Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-86-16
1986-01-01
Approximation Algorithms for the Shortest Common Superstring

Problem

Jonathan S. Turner

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Turner, Jonathan S., "Approximation Algorithms for the Shortest Common Superstring Problem" Report
Number: WUCS-86-16 (1986). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/832

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/832?utm_source=openscholarship.wustl.edu%2Fcse_research%2F832&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

APPROXIMATION ALGORITHMS FOR THE
SHORTEST COMMON SUPERSTRING PROBLEM

Jonathan S. Turner

WUCS-86-16

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4399

W

Approximation Algorithms for the Shortest
Common Superstring Problem

Jonathan S. Turner
jst@wucs.UUCP

1. Introduction

Let s; = as,...,a, and 83 = b3,...,b, be sirings over some finite alphabet 5. We say that s; is a
substring of sz if there is an integer i € [0, s — r] such that a; = b;4; for 1 < 5 < r. We also say in
this case that s; is a superstring of s;.

An instance of the shortest common superstring problem (SC8) is a list of strings S = (sy,...,3,)
over a finite alphabet L. The object of the problem is to find a minimum length string that is a
superstring of every s; € S. We let ¢*(S) denote the length of a minimum length superstring.

EXAMPLE: If § = {egiach,bfgiak, hfdegi, iakhfd, fgiakh}, the string bfgiakhfdegiach is a
solution of length 15.

We say that a set of strings is substring free if no string in the set is a substring of any other. We

will generally limit our attention to substring free sets. This involves no loss of generality, since any
set of strings has a unique substring free subset which has the same solutions as the original set,.

We have presented the problem in the conventional way, with the object being to minimize the
solution length. It is useful to consider an alternative viewpoint as well. One can view the object
of the problem as being to find an ordering of the strings that maximizes the amount of overlap
between consecutive strings. To make this precise we need a few definitions.

Let 3, = ay,...,2, and 83 = b1,...,b, be strings. We define
¥(s1,92) =max {k>0|ar_x4: =b; 1 <2 < k}

If (s1,32) = k then s; o s3 is defined to be the string aj,...,6,, bkt1,...,bs. We note that if
81, 82,33 are strings, none of which is a substring of another, then 3; o (32 0 33) = (81 0 32) 0 33;
that is, the overlapping operation is associative for substring free sets. Consequently, we may write
81 082008, with no ambiguity.

Let 7 be a permutation on {1,...,n}. We will usually write n; for x(z). We define

n—1
'lbﬂ'(sli e :81;) = Z: "lb(":r.': sﬂi+1)
i=1

and ¢n(31,...,85) = |8y, ©-- 08, | Note that for any instance § = (sy,...,3,) of 5Cs,

¢1r(s) = HS” - '»b!r(s)

2 TURNER

where ||S|| = 31, |%|. In particular,

i=1
#*(S) =I5l — ¥*(S) where ¢'(31,...,sn}=m:xvﬁ,,(al,...,a,,)

Hence, we can view the object of the SCS problem as being to find a mapping 7 that maximizes t,.

Let A be an algorithm for sCS which given a collection of strings § = (s15..+8,) produces a
mapping 7 = 74(5). We define ¥4 (S) = ¥ (S) and ¢.(S) = $4(S5).

SCS was shown to be NP-complete by Maier and Storer in [8]. Another, and more elegant proof
appears in [3] and [4]. One obvious application for the problem is data compression. Storer and
Szymanski [15] for example, consider a fairly general model of data compression which includes
SCS as an important special case. See also [9]. Another application is to DNA sequencing. SCS
is one of the simplest models for the problem of recovering DNA sequencing information from
experimental data [5,12,14]. To our knowledge the only approximation algorithm to be discussed
in the literature is a simple greedy algorithm which is treated briefly by Gallant in [4]. Gallant
claims that for this algorithm, which we refer to as SGREEDY, ¢sgreepy (S) < (3/2)¢*(S) for all
collections of strings S. We show that this is not in fact true by displaying a set of strings S for
which ¢5grEEDY (S) &~ 2¢* (). We have found no worse example problem than this, but have also
been unsuccessful in proving an upper bound on the performance of this algorithm in terms of the
length measure. On the other hand, we do show that ¥*(S) < 2¥sgrEEDY(S)-

In section 2 we relate SCS to the longest path problem (LPP) in graphs by describing a transfor-
mation from SCS to LPP that preserves solution values with respect to the overlap measure. We then
construct three approximation algorithms for LPP, two based on matching and the third a greedy
heuristic. By virtue of the transformation from §C8, all three are also approximation algorithms for
5CS. We show that the greedy heuristic for LPP always produces solutions within a factor of three of
the optimum value. In section 3, we show that the instances of LPP that result from our transforma-
tion from SCS have a special structure that allows us to obtain a tighter bound. We also describe an
efficient implementation of this greedy algorithm for strings using a compact representation of suffix
trees. In section 4, we relate SCS to the traveling salesman problem (TSP) by another transformation
that preserves solution values, this time with respect to the length measure. The instances of TSP
arising from this transformation are asymmetric, but satisfy the triangle inequality. There are no
approximation algorithms known for this problem with provably good worst-case performance, nor
have we succeeded in finding any. Nevertheless, this transformation means that if such an algorithm
is found, it can be used for 5CS as well as TSP. If on the other hand, it is turns out that approxi-
mating this version of TSP is hard, then any approximation algorithm for 5¢8, will have to make use
of special structural properties present in the instances of TSP that arise from this transformation.

2. SCS and the Longest Path Set Problem

In this section we relate SCS to the longest path problem (LPP) in graphs. An instance of the longest
path problem is a complete directed graph G = (V, E) with each edge (v, v) having a non-negative
integer length £(x,v). The length of a path p in G is defined to be the sum of the lengths of its edges
and is denoted A,(G,£). The object of the longest path problem is to find a Hamiltonian path p
(that is a path including every vertex) in G that maximizes A,(G,£). The length of such a longest
path is denoted A*(G, £).

THE SHORTEST COMMON SUPERSTRING PROBLEM 3

Figure 1: Example of transformation from Scs to LPP (§ = {cbadef,fcbade,adefcd,fcadfb})

Let S = (s1,...,8,) be an instance of SCS. We define LPP(S) to be an instance (G, £) of LPP
with

V = {uy...,un} E=VxV
e(“ﬁ')uj) = ’I)(siisj)]‘Si'jsn’i#j

An example of this transformation is shown in Figure 1.

Let 7 be a permutation on {1,...,n}. We can view = as defining a Hamiltonian path Upyyeoes Un,
in G. We let) .{G, £) denote the length of this path. We now state a trivial, but useful theorem.

THEOREM 2.1. Let S = (s1,...,8,) be an instance of sCs, (G,£) = LPP(S) and let be any
permutation on {1,...,n}. A (G,) = ¥.(9). In particular, X*(G, £) = ¢*(8).

The theorem implies that any approximation algorithm for LPP is an approximation algorithm
for 8C3 with respect to the overlap measure. In the remainder of this section, we present three
simple approximation algorithms for LPP.

2.1. Matching Algorithm

A matching in a graph G = (V, E) is a set of edges, no two of which share a common vertex. A
maximum matching in a graph with edge lengths £(e) is a matching M that maximizes £(A). We
define u*(G, £) = maxp £(M) to be the value of a maximum matching. There are algorithms for
finding maximum matchings having running times of O(n®} (where n = |V|) [16].

Our first algorithm for LPP is based on the observation that any matching for an instance (G, £}
of LPP can be extended to a path (since G is assumed to be complete) and a maximum matching
must have total length at least half that of a longest path. (Recall that we are restricting attention
to non-negative weights.)

THEOREM 2.2. If (G = (V, E),£) is an instance of LPP then A*(G, £} < 2u*(G,).

4 TURNER

100 100 100

101|100 101|100 101|!100 101 || 100 101|100
¥ OSe e e Ie
O 100 ~ 100 ~ 100 ~ 100 O

Figure 2: Worst-Case Example for Theorem 2.2

function edgeset MATCH(digraph G = (V, E), edgelengths ¢)
edgeset P, M;
P.=g
doE#0 —
M := MAXMATCH(G, £);
P.=PUM,;
for (u,v) e M —
Delete from G, all edges of the form (u, z) or (y, v);
Collapse u and v into a single vertex;
rof;
od;
return P;
end;

Figure 3: Matching Algorithm for LPP

Proof. Let P be a set of edges defining any Hamiltonian path. Let Q be obtained by taking
alternate edges from P and let R = P — Q. Both @ and R are matchings. The sum of the lengths
of the edges in @ is < u*(G,£). Similarly, the sum of the lengths of the edges in R is < u*(G,¥).
Hence, £(P) < 2u*(G, £) and since this holds for all paths P, it follows that A*(G, £) < 2u*(G, £). O

Remark. There are instances (G, ¢) of LPP for which A*(G, £) approaches 2u*(G, £). Figure 2
shows a graph for which A*(G,£) = 900 and u*(G, £) = 505. (The edges not explicitly shown have
length 0.) The example is easily extended to give graphs for which the ratio A*/u* is arbitrarily
close to 2,

Theorem 2.2 provides the basis for our first approximation algorithm shown in Figure 3. The
procedure MATCH starts by finding a maximum matching in G, then removes edges that are ruled out
by the selected edges, collapses the selected edges into single vertices and then repeats the process
on the new graph. To see that the algorithm does construct a Hamiltonian path, note the following:
(1) the edge eliminations ensure that the set P never contains two edges leaving a common vertex
or entering a common vertex, (2) the collapsing of edges into single vertices prevents creation of
cycles and (3) since the original graph is assumed to be complete, the algorithm will halt only when
a complete Hamiltonian path has been constructed. An example illustrating the operation of the
algorithm is given in Figure 4,

Theorem 2.2 implies that ¢*(G,£) < 2¢¥matcr(G, £) for any instance (G,£) of LPP. This can’t
be improved, as can be seen by considering the operation of MATCH on the graph in Figure 2.

THE SHORTEST COMMON SUPERSTRING PROBLEM 5

matching: (cf, ba)

5/ \6
Dg=——5D

matching: (ed, cfbe)

5_’ ‘_41 ¢fba) solution value: 35

Figure 4: Example of Algorithm MATCH

The running time of MATCH is determined primarily by the matching algorithm used. Assuming a
matching algorithm that runs in O(n®) time, we get a running time of O(n® log n) for MATCH.

2.2. Directed Matching Algorithm

A directed matching in a digraph G = (V, E) is a set of edges, no two of which enter a common
vertex and no two of which leave a common vertex. In other words, it is a subgraph of G comprising
a collection of disjoint paths and cycles. A maximum directed matching in a graph G with edge
lengths £(e) is a directed matching M that maximizes £(M). We define 6*(G,£) = maxps £(M)
to be the value of a maximum directed matching (where in this case, M ranges over all directed
matchings of G). There are algorithms for finding 2 maximum directed matchings having running
times of O(n5/2) [16].

Given any matching M, let M~ be a subset of M obtained by discarding a least cost edge from
each cycle in M. Our next algorithm for LPP is based on the observation contained in the next
theorem.

6 TURNER

function edgeset DIMATCH(digraph G = (V, E), edgelengths £)
edgeset P, M;
P =
doE#9—
M := MAXDIMATCE(G, £);
M~ := M — one least cost edge from each cycle of M;
P:=PUM-;
for each path (uy,...,u,) e M~ —
Delete from G, all edges of the form (us,z), 2 <: < r;
Delete from G, all edges of the form (z,w;), 1<¢<r—1;
Delete from G the edge (u,,u;), if present;
Collapse the path into a single vertex;
rof;
od;
return P;
end;

Figure 8: Directed Matching Algorithm for LPP

THEOREM 2.3. Let (G = (V, E), £) be an instance of LPP, let M be a mazimum directed matching
of G and let k be the minimum number of edges in any cycle defined by M. X*(G,¢) < kf—IZ(M‘).
In particular, A*(G,) < 2¢(M™).

Proof. Let P be a set of edges defining a path and let M be a maximum directed matching.
Notice that P is a directed matching and hence £(P) < £(M). Let C be a cycle in M with h edges
and let C~ be a path obtained by discarding a minimum length edge from C.

h k
< —_— < — -
{C) < 2= 8CT) S T=(C)
Also, for every path R € M, £(R) < klet(R)' Summing over all paths and cycles in M yields

M) < £ 8(M ™). Since this is true for all paths P and since £(P) < £(M), A*(G,¢) < =tMT).
O

Remark. There are instances (G, £) of LPP for which A*(G, £) approaches 2¢(M~). Consider for
example, the graph shown in Figure 2. For this graph A*(G, £) = 900 and the optimum directed
matching consists of five cycles each having two edges and length 201, When the cycles are broken, we
have £(M ™) = 500. The example is easily extended to give graphs for which the ratio A*(G, £) /£(M ™)
is arbitrarily close to 2.

We note that §*(G,€) > A*(G,£). Hence, it provides a measure of how close a given solution is
to optimal. We expect that the solutions obtained by breaking cycles will often be much closer to
optimal than the bound in the theorem implies.

Theorem 2.3 provides the basis for our next approximation algorithm for LPP, shown in Figure 5.
This algorithm constructs a maximum directed matching M in G, then breaks all the cycles in M and
constructs a new graph in which the paths of M correspond to vertices. It then proceeds by finding
a maximum directed matching in the new graph, continuing in this fashion until a Hamiltonian path
in the original graph has been found. To verify that the algorithm does construct a Hamiltonian
path, it suffices to note the following: (1)} the edge eliminations ensure that the set P never contains

TEE SHORTEST COMMON SUPERSTRING PROBLEM 7

directed matching:
(b,a),(a,¢), (c, £),(,5), (d, €), (e, d)

directed matching:

ed) 2 . cfba (ed, cfba), (cfba, ed)
)

solution value: 35

Figure 6: Example of Algorithm DIMATCH

two edges leaving a common vertex or entering a common vertex, (2) cycles formed are explicitly
broken and the broken edges removed from the graph and (3) since the original graph is assumed to
be complete, the algorithm will halt only when a complete Hamiltonian path has been constructed.
An example illustrating the operation of the algorithm is given in Figure 6.

Theorem 2.3 implies that ¥*(G,£) < 2¢¥pmaTcr (G, ¢) for any instance (G, £) of LPP. This
can’t be improved, as can be seen by considering the operation of MATCH on the graph in Fig-
ure 2. The running time of DIMATCH is determined primarily by the directed matching algorithm
used. Assuming an algorithm that runs in O(n%/2) time, we get a running time of O(n%/21log n) for
DIMATCH,

DIMATCH is essentially an adaptation of an algorithm for the asymmetric traveling salesman
problem (TSP) described by Karp in [6]. Karp’s algorithm has poor worst-case performance for TSP,
but performs well in a probabilistic sense for instances in which inter-city distances are selected
uniformly on the interval [0, 1. We have simply adapted his algorithm to the longest path problem
(simplifying it slightly in the process), and observed that its worst-case performance is provably
good in this context.

2.8. Greedy algorithm

The algorithms considered above are both fairly complicated and time consuming because they re-
quire the calculation of maximum weighted matchings, Another algorithm that is worth considering
is the simple greedy algorithm that scans the edges in non-increasing order of length and selects an
edge (u,v) if it has not previously selected an edge of the form (u, z) or (y,v) and if the collection
of paths constructed so far does not include a path from v to u. On the graph in Figure 8, this

8 TURNER

Figure 7: Mustration for Theorem 2.4

100
@ 100 . m 100 @
i01

Iy

Figure 8: Worst-Case example for PGREEDY

algorithm selects the edges (c, f), (4, a), (¢, d), (f,?), (d,c} in that order. The next theorem gives a
worst-case bound on the performance of the greedy algorithm.

THEOREM 2.4. If (G,) is an instance of $C8 then A*(G, £) < 3ApgrEEDY(G, {)-

proof. Let F be the set of edges in some optimum solution to (G,£). Let H = {hy,...,h,} be
the set of edges chosen by the greedy algorithm in the order in which they were selected (that is, hy
was selected first, Az second, and so forth).

We say an edge is permissible at some stage of the execution of the algorithm if its selection
hasn’t been precluded by earlier selections. Define H; to be the set of edges which are permissible
just before h; is selected, but not permissible after h; is selected.

Let h; = (u,v) and consider the situation just before h; is selected by the greedy algorithm. At
this point, u is the last vertex of some path constructed by the algorithm and v is the first vertex
of some path {one or both paths may contain just a single vertex). Let z be the first vertex on the
path containing « and let y be the last vertex on the path containing v as shown in Figure 7.

If there is an edge from y to z that is permissible before the selection of k; then that edge is a
member of H;. All other members of H; have the form (u,z) or the form (z,v).

Next, note that £(h;) = max {£(¢) |e € H;} and that (Hi,...,H,) is a partition of E. Finally
note that for ¢ € [1,s], |F N H;| < 3. This yields the theorem. [J

Figure 8 gives an example graph showing that the bound of Thereom 2.4 cannot be improved.
{The edges not shown have length 0.) PGREEDY finds a solution of length 101, while the optimal
solution has length 300. Figure 9 is a sketch of an implementation of the greedy algorithm. It bears
a strong resemblance to Kruskal’s minimum spanning tree algorithm and uses the disjoint set data
structure described in [18] to partition the vertex set into subsets corresponding to the paths making
up partial solutions. Initially the disjoint set structure d contains n singleton sets, each containing
a distinct vertex. As the algorithm proceeds, sets are combined to denote the merging of the paths
in the partial solution. The operation d.FIND(u) returns the name of the set containing the vertex

THE SHORTEST COMMON SUPERSTRING PROBLEM 9

function edgeset PGREEDY(digraph G = (V, E), edgelengths £)
mapping in,out : V — bit;
disjoint_sets d;
for u € V — in(u), out(u) := false; d.MAKESET(u); rof;
Sort E from longest to shortest;
for (u,v) e E —
if not out(u) and not in(v) and d.FIND(u) # d.FIND(v) —
§ = SU{(u,0)};
out(u), in{v) := true;
d.LINK(d.FIND(u), d.FIND(v));
t]
rof;
return S;
end

Figure 9: Greedy Algorithm for LPP

u and the operation d.LINK() combines two sets and returns the name of the resulting set. The
two bit vectors in and out, are indexed by vertex and set to true when an edge in or out of the
specified vertex has been included in the solution set S. The running time for this implementation
is O(n?logn).

3. A Greedy Algorithm for SCS

The greedy algorithm for the longest path problem can be restated for Scs as follows. Given a
non-empty set of sirings S, repeat the following step until S contains just one string.

Select a pair of strings s1, s € § that maximizes ¥(sy, s2). Remove s, and 35 from , replacing
them with a; o 35.

We refer to this algorithm as SGREEDY. Gallant [4] claims that ¢ggrEEDY (S) < (3/2)4*(S).
This is not in fact true, as can be seen by considering the set of strings

S = {abcbcbebeb, cbebebebe , bebebebebd}

for which dsarEEDY(S) = 20 > (3/2)¢*(S) = 19.5. One can easily generalize this example to show
that there is no constant ¢ < 2 for which ¢sgreepY(S) < c¢*(S). We currently do not know if
there is some constant ¢ > 2 for which ¢ggreEDY(S) < cé*(8).

On the other hand, Theorem 2.4 allows us to conclude that ¢*(S) < 3¢¥ggrEEDY(S). In fact,
we can improve the constant factor to 2 by noting that the instances of LPP that arise from the
transformation from SCs have a special structure which is described in the following lemma.

LEMMA 3.1. Let S be any set of sirings and let (G, ¢) = LPP(S). If {w,z,y,2} CV with £{w,y) =
max {€(w,y), &(w, 2), &z, y}, £(z, 2)} then £(w,y) + £(z, 2) > £(w, 2) + &(z,y).

proof. Identify w,z,y,z with the corresponding strings in § and let o = £(w,y), f = £(x,2),
v = £(w,2), § = {(z,y). Note that if & > ~ + § the result follows immediately. We will assume
therefore that o < 4 + 8.

10 TURNER

We define some notation for designating substrings. If s = a; ...a, is a string,] denotes the
symbol a; if + > 0 and a,4i41 if # < 0. The notation sz, j] denotes the substring s[s]... s[5].

By definition of G,

wf-a,-1] = y[1,q] (1)
w[-7,-1] = 2[1,9] (2)
z[-6,-1] = y[I’ 8] (3)
From this we find
2[Ly+6-a] = w-v,6-a-1] from (2) and a < v+ 6
= yla—v+1,8 from (1)
= zla—y-4§,-1] from (3)

Hence, 8 =¢(z,2) 29+ 6§ —a. O
THEOREM 3.1. Let § be any set of strings. ¥* < 2¢sareEpY (5)-

Proof. Let (G,£) = LPP(S). Let H = {hy,...,h,} be the set of edges chosen by the greedy
algorithm in the order in which they were selected (that is, kh; was selected first, h; second, and
so forth). Define A} to be the the length of a longest path set on the subgraph of G defined by
the set of edges that are still permissible after the selection of h;. We show that for ¢ € [1,s],
Af_; £ 24(h:) + A;. This in turn, implies the theorem.

=1 =
Let h; = (w,y) and let X be a longest path in the subgraph of G defined by the set of edges
that are permissible just before the selection of h; (so £(X) = A!_,). By definition of the greedy
algorithm, £(w,y) = max {£(e}|e € X}. At most three edges of X are not permissible after h; is
selected. If at most two become impermissible, then clearly A} > A!_; — 24(w, y) as desired.

If three edges become impermissible then one must have the form (w,z) with 2z # y, another
the form (z,y) with z # w and the third one, ¢ joins the last vertex on the path containing y
with the first vertex on the path containing w. This means that X U {hy,...,hi—1} contains a
path from z to z, which means that (z,z) is permissible after (w,y) is selected. By Lemma 3.1,
£w,y) + £(=,) 2 &{w, z) + £(z, y). Consequently,

28(w,y) + X U {(z,2)} — {e, (z,¥), (w, 2)}) = {X)
which implies A7 > A7, — 2¢(w,y). O
The bound given by Theorem 3.1 cannot be improved as can be seen by considering the set
of strings mentioned at the beginning of this section. The improvement obtained for the greedy

algorithm on strings raises the question of whether or not the bounds for the other approximation
treated in section 2 can be improved. It turns out that they cannot. If we define

S={ akxb*, b*xck, ckxd*, d*xe®, eFxfk,
b*~1xa¥x, cF~lxb*x, @~ lxc¥x, e*~lxd*x, f*xe*x}

and (G, ﬂ) = LPP(S), we find that A*(G, E) = 9k,)‘MATCH(GJ E) = ADIMATCH = 5(k + 1). The
example can be extended to make the ratios A* /Apmarcr and A* /Apmvarcy arbitrarily close to 2.

A naive implementation of SGREEDY takes at least quadratic time. A similar running time is
obtained if one uses the transformation to LPP and then uses PGREEDY. A linear running time can
be obtained however by making use of an appropriate data structure. For our purposes, a suffiz
tree T is an abstract data type representing a collection of strings § = {#1,...,8,} on which the
following operations are defined.

THE SHORTEST COMMON SUPERSTRING PROBLEM 11

8; = bbaca
83 = aabac
83 = acacc
84 = acbba
8 = bacbb

Figure 10: Example of Trie Representation for Suffix Tree

T.SUFFIX_TREE(S = {s1,...,9,}) Initialize T to represent the strings in S. This operation may
only be performed once.

T.LOOKUP (integer ¢, ;) Returns a pair [£, k], where £ is the length of the longest prefix
of s; which is also a suffix of some string in S — {s;} and s is
one such string.

T.DELETE(integer) Removes s; from the set of strings represented.

The obvious implementation of a suffix tree is a ¢rie (see [1]) containing an entry for every suffix
of every string in the set. An example of this representation is shown in Figure 10. The lists of
integers next to some of the nodes are the indices of strings with suffixes ending at that point. This
representation doesn’t quite satisfy our needs, as the size of the trie and hence the time required to
construct it is £2(m?) in the worst-case. A more compact representation can be obtained by labeling
edges with strings rather than single characters. This allows us to eliminate many nodes with single
children and results in a representation that requires O(m) space and that can be constructed in
O(m) time, as described by McCreight [10]. See also [2,11|. (Actually, McCreight defines a suffix
tree to contain suffixes of a single string rather than a collection of strings. Our variant requires
only minor modifications to McCreight’s method.) An example of this compact representation of
suffix trees is shown in Figure 11

We perform deletion in suffix trees using lazy deletion. That is, to delete a string s;, we simply
mark it deleted in an auxiliary bit vector maintained for this purpose. When a lookup operation is
performed, we perform a probe in the tree to find the longest match. Let u be the node at which
the probe terminates. The list of matching strings at » is scanned and any that are marked deleted
are removed from the list. If this makes the list empty and u has no children, then u is removed
from the tree. If no acceptable match can be found in the list, the search continues at the parent of
u.

12 TURNER

8; = bbaca

cc a8 3/ bb ca 8, = aabac
83 = acacc

3 O4 1 O35 01 s4 = acbba

85 = bacbb

Figure 11: Example of Compacted Trie Representation

The time required for a single lookup operation may well exceed the length of the string being
searched for. However, any excess time is spent deleting list entries. Since there are initially m + n
list entries in the whole tree, the time spent on any sequence of lookups is O} plus the sum of the
lengths of all strings being searched for.

We say that a sequence of lookup and delete operations is monotonic if for every 4,7,k with
7 # k, whenever the sequence contains the operation T.LOOKUP{1,) and and later on the operation
T.LOOKUP(¢, k) it contains the operation T.DELETE(7) between the other two.

We can speed up a monotonic sequence of operations, by maintaining for each string, a pointer
to the node where the most recent lookup for that string ended. This allows us to avoid the initial
probe of the tree when we perform a lookup operation. Instead, we use the pointer to go straight
to the node where the last probe ended, and search up from that node if necessary. In this way, we
can perform a monotonic sequence of r operations in O(m + r) time,

This analysis assumes that the symbol alphabet is small encugh that it is reasonable to use a
vector of pointers to children in each node, indexed by the first symbol of the strings labeling the
edges. If a large alphabet is needed, a hash table may be used. Another option is to use a variant
on Sleator and Tarjan’s lezscographic splay tree [13]. With this representation, the time required to
perform a sequence of operations is O(m), plus sum of the lengths of the strings being searched for,
plus O(log m) per operation. For a monotonic sequence of r operations the time is O(m + rlogm).

An efficient implementation of the greedy algorithm for strings is shown in Figure 12. The
algorithm uses several data structures in addition to the suffix tree T. The disjoint set data structure
d partitions S into sets of strings belonging to a single path. The mappings left{t) and right(i) give
the left and right neighbors of 7 in the solution constructed so far. A value of 0 means that no
neighbor is defined. The solution is returned in these vectors. The mapping rightend() is used to
determine which string is the rightmost one in the path containing a given string. In particular
rightend(d.FIND(z)) is the index of the rightmost string in the path containing s;.

The heap data structure A is used to determine which pair of strings should be combined next.
Fach string is entered in h with the key being the length of the best match for h. As the algorithm

THE SHORTEST COMMON SUPERSTRING PROBLEM 13

procedure SGREEDY (string set § = (s1,..., s,), mapping left, right : {1, n] — [0, n])
integer ¢, 4, £;
mapping rightend : [1,n] — [1, nJ;
mapping key : [1, n] — integer;
disjoint_sets d; heap A; suffix_tree T;
T.SUFFIX_TREE(S);
forie[l,n] —
left(z), right(s) := 0; rightend(i) :=1;
[key(z), 7] :== T.LOOKUP (1,1);
d.MAKESET(); h.INSERT(3);
rof;
do [h|>1—
1 := h.FINDMAX();
[4,7] := T.LOOKUP(3, rightend(d.FIND(z)));
if £ = key(s) —
left(z), right(7) := 3,1;
T.DELETE(j); h.DELETE(z);
rightend(d.LINK (d.FIND(i), d.FIND(7))) := rightend(d. find(z));
| § < key(s) —
key(s) := £; h.SIPFTDOWN(2);

od;

end
Figure 12: Greedy Algorithm for scs

proceeds, certain matches become unavailable and the values of key() may become invalid. Conse-
quently, whenever a siring s; is selected from h, a new lockup operation is performed in 7. If the
result of that operation is a match of the same length as key(z), the strings are combined. If the
lookup results in a shorter match, the value of key(:) is changed and the position of s; in the heap is
adjusted to reflect the new value. Note that a string is deleted from the heap once it is successfully
matched with another string on its left end. Similarly, a string is deleted from the suffix tree once
it is matched with a string on the right.

The running time of the algorithm is dominated by the operations on the various data structures
within the main loop. The number of iterations of the main loop is O(m) in the worst case. Since the
heap operations are O(log n) per operation, the total time spent on the heap operations is O(mlog n).
The time required for the disjoint set operations is O{ma(m, n)) = O(mlogr). Since the sequence
of operations on the suffix tree is monotonic, the time needed for the suffix tree operations is O(m)
assuming a small alphabet and O(mlogm) assuming a large alphabet and the use of lexicographic
splay trees.

4. SCS and the Traveling Salesman Problem

In this section we relate SCS to the path version of the {raveling salesman problem (TSP). An instance
of the traveling salesman problem is a list of cities ' = (¢3,...,¢,) with a distance d{c;, ¢;) between

14 TURNER

Figure 13: Example of transformation from sCs to TSP(S = {cbadef, fcbade,adefcd})

each pair of cities. The object is to find a permutation # on {1,...,n}. that minimizes

n—1
0,.- (C: d) = E d(cﬂ’f’ c"H—l)

i=1
We define ¢*(C, d) = min, 0,(C, d).

Let § = (s1,...,9,) be an instance of 8CS. We define TSP(sy,...,s,) to be an instance (C, d) of
TSP with C = (c1,...,¢n,¢n+1) and

si| — ¥(si,95) 1<i<n 1<5<n i#j
dles,e) = { sl 1<i<n j=n+1
S i=nt+1 1<5<n

An example of this transformation is given in Figure 13. Note that in general, if 7 satisfies
0(C, d) = 0*(C,d) then T4y = cpta-

THEOREM 4.1. Let § = (3;,...,3,) be an instance of scs, (C,d) = TSP(S) and let = be a per-
mutation on {1,...,n,n+1}to (c1,...,cn,Cnt1) for which w41 = n+ 1. Then 8,(C,d) = ¢n(5),
where 7' 13 the restriction of x to {1,...,n}. In particular, 8*(C,d) = $*(S5).

proof.

n n—1
0:(C,d) = Zd(cﬂ,c,ﬂ.“) = |.Z || — 'n”(’!m"m-u)] + |sma
=1 $=1

n n—1
E!sml} - Zrﬁ(sm,sm+1)] = |81 = % (S) = $:(S)

i=1 i=1

6*(C,d) = ¢*(S) follows from the observation that any optimum solution = for (C,d) must have
Tn+l = Cnt1- O

THE SHORTEST COMMON SUPERSTRING PROBLEM 15

Theorem 4.1 implies that any good approximation algorithm for this version of the traveling
salesman problem is a good approximation algorithm for sCs as well. The particular instances of
TSP constructed by the transformation defined above have some special properties. First, they may
be asymmetric; that is d(c;,c;) need not equal d(c;,c;}. The next theorem shows that they obey
the so-called triangle tnequality.

THEOREM 4.2. Let § = (s1,...,3,) be an instance of 5CS and let (C,d) = TSP(S). For all
¢iy ¢i ¢k € C, dcq, cx) < d{ei,cz) + d{es,cx).

Proof. There are several cases to consider. If 4,k < 5 = n+ 1, d{c;,cx) < ||S|| = dlejrex)
and the result follows immediately. Similarly, if ¢, < k=n +1, d(c,,c_,) < lse} = d(c,,ck) and if
Sk <i=n+1,d(e,e;) = d{ci,cx). This leaves the case where %,7, k < n. For convenience, let
a = dfc;,c;) and § = d(c;,ck) and note that

sile+ 1,]si]] = 841, i) — @] and s;[B+ 1,]s5]] = skL, [sk] — 8]
Note that if |s;] < o + B, we’re done. Therefore, assume |s;| > @ + g. This implies that
sila+ B+ 1, |sif] = sk[l, |ss| — {a + £)]

and that d(c;,c;) <a+ 4. O

There exist efficient approximation algorithms for the symmetric version of the traveling salesman
problem with triangle inequality that produce solutions within a factor of (3/2) of optimal. When the
triangle inequality doesn’t hold, finding good approximate solution is as difficult as finding optimum
solutions (see [7]). For the asymmetric version with triangle inequality however, little is known.
There are no known approximation algorithms that are both efficient and have good worst-case
performance (nor have we found any), but the approximation problem has not been shown to be
hard. Consequently, the relationship between SC8 and TSP has yet to yield any immediately useful
results. The relationship does imply some consequences if the status of either problem iz resolved in
the future. If good approximation algorithms are found for TSP, they may be applied to 8¢S, If the
approximation problem for S¢S is shown to be hard, then the approximation problem for TSP must
be hard. It also may be that good approximation algorithms discovered for SCs, could be adapted
to TSP, although this does not necessarily follow. Finally, a proof that TSP is hard to approximate
would not imply that 8CS is hard to approximate, but it would imply that approximation algorithms
for 5C8 would have to exploit special structural properties present in the instances of TSP that result
from our transformation. We close by mentioning one such property that may prove useful.

LEMMA 4.1. Let 8 be any set of strings and let (C,d) = TSP(S). If {w,z,y,2} C C with d(w,y) =
min d(w,), d(w, 2), d(z,y), d(z, 2) then d(w,y) + d(z,2) < d{w, z) + d(z,y).

We refer to this as the guadrilateral inequality and note that it is analagous to the property
described in Lemma 3.1. As the proof is similar, we omit it.

5. Closing Remarks

We have related the shortest common matching string problem to two other problems, using trans-
formations that preserve solution values. These two transformations reflect different ways of viewing
SCS8. We have used the transformations to gain insight into the problem of approximating scs and
have discovered several algorithms that have provably good performance with respect to the overlap

16 TURNER

measure. The best of these is the string version of the greedy algorithm for which we have described
an efficient implementation using suffix trees.

While we have shown that the string version of the greedy algorithm has good worst-case per-
formance with respect to the overlap measure, we cannot determine its performance with respect
to the length measure. We know that it can be off by as much as a factor of two with respect to
the length measure, but we don’t know if it can be worse than this. One open problem then, is to
resolve this issue.

Although, we have been unable to make use of the relationship between $Cs and TSP to advantage,
we feel that it may yet prove useful. More generally, we think that the use of transformations that
preserve solution values can be used to extend the application of known approximation algorithms to
new domains. A methodical development of such transformations could provide many useful results.

Another worthwhile line of investigation for future research is to study the probable performance
of the various approximation algorithms using appropriate probability models. It appears likely for
example, that the directed matching algorithm for the longest path problem performs much better
than its worst-case bound would indicate for a wide class of natural probability models. Similarly,
one would expect the greedy algorithm to perform well in a probabilistic sense for many useful
probability models.

References

[1} Aho, Alfred V., John E. Hopcroft and Jeffery D. Ullman. “Data Structures and Algorithms,”
Addison-Wesley, 1982.

[2] Chen, M. T. and J. L. Seiferas. “Efficient and Elegant Subword-Tree Construction,” University
of Rochester, Computer Science Department, technical report TR 129, 12/83.

[3] Gallant, John K., David Maier, James A. Storer. “On Finding Minimal Length Superstrings,”
Journal of Computer and System Sciences, vol. 20, no. 1, 50-58, 2/80.

4] Gallant, John K. “String Compression Algorithms,” Ph.D. Dissertation, Princeton University,
3
Department of Electrical Engineering and Computer Science, June 1982.

[5] Gingeras, T. R., J. P. Milao, D. Sciaky and R. J. Roberts. “Computer Programs for the
Assembly of DNA Sequences,” Nucletc Aeids Research, vol. 7, 1979, 520-545.

(6] Karp, Richard M. “A Patching Algorithm for the Nonsymmeétric Traveling Salesman Problem,”
SIAM Journal on Computing, vol. 8, no. 4, 561-573, 11/79.

(7] Lawler, E. L., J. K. Lenstra and A. H. G. Rinnooy Kan (editors). “The Traveling Salesman
Problem,” John Wiley and Sons, Ltd, 1986.

[8] Maier, David and James A. Storer. “A Note on the Complexity of the Superstring Problem,”
Princeton University Technical Report 233, Department of Electrical Engineering and Computer
Science, October 1977.

[9] Mayne, A. and E. B. James. “Information Compression by Factorising Common Strings,” The
Computer Journal 18, 1975, 157-160.

[10] McCreight, Edward M. “A Space-Economical Suffix Tree Construction Algorithm,” Journal of
the ACM, vol. 23, 4/76, 262-272.

[11] Rodeh, M., V. R. Pratt and S. Even. “Linear Algorithm for Data Compression via String
Matching,” Journal of the ACM, vol. 28, 1/81, 16-24.

THE SHORTEST COMMON SUPERSTRING PROBLEM 17

[12] Shapiro, M. B. “An Algorithm for Reconstructing Protein and RNA Sequences,” Journal of the
ACM, vol. 14, 1967, 720-731.

[13] Sleator, Daniel D. and Robert E. Tarjan. “Self-Adjusting Binary Search Trees,” Journal of the
ACM, vol. 32, 7/85, 652686,

[14] Stefik, M. “Inferring DNA Structures From Segmentation Data,” Artificial Intelligence, vol. 11,
1978, 85-114.

[15] Storer, James A. and Thomas G. Szymanski. “Data Compression via Textual Substitution,”
Journal of the ACM, vol. 29, 10/82, 928-951.

[16] Tarjan, Robert E. “Data Structures and Network Algorithms” Society for Industrial and Ap-
plied Mathematics, 1983.

	Approximation Algorithms for the Shortest Common Superstring Problem
	Recommended Citation

	tmp.1463768645.pdf.a9EgU

