possible in order
to achieve concurrent operations among stages. From a transport protocol’s point of view, a sender will
try to transmit a data segment to the receiver as soon as the segment is available for transmission and

the receiver is willing to accept it. This mode of commaunication is called sireaming.

The first requirement for designing an efficient error control scheme is a suitable characterization of
application’s error tolerance. Specifically, it should be powerful enough to describe detailed distribution
of tolerable errors within a data segment. It should also be expressive enough to describe a wide range
of error tolerances, from tolerating no error to tolerating all errors. Preferably, it should be simple and
as much as possible compatible with the quality of service (Qos) specification of the network, in order

to achieve efficient implementation.

There are two traditional measures used for characterizing the reliability of communication channels
as well as the reliability requirements of applications. They are bit-error-rate and packet-loss-rate. These

measures only specify a long-term average of bit error or packet loss rate which is hard to monitor and

enforce on a per application basis.



For the proposed error control scheme, we have defined a triplet specification (W, E, B) for char-
acterization of application error tolerance. In this characterization, W is the number of packets based
on which the loss should be assessed and tolerance checked. W is referred to as the length of an Error
Enforcement Window. In the case of pipeline applications, it should be chosen to be equal to the segmens
size. Parameter E specifies the maximum number of packets that is permitted to be lost among W; and
B specifies the maximum length of an acceptable loss burst. When such a tolerance is specified by an
application to the transport protocol, the transport level will guarantee that the tolerance is satisfied

through necessary retransmissions.

Application Examples

The most important advantage of the triplet specification is that it describes the loss with respect to a
meaningful data unit of the application. Therefore, an application will be able to evaluate the impact
of loss in a more precise context and make rational decisions on how to set its tolerance. For example,
in order to speed up the developing process of a large distributed application, one may want to set error
tolerances high at the debugging stage while concentrating on the other key aspects of the application,

and use the desired tolerances at the final operation stage.

We show by an example how the triplet specification can be used by applications. For applications
such as computational fluid dynamics CFD simulation and visualization, the data set is often organized
as a series of 2D slices (or arrays). Figure 2 shows an example where each slice is 1024 x 1024 bytes.
Each slice is an independent data unit for the application and is defined as a segment. The segment is

then divided into 1024 packets for transmission.

1024
packet  —"— segment,

—
} 1024

Figure 2: Application Data Set Structure

If each slice is an animation image, loss of b isolated scan lines may be perfectly acceptable. So a
tolerance specification of (1024, 5, 1) will ensure that the application will not suffer the recovery overhead

as long as the underlying network is not violating this tolerance.

Another main advantage of the triplet specification is that an application has the flexibility of spec-

ifying a lower tolerance and letting the transport level do the recovery, or specifying a higher tolerance



and dealing with the loss on its own. If the round trip delay of the connection is 60 ms and the receiver
machine has a floating point capability of 50 Mflops, then, upon loss of a line, the delay cost of recovery
by retransmission is at least 60 ms; if the lost line is regenerated by linear interpolation, the cost is about
1024 x 3/50 Mflops = 0.06144 ms. Therefore, it is almost 1000 times more efficient to recover a lost line

by linear interpolation than retransmission.

3.2, Error Detection

Data segments are divided into packets for transmission. The size of a packet is jointly determined by
the transport protocol and the underlying networks. Each packet contains a pair of sequence numbers
(3,7), where 7 is the segment number and j is the packet number within the segment. For normal
transmission, all packets will be sent in the order of increasing segment numbers and again in increasing
packet numbers within a segment. For example, if there is a total of & segments to send and each
segment is s packets long, and let p;; represent the 7" packet of the #** segment, the whole data set will
be scheduled for transmission in the following order: pripiz...pispaipas.. . Pos...PoiPe2-. - Pas. Lach

packet will also contain & checksum field for detecting corruption in the packet.

Packet losses include packet corruption and packet losses in the network. In the proposed scheme,
packet corruption is detected by using a checksum in each packet. The following discussion focuses on

the detection of packet losses in the network.

Using Gap-Detection and Loss Timer

In order to perform recovery according to the tolerance of the application, the receiver has to make the
final decision for accepting a segment. The proposed scheme performs loss detection at the receiver side
so that the amount of state information exchange between the sender and the receiver is minimized. A
gap-based detection mechanism is used af the receiver to make early detection of packet losses. The

effectiveness of a gap-based detection scheme depends on the following two conditions:

o Data packets are always transmitted in a particular order at the sender.

s The underlying networks guarantee a maximum re-sequencing distance for all the packets trans-

mitted.



Let the re-sequencing distance guaranteed by the network be m. Then, the receiver can deem a missing
packet lost if another packet transmitted m or more packets after this packet has arrived. For example,
consider the first-time transmission of segment i. The first packet of this segment will have a sequence
number (,1). According to the above assumptions, all the packets missing at the receiver when any
packet (i 1,k) with & > m arrives must have been lost. The gap-based scheme assumes guarantees for
in-sequence delivery which is a more realistic assumption than guarantees of data rate. Schemes using

only a timer at the receiver for loss detection will require stringent guarantees for the data rate.

Sender - Receiver

L__[sl4] | lSI3|§|:"“--'-E3i2iii-'3i3ITI| [8f2}  [8]1]

Retransmissions

Ambiguous “gap”

Figure 3: Sequence Number Ambiguity

Due to packet retransmissions, the segment and packet sequence numbers contained in each packet do
not identify uniquely the order in which a packet is transmitted at the sender and, therefore, they cannot
be used for gap detection. Figure 3 shows an example scenario. Although the receiver detects that there
is a gap between the sequence numbers (3,2) and (8,3), it cannot determine for sure whether there is any
packet lost between (3,2) and (8,3). Some packets from segments 4 to 7 may have been retransmitted and
get lost, or the sender may not have retransmitted them at all because the retransmission requests have
not reached the sender yet. A shipment sequence number attached to each packet solves this problem.
Every packet, new or retransmission, is assigned a unique shipment sequence number according to the
sequence it is sent out at the sender. Any gap larger than m in the shipment sequence numbers observed
at the receiver indicates a loss of packets. When the sender temporarily runs out of data to send, it
sends special control packets. These packets get their shipment sequence numbers from the same space
of monotonically increasing sequence numbers. The special packets provide the necessary context for
the receiver to detect losses in the segments transmitted earlier and informs the receiver that the sender
is idle but alive.

In addition to the gap detection mechanism, the receiver also uses a loss timer. The purpose of the
timer is to detect very long burst of losses, in which there is no subsequent packets to enable detection

of gaps. The duration of the loss timer is on the order of several segments transmitting time.

Overall, the combination of gap-detection with a loss timer ensures that early loss detection can be

made. Tarly detections make quick recovery from losses possible.



3.3. Error Recovery

Once loss detection is made, recovery from the loss involves three steps: (1) The receiver still has to
determine which lost packets need to be requested for retransmission. (2) The request information needs
to be passed to the sender. (3) The sender needs to verify the request and retransmit the necessary

packets. Error recovery issues and the proposed ways of addressing them are discussed in the following

paragraphs.

Determining Retransmission List

The packets that have been successfully recetved are marked with a “1” in the corresponding positions of a
packet-presence bitmap. At the time of a loss detection, retransmission request list needs to be generated
from the packet-presence bitmap and the application error tolerance. Determination of the request list
is a trivial issue in existing transport protocols such as TCP because all lost packels are retransmitted
regardless of application tolerance. In high speed networks, packet transmitting time {packet length
divided by transmitting rate) is very small compared to the round trip delay. For example, with a coast-
to-coast round trip delay of 60 ms, a data rate of 130 Mbps, and a packet size of 1024 bytes, one round trip
delay is equivalent to the transmission time of about 732 packets. Therefore, the primary optimization
goal for the determination of the request list should be to minimize the number of retransmission rounds,
where a refransmission round consists of retransmissions for all requested packets of the same segment.
A retransmission round incurs at least one round trip delay. The minimization of the absolute number
of packets retransmitted is only of secondary concern. Following this strategy, when a burst of loss is
detected and at least one packet needs to be retransmitted to satisfy the tolerance, the whole burst is
included in the request list. The retransmission request list is also in the form of a bitmap, but with “0”

indicating a request for retransmission of the corresponding packet and “1” otherwise.

Sending Acknowledgments

There are two pieces of information concerning the state of the receiver that must be available to the

sender in order to perform retransmission:

e Which packets have been correctly received so that the buffer at the sender can be released.

e Which packets need to be retransmitted.



Since loss detection is made at the receiver in the proposed scheme, the receiver has to send explicit
information about what packets need to be reiransmitted and which segments have been correctly

received.

The proposed scheme uses two types of acknowledgments. The first type is positive acknowledgment
(PaCK). A PACK is only used to inform the sender that certain segments have been accepted and can be
released; A PACK can acknowledge a single isolated segmenﬁ or it can acknowledge a contiguous block of
segments if the block is the next expected in sequence. A selective negative acknowledgment (SNAK) is
the second type of acknowledgment. It is fnainly used to request packet retransmissions from the sender.
However, it also carries a segment sequence number that informs the sender of the acceptance of all
segments with sequence numbers below this number. The proposed scheme transmits SNAK messages to
the sender periodically to avoid long delays, in the case of a SNAK loss. Periodic transmission of a SNAK

stops when the corresponding segment is successfully accepted at the receiver.

Avoiding Premature Retransmission

By detection of gaps, the receiver can quickly detect the occurrence of losses. However, it is difficult
for the receiver to determine exactly which packets are lost based on only the receiver’s state informa-
tion, particularly when the new and retransmitted packets are overlapping. This difficulty is avoided
by allowing the receiver to determine only a superset of the lost packets and request for their retrans-
missions. The sender can easily filter out the premature requests because it knows exactly what have
been transmitted. The sender always records the time at which each segment is transmitted. Upon
receiving a retransmission request, the sender compares the current time with the time recorded for the
last transmission of the segment. The sender ignores the request if the segment was transmitted within
one round trip time in the past. Note that in order for any legitimate acknowledgment of a segment to

come back, it takes more than one round trip delay on the connection.

Transmission Scheduling

Transmission scheduling determines the sequence in which all packets are sent out from the sender side. In
general the receiving application expects data segments in the same sequence in which they are provided
by the sending application. This sequence is represented by the segment sequence number assigned to

each segment. Therefore, data segments are transmitted according to their segment sequence numbers.
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Each segment is divided into packets and all the packets are transmitted in the order of increasing packet
numbers. Note that the policy of transmission according to the segment and packet sequence numbers

applies to both new and retransmission packets.

4. PACKET FORMATS AND PROTOCOL OPERATIONS

This section first describes the data and control packet formats necessary for carrying out the transport
protocol functions, particularly those of error control. Then, a detailed description of the operations of

the error control mechanisms is provided.

4.1. Packet Formats

There are five types of packeis used for data transport and error control. There are two basic packet

formats as shown in Figure 4. The width of each row is assumed to be 4 bytes.

segment NO ] packet NO

data

type=3,4 ?, S

control sequence NO

segment NO

window upper limit |

(b) receiver to sender

Figure 4: Error Control Packet Formats

All packets start with a 4-byte connection identifier field (cip) followed by a 2-byte type field and
ends with a 2-byte checksum field. The cID identifies all the packets belonging to a connection. The

type field contains a unique code number for each packet type. Of the five types, type 0, 1, and 2 are

11



for conveying information from sender fo receiver; type 3 and 4 are used in the reverse direction. The
checksum field is filled by the sender and then used by the receiver to detect packet corruption. The

rest of the fields are summarized as follows:

Data Packet (type 0): Data packet is for carrying application data from the sender to the receiver.
The shipment sequence number indicates the sequence at which the packet was last shipped from
the sender and is used for loss detection. The segment number along with packet number identifies
the position of this data block in the application’s data stream. The data its:elf is carried in the

data field.

Keep-Alive Packet (type 1): Keep-alive packet is for informing the receiver that the sender is at a
pause. Periodic transmission of this packet serves two purposes: (1) to prevent the receiver from
closing the connection and (2) to provide the context (shipment sequence number, segment number,
and packet number) for the receiver to detect losses in earlier segment transmissions. This format

is the same as that of the data packet except that it does not have a data field.

EndStream Packet (type 2): End-of-stream packet is for informing the receiver of the end of segment
stream. [t also allows the receiver to make prompt detection of losses occurring in the last portion

of the segment stream. This format is the same as that of the keep-alive packet.

pacK Packet (type 3): A PACK packet serves three purposes: (1) to acknowledge the acceptance of the
segment specified by segment No, (2) to cumulatively acknowledge all the segments with segment
number below ACK segment N0, and (3) to optionally advance the sender’s window by specifying
a new window upper limit}. The control sequence NO is used by the sender to detect and discard

duplicate PACK packets.

snak Packet (type 4): A SNAK packet is used to request retransmission of the packets specified by the
retransmission bitmap and to cumulatively acknowledge all those segments with segment number
below ACK segment nNo. The most recently granted window limit is contained in field window upper
limit to protect against the loss of the last window advancement message. The difference between
this packet and the PACK packet is that it has a retransmission bitmap. This bitmap represents

retransmission requests for those packets where there is a “0” in the corresponding position of the

bitmap.

{The window control, which is part of a new How control scheme we have alse developed, has a direct effect on the error
control operations. Details of the flow control are available in [§]. Simple window control operations will be explained as
necessary when error control operations are presented.

12



4.2. Error Control Operations

It is assumed that a connection between the sender and the receiver has already been set up. Again,
application data consists of a sequence of segments, which is to be transported to the receiver as a
segment stream. For transmission over the underlying network each segment is divided into s packets.

The error control operations during the data transfer are described next.

<DATA>

segment to send XMTQ <KEEPALIVE>

Pkt | <ENDSTREAM>
IR T a—

O

RECV t
Legends:
XMTQ: transmission queue -~
PKT XMT: packet transmitter pack | <PACKs
SNAK RECV: SNAK receiver RECY el

PACK RECV: PACK receiver

Figure 5: Sender Error Control Logic

Sender Operations
Main error control related functions at the sender are:

¢ Schedule and transmit new segments.
o Process retransmission requests, schedule and retransmit requested packets.

e Process positive acknowledgments and release successfully delivered segments.

Figure 5 shows a logic diagram for the sender. There are three functional blocks for performing the error
control functions, a packet transmitter (PKT XMT), a retransmission request receiver (SNAK RECV), and
a positive acknowledgment receiver (PACK RECV). The transmission queue (XMTQ) contains all packets
eligible for transmission. There is also a shipment counter for generating monotonically increasing

shipment sequence numbers, and a time reference clock for retransmission control.

For each outstanding segment, there is also a data structure called segment eontrol block, which con-

tains information such as the status of the segment (e.g., in transmission or waiting for acknowledgment)

13



and the packet retransmission bitmap. This data structure is not shown in Figure 5 for clarity reasons.

Each of the sender side functions is explained in the following paragraphs.

Packet Transmission: Transmission queue XMTQ is serviced in the order of increasing packet sequence‘
numbers according to a given rate. For every packet leaving the transmission queue, transmission
logic puts the current value of ship counter into the shipment sequence No field of the packet and
increments the counter. Whenever the queue becomes empty due to a pause of the applicalion, a
keep-alive packet is sent. An end-of-stream packet will be sent if the application has reached the end
of its data stream. The keep-alive and end-of-stream packets carry the same segment number and
packet number as the last data packet sent, but with their shipment sequence numbers incremented
for each successive transmission, as described in Section 3. A 16 bit checksum is computed and
appended to the checksum field before each packet 1s passed down to the internetwork level protocol

for cutput.

Retransmission Request Processing: There is no retransmission unless it is explicitly requested by
the receiver with a SNAK packet. Upon transmission of the last packet of a packet groupt, the
sender records the current time (from the reference clock) in the control block of the corresponding
segment. When a SNAK packet arrives later for this segment, the current time is compared with
the previcusly recorded time and a retransmission is scheduled only if the last transmission for
the segment was at least one round trip time ago. This way, no spurious refransmission can
occur even if the receiver sends premature retransmission requests (SNAK packets). Packets to be

retransmitted are scheduled into the same fransmission queue as the first-time packets.

Positive Acknowledgment Processing: A segment is released from the buffer when it is acknowl-
edged by the receiver. The acknowledgment for segment 7 can arrive at the sender in three diffevent
ways. The most common way is an explicit PACK packet with its segment number set to . A second
possible path is when the explicit acknowledgment for segment 7 gets lost, the segment can still be
acknowledged by another PACK packet with a cumulative acknowledgment segment number (Ack
segment NO) greater than 7. Finally a segment 7 can also be acknowledged by a sNAK packet with
a cumulative acknowledgment segment number greater than . Every time the sender’s window is

advanced, data from new segments are packetized and scheduled into XMTQ for transmission.

5 A packet group refers to all packets belonging to a common segment. For example, a segment is itsell a packet group
when first transmisted; all packets to be retransmitted for a segment define a packet group. A packet group is identified
by the segment number.

14
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Figure 6: Receiver Error Control Logic
Receiver Operations
There are three key error control funciions at the receiver side:

s The receiver has to perform per packet processing that includes verification of checksum, check for
duplicate packets and packets outside the window, and detection of gaps in the shipment sequence

numbers.

e Upon loss detection or reception of the last expected packet in a segment, the receiver needs to

determine which packets, if any, to request for retransmission.

¢ Positive acknowledgments will need to be sent for the successfully accepted segments and retrans-

mission requests (SNAK) have to be sent for those packets needing retransmissions.

These functions are carried out by three functional blocks as shown in Figure 6. The packet reception
and gap detection function is performed by packet receiver (PKT RECV), the retransmission decision
is made by the tolerance checker (ToL CHECK), and acknowledgments delivered by acknowledgment
transmitter (ACK XMT). Also shown in the figure is a receiving buffer (RECV BUFFER) for re-sequencing
data packets and segments, an acknowledgment queue {ACKQ), and a segment loss timer that detects

long burst of losses.

There are several additional data structures that are omitted from Figure 6 buf need to be intro-
duced before describing the receiver operations. A variable L holds the highest segment number below
which all of the segments have been acknowledged. Another variable A records the maximum segment

number of all packets correctly received so far. The receiver also maintains one segment presence bitmap
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(secMaAP[WT]) and W packet presence bitmaps (PKTMAP[W][s]), each for one segment in the window.
By definition, PKTMAP[#][j] = 1 if and only if packet 7 of segment 7 has been successfully accepted; and
seaMAP[f] = 1 if and only if segment ¢ has been accepted. The receiver operations are summarized as

follows:

Packet Reception and Gap Detection: The receiver (PKT RECV) operates according to the follow-

ing steps upon reception of a packel:

1. Compute checksumn for the packet and compare it with the value contained in the checksum

field of the packet. Discard the packet if there is no exact match.

2. If this is a data packet, check whether the packet is within the current window. If not,
discard it; otherwise, put the packet into the proper slot of the receiving buffer according to

the segment and packet number. The packet is marked as present in the PKTMAP.

3. The tolerance checker is called o make acknowledgment decision under following conditions

when a packet is received:

o If the data packet is the last expected of a segment, call tolerance checker for this segment.

¢ If the shipment sequence number of the packet is more than m beyond ihe expected
number, call the tolerance checker for all segments with sequence number 7 € [y, ny—1].
Note that n; is the segment number of the packet immediately before the gap, ns is the
segment number of the current packet, and m is the maximum re-sequencing distance
guaranteed by the underlying network.

e If the keep-alive packet indicates that the last segment sent was n, but the receiver has
only seen segments up to H < n, call tolerance checker for all segments with sequence
number i € [H,n].

e In the case of an end-of-streamn packet, call tolerance checker for all the segments, from
the next expected in sequence up to the last segment as indicated by the end-of-stream

packet.

k

4. If the shipment sequence number of the packet is less than the next expected shipment se-

quence number, discard the duplicate packet; otherwise reset the loss timer.

Loss Timer Processing: Upon expiration of the loss timer, tolerance checker is called for all segments

with sequence numbers in the range {L,, H 4 1] to make acknowledgment decisions. Recall that L is
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the next segment number yet to be accepted in sequence and H is the maximum segment number
of all the packets received so far. The loss timer is used for early detection of long burst of losses.

Typically, the timer value should be on the order of several segments transmission time.

Checking Application Tolerance: Assume that the application tolerance is given as (W, E, B). When

invoked, tolerance checker performs as follows:

1. I the application specifies 100% error tolerance (i.e., B > WA B > W), all segmenis will be

marked as accepted before going to step 4 to send acknowledgiments.

2. If the application requires 100% error recovery (i.e., E = 0V B = 0}, no manipulation of the

packet presence bitmap is necessary so skip to step 4 to send acknowledgments.

3. When the application has a partial tolerance, check the packet presence bitmap of each

segment against the specified tolerance:

o Start from the first packet and count the total number of missing packets as well as the
number of missing ones with consecutive packet numbers. '

e If a missing packet does not cause viclation of the tolerance it is marked as present in the
bitmap, otherwise the whole burst of lost packets starting from the current one is left as
missing and will be requested for retransmission later. This checking process continues
with the next packet until all the packets in the segment are checked.

o A segment is marked as accepted if there is no violation during the checking process.

4. After all segments have been checked, PACK or SNAK packets are scheduled for these segments
as appropriate. If the newly accepted segments form the next contiguous block of data in
sequence for the application, deliver the data to the application, set L to be the sequence
number of the next segment to be accepted in sequence, and call ACK transinitter to send 2
PACK packet for the accepted block. If a segment is accepted but cannot be delivered to the
application due to some incomplete segments ahead of it, a PACK packet is sent for only this
segment. Finally, if a segment needs retransmission, call ACK transmitter to schedule & SNAK

packet.

Acknowledgment Transmission: If a PACK packet needs to be sent, a new PACK packet will be
created. The packet will contain the given segment sequence number, the current L value as
its cumulative ACK sequence number, and the current window limit as its window upper limit.

After a unique control sequence number is attached, the checksum is computed and the packet is
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transmitied by calling the internetwork level function. In the case of a SNAK packet, the fields of the
segment sequence number, the cumulative ACK sequence number, and the window upper limit are
constructed the same way as for the PAGK packet. However, the packet will contain an additional
retransmission bitmap. The retransmission bitmap is simply a copy of the packet presence bitmap
for the segment at the receiver. The sNAK packet is appended to the ackq for transmission to
the sender. If the segment has been requested for retransmission before, a SNAK packet for the
segment will be already in AcKqQ. Then, the fields of the segment number, the cumulative ACK
sequence number, the window upper limit, and the retransmission bitmap are updated with new
values. SNAK packets are periodically transmitted from acKq to the sender. A SNAK packet stays
in the queue until it is removed upon successful acceptance of the corresponding segment. A new
control sequence number is attached and checksum computed every time before a SNAK packet is

transmitted.
5. PERFORMANCE STUDY

This section first describes the objectives for this performance study and defines three most important
performance measures for transport protocol evaluation. Then, the analysis and simulation techniques
used in this study are summarized. A set of performance resulis is presented and discussed at the end

of the section.

5.1. Objectives and Performance Measures

The performance study serves two main purposes. First, to obtain quantitative measures on how well
the proposed scheme works in a typical high bandwidth.delay product network environment and to gain
understanding of how various network as well as application parameters (e.g., packet loss probability,
round trip delay, and connection bandwidth) affect the performance. Second, to gain insight into the
working of the scheme so that the design can be improved and a better implementation can be achieved.
It should be noted that in this study, no attempt will be made to compare the proposed scheme with
a cumulative ACGK scheme. The reason is that sufficient studies have been done by other researchers
that have shown conclusively that selective ACK schemes are superior than cumulative ACK schemes,

especially in high bandwidth-delay product environments [6, 10, 15].

The performance measures (o be used in this study are defined next. From applications’ point of

view, the two most important performance measures of a transport protocol are throughput and delay.
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Given two communicating processes p; and py, throughput from p; to ps is traditionally defined as the
number of data segments transferred from p; to ps in one unit time. Clearly, this definition is inherently
an average measure, and it is dependent on the application behavior. For example, the same proto-
col mechanism may produce different throughput on different occasions when the application process
changes its speed from time to time. To concentrate on the performance of the protocol mechanism
itself, the maximum achievable throughput when application process is not a bottleneck is considered.
Furthermore, a throughput that is normalized against the connection rate is used in order to obtain
a direct measure of how efficient the mechanism can utilize the connection. Specifically, Throughput
Efficiency is defined as the ratio between the ideal segment {ransmitling {ime (segment size divided by

the conneclion rate} and the actual time required on average lo successfully deliver one segment.

Transport protocol deals with end-to-end delay as opposed to the hop-to-hop delay that concerns
network level protocols. A transport level connection may be supported by many network hops consisting
of packet switches and gateways. Without loss of generality, a one-way data flow from a sender to a
receiver is considered here. The End-to-End Delay of a segment is defined as the time elapsed from
the start of transmission af the sender 4ill the successful acceptance of the segment at the receiver. For
example, if the segment transmitting time is ¢, and the round trip delay on the connection is RTD,
the ideal end-to-end delay for the segment will be (i, + RTD/2), assuming propagation delays in both
directions are the same on the connection. It should be noted that the above delay definition is from the
receiver’s point of view. If it were defined from the sender’s point of view, the ideal end-to-end delay for
the example would be (#, + RT'D). The former definition is chosen because it reflects exactly when the

segment is available for consumption at the receiver.

From the above basic definition of end-to-end delay, two commonly used delay measures can be
defined. Average End-lo-End Delay is the average of end-to-end delays over all the segments. Mazimum
FEnd-16-End Delay is the maximum of end-to-end delays among all the segments. While the average
characterizes the overall delay performance, the maximum gauges the worst case behavior that is very
important to many applications with strict time constraint. The evaluation approaches taken in this

study are described next.

5.2. Evaluation Approaches

Both analysis and simulation are used in the study of the error control scheme. Due to the complexity

of the error control process, only approximate analyses for average delay and throughput efficiency are
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pursued. The purposes of the analyses are: first, to gain insights through the derivation of simple
performance expressions; and second, to verify the simulation model. Discrete event simulation is used
for more accurate study of the various aspects of the error control. For example, the effect of bursty

losses and the application-dependent error recovery is examined through simulations.

Delay Analysis

Given the average end-to-end delay definition in Section 5.1, it can be expected to be rather insensitive
to the window control function. This is because the delay is not measured until the transmission of a
segment begins and the window only determines if the transmission of a segment can begin. Once a
segment begins transmission and also possibly retransmission, the delay caused by transmiiting packets
of another overlapping segment should be small compared to the acknowledgment delay. Therefore, the
average end-to-end delay for a large number of segments is approximated by the average delay of a single
segment transmitted in isolation.

Let the packet size be ! bytes, the segment size be s packets, and the data rate be A bps (bits/second).
The packet transmitting time is ¢, = (8 x I}/ A seconds. The following specific assumptions apply to this

analysis:

o A packet is lost if it is either corrupted or dropped in the underlying network. Each packet can be

lost independently with probability p.

» An acknowledgment (PACK or SNAK) always comes back to the sender ¢, time after the transmission
of the last packel ol a packet group, where £, = RTD + 3 x ¢,. That is, it takes one round trip
delay plus an assumed acknowledgment delay of 3 x ¢, in the receiver, for an acknowledgment to

return to the sender.

¢ Application requires 100% reliable delivery of all segments.

. segment delay -

Figure 7. A General Segment Delivery Scenario

Figure 7 depicts a general scenario for the delivery of a segment. A segment is successfully delivered

after at least one round of attempt. The first round consists of the transmitting time ¢, for the whole
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segment followed by the waiting time 2, for the acknowledgment (the first shaded area in the figure);
in each subsequent round, the lost packets from the previous round are retransmitted and another %,
has to pass by before an acknowledgment is received; no more attempt will be needed when a positive
acknowledgment is received. Let D, denote the average segment delay as shown in the figure, it contains

clearly three parts:
D, = Transmitting Time + Mean Retransmission Tirme + Mean Waiting Time

The segment transmitting time is simply s x ¢,. The second term, the mean refransmission time for
the segment is s X 4, ¥ iegi X pf X (1 — p). As each round has a constant waiting time #,, the mean
waiting time equals ¢, times the mean number of rounds, which is £, 3 o, 7 x [(1 = p')* — (1 — p*~1)*].
Therefore:
20 co
D, = sty+sty ip(1—p)+tap d(1-p) —(1-p")]
i=0 i=1

¢ ad .
T e )L (1= P
i=0

Derivation of D, assumed sender’s point of view. Let D, be the average delay as defined in Section 5.1

from the receiver’s view point, it is then related to D, as follows:
1
D, =D, — ERTD — 3ty

Numerical results from this expression are presented in Section 5.3. If should be mentioned that a
similar analysis has been presented in [10] for a selective acknowledgment scheme that uses only packet
granularity (i.e., there is no concept of a segment). In that analysis, expressions were derived for both

average delay (mean) and the variance, while the main interest here is the mean value, and the current

derivation is simpler.

Throughput Efficiency Analysis

Accurate throughput analysis for selective retransmission scheme with large windows is a very difficult
task. The difficulty stems mainly from the complex overlap and interaction between transmission of
new segments and retransmission of lost packets. In general, full analysis of error control schemes using
selective ACK is lacking in the literature. Existing studies {10, 15] have made simplifying assumptions
such as absence of window flow control and no overlap between transmission and retransmission. These

assumptions, though still allowing one to demonstrate the superiority of the selective AGK over the
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cumulative ACK, are too unrealistic for the operations of real schemes such as the one proposed. The
approach used by Doshi and his colleagues in the analysis of SNR protocol is the only exception to this
account (for the protocol se¢ [11} and for analysis [6]), and it is the main inspiration for the throughput
analysis to be presented. However, there are several significant differences between the SNR error control

scheme and the proposed scheme that require different treatment in the throughput analysis.

The assumptions made for the throughput analysis are the following:

e A packet is lost if it is either corrupted or dropped in the underlying network. Each packet can be

lost independently with probability p.

e An acknowledgment (PACK or SNAK) always comes back to the sender ¢, time after the transmission
of the last packet of a packet group, where t; = RT'D) + 3 x t,. The delay for the receiver to send

out an acknowledgment after receiving the last packet of a segment is assumed to be 3 X p.

o Application requires 100% reliable delivery of all segments.

e The probability (1—(1—p?)?*) of requiring more than one retransmission for each packet is negligible.

The key assumption is that the probability for a retransmitted packet to be lost is negligible. With
this assumption, we are able to identify regenerative cycles for the error control operation on a connection.
Within one cycle, we first determine the actual number of segments delivered and the ideal number of
segments deliverable under error-free conditions. The ratio of the actual number of segment to the ideal
number of segment defines the throughput efficiency of the scheme. Let g = {1 — (1 — p)*] denote the

probability that a segment will require at least one packet retransmission. The following expressions can

be derived using this approach (see [8] for details):

NactuaI
ThE =~ ———

Nideat

~1 4 W
~ g +(w+l) 1<W < (w,+1)
2wa + 1+p+ y—g!
: _ _ -1

ThE =~ W - min( W — wa, wa(l — p)) + (we +1) < W < (2wa + 1)

2wa + L+ p + min(W — wa, wa(1—p)) + 97

Note that due to the simplifying assumptions made, the identified cycle is only appropriate for deriving
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expressions with 1 < W < (2w,+1). For W = 1, using the average end-to-end delay D, from Section 5.2:

t
hE = =2
T D

s

When W > 2w, + 1, the only reduction in throughput is due to retransmission, therefore:
ThE ~ (1 — p)

Numerical results obtained using these expressions will be shown in Section 5.3.

Throughput performance with higher loss probabilities as well as bursty losses is studied using sim-

ulation, which are described in Section 5.2.

@ Receiver

Packet Size Data Rate Packet Size
Segment Size Round Trip Delay Segment Size
Window Size Loss Probability Window Size
Application Telerance Application Tolerance

Figure 8: Sirnulation Configuration

Discrete Event Simulation

There are many aspects of error control that require a detailed simulation study in order to understand
their interactions and to obtain accurate measures of performance under more realistic conditions. For
example, the aspects of transmission scheduling and application-dependent selective retransmission were
not accounted for in the simple analyses. The effect of bursty packet loss also requires simulation
study. A set of discrete event simulation programs has been developed for this purpose. The simulation

configuration is shown in Figure 8.

The underlying network is modeled as a “black box” characterized by a connection data bandwidth,
a round trip delay, and a packet loss process. The end system consists of two transport entities, a
sender and a receiver. The end system parameters include packet size, segment size, window size, and
application error tolerance. Performance measures of main interest are throughput efficiency, average

end-to-end delay, and maximum end-to-end delay of a segment.

There are other parameters that can affect the performance of an error control scheme. For example,

the total number of data segments to be transported and the amount of physical memory in the sender
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and receiver. However, these effects can be minimized by transmitting a large amount of data (> 107

packets) and by assuming very fast processors with large memories.

All aspects of the proposed error control scheme are modeled in the simulation except for the following

simplifying assumptions:

¢ The round trip delay (RTD) on the connection does not vary in the duration of data transfer and

the delay on each direction is RTD/2.

e All control packets are sent “out-of-band” which means they do not consume the bandwidth of

data connection and none of the control packets will ever be corrupted or lost.

¢ An acknowledgment (PACK or SNAK) always comes back to the sender ¢, time after the transmission

of the last packet of a packet group, where {5 = RTD 4 3 x 1.

¢ Receivers always have sufficient buffer space to match the window size used, and therefore, no

overflow can occur at receivers,

Loss Probability
1.04

pb E—
0.0

Time

good bad good  bad

Figure 9: Bursty Loss Process

With simulations, the effect of bursty losses on the performance is also studied, in addition to the
cases of random loss. The bursty loss process is modeled with two alternating states, good and bad, as
shown in Figure 9. There is no loss in the good state while packet loss occurs with probability ps in the

bad state. The durations for each state can be deterministic or exponentially distributed.

5.3. Numerical Results

This section presents and discusses a small subset of results from the simulation study. More results are

available in [8].
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Figure 10: Throughput Efficiency — Analysis vs. Simulation

Throughput Efficiency with Random Loss

Figure 10 shows throughput efficiency against window size. The results from both the analysis and the
simulation are shown for comparison. The connected lines correspond to the analysis and the discrete
symbols are for simulation. The loss probability was varied to obtain a family of three data sets which
are labeled with different symbols in the figure. The error control was providing 100% loss recovery.

The following can be observed from this plot:

s With very small loss probability (< 107%}, a window size of (1 +1w,) is sufficient for achieving close
to maximum throughput efficiency. Because with no loss, a window of size (14 w,) is sufficient to

keep the sender busy all the time.

o Larger window sizes are necessary to achieve the same efficiency when loss probability is higher.
However, with loss probability of up to 102, a window size of about 2.5 times bandwidth-delay
product can achieve almost perfect throughput efficiency. The factor of 2.5 is in the same range as
that found by Doshi et al. in SNR study. Although 2.5 x w, may correspond to a fairly large mem-
ory requirement for large bandwidth-delay product networks, the factor 2.5 should be reasonable

considering the very high bandwidth achieved.

25



e The throughput efficiency expressions derived in Section 5.2 seem to provide quite accurate pre-

diction for loss probabilities up to 1072, But as expected, the analysis consistently predicts higher

throughput due to the optimistic assumption about packet loss.
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Figure 11: Maximum End-to-End Delay

Maximum Delay with Random Loss

To study the effect of packet loss on maximum segment delay and evaluate the effectiveness of the
application-dependent recovery mechanism, another simulation experiment was conducted. In this ex-
periment, the error control mechanism dynamically recovers from losses according to four different
settings of application tolerance. The collected maximum delay is plotted against packet loss probability

in Figure 11. The family of four curves corresponds to the four different error tolerances as shown in

the legend. The results demonstrate that:

s When the application requires 100% loss recovery (i.e., tolerance=(256,0,0)), it suffers significant
increase in maximum delay with increasing loss probability; on the other extreme, it is irimune to

the increased loss if it can tolerate all losses (i.e., tolerance=(256,256,256)) as one would expect.
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» More importantly, it is seen that lower maximum delay can be achieved by tolerating more packet
losses using the scheme across a wide range of tolerances. For example, with loss probability equal
to 1073, an application can reduce its maximum delay from 154 ms to 94 ms by tolerating only
one packet loss in a segment and the saving of 60 ms is a very significant amount of processing

time.
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Figure 12: Maximum End-to-End Delay with Variable Tolerance

Application-Dependent Recovery with Bursty Loss

Figure 12 shows the trade-off between the loss tolerance and the maximum segﬁient delay achievable
under bursty losses. To maintain the readability of the plot, only the result for mean bad state duration
180 ms is included. The set of four curves represent the maximum delay vs. loss probability relationships
for four different loss tolerances. In the legend, p represents the effective loss probability for the bad state
duration with bad state loss probability 1073, The effective loss probability is computed as p = E;%d:!';,

where d, and dp are the mean duration time for good and bad states respectively. The following can be

observed from the plot:

o Sirnilar to Lhe resulls under random losses, as the application tolerance increases from (256, 0,0)

to (256, 256, 256) the maximum segment delay shows significant decrease accordingly.
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e As the bad state loss probability approaches 1 the differences among the three lowest tolerance

settings diminish. This is not surprising for the following reasons:

— All three tolerances will be violated under the same condition because every packet will be
lost once in a bad state.

~ Recall that the retransmission strategy will request retransmission for all the packets lost in
a burst from the point the tolerance is violated, which include almost all the packets lost for
all three tolerance settings.

— Once the three tolerance settings lead to the same number of segment retransmissions, waiting

time due the round trip delay affects them the same way.

Additional results with different bad state durations have shown that: (1) As the bad state duration
increases, the trade-off between tolerance and delay becomes much more significant as an indirect result of
increased impact of bursty loss on the maxirmum delay; (2) When the bad state duration is decreased, the
reduction in maximum delay with increasing tolerance becomes less. However, with bad state duration

as short as 15 ms the trade-offs with the same set of tolerances as used above are still appreciable.

| Features of Scheme | Proposed | SNR |
Location for Receiver Sender
Loss Detection
Loss Detection Method | Gap Detection & Timer Timer
Error Control Unit Segment Block
Retransmission Selective Selective
Strategy
(Unit) (Packet) {Block)
Control Info Pause/FEnd Highest seq
Sender— Receiver
(Frequency) (When Idle) (Periodic T3,)
Control Info Cumulative ack & Cumulative ACK &
Receiver— Sender Selective NAK Selective NAK
(Frequency) (Periodic NAK) (Periodic T3,)
Support for Variable Application Dependent Yes or No
Grades of Reliability Recovery Error Control

Table 1: Proposed Scheme versus SNR Scheme

Comparison with SNR, Scheme

SNR is a transport protocol developed in AT&T Bell Labs [11]. The most important features of sSNR are:

(1) periodic and complete state exchange between sender and receiver and (2) selective retransmission
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hased on blocks (block=multiple packets). Key ideas of SNR have been accepted as part of the B-ISDN
T1S51 standard. Doshi and his colleagues have also shown that SNR error control scheme outperforms
those used in existing protocols [6]. Therefore, the proposed error control scheme is compared with the

SNR scheme. Table 1 provides a qualitative comparison between the two schemes.
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Figure 13: Throughput Efficiency Comparison

Figure 13 shows a comparison of throughput efficiency between the proposed scheme (in line style)
and sNR scheme (by discrete points). There are four sets of data corresponding to four different mean
bad state durations. As expected, there is little difference between the two schemes when bad state
loss probability is very low (< 1073); but as bad state loss probability increases, the proposed scheme
performs better and better than SNR scheme; the difference reaches a maximum before it starts to
diminish as the bad state loss probability approaches 1. The diminishing difference is also expected,
because when almost every packet is lost in the bad state, selective retransmission at the packet level
has very little advantage over retransmission at the block (segment) level. It should also be noted that,

the performance advantage of the proposed scheme increases with longer bad state duratiomn.

Simulations have also been done for comparison of the SNR error control and the proposed scheme un-
der random loss conditions. Throughput efficiency, average delay, and maximum delay were all collected

for each of the simulations. All the comparison results showed superior performance by the proposed
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scheme over the SNR scheme.

The performance advantage of the proposed scheme ow-'er that of sNR stems mainly from the fact
that SNR performs retransmission on a per block (mulitiple packets) basis whereas the proposed scheme
selectively retransmits only lost packets. It is recognized that the main incentive for retransmitting larger
blocks is to reduce the amount of state information for retransmission and to simplify retransmission
logic. But, for demanding applications such as pipelined computing and visualization, the additional
complexity is well justified given the improvement in performance. The shorter delay in requesting for
retransmission is another factor that contributes to the better performance of the proposed scheme.
In the case of the sNR protocol, transmission of the receiver state information to the sender is strictly
time-driven. The minimum interval at which this oecurs is Ty, determined as a fraction of the round
trip delay rTD. In the proposed scheme, sending of the first SNAK packet for a segment is driven by
the detection of a loss. Following the example of Doshi et al., Tin is set to 5 ms for RTD = 60 in the
sNR simulations. This results in an average delay in sending reiransmission request of 7in /2 = 2.5 ms.
However, the proposed scheme assumes a delay for initiating a request (SNAK) that is equivalent to the
transmission time for three packets (3 x i,). For all cases studied, this delay is less than 2.5 ms, and
therefore, the proposed scheme has a smaller loss recovery delay. Determining 7}, solely based on RTD

but not the average bandwidth of the connection does not seem sufficient for achieving efficient loss

recovery.
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Figure 14: Protocol Hierarchy
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6. IMPLEMENTATION

The proposed error control scheme has been implemented along with a flow comntrol scheme as part of
a segment streaming transport protocol (ssTP) inside the SunOS 4.0.3 kernel. SsTP is built on top of
a connection-oriented internet protocol (Co1P) designed by Cranor [5]. Figure 14 displays the protocol
hierarchy used in the sSTP implementation. Applications use SsTP service through the standard socket
interface. SSTP provides flow-controlled segment streams with variable degrees of reliability by building

on the services provided by cTP; and TP is supported by the Ethernet protocol csMa/cp.

Extensive trace data has been collected that verified the error control function. We also measured
the throughput performance of the sstp implementation using both custom software and a kernel probe
technique developed by Papadopoulos [13]. The protocol processing delay results are summarized in
Table 2. Protocol processing delays at both the sending and receiving ends are measured on a large
number of packets. The resulting average is shown in the second column of the table. Note that this
delay measure does not include the time for copying data from the application space to the kernel space

or vice versa. In the last column, we also show the theoretical throughput corresponding to the given

processing delay.

[ Sending/Receiving | Average Delay [ Theoretical Throughput |

Sending 273 us 30 Mbps
Receiving 310 us 26 Mbps

Table 2: Per Packet Processing Delay

It is worth noting that the corresponding theoretical throughput for TCP/IP has been found to be
about 22 Mbps. Thus, ssTP/COIP is about 20% faster than existing TcP/IP implementation. While
TGP /1P implementation has been carefully crafted over the years, very little effort has been made to
optimize implementations of sSTP or coip. Furthermore, efficiency of the ssTP/co1p implementations
are limited by the mbuf-based memory management scheme and by the lack of efficient timer support
in the operating system kernel. We expect significant performance improvement for sSTP/COIP with the
removal of these constraints and with additional hardware assistance. Since the control mechanisms of
s$TP have been designed to maintain efficient operation even in large bandwidth-delay product networks,
$STP is expected to perform much better than TCP in high-speed network environments. More detailed

results of the implementation are reported in [8].
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7. SUMMARY

This paper has presented an application-oriented error control scheme for high speed networks. It is
designed as a transport protocol mechanism for distributed pipeline applications. The proposed triplet
specification for loss tolerance allows accurate description of the application’s reliability requirement
and also lends itself to easy enforcement. The recovery scheme performs selective packet retransmission
according to application loss tolerance, thus minimizing retransmission delay. It uses a gap-based loss
detection method to ensure early loss defection. The scheme also introduces redundant retransmission
requests by sending a request periodically from the receiver to the sender, which avoids long recovery

delay in the face of a request loss.

Analysis and simulation of the error control scheme have also been presented. The results support
the following conclusions: (1) The proposed scheme can achieve high throughput with reasonable buffer
requirements and with a range of random and bursty loss conditions. (2) The maximum delay increases
significantly with packet losses. This leads to a large variance in segment delay. (3) The proposed
application-dependent loss recovery scherne provides an effective means for controlling the trade-off
between error tolerance and the maximum segment delay. (4) The proposed scheme gives superior
throughput and delay performances than the SNR scheme which has been shown to outperform other
proposed schemes. Our measurement results show that even the primitive ssTP/CoIP implementation

performs significantly better than the well-crafted Tcp /1P protocol.
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