
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2003-52 

2003-12-01 

Picture Composition for a Robot Photographer Picture Composition for a Robot Photographer 

Michael Dixon, Cindy M. Grimm, and William D. Smart 

We explain how to use simple composition rules to drive an automated, mobile photography 

system. The composition rules are used to determine both the location for a good photograph, 

and how to frame that photograph. We describe the composition component in the context of a 

larger application, a robotic photographer. The robot moves around an area with people in it, 

opportunistically looking for faces and taking photographs. We describe both how to find faces 

in the world and how to create “good” photographs of those faces. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

Recommended Citation Recommended Citation 
Dixon, Michael; Grimm, Cindy M.; and Smart, William D., "Picture Composition for a Robot Photographer" 
Report Number: WUCSE-2003-52 (2003). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/1097 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1097?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1097&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx




WUCSE-2003-52: Picture Composition for a Robot Photographer

Michael Dixon Cindy M. Grimm William D. Smart

Department of Computer Science and Engineering
Washington University in St. Louis

St. Louis, MO 63130
United States

Abstract
We explain how to use simple composition rules to drive
an automated, mobile photography system. The compo-
sition rules are used to determine both the location for
a good photograph, and how to frame that photograph.
We describe the composition component in the context
of a larger application, a robotic photographer. The robot
moves around an area with people in it, opportunistically
looking for faces and taking photographs. We describe
both how to find faces in the world and how to create
“good” photographs of those faces.

Key words: Face Detection, Composition, Sensor Fusion,
Mobile Robotics.

1 Introduction

Photographers employ a large set of heuristics when com-
posing a photograph [7]. Most of these heuristics are
in the form of general guidelines, and not hard-and-fast
rules. We use a few of these heuristics to guide a mobile
robot while it wanders around and takes pictures.

The robot, called Lewis, is a standard B21r mobile
platform, from iRobot Corporation (see Figure 1). All
computation and control is done on-board, using a stan-
dard Pentium-III 800MHz processor. The robot is also
equipped with a pair of cameras mounted on a pan-tilt
unit, a scanning laser range-finder, and contact sensors.
The laser range-finder returns the distance to obstacles
over the front 180◦ of the robot, while the contact sen-
sors detect when the robot comes into contact with an
obstacle.

We have mounted both a digital video camera and a
digital still camera on the pan-tilt unit. We use the video
camera to continuously scan the scene and frame the shot.
When the software has determined that there is a “good”
photograph, the actual photo is taken with the still cam-
era. This two-camera system is necessary because the
video camera’s resolution and color are too poor for final
pictures, but the still camera’s transfer rate is too slow for
real time processing.

The robot continuously scans the scene with both the

Figure 1: Lewis the robot.

video camera and the laser range-finder. The video
frames are analyzed for faces while the laser range-finder
looks for both potential obstacles and legs under the faces
(see Section 3). This information is processed to pro-
duce probable locations of people, relative to the robot’s
current position. The system currently operates in four
modes: scanning the scene, moving to a potential photo-
graph location, framing a shot from the current location,
and actually taking a picture. Section 4 discusses how we
determine the best place for a photograph. Section 5 de-
scribes how we first frames a shot, and then decide if it is
worth taking.

We close with the results of Lewis’s photography, both
good and bad, in Section 6. We discuss the failures, why
we think they occur, and describe some possible additions
to the current system.

2 Previous work

The majority of composition-related work can be found
in the virtual world, using composition rules to position
a virtual camera [6, 1, 4, 11], choose a location for a vir-
tual cinematographer [8, 2, 3, 18], or control how a scene
changes [10]. In a virtual world the system has the advan-



tage of knowing where all of the individuals are, so fram-
ing a shot is a well-defined optimization problem. Also,
the camera is free to move anywhere, unlike a physical
camera. Like us, the on-line systems employ strategies
for dealing with a constantly changing environment.

Rules from cinematography and TV interviews have
also been used to control cameras in video teleconferenc-
ing [1]. There is also a growing area of research that uses
a tight visual feedback loop to control robotic manipula-
tors [9]. We share the feedback nature of these systems,
but we differ in the required accuracy and on the fixed
location of the camera. We do not need to position the
robot or the camera with a great deal of accuracy. Our
feedback loop is also operating in a relative coordinate
system (the robot’s position) without any knowledge of
an absolute coordinate system.

Face detection and tracking has been widely studied.
Approaches include simple skin detection [19, 15], learn-
ing from examples [17, 14], Eigenspace approaches [13],
and template matching [12]. Somewhat close in spirit to
our approach is the work by Flecket al [5], which identi-
fies patches of skin in an image, and uses heuristics about
the structure of the scene to relate the skin patches to hu-
man bodies.

We are interested in an algorithm that is as fast as pos-
sible (ideally 30 frames per second), and has few false
negatives (missed faces in an image). Unlike many other
systems, however, we are willing to tolerate false nega-
tives (identifying non-faces as faces), since we can post-
process these out, using data from other sensors. We are
also quite happy to take occasional pictures of plants,
provided we find all of the people. For these reasons,
we limit our face detection algorithm to looking for skin-
colored blobs.

3 Face Finding

For our composition rules we need to know two things:
where faces are in the current image, and the approximate
location of people with respect to the robot. We assume
that most of our subjects will be standing, and will be
adults. Currently, we are not detecting or using any infor-
mation about the direction in which people are facing.

The face detection algorithm first finds all skin-colored
blobs in an image. It then relates these blobs to readings
from the laser range-finder, in attempt to calculate the po-
sition and size of likely faces. Skin blobs that are the cor-
rect shape, size, and height from the ground are classified
as faces. We discuss each of these steps in detail below.

3.1 Skin detection
The first step is to find skin-colored pixels in the image. It
turns out that skin, even skin from different races, clusters
tightly in all color spaces [19]. It has been shown that, for

the type of application that we are interested in, the actual
choice of color space has little impact on the performance
of classification [16]. For this work, we use theUV plane
of the Y UV color space, which is the format in which
our camera supplies images, so we do not need to do a
transformation before using the data. We should reiterate
at this point that we do not need perfect skin detection for
our application, since we can heuristically remove false
positives using data from other sensors. Using theY UV
color space allows us to be fast, but without incurring
many false negatives (skin patches not being identified in
an image).

Figure 2 shows the portion ofUV space that is clas-
sified as skin for the example image. The previous work
represented the valid (skin-toned) area ofUV space as an
ellipse. We use a more basic representation, computing a
lookup table for all possibleUV values, and storing the
classification (skin or not-skin) for each of these combi-
nations. As can be seen from Figure 2, the skin-tone area
is not really an ellipse, so our method allows us to define
the area more precisely.

We need to train the skin detection algorithm for ev-
ery new environment that the system operates in. We do
this by taking a small number of images, typically five to
ten, and annotating them by hand, using a simple graphi-
cal interface. For all pixels identified as skin in the GUI,
the corresponding cells in the lookup table are labelled
as “skin”. We similarly identify all pixels that are “not-
skin”. Once this initial assignment is done, we blur the
regions in the table, and expand them a little. This has
the effect of removing noise and making the regions more
contiguous. Empirically, we have found that this leads to
more robust skin detection.

After the system is trained, we use the lookup table to
identify areas of skin in the incoming images. As each
new image comes in, we classify each pixel in it as either
skin or not-skin. These classifications are then grouped
together into blobs, and labelled as a potential face. At
this point, we can throw out any potential faces that do not
have a reasonable aspect ratio, since faces are generally
taller than they are wide.

3.2 Range detection
The laser range-finder returns180 distance readings ap-
proximately one degree apart over the front 180◦ of the
robot. For each pixel in the camera we can find the cor-
responding distance reading from the laser using simple
geometry. The camera pan-tilt unit is mounted in a fixed
position on top of the robot. Given a pan angle we can de-
termine which laser reading corresponds to a given pixel
of the image.

The laser range-finder is not mounted directly under
the camera, and this offset,O, must be accounted for by



Green Blue

Orange Purple

Figure 2: All possible UV colors in a sample image. The
colors in the image that correspond to skin are marked as
white in the UV map, all other colors as black. Colors not
marked were not identified in the training image. (This
figure will render as uniform grey on a black and white
printer.)

subtracting it from the reading from the range-finder,L.
The height of the robot,HR, and the height of the camera,
HC , are constants. We assume that the floor is a level
plane, and that the target is standing more-or-less upright.

Once we have identified the corresponding laser range-
finder readings for each candidate face, we can apply our
remaining heuristics. We assume that people are standing
and are between four and seven feet tall. We also assume
that all faces lie within a certain size range. Based on the
distance returned by the range-finder, we can calculate
the height and actual size of the skin patches correspond-
ing to the candidate faces, as shown in Figure 3. Any
candidates that are outside of the height or size limits are
eliminated.

4 Navigation

We use simple rules from cinematography to pick desir-
able photograph locations. We favor locations where the
robot is approximately five feet from the subject. We do
not want to take pictures where one person is occluding
another. We do not want to take pictures directly down
the perpendicular bisector of two people, but would rather
take pictures “over” the shoulder.

To calculate the best possible position we construct
an objective function, which represents the the expected
quality of a picture taken from any given point. The space
around the robot, which contains the people that we want
to photograph, is discretized into a grid. In each grid cell,
we store a number corresponding to how good a picture
we think that we can take from that point. Our composi-
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Figure 3: Calculating heights and distances using the
laser range-finder.

tion rules are written in terms of these probabilities, so it
is easy to experiment with different rules and rule combi-
nations.

4.1 Creating the objective function

The objective function encompasses the robot’s current
position and the positions of people it has found. The
function is initially zero everywhere, and is updated as
follows.
Distance from subject(Figure 4(a)). The ideal operating
distance of the still digital camera’s zoom and flash is
between four and seven. Therefore, the robot should be
in this range for at least one of the subjects. We increase
the values of the objective function in a band around each
subject, with the value peaking at a distance of 5.5 feet.
Occlusion(Figure 4(b)). Locations where faces appear to
overlap will not yield good photographs. For each pair of
subjects, we calculate the line that runs through them, and
reduce the value of the cells along that line. Cells that lie
on the line segment between the two subjects, however,
are left unchanged.
Bisector (Figure 4(c)). Photos taken from along a per-
pendicular bisector between two subjects will result in
both subjects being the same distance from the camera.
If they are talking to each other, this will tend to result
in two profile shots, which we would like to avoid. To
achieve this, we calculate the perpendicular bisector of
all subjects within five feet of each other and decrease
the values of the objective function along this line.
Movement (Figure 4(d)). In order to minimize the
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Figure 4: Constructing the objective function to take into account (a) distance, (b) occlusion, (c) bisection, (d) move-
ment, and (e) reachability.

chances that a photo opportunity will disappear while the
robot is navigating to it, we must minimize the distance
that the robot travels. On the other hand, we also wish
to discourage the robot from remaining at the same loca-
tion for multiple photographs. We decrease the objective
function to zero for all points closer than 2 feet from the
robot, or further than 20 feet. Between these extremes,
we decrease the values linearly based on distance.
Reachability (Figure 4(e)). To make navigation simple,
we avoid destinations which would require sophisticated
path planning and obstacle avoidance. A point is consid-
ered unreachable if the robot cannot drive in a straight
line to it without going through something. We use the
laser range-finder information to calculate the horizon of
all reachable points, and we set the objective function to
zero for all points beyond this horizon.

Once the objective function is constructed, we simply
look for the point with the greatest value and drive to-
wards it. If an obstacle is encountered on the way, the
destination is recalculated based on the new obstacles and
the current location of faces.

5 Picture composition

In this section we describe how to pan, tilt, and zoom the
camera to frame a shot based on the locations and sizes
of the faces in the image. We apply different algorithms
depending upon the number of people in the image (one,
or more than one). The composition rules we use are
standard in photography: the rule-of-thirds, the empty-
space rule, the no-middle rule, and the edge rule.

Rule-of-thirds. It is best to place the faces at or near the
one-third and two-thirds lines in an image (see Fig-
ure 5).

Empty space. The faces should occupy at least the mid-
dle third of the image, both horizontally and verti-
cally.

No-middle. Do not place a single figure directly at the
mid-line.

Edges. Do not place faces so they cross the boundary of
the image.

The robot first pans over the scene, analyzing every
frame using the techniques described in Section 3, to de-
termine if there are any faces visible. If faces are de-
tected, the framing algorithm must determine what sub-
set of the faces to photograph, and how to frame the shot
according to the rules of composition.

To determine the subset we first initialize it to con-
tain the center-most face in the scene. We then find the
bounding box around the faces in the subset and then cal-
culate the ideal frame based on this bounding box using
the group framing algorithm described below. We then
add all faces which intersect this frame to the subset and
repeat the process until no new faces are added.

If the subset found by this algorithm contains only one
face, then a tighter frame, more suitable for portraits, is
calculated according to the rules outlined in the single
face framing algorithm. Otherwise the ideal frame is cal-
culated with the group framing algorithm.

The two framing algorithms that we use are as follows.

One person. The rules applied here are the no-middle
rule, the empty-space rule, and the rule-of-thirds.
The ideal framing is calculated by placing the face
slightly to the left or right of the center line, and
ensuring that it takes up two-thirds of the image
height (see Figure 6(a)). The center of the face is
positioned slightly below one-third down the image.
This takes into account people’s hair, and necks be-
low, which extends beyond the bounding box.

Groups. The rules applied here are the rule-of-thirds and
the empty-space rule. The ideal framing is found
from the width of the enclosing box for all of the
faces. Again, the centerline of this box is conserva-
tively placed slightly below one-third down the im-
age, but is now centered in the image, as is shown in
Figure 6(b). Wide groups of faces, wherew > 1.6h,
are dealt with differently than narrow ones. This



(a) (b)

Figure 5: Framing an image. (a) The large box is the optimal framing of the two detected faces (small boxes). (b) The
optimal framing, showing the rule-of-thirds lines.

2s2s

3s

1.2s

h

1.2s

2s2s

3s

w

2s2s

3s

1.2s

h

(a)s = 1.5h (b) s = 3
8w (c) s = 1

2h

Figure 6: Calculating the ideal framing for (a) a single face, and (b) a wide group of faces, and (c) a narrow group of
faces.

threshold, and the ratios in Figure 6, were deter-
mined empirically to result in pleasing composi-
tions.

The difference between the ideal frame and the current
view frame represents the desired pixel-based changes.
We convert from pixels to radians according to our cam-
era model and set our pan, tilt, and zoom parameters ac-
cording to these values. This framing process runs con-
tinuously. As the camera is adjusting, the incoming im-
ages are constantly analyzed and the target frame reposi-
tioned.

The final item to discuss is when to actually take a pic-
ture. If all subjects were completely stationary then we
could take the time to make the desired frame exactly
match the picture boundary. Unfortunately, people move.
We also want to take pictures as often as possible, even
if the results are not perfect. We therefore use a decay-
ing threshold. The longer the robot has spent framing a
shot, the more slop is allowed in the framing box, until a
photograph is eventually taken.

6 Results and conclusions

In this section we show some of the best and some of
the worst photographs the robot has taken (Figures 7
and 8). The majority of the photographs taken contain
faces; however, the robot does have a fondness for yel-
low posters and pink flowers. As an anecdotal measure
of success, 1000 of the 3000 photographs Lewis took at
SIGGRAPH 2002, were selected by visitors for emailing
or printing.

There are, however, a number of common failure
modes for the system. All of these are the subject of cur-
rent work.

People moving. It takes approximately five seconds for
Lewis to zoom the video camera and frame a pic-
ture. People sometimes move away or turn away
before Lewis has finished framing the shot, causing
the robot to either not take a picture or have someone
walk across or out of the frame.

Inability to frame a shot. Sometimes Lewis spends
several seconds attempting to frame a shot and
never succeeding, even when the people are not
moving. This can happen for several reasons. For



example, the face detection algorithm may create
different blobs depending on how the camera is
zoomed, or the person may be wearing a red shirt
which gets classified as skin.

This problem can also be caused by faces whose pix-
els fall close the the skin/not-skin boundary inUV
space. Due to small variations, these faces may be
detected in one frame, but not the next, causing the
current algorithm to loop.

Wrong assumptions. In order to simplify face-finding,
we make some assumptions about the world which
are not always true. For example, the shortest range-
finder reading under a potential face does not always
correspond to a person’s legs. It might be a com-
pletely unrelated object on the floor, and the poten-
tial face might be a large poster, off in the distance.
If the geometry conspires against us, this will be
classified as a face, and become part of a compo-
sition.

In general, we can avoid such mistakes by calculat-
ing things more directly from the world, rather than
inferring them. In the above example, we plan to add
a second camera, and detect the approximate depth
of face candidates using stereo vision techniques.
This makes fewer assumptions about the structure of
the world, and will solve some of the current prob-
lems.

In this paper, we have described how simple compo-
sition rules can be encoded, and used to drive a mobile
robot platform as it takes photographs. All of the rules
we use are simple, but in combination, they seem to be
able to detect, compose, and take reasonably good pic-
tures. The system is certainly nowhere near a human pho-
tographer, but it does provide an interesting platform for
research into automatic composition, and robot control.
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