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Abstract

Yang and Masson [14] have demonstrated that the Clos network is a nearly non-
blocking distributor, with the proper choice of network parameters. The resulting
network has better asymptotic crosspoint complexity than other known construc-
tions when the number of stages is fixed. In addition, the routing algorithm is
efficient, taking time linear in the number of network inputs to route a new connec-
tion. We extend these results to the multirate environment in which each connection
has an associated weight indicating the fraction of link bandwidth which it requires.
Connections may share a link provided the sum of the weights does not exceed 1.
The overall complexity of the network is better than other known multirate results
when the number of stages is fixed.






The Clos Network as a Multirate Distributor
with a Greedy Routing Algorithm

Ellen E. Witte

1. Introduction

In 1953, Clos published a seminal result in the theory of nonblocking switching networks
showing that it is possible to construct a connection network with lower asymptotic cross-
point complexity than a crossbar network [2]. Since that time there has been much work
in the design of nonblocking networks with a rich set of variations on the basic problem of
constructing networks to realize one-to-one connections. In this paper we are interested in
networks to realize one-to-many connections, in which a single input is connected to one
or .more outputs. We call these networks distribution networks; they are also referred to as
generalized connectors or broadcast networks elsewhere in the literature. In addition, we are
interested in the multirate environment, in which each connection has a weight indicating
the fraction of link bandwidth required by the connection. Connections may share a link
provided the sum of the weights does not exceed 1.

Figure 1 shows the three stage version of the Clos network, denoted C3. The network
is characterized by the parameters n, r and m. The total number of inputs is N = nr. The
first stage comsists of » n X m crossbar switches. The middle stage consists of m r X r
crossbar switches. The last stage consists of r m X n crossbar switches. For fixed » and
r, the choice of m affects the ability of the network to accomodate connections. The Clos
network can be generalized to 2k + 1 stages by replacing each middle stage crossbar switch
with a Clos network of 2k — 1 stages. Figure 2 shows the general construction, denoted
C%+1, The general network is characterized by 3% parameters, n;, r; and mq, 1 < i < k,
with the restriction that n;r; = riyy for 1 < ¢ < k. The total number of inputs is N = ngry.
Additional stages of switching can result in lower total crosspoint counts.

In reference [14] Yang and Masson give conditions under whick the Clos network is
a nearly nonblocking distribution network. For fixed N they specify the other Clos net-
work parameters so that a greedy routing algorithm can be used to realize one-to-many
connections. In this paper we extend their ideas to the multirate environment.

OThis work was supported by the National Science Foundation, Bell Communications Research, BNR,
DEC, Italtel SIT, NEC, NTT and SynOptics. The author was partially supported by an Olin Graduate
Fellowship from Washington University.
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Figure 1: Three Stage Clos Network, C3
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Figure 2: 2k - 1 Stage Clos Network, C?F+1

2. Definitions

As mentioned in the introduction, there is a rich set of variations on the basic problem
of constructing connection networks. Describing these variations requires a number of
definitions. Many of these are taken from reference [6].

The first type of variation concerns the way in which connection requests are received
and routing decisions are made by the network. A connection reguest is a pair (z,y) where
z is an input and y is an output. A connection assignment is a set of requests in which
every input and every output appears at most once. A connection roule is a list of links
forming a path from an input to an output. A route realizes a request (,y) if it starts at z
and ends at y. A state is a set of routes in which every input and output appears at most



once and every link is used at most once. We say that a state realizes a given assignment if
it contains one route realizing each request in the assignment and no others. We say that
a state sp is below a state s; if sg C s;. Similarly we say that gy is above sg. We say that a
connection request (z,y) is compatible with a state s if z and y are idle in s.

A network is a rearrangeable connector if for every connection assignment there is a state
realizing that assignment. Informally, this means that the network can handle requests when
presented with the entire set of requests at once. There is no guarantee about the ability
to handle requests one at a time without rearranging existing connections. A network is a
strictly nonblocking connector if for every state s and connection request r compatible with
s, there exists a state realizing » that is compatible with s. Informally, this means that
regardless of the way in which previous requests have been realized, it is always possible to
add any compatible request. A network is a wide-sense nonblocking connector if the state
space has a subset 5 (called the safe states) such that for every state s € S all states below
s are in § and for every connection request r compatible with s, there exists a route p
realizing 7 that is compatible with s and such that s U {p} is in 5. Informally this means
that it is always possible to add any compatible request provided each request is realized
in a judicious way. Clearly any strictly nonblocking network is a wide-sense nonblocking
network and every wide-sense nonblocking network is a rearrangeably nonblocking network.

The second type of variation concerns the structure of the requests. A connection
network supports requests to connect an idle input to an idle output. A distribution network
supports requests to connect an idle input to a set of idle outputs. Distribution networks are
also called generalized connectors or broadcast networks elsewhere in the literature. Most of
the definitions for connection networks extend in the obvious way to distribution networks.
We include some of the extended definitions below.

A distribution request is a pair (z,Y) where z is an input and Y is a set of outputs. A
distribution assignment is a set of requests in which every input and output appears at most
once. A distribution route is a list of links forming a tree whose root is an input and whose
leaves are outputs. A roufe realizes a request (z,Y), if its root is z and its leaves are exactly
the set Y. There is a second type of request in a distribution network. An augmentation
request in a state s is a pair (7,y) where r = (z,Y) is a request in the assignment realized
by s and y is an output not in ¥. An augmentation request is compatible with s if y is idle
in s. An augmentation request can be satisfied in s if the route realizing r can be extended
by adding unused links so that y becomes a leaf of the route.

The definitions of rearrangeably nonblocking, strictly nonblocking and wide-sense non-
blocking can be extended to distribution networks. A network is a rearrangeably nonblocking
distributor if for every assignment, there exists a state realizing the assignment. A network
is a strictly nonblocking distributor if for every state s and distribution request r compatible
with s, there exists a route realizing r that is compatible with s and if every augmenta-
tion request r compatible with s can be satisfied. A network is a wide-sense nonblocking
distributor if the state space has a safe subset .5 such that for every state s € .9, all state
below s are in 5; for every distribution request » compatible with s, there exists a route
p realizing r that is compatible with s; and every augmentation request r compatible with
s can be satisfied in such a way that the resulting state is in §. There is an additional



classification of networks that applies to distribution networks. A network is a nearly non-
blocking distributor if it is wide-sense nonblocking with respect to distribution requests but
not augmentation requests. Nearly nonblocking distributors have power in between that of
wide-sense nonblocking and rearrangeably nonblocking distributors.

The third type of variation concerns the bandwidth requirements of the connections.
The classical theory was developed at a time when communication systems were operated
in a circuit switching mode. When a connection was established, the necessary resources
were dedicated to the connection and remained dedicated for the duration of the connection.
The classical theory assumes that each connection uses all of the bandwidth available on
the required links. More recently there has been considerable work on packet switching
communication systems that allow connections to share bandwidth on a link, provided
the sumn of the bandwidth for all the connections sharing a link does not exceed the link
bandwidth. The classical theory was extended by Melen and Turner to associate a weight
with each connection equal to the fraction of link bandwidth the connection requires [5].
We refer to networks allowing a connection weight as multirate networks.

We let W denote the set of weights allowed in a multirate environment. For any set
W, we let & denote the smallest allowable weight (or the greatest lower bound on the set
of allowed weights, if there is no smallest weight). We let B denote the largest weight
(or smallest upper bound). In addition we define 8 to be the mazimum port weight. By
definition, 0 < b < B < # < 1. A common choice for W is the interval [5, B]. The quantity
ow(u) will come up often in the multirate results. It is defined as the smallest v > u such
that v can be obtained by summing values in W. When it is clear from context we will
drop the W subscript.

With this extension, a connection assignment is a set of requests for which, for every
input or output x, the sum of the weights of connection requests including z is at most S.
A state is now a set of routes that obey the maximum port weight constraint and for which
for every link /, the sum of the weights of all routes including ! is at most 1. The weight on
a fink lin a given state is the sum of the weights of all routes including {. A link or switch
y is said to be w-accessible in a given state from an input « if there is a path from z to y,
such that the weight on each link in the path is at most 1 — w. The other definitions are
extended in the obvious way.,

It seems important to say a little more about 3. The motivation for introducing a
maximum port weight comes from the realistic situation in which the links in a network
are operated at a faster speed than the external links connecting networks. We refer to the
quantity 1/5 as the speed advantage of the network. This is simply the ratio of the internal
to the external link speeds.

3. Related Results

The classic measure of network complexity is the asymptotic crosspoint count. There are
other measures of interest, for example, the number of pin-limited chips required to package
the network [13]. In this work we restrict the comparison to crosspoint count. Some of the



results cited below fall into the theoretical rather than the practical category, for reasons
ranging from impractically large constants hidden by the asymptotic complexity measure
to routing algorithms that must solve NP-complete problems. We distinguish these results
from practical constructions.

In designing multirate distribution networks, we often start with circuit switching dis-
tribution networks, A lower bound of Q(/Vlog N) was shown by Pippenger and Valiant [9]
for a weaker type of network known as a rearrangeable N-shifter. Ofman [7] constructed a
rearrangeably nonblocking distributor which was improved by Thompson [11] to have com-
plexity matching that lower bound. Later Feldman, Friedman and Pippenger [4] demon-
strated the existence of a wide-sense nonblocking distributor matching the lower bound, but
with no known efficient routing algorithm. Another wide-sense nonblocking distributor can
be obtained by using Pippenger’s tree-like network [8] with expanders for the concentrators
required in the construction. This yields an O(N (log N)?) construction. Unfortunately the
best explicit expanders involve large constants hidden by the big-O notation. The best
practical wide-sense nonblocking distributors are obtained by using the Cantor network
[1] for the concentrators in Pippenger’s network. The resulting network has complexity
O(N(log N)®). The best explicit construction of a nearly nonblocking distributor is due to
Turner [12] and has complexity O(N (log N )?).

All of the results cited so far allow the depth of the network to vary with N. There is
also significant interest in minimizing complexity for a fixed depth. It is within this area
that Yang and Masson’s results and our extensions compare most favorably. Pippenger and
Yao [10] gave a lower bound of Q(N+1/%) for the weaker rearrangeable N-shifters with
depth k. The best theoretical wide-sense nonblocking distributor with depth & is given by
Feldman, Friedman and Pippenger [4] and has complexity Q(N1+1/5(log N)1~1/%), They
also give explicit constructions of wide-sense nonblocking distributors with depth 2 and
complexity O(N5/3) and depth 3 and complexity O(N11/7). Dolev et al. [3] have given
an explicit construction of a wide-sense nonblocking distributor with depth 3k — 2 and
complexity O(N'*+1/¥) using expanders. Yang and Masson [14] give a construction of a
nearly nonblocking distributor with depth 2k 4+ 1 and complexity

O(Nl-l-l/(k-l-l)(log N/ IogiogN)(k+2)/2_1/(k+1)).

The three stage version (k = 1) has complexity O(N3/?(log N/ loglog N)).
‘We now turn to multirate distribution networks. These results all come from reference

[6]. Each result is stated as a condition relating the multirate parameters {W and £) and
the parameters of the network.

The Benes network is a special case of the Clos network in which the switches are all

d x d crossbars. Pippenger’s tree-like network with Bene§ networks as the concentrators is
a wide-sense nonblocking distributor if

ow(l—B) _ 2

e S d— 1Dlog,(N/d

o 2 (1 (A= 1)log(V/ ),

where N is the number of network inputs and d is the dimension of the switches in the
Bene§ network. This network has O( N (log V)?) crosspoint complexity; the necessary speed
advantage grows as roughly 2log N.



To interpret a multirate result, we have both a crosspoint count and a necessary speed
advantage to consider. One reasonable interpretation is to take the product of the crosspoint
count and the speed advantage. This makes sense because a speed advantage of 1/8 can
be obtained by replicating the network 1/4 times. An incoming packet is converted from
a serial line into 1/ parallel data lines for transmission through the network. Conversion
back into a serial line is done when the packet leaves the network. This has the effect of
operating the network at a faster speed than the external links.

With this interpretation, Pippenger’s network can be used for multirate connections
with complexity of approximately twice the complexity of the same network used for circuit
switching connections.

Based on Turner’s nearly nonblocking distributor composed of back-to-back Cantor
networks [12], a multirate nearly nonblocking distributor can be comstructed of back-to-
back Benes networks under the condition

ow(l — B)
B

.This network has O(N log N) crosspoint complexity, and a necessary speed advantage that
grows as roughly 2log V.

2 21+ (d= 1) log(N/d)).

Both of these results allow the number of stages to vary with N. Other than the
work presented in this paper, we are not aware of any multirate results that are explicitly
concerned with minimizing complexity for a fixed depth.

In the remainder of this paper we present a multirate distribution network based on
the construction of Yang and Masson’s circuit switching distribution network. Specifically,
in Section 4 we review the work of Yang and Masson from reference [14] and then derive
conditions under which the three stage Clos network is a nearly nonblocking distributor in
the multirate environment. In Section 5 we generalize to a 2k + 1 stage Clos network. In
Section 6 we suggest some extensions to this work.

4. Three Stage Networks

4.1. Review of Yang and Masson

In reference [14], Yang and Masson use the Clos network as a nearly nonblocking distributor.
In this section we review their result for the three stage Clos network. We refer to the
switches containing the inputs as input stage switches. We refer to the switches containing
the outputs as outpuf stage switches. We refer to the other switches as middle stage switches.

In the three stage case, a distribution route can be specified by giving the set of middle
stage switches in the route and, for each middle stage switch, the set of output stage switches
it is connected to by the distribution route. Yang and Masson use a greedy algorithm to
choose the middle stage switches used to realize a distribution request. They show that with
“enough” middle stage switches in the network, any compatible distribution request can be
realized with al wost ¢ middle stage switches. This has the practical effect of limiting the



fanout of a connection to z in the input stage. No limit is placed on the fanout in the
middle and output stages.

The greedy algorithm realizes a distribution request (%, Y) by building a set R of middle
stage switches that are used to construct the route. Without loss of generality we can assume
that Y is the set of output switches corresponding to the outputs of the distribution request,
since multiple outputs on the same switch can be reached by branching in the output switch.
The set R is initially empty. Until the switches in R can reach all output switches in Y, the
following step is performed: add to R a middle stage switch accessible from u that can reach
the most required output switches that are not already reached by some middle switch in
R.

The main result of Yang and Masson’s work is captured in the following theorem that
expresses how many middle stage switches are needed in the network for this greedy routing
approach to succeed.

THrorEM 4.1. The three stage Clos network is a nearly nonblocking distributor if

: ; 1/z
m > 1S$$Ifnr_ﬁ?n__1,r}{(n Dz +rY9)}
Proof Sketch: We prove the theorem by first considering how many middle stage switches

are needed by the greedy algorithm to reach all of the cutputs in a compatible distribution
request, and then insuring that any idle input can reach that many middle stage switches.

The problem of choosing the middle stage switches to use in the route is simply a set
covering problem. An instance of the set covering problem is a set § = {s1,..,5:} and a
family F = {f1,.., f} of subsets of §. A solution is a set C C F such that Ugecfi = S.
The objective is to find a set C of minimum size. The correspondence between the routing
problem and a set covering problem is straightforward. The set of output switches form the
set §. For each middle stage switch j we have a set f; € F, containing the output switches
that can be reached from switch j in the current state of the network. That is, the links
from switch 7 to these output switches are currently idle.

The following lemma concerns the performance of the greedy algorithm on a restricted
version of the set covering problem.

LEMMA 4.1. Assume that every element in S appears in at least p—g setsof F (0 < ¢ < p).
If p > qt'/= the greedy algorithm will find a set C C F such that Ugecli = 5 and C has

size at most x.

Proof Sketch:

This can be shown in a straightforward manner based on the behavior of the greedy
algorithm. The reader is referred to reference [14] for further details. The proof given there
is for the specific problem of routing in the three stage Clos network, but it can easily be
generalized to prove this result.



COROLLARY 4.1. Given (n— 1)rl/% middle switches, the greedy algorithm can find at most
z of them through which to reach all of the outputs in a compatible distribution request
(%, Y).

Proof:

Without loss of generality we will assume that ¥ is the set of output switches corre-
sponding to the idle outputs of the distribution request. The key to this proof is the fact
that any last stage switch in Y has at most n— 1 busy outputs, and therefore at most n —1
busy incoming links. Fach busy incoming link corresponds to a middle stage switch that is
blocked from reaching this last stage switch. Since there are at most n — 1 busy links, there
are at most n — 1 middle stage switches that are blocked from reaching a particular switch
inY.

This fact gives us ¢ = n — 1 in Lemma 4.1, With the correspondence described earlier
we have p=m and ¢ = r. The result follows immediately.

Corollary 4.1 tells us how many middle stage switches the greedy algorithm must have
to choose from in order to find z through which to reach all the outputs in a request. Of
course, the input involved in the request must be able to reach all of the middle switches
considered by the greedy algorithm.

Az input u involved in a compatible distribution request may be blocked from at most
(n — 1)z middle switches, since in the worst case each of the n — 1 inputs sharing the first
stage switch with u is involved in a connection branching to z middle switches. Thus, if
there are more that (n — 1)(z + r'/%) middle switches, then u will be able to reach at least
(n — 1)r1/%, and by the corollary the greedy algorithm will find at most = among these
through which the distribution request can be realized.

For a particular choice of z it is straightforward to calculate the necessary number of
middle stage switches. As is expressed in Theorem 4.1, the best choice of z is the one which
minimizes the number of middle stage switches.

By choosing z = logr/(§loglogr) for any constant §, 0 < § < 1, it is possible to get
an asymptotic bound on m of O(nlogr/loglogr). Since the crosspoint count in the three
stage Clos network is 2rnm + m#2, this choice of z and n = r = /N yields an asymptotic
crosspoint complexity of O(N3/2(log N/loglog N)) for the three stage network. This is
the best known explicit construction of a three stage nearly nonblocking distributor. The
previous best such networks came from wide-sense nonblocking distributors, and thus were
capable of realizing augmentation requests in addition to distribution requests.

To put the complexity of this construction in context, we have plotted the crosspoint
count for three networks, normalized by N, as a function of N. (See Figure 3.) The top
curve is for an N X N crossbar. The middle curve is for the Yang and Masson three stage
construction. The bottom curve is for the three stage Clos network operated as a strictly
nonblocking connector. The three stage Clos network operated as a nearly nonblocking
distribution network has complexity between the other two networks.
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4.2. Multirate Clos Network

In this section we extend the results of the previous section to the multirate case. Consider
a compatible distribution request (u,Y,w), where u is an input, ¥ is a set of outputs and
w € W is an allowable connection weight. Since this connection is compatible, the weight
on u is at most # — w. The same is true for each output in Y.

The results in this section are obtained by a similar approach to that used by Yang and
Masson. Specifically, we first determine how many middle stage switches are needed by the
greedy algorithm. We then insure that the input involved in a compatible request can reach
that many middle stage switches. The key to the result is the following generalization of
Corollary 4.1.

LEMMA 4.2. Given L(w)r'/* middle switches, the greedy algorithm can find at most = of
them through which to reach all the outputs in a compatible distribution request, (u, Y, w),
where L{w) denotes the quantity |(frn — w)/ow(l — w)].

Proof:

Consider an output y € Y, and let s denote the output switch containing y. There are
n — 1 other outputs on switch s, each with weight at most 5. We know that y has weight
at most B — w, thus the total weight out of switch s is at most fn — w. Clearly, the total
weight into s is also at most Sn— w. (There may be branching in s, but that will only make
the weight out of s larger than the weight into s.)

We need to determine the maximum number of links into s that may be blocked to a
connection of weight w. In the classical model, a link may only be used by one route. If it is
already being used, then it is blocked to all other requests. In the multirate environment a
link may be shared by multiple routes provided the total weight on the link does not exceed
1. A link is blocked to a request of weight w if and only if the total weight on the link is at
least (1 — w), where the function o(u) is the smallest v > u such that » can be obtained
by summing allowable connection weights. When the request weight is clear from context
we will simply say that a link is blocked without adding the phrase “to a request of weight

w?”.

With this in mind, we can determine an upper bound on the number of links into s
that are blocked to a connection of weight w. A weight of at least ¢(1 — w) is needed for
such a blocking link. Since the total weight into s is at most fn — w, there are at most
(Bn — w)/o(1l — w) links blocked into s. We can tighten this to L(w) since we know that
the number of links must be integral.

We can now apply Lemma 4.1 with ¢ = L{(w), p = m and t = r. Thus, L(w)r!/® middle
stage switches are sufficient for the greedy algorithm to find at most = through which to
realize a distribution request.

With this generalization, Corollary 4.1 corresponds to the special case in which § = 1
and W = {1}, implying that L(w) = n —~ 1. We use Lemima 4.2 to prove the main result.



11

THEOREM 4.2. The three stage Clos network is a nearly nonblocking multirate distributor
if

. 1/z
15:;5:1%?7;—1,@ 'lllfleag/({L(w)(m +r )}

_ . 1/x
= Slea%l}(w)mmm{w+r 1

Proof:

As in the circuit switching case, Lemma 4.2 indicates how many middle stage switches
must be available to the greedy algorithm so that at most z are found to reach all the
outputs in a compatible distribution request with weight w. The input u involved in the
distribution request must be able to reach these middle stage switches. We must determine
how many middle stage switches may be blocked from u relative to a connection of weight

w.

Obviously, « has weight at most 8 — w. There are n — 1 other inputs sharing the same
input switch as u, each with weight at most 5. Thus the total weight into the input switch
is at most #n — w. Since a connection must have weight at least o(1 — w) in order to block
a connection of weight w, there are at most L(w) connections able to block » from middle
stage switches. Each of these connections may branch by z in the first stage, thus there are
at most L(w) middle stage switches blocked to u for a connection of weight w.

Combining this with the result of the lemma, we see that if there are at least L{w)(z +
/%) middle stage switches, then u will be able to reach at least L(w)rl/% of them, and the
greedy algorithm will find at most z among these through which to realize a compatible
connection request of weight w.

The specific value of max,ew L(w) will depend on the set W. One special case of
interest is the unrestricted packet swilching case in which & = 0 and B = 3, with every
value in the range (0, B] allowed as a weight. In this case max,ew L{w) occurs at w = S.
(Unrestricted packet switching is the worst case collection of allowable weights in the sense
that increasing b or restricting W to a discrete set of weights while keeping B and 3 fixed
will only decrease maxyew L(w).) The sufficient condition on the number of middle stage
switches for unrestricted packet switching is

> [ B2 minte 0,

which is implied by
m > ﬁg.nfﬂl)mén{m + /=y,

If (1/8) = 2, this expression reduces to the same condition on m derived in Theorem 4.1
for the circuit switching case. Thus with a speed advantage of two, we can handle multirate
traflic with the same crosspoint complexity as for circuit switching. To put this in perspec-
tive, other multirate results indicate that a factor of two increase in complexity is about
the best one can hope for in adapting a circuit switching network to accomodate multirate

traflic.
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4.3, Multirate Benes Network

The three stage Benes network is just a special case of the Clos network in which the switches
are all n X n, with » = +/N. This makes it easy to use the results from the previous section

to get the Bene§ network result.

COROLLARY 4.2. The three stage Bene$ network is a nearly nonblocking multirate distrib-
utor if
vN > min max{L{w 2:+N1/(2“’)
L min mar((w) )
= max L(w) min{z + N/

Proof:

Let m=n=1r =+N in Theorem 4.2.
-]

As for the multirate Clos network, we can consider the special case of unrestricted packet
switching. With the floor function removed from maz,,L{w), this gives

Vs PVN -1 \{Ngl) minfe + NV},
For a particular value of 2 we can rearrange the equation above to get the following condition
on the speed advantage.

(1/8) > 1+ z + N/ ()

For example, if N = 256, then with £ = 3 a speed advantage of about 6.5 is sufficient. It
is straightforward to prove that a three stage Bene§ network requires a speed advantage of
3 to operate as a strictly nonblocking connector and a speed advantage of VN to operate
as a strictly nonblocking distributor. Of course this is something of an apples-to-oranges
comparison, but it serves to give some context to this result. An improvement in the speed
advantage has been made by simply restricting the fanout in the first stage and using a
greedy algorithm to select the middle stage switches.

5. Arbitrary Stage Networks

In this section we generalize the results of the previous section to networks with 2k + 1
stages. We begin by reviewing the generalization given by Yang and Masson for the circuit
switching environment. We then extend our multirate results.
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5.1. Review of Yang and Masson

The approach used by Yang and Masson can be extended to an arbitrary number of stages
in a straightforward way. In a 2k 4 1 stage Clos network, the greedy algorithm is used to
choose the middle 2k — 1 stage networks through which to realize a distribution request.
This creates a distribution request within each of the chosen 2k — 1 stage networks. This
approach js applied recursively within each of these networks. Eventually we reach the
innermost three stage Clos networks where the greedy algorithm chooses the middle stage
switches through which to route the request. In effect we end up with a fanout restriction
in each of the first k stages of the network.

Let Gary1(N) denote the crosspoint complexity of a 2k + 1 stage nearly nonblocking
distributor constructed using Yang and Masson’s approach of restricted fanout and a greedy
algorithm to choose the middle stage networks and switches. Yang and Masson generalize
their three stage Clos result to give the following asymptotic crosspoint complexity for a
2k + 1 stage nearly nonblocking distributor:

Gargr(N) = O(NHY/ &+ (10g N/ loglog IV)(+2)/2-1/(k+1)y

This result can be proven by induction on k, with the three stage Clos network (k = 1)
serving as the base case. Assuming the result holds for a 2k — 1 stage network, it can be
shown to hold for a 2k + 1 stage network. The key to the proof is the judicious choice of
7% The reader is referred to [14] for further details.

5.2. Multirate Clos Network

We now present the main result of this paper, an extension of the previous section to the
multirate environment. This is fairly direct, although it is slightly more complicated than
the three stage case.

We use the same routing strategy described earlier, using the greedy algorithm recur-
sively within successively smaller networks. The analysis is complicated slightly by the fact
that we require a speed advantage at each level of the recursion. To achieve this, we restrict
the link weights to be less than one until we reach the final level of recursion.

More specifically, consider Figure 4 which shows the relevant parameters for a 2 + 1
stage network within a larger network. We let 8;y; denote the maximum weight of links
into and out of the 2k 41 stage network. We let 8; denote the maximum weight of links into
the middle networks. Using an analysis similar to the three stage Clos analysis, we can give
a sufficient condition on m; so the greedy algorithm can be used to choose at most z; middle
stage networks through which to route a distribution request. The analysis is identical to
that seen previously, except that the link weight needed to block a connection of weight w
from a middle stage network is now §; —aw, rather than 1 —w. With this generalization, we
have the following condition on m;:

Biyim; — wJ (wi + T}/xi)

™ > }.UW(ﬁi —w)
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Figure 4: 2i + 1 Stage Clos Network

If we define L;(w) = |(Big1n: — w)/ow (B — w)], and consider all possible values of z;
and w, we have

- i ; IR YL
me 15*"-';’51‘:%11:1131.‘—1,”} &%{L'(wx% + T )}

= max Li(w) n_;gn{a:; + 7=,

This condition ensures that there are sufficient middle stage networks at level ¢ of the
recursion so the greedy algorithm will find at most 2; to use in the distribution request. In
addition, we are guaranteed that the maximum port weight at the 2i — 1 stage networks
is B;. The 2k + 1 stage network is a nearly nonblocking distributor if the condition on m;
holds for all ¢ between 1 and k. The condition on m given in Theorem 4.2 for the three
stage network corresponds to ¢ = 1, with 8; = 1 and 8, = .

For the unrestricted packet switching case, the 2k + 1 stage Clos network is a nearly
nonblocking distributor if

Bip1
B;i— B

(This is obtained by taking w = £ in the expression above and discarding the floor function.)
This condition on the values of the m; matches the circuit switching condition, except for
the leading fiy1/(B; — B) term. We can get the same crosspoint complexity as in the circuit
switching case by choosing the f; so that each leading term is exactly one. In addition,
for choices of the f; which achieve this, we want the choice which maximizes 3. This is
accomplished by choosing #; = (k+2—14)/(k-+1). Clearly this forces each term to be equal
to one and 8= 1/(k+ 1)

We then have the following result.

mi > nizi+r/™),  1<i<h, =40
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THBOREM 5.1. With the appropriate choices of switch dimensions (as in [14]) the 2k + 1
stage Clos network operated with a speed advantage of 1/8 = k+1 is a nearly nonblocking
multirate distributor with crosspoint complexity of

O(N G+ 10g N/ loglog N )(F+2)/2-1/(k+1))

Considering some specific values for k, we see that this construction gives a nearly
nonblocking multirate distributor of three stages (¢ = 1) with crosspoint complexity of
O(N32(log N/ loglog N)) and speed advantage of 1/8 = 2. The five stage version has
crosspoint complexity of O(N*/3(log N/loglog N)5/3) and speed advantage of 3. We can
compare this to Turner’s back-to-back Benes network by considering the crosspoint com-
plexity and speed advantage of that network for a fixed number of stages. With a fixed
number of stages we get crosspoint complexity of O(N'+1/(F+1)) and speed advantage of
1/8 = k for a back-to-back Bene§ network with 4% + 1 stages. This network requires five
stages (k = 1) to get crosspoint complexity of O(N3/?) with a speed advantage of 1. In gen-
eral the back-to-back Benes network requires about twice as many stages to get complexity
that is comparable to the Clos network for nearly nonblocking multirate distribution.

6. Conclusions

By a straightforward extension to the work done by Yang and Masson, we have been able
to construct Clos networks that are nearly nonblocking distributors in the multirate envi-
ronment. The complexity of these networks compares most favorably when the number of
stages is fixed and fairly small.

Several unsuccessful attempts were made to construct the network so that the speed
advantage was constant, rather than increasing with the number of stages. It appears that
this may require a considerable change in the routing approach.

One extension to this work would be to consider dividing connections into classes (based
on size or weight, for example} where each class would have a different fanout restriction. Tt
seems intuitively reasonable to treat large and small connections differently, allowing large
connections to fanout more in the early stages than small connections. It may be possible
to get better complexity by making such a change to the routing algorithm.
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