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SPATIOTEMPORAL QUERY STRATEGIES FOR NAVIGATION IN DYNAMIC SENSOR
NETWORK ENVIRONMENTS

Gazihan Alankus, Nuzhet Atay, Chenyang Lu, O. Burchan Bayazit

Washington University, St. Louis, MO, USA

ABSTRACT

Autonomous mobile agent navigation is crucial to many mis-
sion-critical applications (e.g., search and rescue missions
in a disaster area). In this paper, we present how sensor net-
works may assist probabilistic roadmap methods (PRMs),
a class of efficient navigation algorithms particularly suit-
able for dynamic environments. A key challenge of apply-
ing PRM algorithms in dynamic environment is that they re-
quire the spatiotemporal sensing of the environment to solve
a given navigation problem. To facilitate navigation, we
propose a set of query strategies that allow a mobile agent
to periodically collect real-time information (e.g., fire con-
ditions) about the environment through a sensor network.
Such strategies include local spatiotemporal query (query of
spatial neighborhood), global spatiotemporal query (query
of all sensors), and border query (query of the border of
danger fields). We investigate the impact of different query
strategies through simulations under a set of realistic fire
conditions. Our results demonstrate that (1) spatiotemporal
queries from a sensor network result in significantly better
navigation performance than traditional approaches based
on on-board sensors of a robot, (2) the area of local queries
represent a tradeoff between communication cost and navi-
gation performance, (3) through in-network processing our
border query strategy achieves the best navigation perfor-
mance at a small fraction of communication cost compared
to global spatiotemporal queries.

1. INTRODUCTION

Awareness of the environment plays an important role in
mobile robot navigation. Until recently, the robots mostly
relied on the on-board sensors. However, as the technical
challenges of sensor networks are being solved, a new in-
terest raised to employ them in the robot navigation task.
There are several advantages of using a sensor network in
this task. Perhaps the most important one is a sensor net-
work’s ability to relay information from not only the robot’s
vicinity but also from distant regions of the environment.
Reduction in the cost can be another advantage, since sev-
eral distributed cheap sensors can replace expansive on-board
sensors. Also, once a network is deployed, it can be used by
multiple agents, and even help separated agents coordinate
their movements.

Sensor networks are successfully utilized for robot nav-
igation [1, 2]. However, most of these methods use all the
sensors in the network increasing power consumption. Also,
they distribute the path finding task to sensor nodes hence
reducing the flexibility of using a different path finding al-
gorithm. They may also fail to adapt multiple robots if the
initial network was deployed for a single robot.

Path planning algorithms developed in the robotics com-
munity are capable of navigation in complex environments
[3]. In particular we note the roadmap methods which can
quickly answer many diverse path planning queries in the
same environment using a map, typically constructed dur-
ing preprocessing, containing a network of representative
feasible paths in the environment. In essence, these maps
function similarly to driving maps in that one plans a route
by first locating their initial and final positions and then se-
lecting a route connecting them from the roads and high-
ways shown on the map.

In this work, we investigate how the addition of spa-
tiotemporal information through the sensor network can be
used to build a roadmap of the environment which enables
more sophisticated navigation. Our goal is to navigate safely
in a danger field, i.e., reach a goal while avoiding the dy-
namic dangerous regions. This dynamism requires the robot
to modify its route continuously to avoid the danger. In
order to build a roadmap we use a Probabilistic Roadmap
Method (PRM) [4]. Probabilistic roadmap methods are shown
to be probabilistically complete and they are successful where
deterministic algorithms failed due to time complexity of
the navigation problems. They are very fast, and can be ap-
plied in the dynamically changing environments. In our in-
tegration of sensor networks with PRMs, sensor networks
passes the spatiotemporal information to the robot. The
information can be partial (e.g., only local vicinity of the
robot), or global (e.g., all sensors response to a query). The
robot uses this information to update its roadmap. If it dis-
covers that the current route goes through a dangerous re-
gion, it finds alternative routes on the roadmap.

In earlier work, Bayazit et.al. [5] showed that roadmap
algorithms capturing the global spatiotemporal information
about the environment performs better than other commonly
used navigation algorithms in multi-robot scenarios. In a
sensor network, the global spatiotemporal information can
be captured by querying all sensors. However, this global
query approach consumes significant energy and may cause
network congestion. Furthermore, it may not be necessary



or beneficial to query sensors far away from the robot when
sensor data change rapidly in dynamic environments. To
overcome such drawbacks we suggest two new query strate-
gies to facilitate efficient navigation, local query and bor-
der query. In local query, a robot only queries its spatial
neighborhood, where the size of the query area can be tuned
to achieve desired tradeoff between energy/communication
cost and navigation performance. In border query, only the
sensors in the border of a danger responds to a given query.

In order to validate our approach, we have tested our
system both on a real sensor network with real robot and a
simulated robot with a simulated network. Our sensor net-
work simulator is built on top of NIST Fire Dynamics Sim-
ulator [6]. Using our software, we can simulate a sensor
network which can relay real-time temperature information
from a spreading fire. Combining our sensor network simu-
lator with a robot simulator, Player/Stage [7], we found that
when they are supplied with real-time temperature data by a
sensor network, PRMs can successfully navigate a robot in
a fire. We also found that using a border query strategy, we
can capture the spatiotemporal information at the reduced
cost. Our experiments with the real robot showed that we
can use our algorithm on a real scenario as well.

In the next section, we give a summary of related work.
In Section 3 we briefly describe our system. Section 4 dis-
cusses different query strategies we investigate. Section 5
describes our navigation strategy. We present our experi-
mental results in Section 6 and Section 7 concludes our pa-
per.

2. RELATED WORK

Recently there were successful applications of using sen-
sor networks to navigate a robot to a goal [1, 2]. These
algorithms use sensor networks to compute a path for the
robot. They use wavefront expansion to update the path in-
formation which may result in a flood of messages in the
network increasing the communication overhead and power
consumption. Also since they need continuous update, there
will be less time for nodes to sleep. In contrast, we propose
a new strategy where nodes only send messages when they
are within the range of a danger. So if a node is outside of
the robot’s query range it could stay in sleep mode. We also
believe that our approach is more flexible. For example, if
the network is deployed for one robot and if two robots are
required to move two different goals, wavefronts of two dif-
ferent goals would create problems. In our approach, the
path finding is done by the robot, hence reducing the com-
putational cost over the network and adding some flexibil-
ity. For example, two robots can still use the same network
without message congestion.

There are other applications of sensor networks for robot
navigation task. In [8], a sensor network gives a path to help
an autonomous agent to reach a goal. In [9, 10, 11] sensor
networks direct the robot(s) to explore the environment and
replace the broken sensors. Mobile agents are also used to
increase connectivity of a sensor network [12, 13]. In order

to reduce the network response time and power consump-
tion, MobiQuery [14] utilizes prefetching so that a robot can
have the sensor data ready when it reaches a destination.

3. SYSTEM OVERVIEW

Our system consists of three components that enable safe
navigation in a dangerous region: (i) a sensor network to
collect real-time information about the environment, (ii) a
robot with a mote connected to it, and (iii) a controller which
navigates the robot based on the information from the sen-
sor network and on-board sensors (see Figure 1). In our
implementation we have both physical and simulated com-
ponents, i.e., we can replace a real robot with a simulated
robot or replace the real sensor network with a simulated
network. The details of the simulators are described in Sec-
tion 6.1.

We have some assumptions about our system. First,
we assume the robot knows its location. The motes in the
sensor network are also assumed to know their locations.
These assumptions are realistic since: (a) robot may have
on-board odometry and floor plan, (b) the positions of the
motes can be assigned during the deployment or they can
be computed later [15]. The environment coverage of the
sensor network is uniform and we assume symmetric radio
links between neighboring motes, which can be achieved
using an approach similar to [16]. Please note that since our
goal is to validate our approach, we haven’t implemented
issues such as sensor noise, sleeping schedule [17, 18], net-
work congestion control [14] or border detection [19] in our
experiments. we are working on addressing them in our
system with the addition of algorithms related to those is-
sues. The communication between the robot controller and
the sensor network is done through multi-hop communica-
tion between a mote connected to the controller and nearby
motes of the sensor network.

Our system integrates its components in the following
way. The controller uses a PRM algorithm to safely navi-
gate in the environment (see Section 5). It uses the danger
information of the environment gathered through the sen-
sor network. The controller periodically queries the sensor
network through the mote that is connected to the robot.
The query dissemination and data collection components of
our system run on all of the motes in the network. When
the controller sends the query message to nearby motes, the
query dissemination component in those motes forward this
message to the motes in the environment. As a response to
this query, motes generate data messages and using the data
collection component they send their data back to the mote
on the robot over multiple hops. The mote on the robot for-
wards these messages to the controller and it plans the path
and moves the robot accordingly.

We address the power consumption and network con-
gestion using different query strategies. We use both general
spatiotemporal queries and queries that specify the areas of
interest. We have classified our queries in two types: spa-
tiotemporal and border-response. We further classified the



queries into two types based on their ranges (i.e., vicinity
of the robot or entire network): global and local. We will
discuss these strategies in the next section, however a brief
overview of them is described below.

Global vs local query. The purpose of global query is
to let the robot know about the whole environment to plan
a good path, while in local query the information about the
environment is limited. All the motes in the network re-
spond to a global query, whereas in local query only a group
of motes that are close to the robot respond. This would re-
duce the number of messages generated by the sensor net-
work.

Border-response vs spatiotemporal query. Spatiotem-
poral query is a regular query where each mote in the query
range responds to query. Even in a local query, this may
generate an extra amount of messages. In order to balance
the trade-off between safety and fair usage of network re-
sources, we suggest a new query response strategy where
only the sensors which are on the borders of dangerous areas
respond. The other nodes act only as routers to propagate
data messages from border nodes to the robot. Similar to
spatiotemporal query, a border-response query can be done
in local or global level.

           
          

Robot Controller  Sensor Network 
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Fig. 1. System overview.

4. QUERY STRATEGIES

As we have discussed before, our basic query, spatiotempo-
ral query generates a tree from a query source. We have
also extended this general query type to border-response
in order to make fair use of the network resources without
compromising safety. We are planing to incorporate Mobi-
Query [14] to our system.

Spatiotemporal query. In a spatiotemporal query strat-
egy, whenever the robot needs to make a query, the mote
on the robot broadcasts a query message Q(qc, r, tr, δt, tp),
indicating the query center (qc) and the query radius (r) in
order to be able to identify the sensors to respond, query
sent time (tr), the query’s validity duration (δt) which de-
termines the lifetime of the query, the period of the query
(tp) which indicates data generation period of the motes.
An internal parameter, a depth field is also attached to a
query. The depth field is 0 for the initial query. Once the
robot broadcasts a query, it is received by the motes that are
in the communication distance. Those motes increase the

depth field and broadcast it again. The mote that sent the
query message with the least depth is set as the parent for
the query by each mote. This way an implicit query tree is
formed. If the query reaches a mote which is outside the
geographic area specified by qc and r, it stops propagating.
Note that both global spatiotemporal query and local spa-
tiotemporal query share this same infrastructure. The global
spatiotemporal query is achieved by setting the query radius
to ∞.

After the query is disseminated to the network, all the
motes within the vicinity r create data messages every tp.
Every mote forwards the data messages to its parent that was
set before in the query phase. This process continues until
all the answers are send back to the robot (see Figure 2(b)).
In our implementation, the robot is slow enough and stays
in the communication distance while waiting for the data
messages. In the future we will also add the possibility to
specify a pick-up location as in MobiQuery, so that even
if the robot is out of the broadcast distance of the original
interface nodes it can get the answers from a nearby node in
its path.

Border-response. There are several drawbacks of hav-
ing all sensors respond a query, such as unnecessary power
consumption and network congestion. In addition, when
the robot controller is flooded with several responses, its
computation time may be effected. These drawbacks per-
sist even if the response is restricted to some vicinity. In
order to overcome such drawbacks, we have developed a
query strategy where only the nodes with significant infor-
mation respond to a given query. Other nodes do not gener-
ate data messages to be sent to the robot but propagate the
messages that are sent to them. Remember that our goal is
to navigate the robot while avoiding the dangerous areas.
As long as we know about the borders of the dangers, we
can avoid them. In other words, we do not need the infor-
mation from the motes that are not on the border of dan-
gerous areas. Figure 2(c) shows how the border-response
query works. In the situations like Figure 2(a) that have
large dangerous areas, several (proportional to mote distri-
bution and the area) motes do not generate data messages
when a border-response query is used.

In order to implement border-response, we have added
a border flag to the data messages exchanged between the
motes. This flag represents if a mote thinks it is in the border
of a danger or not. If the border flag is not set, the message
is not forwarded by the motes to their parents. In order to
determine a mote is a border mote or not, every mote sniffs
to all data messages that it can, even though they are not
intended for that mote to be aware of readings of its neigh-
bors. By comparing its own readings to its neighbors’, a
mote can determine if it is in the border or not. If all the
neighbors and the mote have low readings, the mote is in a
safe zone. Similarly if all the neighbors and the mote have
high readings then the mote is deep inside a danger zone. In
both of these cases, the mote is not in the border, hence it
turns off the border flag in its data messages.

This way, only the data messages of border motes are



forwarded to the robot and the amount of messages are re-
duced in the network. Before determining if a mote is in the
border or not, it sets the border flag in its messages to on,
in order to keep the robot informed about the environment.
This approach enables the robot to get readings from all the
motes in the beginning. After learning about the readings of
their neighbors, some of the motes start to set their border
flags off. The robot has an idea of what would be the read-
ings from silent motes, since it knows their old readings and
they are on the same side of the threshold until they become
border motes. Therefore, this method reduces the forward-
ing of the data messages with minimum information loss.

(a)

r

(b) (c)

Fig. 2. Our sensor network query strategies. (a) Sensor network
with different danger levels (darker regions). (b) Spatiotemporal
query gets response from the nodes in the vicinity. (c) Border-
response query returns the answer from the nodes in the border of
danger. Red (darker) circles denote the motes that generate data
messages.

5. NAVIGATION STRATEGY

5.1. Roadmap-Based Path Planning with PRMs

Given a description of the environment and a movable ob-
ject (the ‘robot’), the motion planning problem is to find a
feasible path that takes the movable object from a given start
to a given goal configuration [3]. Since there is strong evi-
dence that any complete planner (one that is guaranteed to
find a solution, or determine that none exists) requires time
exponential in the number of degrees of freedom (DOF) of
the movable object [3], attention has focused on randomized
or probabilistic methods.

As mentioned in Section 1, our approach utilizes a road-
map encoding representative feasible paths in the environ-
ment. While noting that our techniques could use any road-
map, our current implementation is based on the probabilis-
tic road-map (PRM) approach to motion planning [4]. Briefly,
PRMs work by sampling points ‘randomly’ from the robot’s
configuration space (C-space), and retaining those that sat-
isfy certain feasibility requirements (e.g., they must corre-
spond to collision-free configurations of the movable object,
see Figure 3(a), Node Generation). Then, these points are
connected to form a graph, or roadmap, using some sim-
ple planning method to connect ‘nearby’ points (see Fig-
ure 3(b), Connection). During query processing, the start

and goal are connected to the roadmap and a path connect-
ing their connection points is extracted from the roadmap
using standard graph search techniques (see Figure 3(c),
Query).

An algorithm for PRM can be summarized as the below:

PRMS: PROBABILISTIC ROADMAP METHODS

I. PREPROCESSING: ROADMAP CONSTRUCTION

1. NODE GENERATION (find collision-free configurations)
2. CONNECTION (connect nodes to form roadmap)

(repeat as desired)
II. QUERY PROCESSING

1. CONNECT START/GOAL TO ROADMAP

2. FIND PATH IN ROADMAP BETWEEN CONNECTION NODES

PRMs have been shown to perform well in practice. In
particular, after the roadmap is constructed during prepro-
cessing, many difficult planning queries can be answered in
fractions of seconds [4].

Node Generation. Node generation strategies are the
methods used to select collision-free robot configurations
to be used as nodes in the roadmap. A good node gen-
eration strategy will produce nodes that can be connected
to form a roadmap that is representative of the connectiv-
ity and complexity of C-free. Ideally, the roadmap should
contain nodes in every C-space crevice and corridor. How-
ever, guaranteeing this requires the costly computation of
the constraint surfaces — which is what randomized meth-
ods seek to avoid.

Connection. After the collision-free roadmap candi-
date nodes are generated, they must be connected to form
the roadmap. The basic idea is to attempt to connect se-
lected pairs of roadmap nodes using some local planning
method(s); each successful connection identifies an edge in
the roadmap. To save space, the paths found in this stage are
not recorded since they can be re-generated quickly when
processing queries. The general strategy of PRMs is to first
make as many of the ‘easy’ and ‘cheap’ connections as pos-
sible, and then to use more sophisticated techniques to im-
prove the roadmap’s quality. For example, the PRM of [4]
first tries to connect each node to the k (a parameter) clos-
est nodes (as determined by some distance metric) using the
common straight-line local planner (i.e., the straight line be-
tween two configurations is found and robot is moved along
that line), and then attempts to enhance the roadmap by
sampling more nodes in identified ‘difficult’ regions and/or
by using more sophisticated local planners.

5.2. PRM Navigation in Dynamic Sensor Network En-
vironments

The original PRM algorithm is developed to avoid obsta-
cles. Two nodes are connected if a robot can reach from
one configuration to another configuration using a simple
planning algorithm. We need to modify it so that the robot
will follow not only a collision free but also a safe path. In
our implementation, the robot does not need to know the
positions of the sensors. It is only aware of its position,
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Fig. 3. A PRM roadmap in C-space. (a) After node generation, (b) after the connection phase, and (c) using it to solve a query.

and if there are obstacles in the environment, their loca-
tions. Our navigation algorithm first builds a roadmap of
the environment. As discussed before, a roadmap is basi-
cally a weighted undirected graph. A path is a sequence
of edges, first connecting robot’s current configuration to
the roadmap, following the roadmap edges, and connect-
ing the roadmap to the goal configuration. Since there may
be more than one path reaching the goal, the robot should
select the most cost efficient path, i.e., a path that has the
lowest weight among other sequences. If the edge weights
are known, this path can be found using Dijkstra’s shortest
path algorithm [20]. We defined the weight (weightei

)of
each edge (ei) connecting two configurations ck and cl as
weightei

= wdist×|cl−ck|+wtemp×eitemp, i.e., weighted
sum of the length of the edge and the temperature of the
edge. If wtemp is 0, the robot will take the shortest path to
the destination, if wdist is 0, the robot will take the safest
path to the destination. This formulation of an edge weight
requires finding the temperature of an edge. We defined
a temperature of an edge as the maximum temperature the
robot would face if it would have taken that edge. This tem-
perature is found by first discritizing the edge to a constant
number of points that are equally spaced on the edge and
then finding the the temperature on each point. Since we
do not have a temperature reading at the exact location of
the point unless we have a sensor there, we interpolate the
temperature by averaging the temperature readings from the
closest sensors. As the new sensor readings are obtained,
the edge weights of the roadmap are updated, hence modi-
fying the path to avoid the spreading fire. Please note that
by using a probabilistic roadmap algorithm, we gain an ad-
vantage over other motion planning techniques in terms of
efficiency in the computation while maximizing our objec-
tive (i.e., staying away from the danger).

6. EXPERIMENTS

In our experiments we would like to answer following ques-
tions: (i) how successful our algorithm to prevent robot
moving into the danger, (i) how well different strategies
work, and, (iii) how the algorithm performs with a real robot.

In order to answer those questions, we have run our ex-
periments both in the simulated sensor network and a real

robot with MICA2 motes.

6.1. Sensor Network Simulator

In order to validate our approach we developed a sensor net-
work simulator which will be available at:

http://www.cse.wustl.edu/∼ bayazit.
In the simulation, the robot controller and the sensor net-

work controller run synchronized in real-time. The mote on
the robot and the sensor network is simulated at message-
passing level, including packet loss probability, radio and
processing delays.

Since we are interested in robot navigation in the case
of dynamically changing dangers (i.e., spreading fire), we
need a realistic representation of the danger. We have se-
lected NIST Fire Dynamics Simulator (FDS) [6] to sim-
ulate a fire. During the simulation, fire may separate to
several branches, some branches may continue to spread
while some get extinguished. FDS runs at small time steps
and stores the temperature information of selected locations.
One drawback of FDS is that a realistic simulation would re-
quire hours to run. In contrast, our sensor network simulator
is in real-time. Our solution for this difference in running
time is based on the assumption that the movement of the
robot does not have a significant effect in the fire. This way,
we can run FDS without a moving robot. Later, our sensor
network simulation reads FDS temperature files at specific
time steps and respond the queries. This simulates a real-
istic distribution of the fire. A typical temperature readings
by our sensor network simulator after FDS simulates the fire
distribution can be seen in Figure 4.

While FDS gives us a realistic fire simulation, we also
need our sensor network to be able to simulate realistic work-
ing conditions of real sensors nodes. For this purpose we
have utilized several parameters: (i) communication dis-
tance, the distance that two nodes can exchange messages,
(ii) loss ratio, the probability that a packet can be lost, (iii)
radio delay, the delay introduced by radio transmission, (iv)
processing delay, the delay introduce by processing in motes,
and, (v) sensor distribution, position and number of motes
in an environment. In order to increase the realism of the
simulator, we have used the parameters obtained from the
experiments with real motes [14, 21]. In the simulation,



when a node receives a message and finds out that it needs
to respond it, prepares the reading and sends it after process-
ing delay. The receiving node will see the message ready
after the sum of radio delay and processing delay. When a
query is disseminated by the robot, the answer will be ready
at the query center after all delays are included in the total
time. We assume links are symmetric so that each node will
send messages to its parents.

(a) (b) (c)

Fig. 4. Example simulated sensor readings by our sensor network
simulator for a spreading fire. The light regions are high tempera-
ture areas.

6.2. Experiments with the Simulators

In these experiments we would like to learn how the dif-
ferent parameters in the network can effect our algorithm.
We are interested in the safe passage of the robot to a goal,
so we compare the success rate of the travel with different
parameters. In all our experiments we compare the per-
formance of our algorithm with different query response
range, r. We have compared the success of the algorithm
when either robot is getting its data from on-board sensors
or getting its data from the sensor network with a query
range of 15, 20, 30, 40, 50, 60, 70 meters or all sensors
(global). We have also compared spatiotemporal query to
border-response. The robot is simulated using Player/Stage
[7].

Environment. All our experiments are run on a 100x100
meters environments. We have used 10 different environ-
ment. Each environment has 10 rectangular burning mate-
rial randomly placed. The dimensions of burning materials
are probabilistically generated using a normal distribution
of (µ = 20, σ2 = 5). Fire always starts at the center of the
environment. We have run NIST Fire Dynamics Simulator
in each environment for a simulation of 50 minutes. An ex-
ample distribution of the fire can be seen in Figure 4. We
assume, the robot starts after 400 seconds of burning to let
the fire spread the environment. In the sensor network sim-
ulator, there are 11x11 motes distributed around a uniform
grid. Each mote has a radio delay of 0.2 seconds, process-
ing delay of 0.2 seconds and a package loss rate of 20%
(ARQ is not used in our simulations). The radio commu-
nication range for the motes are 15 meters. The simulated
robot is a Pioneer-III DX [22] (similar to our robot) with
16 on-board temperature sensors distributed uniformly on a
circle around the robot with 1 meter radius.

Experiments are run on a Pentium-IV 3 Ghz Linux ma-
chine with 2GB memory. The movies of the experiments
can be found at http://www.cse.wustl.edu/∼bayazit.

Results. In our experiments we have first compared the
effect of query strategy to travel time of robot to reach the
goal. Figure 5(a) shows our result. In the figure x-axis rep-
resent different query ranges, including only on-board tem-
perature reading and y-axis is the time it took robot to reach
the goal. The dark colored bar is the results for spatiotem-
poral query for given range, and the light colored bar is the
results for border-response. Both type of strategies run 10
different environment in twice. The results show the av-
erage of a total of 20 runs on each query strategy. From
the results it is clear that as the range of query increases,
the time to reach the goal decreases in both spatiotemporal
and border-response strategies. This shows that, the bet-
ter the robot knows how the fire is distributed, the faster it
can reach the goal. If the robot knows only a small area, a
path could take the robot closer to fire, so robot spends extra
time to avoid such local encounters. There were no signifi-
cant differences in the running times of both strategies. One
interesting observation was that if the robot uses on-board
sensors, it reaches the goal fast. This can be explained by
the fact that since the robot’s knowledge about the temper-
ature data is limited, the distance plays an important role in
the edge weight computations (see Section 5.2). Also, after
the query range of 50 meters (half of the environment), there
is no significant decrease in the travel time. That shows that
after some query range is reached, more data no longer be-
comes an advantage.

A fast travel time does not guarantee a safe travel. Fig-
ure 5(b) shows the success rate for a query strategy over 20
runs. The success rate of our query strategies increase until
we have a query range of 50 meters (similar to travel time
change after 50 meters). Surprisingly if the query range fur-
ther increases the success rate starts to decrease. We believe
this phenomena is result of increased data flood to the robot
controller. As the number of packages to the controller in-
creases, the processing time in the controller increases as
well. We have a very fast spreading fire, and as the number
of packages increase, the robot will spend more time on the
processing and fire will catch up with the robot.

It is clear from Figures 5(a) and (b) that sensor net-
works gives significant advantage to robot navigation over
traditional approaches based on-board sensors. Using both
query techniques were safer than on-board sensor naviga-
tion. For larger query ranges, usage of the sensor network
also reduced the travel time. On the other hand, there are no
significant performance penalties for using border-response
instead of spatiotemporal query. Next, we investigate the
power consumption. For this purpose, we need a metric
that approximates the power consumption. Hence, we have
selected to count the number of messages passed in the net-
work. Figure 5(c) shows the message count for each strat-
egy. As expected, the number of messages are significantly
less in border-response when query range is large.

Based on these figures, we found out that a query range



(a) (b) (c)

Fig. 5. Experimental results for simulated sensor network using different query strategies. (a) Travel time of the robot. (b) Success rate of
the robot reaching the goal.

of half of the environment with border-response strategy
gives best safety while introduction minimum sensor net-
work resource overhead.

6.3. Experiments with the Real Robot

Start

Motes

Danger

Goal

Fig. 6. Test arena for the real robot.

We have also tested our algorithm in a real robot. The
robot we have used is a Pioneer-3 DX by ActiveMedia [22].
Our test arena is 2x3m, robot starts in (0, 0) and tries to
reach (0, 3). There is a fire in the 1x1 meter square cen-
tered at (0.5, 1.5). Figure 6 shows our test arena. Our sen-
sor network in this environment is made up of 7 MICA2
motes with temperature sensors. The robot controller has
also one mote to communicate with the sensor network.
4 motes are deployed on the corners of the square in fire.
Due to safety concerns, instead of a real fire, we have setup
the those motes to broadcast high temperature. We first
tested our robot to find its path without any help from the
sensor network. As before, the robot controller used the
PRM algorithm to find a path. Since the shortest path is
through the fire region, robot went through danger area (see
Figure 7). Next, we have used sensor network to supply
temperature information of the arena. Using these infor-
mation, robot was able to avoid the fire region and safely
reached the goal (Figure 8). Since we have a limited num-
ber of motes, we only tested spatiotemporal query strategy
(all motes were in the border of danger). However, as we
have showed in the previous section, border-response strat-
egy performs very similar to spatiotemporal query strategy.

Since the arena is small, we have used 25 nodes to gener-
ate the roadmap. Since the passage through fire was shorter,
travel time for that route was slightly faster than travel time
for the safe passage (39 seconds vs. 52 seconds).

7. CONCLUSION

In this paper we have presented how sensor networks may
assist probabilistic roadmap methods in robot navigation.
We have showed that sensor network increases the perfor-
mance of a robot controller. We have proposed a border
query strategy that successfully minimizes the tradeoff be-
tween robot safety and sensor network resource consump-
tion. Our future work includes experimenting with a larger
sensor network with the real motes and coordinating mul-
tiple robots over the sensor network. We are also working
on issues related to the sensor networks, such as network
congestion, noise, and better border detection etc.
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