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ABSTRACT

For the last decade the STRIPS paradigm has had a dominant influence
on research in planning systems. More recently researchers have realized
that a departure from this framework is necessary if planning systems are
to be able to deal with complex, real-world enviromments in an intelligent,
flexible, and efficient manner. The present report surveys some of the
problems encountered by workers in this area, and indicates what the author
believes are some of the underlying causes of the difficulties. The author
then proposes the notion of a "fuzzy algorithm" as a means for encorporating
strategy and flexibility into the planning process. It is suggested that
the further developement of the idea of a "fuzzy algorithm" is a fruitful
direction for research which can provide a unifying framework for various
other proposals encountered in the literature.
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FUZZY ALGORITHM3, PLANNING, AND PROBLEM SOLVING

I. Introduction.

While there has been no general agreement on exact definitions of basic
terms (e.g, exactly what constitutes a "plan," "problem," "solution," etec.)
[McDermott 1978] one general framework has had a dominant influence on
research in planning systems over the last decade. This is the paradigm based
on the STRIPS system (Stanford Research Institute Problem Solver) [Fikes,
Nilsson 1971; Fikes 1971; Fikes, Hart, Nilsson 19721. In the present report
I will refer to systems based on this paradigm as SL systems (SL =
STRIPS-Like). The only c¢laim being made in referring to a system as SL is
that some significant subset of the assumptions embodied in the STRIPS
paradigm are shared by the system in question. An SL system may (and usually
does) differ conspicuously from the original STRIPS system, The STRIPFS

paradigm shares with any SL system the following general features:

(1) A mechanism for world modeling

(2) A set of operators on world models

(3) Mechanisms for producing and selecting paths in a search space
generated by operator applications on world models,

In STRIPS the world modeling is done with FOL (first order 1logic), a
world model being a state description. Each operator consists of a set of
preconditions, an add 1list, and a delete 1list. These TMoperators" were
introduced in order to avoid difficulties with the "frame problem" (see below
under the heading "Epistemological Non-determinism"}. The preconditions are a
set of FOL wffs (well formed formulas) giving the conditions under which the

operator is applicable, while the add and delete lists specify the effects of
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the operator. The add 1list gives those wffs which must be added to a new
state description that results from the application of the operator to a given
state description; the delete 1ist indicates wffs which will no longer hold
in the new state description and therefore must be deleted. Strictly
speaking, of course, the operators are general schema whose parameters must be

properly instantiated to fit a given state description. For example:

State description: CLEAR(B) CLEAR(C)
ON(C,A) HANDEMPTY
ONTABLE (A) ONTABLE (B)

corresponds to the picture:

FIGURE 1.



Operators:

(1) PICKUP(X)
Preconditions:
Add:

Delete:

{(2) PUTDOWN(X)
Preconditions:
Add:

Delete:

(3) STACK(¥X,Y)
Preconditions:
Add:

Delete:

(#) UNSTACK(X,Y)
Preconditions:
Add:

Delete:

Page 3

ONTABLE (X), CLEAR(X), HANDEMPTY
HOLDING(X)

ONTABLE (X), CLEAR{(X), HANDEMPTY

HOLDING(X)
ONTABLE(X), CLEAR(X), HANDEMPTY

HOLDING(X)

HOLDING(X), CLEAR(Y)
HANDEMPTY, ON(X,Y), CLEAR(X)

HOLDING(X), CLEAR(Y)

HANDEMPTY, CLEAR(X), ON(X,Y)

HOLDING(X), CLEAR(Y)

HANDEMPTY, CLEAR(X), ON(X,Y)



Page Y4

In the world given by the state description and depicted in Figure 1,
PICKUP(B} is applicable, as is UNSTACK(C). PICKUP(A), on the other hand, is
inapplicable, =since when we instantiate X to A we find one of the
preconditions of PICKUP(A) is not satisfied: wviz, it is not the case that

CLEAR(A) (since C is on A).

STRIPS' method of finding a solution path through the search space is
derived from that of GPS [Ernst, G. and Newell, A 1969; Fikes and Nilsson
19711, First a set of "differences" between the present world model and the
goal 1is extracted; then a set of operators "relevant" to reducing those
differences are identified,. Once a relevant operator 1is selected, the
original goal is replaced by the new (sub)goal of reaching a state where that
operator is applicable. When such a state is found, then the relevant
operator is applied and the original goal is reconsidered in the resulting

state description.

There are, of course, many different possible strategies for finding a
solution path and many elaborations on those strategies (forward and backward
chaining combined with heuristics, goal regression, parallel planning,
hierarchical planning, ete.)., However, the basic ideas of what constitutes a
plan and how a plan is arrived at remain the same for SL systems: The set of
operators, taken together with the initial stste, give us a search space: and
the description of the goal state determines a set of solution paths, one of
which must be discovered by the planner. The resulting notion of a plan is
that of a sequence of operators (actions) which leads from the initial state

to the goal state.
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That there are serious problems with using this sort of model of planning
is not a surprise at this time. See notably: [McDermott 1978; Sacerdoti
1979; Wilensky 1981al. The STRIPS paradigm as outlined above is not the way
for a robot (or a human) to deal with complex, nonstatic, resl world
environments, There is little agreement, however, as to the causes of the
inadequacies of the SL approach in this regard, nor is there any clear remedy.
Everyone would like robots to be able to deal with complex, changing, real
enviromments ({Sacerdoti 1979], but we are only beginning to understand the
problems involved. In the rest of this report I try to shed light on some of
the wunderlying causes of these difficulties and indicate fruitful directions

for further research,



II. Post-Strips Problems,

Much of the research after STRIPS has been devoted to finding solutions
for problems which arise in SL systems. The result has been a veritable
garden of interesting variations on the basic SL strain. Many of the problems
investigated are not specific to SL systems, and must be solved by any system
that uses plans formulated on the basis of beliefs about future states of the
world. As we shall see, however, some of these problems are not best
addressed within the framework of SL systems., 1In this section we delineate
two of the most widely recognized problems in planning research, "subgoal
interaction" and "combinatorial complexity"; in the sections following this
one we explore some of the reasons for supposing that a new approach is likely

to yield useful resuits with respect to these and other problems,

(A) Subgoal Interaction,

One of the subtler issues of automatic problem solving and program
synthesis is subgoal annihilation or infringement. Subgoal
annihilation occurs when during the course of solving one aspect of
a larger problem, some other aspect of the problem whose solution
has already been obtained is interfered with, or undone completely.
Subgoal infringement is a milder form of subgoal annihilation in
which the prior solution of one subgoal causes the solution of
another later subgoal to become more difficult or tedious. [Rieger

and London 1977]

One of the most famous proposals for a solution to the problem of subgaol
annihilation is one by Earl Sacerdoti [Sacerdoti 1973, 1975, 1977]. He calls

attention to a problem presented by {Sussman 1975] . We will refer to this
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problem as "Example 1",

The problem can be illustrated quite simply if we take as given the

initial position of Figure 1 above and start with the goal ON(A,B) & ON(B,C).

To simplify we assume that the only operator is:

PUTON(X,Y)
Preconditions: CLEAR(X) CLEAR(Y) ON(X,2)
Add: ON(X,Y)
Delete: CLEAR(Y) ON(X,Z)

The first step for any SL system is to decompose the original conjunctive
goal 1into two subgoals, one for each conjunct. The system will then try to
achieve each of the conjuncts in turn, Suppose it tries to achieve ON(A,B)
first. After clearing A by applying the operator (performing the action)
PUTON{C,TABLE}, it can achieve ON{(A,B) by doing PUTON(A,B). The result 1is

then:

1
I
[}
[
|
1
1
!

——A —
B

FIGURE 2

But now, in order to achieve ON(B,C), it will have toc first c¢lear B by
PUTON(A, TABLE), This, however, undoes the subgoal which it had already

achieved. On the other hand, if the system tries to achieve ON(B,C} first, it

can immediately do PUTON(B,C), resulting in:
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o

FIGURE 3

But now the system is even farther from its geal than it was in the initial

state, and to make any progress it would again have to undo a subgoal that it

had previously achieved.

In this example undoing the subgoals might seem relatively harmless.
After all, in Figure 2, if the system does PUTON(A,TABLE) (and assuming that
it avoids repeating states) it could then do PUTON(B,C) followed by
PUTON(A,B), thus achieving the goal ON(A,B) & ON(B,C). The difficulty is that
all problems are not this easy, and in a more complex domain the relatively
unintelligent process of annihilating and re-achieving arbitrary subgoals is
as undesirable as it is inefficient. Early researchers had this in mind when
they introduced the relatively simple idea of subgoal protection [Waldinger
1975; London 1978bl. Subgoal protection simply means, as the name implies,
that once a subgoal has been achieved it must be protected from annihilastion

by subsequent actions (operator applications). Whatever device is used to

accomplish subgoal protection, however, there always arise cases of conflict
between the principle of subgoal protection and the need to explore different
solution paths, Thus if subgoal protection is applied without restriction,
the system cannot achieve the goal of Example 1 at all (since once one of the

subgoals is reached, the system is effectively stuck).



Page 9

Sacerdoti's proposed solution is for plans to be represented as partial
orderings during the initial stages of their construction. The system can
begin with an over-simplified plan that considers the subgoals of achieving
ON(A,B) and ON(B,C) as parallel and independent operations. Once the seperate
parallel subplans for these subgoals are complete a set of M"erities"™ ecan

analyse the partially ordered plan for possible conflicts.

Sacerdoti illustrates his system with a plan involving painting. The
system starts with the goal "paint the ceiling and paint the ladder"., This
goal iz decomposed into the two subgoals "paint the ceiling"® and ‘"paint the
ladder,"” and then two parallel plans are developed to achieve each subgoal

independently. The two (parallel) plans are:

(get paint, get ladder, apply paint to ceiling) and

(get paint, apply paint to ladder).

A potential confliet is then observed between "apply paint to ladder" and
"apply paint to ceiling". This is because "apply paint to ceiling"
presupposes "has ladder" (which would be achieved by "get ladder"), but "apply
paint to ladder™ deletes "has ladder®, The system avoids the possible
conflict by imposing the constraint that "apply paint to ceiling" must preceed

"apply paint to ladder" [Sacerdoti 1975, 19771.

While Sacerdoti's work on parallel planning is generally recognized as
first rate, and 1is cited by Nils Nilsson as being a "milestone in automatic
planning" (Nilsson in foreword to [Sacerdoti 1977]) there remain difficult

issues to resolve., How, for exsmple does the system "know" that "apply paint
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to ladder" deletes "has ladder"? According to Sacerdoti's description, "has
ladder" is on the delete list of "apply paint to ladder,” but this is ad hoc,
at best. It is simply not true that "has ladder? should be deleted by “apply
paint to ladder"; the system (or whoever painted the ladder) still has a
ladder, viz. he (or it) now has a painted ladder, And, in fact he could
still use the ladder to paint the ceiling if painting the ceiling were more
important than ruining the paint job on the ladder or if he didn't care much
about the quality of the paint job on the ladder {(not to mention the
possibility of waiting until the ladder was dry; or a case where someone 1is

stuck on the reoof).

The point is not, of course, that the delete 1list of one particular
operator is wrong (nor that using the add-list-delete-list form of operator is
limited, although we will see that this is true in the subsequent discussion).
There is a fairly deep problem here that is still under investigation [London
1978b; Stefik 1981a; Wilensky 1979,1980,1981; McDermott 1978]. It is
simply not the case that all (sub)goal conflicts can be directly deduced from
the add and delete lists of the primative operators. Rieger and London give
the following example which shows that subgoal conflicts are not even always

due to ordering problems:

..if our AI researcher wishes to insert a stake in his garden for
the purpose of nailing a cookie tin to its top as a bird feeder,
selecting and applying the "pound it in with a sledgehammer®
strategy might severely splinter the top of the stake, making it
impossible or difficult to nail anything to the stake. [Rieger and
London 19771

So one problem is determining the relative importance of side effects,
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Another interesting problem is how to organise the system's knowledge
about side effects. That is, if the knowledge that painting the ladder often
makes it undesirable to use the ladder (along with all the other bits of
possibly but not necessarily relevant information about 1ladders) is not
included in the delete list of the operator "“apply paint to ladder" (or if the
operator itself were the less ad hoc "apply paint"), where is this information
to be stored, and can it even be accomodated by an SL system? Some
researchers see a departure from the Sl framework in the direction of

meta-planning as a possible solution [Wilensky 1981a; MecDermott 19781,

Many other ways of dealing with subgoal interaction have been proposed.
An idea of Waldinger's has the added attractiveness of having direct
applications in automatic programming. The basic mechanism used by Waldinger
is called '"goal regression," and is a form of plan (or program) medification
[Waldinger 1975]. The basic strategy for achieving a conjunctive goal P & Q
is to first form a plan which achieves P, and then modify this plan so that it
also achieves Q. The reason Waldinger's particular technique is called
"regression" is that the goal is T"passed back" over stages of the plan,
starting from the final state and progressing (regressing) towards the initial
state, In general , let P be a predicate and F an operator (or in Waldinger's
original case, F is a program instruction). Suppose P is true, then, if we
perform the action corresponding to F, there is no guarantee that P will
remain true, However, it is always possible (in principle) to find a
predicate P' which, if true before F is performed, will guarantee the truth of
P after F is executed [Manna and Waldinger 1974: Waldinger 1975]. For
example, suppose P is CLEAR(C) and F is PUTON(A,B), then P' is CLEAR(C) v

ON(A,C). Or, (Waldinger's programming example) let F be (X := t) where X is a
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variable and t is an expression, and let P be any restriction on the variables
of the program, written: P({X). Then P'" is P{t) or PQO){[X/t]l} (i.e. the
result of replacing X by t in P(X)). For example, Fis (X :=U * V) and P(X)
is (X = A * B). then P' is (U *#V = A * B), Thus, in order to achieve P & Q,
we first construct a plan to achieve P, and then "pass back" or "regress" the
goal Q over the plan for achieving P. (See [Waldinger 19751 for a more

complete account),

Goal regression is quite effective for 1limited, deterministic domains
with complete information. This is also true of a host of other methods for
dealing with subgoal interaction. (Subgoal interaction remains a subject of
research even as recently as [Steffik 19811). Everyone seems to have their
own favorite methods for dealing with this problem (see [London 1978b; Rieger
and London 1977]), but almost without exception the "solutions" rely on the
basic SL assumptions as being sound. For example, Sacerdoti's solution relies
on the ability of the system to construct ordinary SL plans in parallel, and
Waldinger's goal vregression really is equivalent to a sophisticated
combination of forward and backward chaining. Thus these and other SL systems
still adhere to the notion of planning as search and of a plan as a
predetermined sequence of primative operators. In subsequent sections I will
argue that these assumptions effectively nullify supposed "solutions" to the
problem of subgoal interaction when the system must deal with realistie,

complex, changing enviromments.

(B) Combinatorial Complexity.

General purpose problem solvers, such as STRIPS or GPS, must do
their work using general purpose search heuristics., Unfortunately,
by using such heuristics, it is not possible to solve any reasonably
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complex set of problems in a reasonably complex domain. Regardless
of how good such heuristics are at directing search, attempts to
traverse a complex problem space can be caught in a combinatorial
quagmire. [Sacerdoti 1973)
This is elearest, perhaps, in the domain of chess. If the average game has 45
moves, this 1is 90 half moves (or 90 ply in the search tree): and if the
branching factor is 38 (i.e. the average number of legal moves in any
position) then the size of the bottom tier of the search tree is 38 to the

90th power (close to 10 to the 142nd power). The age of the Earth (estimated)

is 4.6 billion years or less than 10 to the 18th seconds.

Every planning system has to have some way of getting around this sort of
problem. Sadly, most systems seem to have been designed to literally avoid
the problem by considering only extremely simple domains, like the blocks
world, or a group of three or four rooms with five or six objects to

manipul ate,

We will be looking, in this section, at another idea of Sacerdoti's
[Sacerdoti 1973] which tries to actually deal with the problem instead of
ignoring it. We will find that Sacerdoti's method cannot really come to grips
with the problem either, imbedded as it is in the STRIPS paradigm. But the
basic idea (which actually goes back to [Polya 1945] and was also used to some
extent by GPS) may provide the germs of a method which can provide a solution
in another framework., This idea (now known under the heading, "hierarchical
planning") is found in one form or another throughout the literature [Wilensky

1981a; Steffik 1981a) and is effective in limited domains.
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The basic idea is to take a complex statement of a problem and translate
it into a simplified description in a representation which abstracts from
details and preserves only crucial factors. Given the description in the
simpler more abstract problem space, a solution is found, and then mapped back
into the more complex space. If the simpler space indeed preserves the
crucial features of the original problem space, then the solution which is
mapped back should sclve the problem in the original space. This idea 1is
easily extended to include not just one abstraction space, but a hierarchy of
such spaces, each level having fewer "“details" than the one below it. The
process is then one of stepwise refinement mapping down one level at a time

from some "higher" solution space to some "lower' one.

What Sacerdoti does is to come up with a way of incorporating this idea
into an existing SL system viz. STRIPS; the resultant system he calls
ABSTRIPS (AB for ABstraction space). The method of incorporation is to form
an abstraction space (actually a hierarchy of such spaces) obtained from the
ground space of STRIPS operator applications by altering the level of detail
in the preconditions of the operators, The precondition wffs in an
abstraction space have fewer literals than precondition wffs for the same
operators in the ground space. The literals that are left out are thought of
as being mere details with respect to the abstraction space. That is, in the
abstraction space it is assumed that a simple plan can be found to achieve
these literals once a plan has been found which incorporates the more
"eritical" literals which are included in the abstraction space. To help
ABSTRIPS distinguish bhetween levels of detail, each 1literal within the
preconditions of each operator 1is assigned a number representing its

"eriticality". ABSTRIPS procedes by a process of sucessive refinements, first
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forming a plan at the highest level of criticality (where it needs to consider
very few preconditions), then introducing the preconditions from the next

level below and incorporating them into the more "abstract" plan,

For example, suppose a plan required that the operator TURNONLAMP(L) be
used. And suppose the criticality 1levels assigned to each literal in the

preconditions were as indicated by the number given in braces:

{4} TYPE(L,lamp)

{3} INROOM(L,roomx)

{3} INROOM(robot,roomx)

{2} PLUGGEDIN(L)

{1} NEXTO(robot,L).

At the top level of abstraction, the only precondition for the operator
TURNONLAMP that ABSTRIPS would consider would be TYPE(L,lamp). That is, as
long as there was a lamp somewhere in the domain, the planner would assume
that it could turn it on. At the next level of refinement, the planner would
consider the next two preconditions: INROOM(L,roomx) and INROOM(robot,roomx)
i.e. it would now have to achieve, as a subgoal, that the lamp and the robot

were in the same room, before TURNONLAMP is applicable., The process continues

until reaching level 1 [Sacerdoti 19731.

This is an extremely powerful idea, as far as it goes (we will not
discuss here the interesting problem of exactly how the criticality rankings
are determined) but it does not go far enough. It is true that some amount of
abstraction is being done (enough for tremendous savings in efficiency) but,

not nearly what is necessary for realistic domains.
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The problem, as I see it, is that the "abstraction"™ process has still
left us at the level of the primitive operators of the domain. This is fine
for limited domains, where all goals are artificially constrained to be
logical combinations of 1literals found in add and delete 1lists of the
primitive operators of the domain, but as we shall see, there are realistic

goals which do not always lend themselves to this sort of characterization,



ITI., Fuzzy Goals

Sacerdoti's hierarchical planner, ABSTRIPS, is limited in its ability to
abstract from the ground space in two crucial ways: (1) the highest
abstraction space that it can plan in is still composed of the basic primitive
operators of the domain: (2) the goals it considers are constrained to be
logical combinations (usually very simple ones —-—— Sacerdoti's system could
not handle disjunctive subgoals 1like "to paint the ceiling, get paint and
either a ladder or a table" [Sacerdoti 1975]) of literals found in the add and
delete 1lists of the domain operators. There are, however, concepts and goals
which are not easily expressed as logical combinations of literals from add

and delete lists of domain operators.

For example, consider a subgoal often used in chess when opponents have
castled on opposite sides of the board (we will refer to this goal as
"PAWNSTORM") . The basic idea is to initiate an attack against the enemy
king's castled position by advancing one's pawns in the columns near the edge
of the board. The pawns serve initially to chase away enemy pieces posted in
front of the enemy king (often gaining important tempi in the process), and
ultimately to remove the defending pawns from in front of the enemy king (by
sacrifice or ‘trade). The removal of the enemy pawns, of course, serves to
remove protection from the enemy king and expose him to attack by pieces,
which during the pawn storm must be appropriately posted. 1In addition, the
removal of one's own pawns results in greater freedom for one's pieces. The
removal of the king rook pawn, for example, will often provide direct access
along the opened rook file for one's queen and rooks. During all of this one

must do such things as:
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(1) spot any target pieces and pawns

(2) note retreat squares for pieces in (1)

(3) calculate the effect of pawns in (1) advancing

(4) do null move analysis (or possibly tree search) to determine

the most effective targets and best order of moves

(5} check for enemy interference

(6) monitor any enemy progress (or attacks) on other parts of

the board

(7) monitor the success of the plan (the possibility of changing

to another plan, the possibility of altering the present
plan, ete...

A goal like PAWNSTORM is not easily expressed in terms of logical
combinations of literals from add and delete lists of domain operators. What
is to be achieved in accomplishing this goal is not any one particular state
(or even any one particular sort of state) but, rather, a complicated process
which is performed over a large number of states. [McDermott 1978] notes that

there are many goals which do not lend themselves to characterization as

states of affairs to be brought about. He lists, among others:

"Wait here for five minutes.”

"Promise me you will pay me five dollars."

"Avoid firing the budget director while retaining credibility."
"Keep track of the number of sheep on this birch bark."

"Design a circuit which converts a square wave into a sine wave,”

I suspect that a stronger claim may be true: it may be that there are
goals or concepts which cannot be expressed as logical combinations of the
appropriate literals from the domain operators. However, since that would be
an extremely difficult claim to prove, in this discussion we will be concerned
with the weaker result: viz. that there are concepts and goals which are not
easily so expressed, We will refer to such goals and concepts as being

"fuzzy" with respect fto the domain. (The use of the term "fuzzy" here has no
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direct connection to the notion of fuzzy sets or to fuzzy logic, although
there may well be strong relationships between those notions and the present
ones}. The fuzzy concepts, I will claim, serve a useful purpose in human
planning, and need somehow to be incorporated into planning systems which deal

with realistic domains,

There may be different types of fuzzy concepts; I have not undertaken
any classification. One characteristic which many examples seem to share is
that they involve the notion of an activity or a process which occurs over an
extended period of time. Thus these concepts cut across state descriptions,
and do not lend themselves to expression in terms of the truth of predicates

in a single state deseription.

Consider, for example, a more familiar activity than PAWNSTORM; for
instance, the problem of planning a piecnic. What has to be planned for (as
with PAWNSTORM and others activities like it) is not something that happens at
just one point in time or in any one particular state description. It is a
sustained activity, a sequence of events, which will most 1likely involve at
least a few hours, and perhaps a whole day. This is one aspect of the
fuzziness, which is not readily captured by an SL system. Another area of
fuzziness for concepts like this one is that it is clear that there is no one
rigid set of specifications for what constitutes a picnic. We have already
mentioned that the amount of time can vary: alsoc the ordering of events can
vary; and even what events or activities are included can vary. There might
be entertaiment (or there might not), there might be musie (or not), there
might be sports (or not); there might be any or all of these in different

orderings.
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Basic 3L systems simply are not equipped to deal with relations that cut
across state descriptions. This is cne reason for the current concern with
temporal logic, and formal theories of action involving time and events.
[Allen 1981a, 1981b; McDermott 1981: Konlige 19821, It is conceivable that
a good way of adapting temporal logic to planning could help eliminate some of
the problems with the fuzziness of some goals. For example, if somehow
someone could come up with a set of conditions equivalent to having a pienie,
then at some point in time those conditions would have to have been true in
the past in order for the goal to have been achieved. It would have to be
true at some time that, for example, in the past (i.e. prior to that time) it
was true that there existed certain people and that there existed a certain
place (satisfying certain conditions e.g. being outside) and that there
existed a certain quantity of food, and that some of the food was consumed by

some of the people at the place, etec.

The very convolution of the temporal nesting of the specification,
however, reveals one part of the difficulty with this sort of approach; the
other is that there is no obvious method of incorporating this sort of
specification into a search procedure based on means ends analysis and

reduction of differences,

Even if tensed specifications of goals that cut across state descriptions
can somehow be incorporated into the SL framework, however, there still
remains the other source of fuzziness: the fact that fuzzy concepts often do
not seem to be definable by any single set of characteristics or criteria.
This generality, vagueness, or ™"fuzziness" of fuzzy concepts, although a
ligbility as far as incorporation into SL frameworks is concerned, is

precisely what makes them useful in planning in realistic enviromments. We
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will have more to say about why this is so after we review the concepts of
"Strategy vs. Tactics" and “Epistemological Non-determinism" in the next two
sections. For now, we will simply note (pending later justification) that a
hierarchical planner for a complex domain can achieve greater flexibility by
abstracting to the point of fuzziness (i.e. to the point of using fuzzy

concepts) with respect to the primitive operators of the domain.



IV, Strategy vs. Tactics,

"Strategy" is an overworked word, with no definite agreement upon
meaning, even among military writers [Wylie, J.C. 1967]. Thus it is hardly
surprising that an exact differentiation between strategy and tactics is also
somewhat problematic. In the interest of a clarity I will begin by explaining
how I understand these two terms; and I will follow with some illustrations
which should help to make my use of the concepts clear. At that point we can

proceed to a discussion of the importance of strategy to planning. Briefly:

Strategy is concerned with the global aspects of a problem, tactics
with local ones,

Often there is no clear dividing line between the two areas;: and, when
tactics are consonant with strategy, there may be no difference other than
that of the relation of the general to the specific: tacties in this case
being the implementation of a strategy in a particular case. Perhaps the
clearest way to distinguish between the two is to consider cases where the two

conflict.

The dictates of tactics tell us how best to accomplish the particular
limited goal presently at hand., {(In military parlance the proper use of a
particular weapon is often referred to as 'tactics" [Palmer, Dave Richard
1975]). In terms of the problem reduction paradigm, we can regard tactics as
a concern with how best to accomplish a particular subgoal in isolation.
Strategy, on the other hand, is concerned with the relations amongst
{(sub)goals and how these interactions relate to the final objective (or main
goal), If we accomplish a particular subgoal at the expense of the main

objective then we may have followed the dictates of tactics with respect to
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the subgoal and viclated the maxims of good strategy, good tacties being

sometimes distinet from sound strategy.

If this seems reminiscent of adages about winning the battle and 1losing
the war, that is exactly right. It may be sound tactics under some
circunstances to pursue the enemy when he is routed. But, if this means
neglecting some important strategical objective, then it is bad strategy.
This is the lesson that Howe forgot when, after having driven Washington from
New York in 1776, he followed the Continental army into New Jersey, instead of
pushing up the virtually defenseless Hudson Valley. (This is assumming, of
course, that the correct strategy for the English side was in fact that
ascribed to it by many historians viz. the so-called "Line-of-the-Hudson"
strategy. [Palmer 19751). Doing something for immediate advantage and

neglecting the global consequences, then, falls under the heading of using

good tactics and bad strategy.

One connection between strategy and planning systems should already be
clear given the problems (discussed earlier) that SL systems have with subgoal
interactions. Recall the first example where, given a goal, ON(A,B) &
ON{(B,C), the system ¢tries to accomplish ON(A,B) first, interferring with
ON(B,C); or else ON(B,C) first, interferring with ON(A,B). Trying to
accomplish either subgoal iImmediately is thus good tactics (with respect to
that subgoal), but bad strategy, since it makes accomplishing the main goal,

ON(A,B) & ON(B,C) more, instead of less, difficult.

As we saw in our earlier discussion (and there are many more cases in the
literature) there have been numerous attempts to imbue SL systems with some
way of dealing with strategical matters, at 1least as far as subgoal

interaction is concerned. Unfortunately, these attempts fall short of real
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strategy and remain largely in the realm of tactics.

The basic methods of SL systems are antithetical to the use of global
strategies, Searching through a tree generated by applications of primitive
operators is far removed from the realms of strategy. It is 1like a general
trying to plan a campaign in terms of the particular primitive actions
performed by each individual man or horse. The proper concerns of generals
are battles, lines of communication, theaters and bases of operation, supply
lines, and so on, not the individual motions of particular soldiers, horses or

vehicles. [VWilkens 1980) makes a similar point about chess:

Using actions similar to those used in MYCIN rules would be similar
to a chess system where the action part of each rule was to add to
the plausibility score of either (1) one or more of the legal moves
in the position, or (2) some prespecified object which could lead
(through other rules) to recommending a legal move. Such an
approach is not satisfactory for the type of chess reasoning needed
in the above problems., Concepts at a2 higher level than legal moves
must be used in this reasoning,...

The methods used by SL systems consist in first trying to form a plan out
of the low level operators, and then patching up any subgoal interaction
problems through techniques like parallel planning, goal regression ete. In
as much as the use of strategy can be viewed as a top down process, SL
techniques are bottom up. It is true that the use of hierarchical planning is
a step in the direction of a top down process. However, as we have already
noted, hierarchical systems at present still have an abstraction space no
higher than what can be constructed out of the primitive operators of the
domain, And, as we can see from Sacerdoti's work, this sort of "hierarchical"
planning by itself does not solve the real strategical problem, the subgoal

interaction problem; it is still necessary to use Sacerdoti's parallel
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techniques or something similar to correct any errors caused by the

"hierarchical™ search of the space of primitive operators.

Why is strategy important in planning? Why not just do searching in the
space of primitive operators as the SL systems do? For the same reasons that
apply to people. When a person wants to bake a loaf of bread, for example, he
does not (usually) consider the possibility of doing this in the order: (1)
put ingredients in oven; (2) bake; (3) remove from oven; (4) mix
ingredients; (5) open packages, Nor does he consider any of the other
equally absurd orderings which are either impossible or produce no bread or
cause some other difficulty. By and large the person will already know a
broad strategy for baking which tells him, without really stopping to think
about it, that, for example, it is better to mix the ingredients before baking

or that it is better to crack the eggs before adding them to the mixture, ete.

The same sort of thing is true in chess. When a2 typical tree-searching

program (Chess 4.5 [Frey 1977]) considers the following position:
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(an easy win for White), it must do an eleven ply search before it "sees" that
the pawn can queen. What 1is worse 1is that if only a nine ply search is
performed, 48,273 positions are examined in 96 seconds and the machine then

plays the right move, but for completely the wrong reason.[Frey 1977]

Within its horizon of nine ply the program sees the following line:

1. P-R4, P-RY
2. P-R5, P-RS
3. P-R6, P-R6
4. P-R7, P-R7 (check)

5. KxP.,..

It chooses this line as best for Black because it is one of the few lines that
does not involve the queening of White's pawn within the nine ply look-ahead.
(This is because of the interpolated check which "pushes" the queening of the
pawn over the horizon [Berliner 1973; Frey 1977]). That is, as far as the
program is concerned, this is Black's best line because it prevents the white
pawn from queening. Why, then, does it choose 1. P-RY4 for White (as opposed
to, say, 1. K-N2)? Because in this line, on the fifth move, White captures a
pawn and the resultant position gets assigned an extra 100 points by the
evaluation function, Thus, the program has no understanding of the
strategical implications of the position (211 it knows how to do is to search
a space of primitive operators 1i.e,. moves) . If the position had been
glightly different it would have selected completely the wrong move, pursuing

the win of a mere pawn at the expense of losing the entire game, (The small
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home computer chess games currently on the market look only from three to five
ply ahead and often move into a one or two move checkmate while maintaining

some local (tactical) function at a maximum).

A human chess player, on the other hand, takes one look at the position
in Figure 4 and adopts a well known strategy: when you have a passed pawn,
try to win by queening the pawn. The human does not go through an eleven ply
search and then stumble with surprize on the move P-R8 (Queen); on the
contrary, he starts out with this strategical objective in mind, and organizes

his play around it.

If planning systems {(and chess programs) had some method of using
strategies in a way similar to that of humans, the following seem ﬁo be two
immediate benefits: (1) many problems with subgoal interactions could be
avoided, if the strategies gave either explicit orderings of the subgoals or
criteria for ordering them; (2) the T"combinatorial quagmire" could be
navigated more efficiently, since a predetermined strategy can often
automatically exclude many possible operator applications., It remains an open
research issue, however, exactly how ¢this might be done, The state of
planning in chess reflects this backward state of planning systems with
respect to strategy (in chess "planning" is generally used to refer to more
strategically oriented play, also called "positional play" [Lasker 1960;

Golombek 1964:1).

The most recent attempts at incorporating "planning" into chess playing
systems leave much work to be done. [Wilkens 1980: 1982] while employing
many of the most sophisticated techniques used in A (see [Waterman 19781)
only succeeds in devising a system which in Wilkens' own words: "...finds the

best move in tactically sharp middle game positions from the games of chess
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masters ... The phrase 'tactically sharp' is meant to imply that success can
be judged by the gain of material rather than a positional advantage.”
(Wilkens adds later that the system must also be given a position in which it
is winning). [Wilkins 1980] This, of course, takes the zbilities of the
system right out of the area that in the chess literature is called "planning"

(or what we have been referring to as "strategy") and into the realm of

tactics,



V.Epistemological Non-determinism

SL systems (e.g. blocks world planners) assume that a sequence of
actions can be found which 1is known (in advance) to define a sequence of
states leading from the initial state to some state in which the goal is
realized. However, this assumption, which 1lies at the very heart of the
STRIPS paradigm, is justified only for limited and completely deterministic
domains. In order to generate the search space (and find a solution path) it
is necessary to know what the effects of each action will be, In SL
terminology, we must be able to give the add and delete lists for each
operator., Unfortunately, in the real world, things are not this simple; many
domains exhibit one or more types of what I will refer to as "Epistemological
Non-—determinism." Not only do we often not know what the effects of an action
will be, there is also the problem of not knowing whether the effects produced
by the action will persist until the time when the next action in the sequence
is to be performed by the system., Thus it becomes impossible to calculate a

path through the search space ahead of time.

Ordinarily we speak of a world as being "deterministic"™ if every effect
is inevitably predetermined by its cause(s), and as "non-deterministie" if
this is not the case. The problem with the real world is that no one is in a
position to know whether determinism holds of it or not. This is true
regardless of what in fact is the case, that is to say, regardless of whether

determinism actually does, as many believe, hold in the real world.

Even if determinism is true we cannot know it because no one can be aware
of every cause and every effect, nor of every connection between them. When

we take a walk down a corridor we do not always know ahead of time who we will
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meet, or what will be the consequences, any more than we usually know what
will be in our mailbox before we look inside. Thus, from an epistemological
point of view, that 1is, as far as the state of our knowledge is concerned,
there are many cases in the real world where determinism might just as well be

false.

There are many possible sources of this "Epistemological
Non-determinism,” and a domain need not be isomorphic to the real world to
exhibit this property. As a (most likely incomplete) list of things which can
give rise to Epistemological Non-determinism consider:

(1) outside agency

(2) combinatorial complexity

(3) non-local effects

(4) intervening factors

(5) effects situation dependent

(6) errors

(7) subgoal interactions

(8) unexplored territory/incomplete information

(9) fuzzy concepts

We discuss each of these below, noting however, that these factors
usually do not occur in isolation (i.,e. there is much overlap between them).

The somewhat artificial division into these headings is only a convenience for

purposes of discussion,

(1) Qutszide Agency.

Almost without exception SL systems assume that there is only one agent
capable of producing change in the environment by its actions viz, the
execution portion of the planning system (in the case of a robot system, the
robot itself). Very 1little work has been done on the problems involved in
multi-agent planning [Carbonell 1979; Konlige 19821]. There are many
different ways of viewing these problems, but what is relevant to our present

discussion is this: No matter how good the system (or any purposeful agent)
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is at predicting the future actions of other agents there is always a chance
that the predictions will be wrong. (Often this will result from problems
with (9) Incomplete Information, either missing information about the
intentions or goals of particular agents, or possibly complete ignorance even
of the existence of certain agents). The result is that at any time during
the execution of the sequence of actions constituting the plan, some action by
another agent can (unpredictably) obtrude and make some action impossible,
(Everyone who is married is familiar with this effect). This poses severe
problems for an SL system which assumes that relevant states of the world (in
particular the preconditions of operators produced by the add 1lists of

previous operator applications) can be known in advance,

{(2) Combinatorial Complexity.

Perhaps the best example of this comes from chess, If we formulate the
domain deseription in such a way that the primitive actions are legal moves,
the preconditions can be those of legality for the particular piece, and the
add and delete 1lists will have to do with what pieces occupy which squares.
We can formulate the goal of checkmate in terms of logical combinations of a
predicate ATTACKED(X) which is true when X is attacked by some enemy piece, a
predicate NEXTO(X,Y) which is true when X is a square next to square Y, a
predicate SQUARE(X) which is true when X is a square on the board, and a
function LOCATION(X) which gives the square on which the piece, X, may be
found :

For all x (SQUARE(x) @& NEXTO(x,LOCATION(KING)) --->
ATTACKED(x) @& ATTACKED(LOCATION(KING))).
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Thus it is theoretically a "simple" problem to find a path through the
search space of possible moves to a position where the goal description is
true. Fortunately for the game of chess, it is well known that the total
number of possible moves (even using heuristics to reduce the number of moves

considered) is far too large for this to be computationally feasible. {For

the effects of (2) on efforts to do a forward search with an evaluation

function see the "Horizon Effect" in [Berliner 1973: Frey 19771).

{3) Non-local Effects,

The problem here is most easily described in terms of the add and delete
lists. In 3L systems the effects of an action are completely defined by its
add and delete lists, and an assumption is made that +the system need not
consider any other aspects of the action. This, of course, is a result of a
conscious attempt to deal with what is often called the "frame problem." (This
problem has nothing to do with Minsky's equally famous "frames"). The frame
problem is concerned with the problem of specifying what will change and what
will remain the same once an action is performed. The term "frame" might be
thought of as an analogy with the frames on a piece of film from a movie,
Typically the change between any two consecutive frames of a motion picture is
very slight, and most of the contents of the previous frame will be repeated.
In many cases it is computationally infeasable to completely specify all the

details of what will change and what will not. (See [Hayes 19731).

SL systems "solve" the frame problem by adopting the assumption that
anything not mentioned in the add and delete lists of an operator remains
unaffected by the performance of the corresponding action. This assumption
works in domains like the blocks world (provided we add that the robot cannot

lift more than one block at a time) but as has been noted [Waldinger 1975]
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problems arise with this assumption even in as relatively constrained a domain
as automatic programming. By "archeological model™ Waldinger refers to the

use of the Planner context mechanism for world modeling:

Suppose we attempt to express an assigmment statement, X := Y, by
updating an archeological model. We must delete any relation of
form P(X); furthermore, for every relation of form P(Y) in the
model we must add a relation of form P(X). In addition, we may need
to delete a relation of form "there iz a z such that z has value b*
even though it does not mention X explicitly. We may need to
examine each relation in the model in order to determine whether it
depends on X maintaining its old value. The consequences of this
instruction on a model are so drastic and far reaching that we
cannot afford to delete 2all the relations that the statement has

made false,

Chess provides another example of an extremely well constrained domain
where an action often has effects far beyond what can be included in an add or
delete list for a single operator. A single move of a knight or pawn on this
side of the board may alter the situation drastically on another remote part
of the board (or it may not --- in the case of chess this effect is usually

closely linked with (5) Situation Dependence).
(4) Intervening Factors,

This is exactly analogous to (1) Qutside Agency, and the import should be
obvious, If events outside of those produced by the system can occur and
alter the enviromment, then those events may so alter the enviromment as to
make some particular operator application impossible. This sort of problem
does not arise with automatic programming or an artificial domain 1like the
blocks world, but is especially important for any sort of mobile robot which
must deal with a possibly volatile enviromment. Surprisingly little has been

done in this area, The basic strategy has been to detect failure during the
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execution phase and then return control to the planning phase with the new
situation as input (and hope that the goal can still be reached from this new

situation}. See "Errors" below,

(5) Situation Dependent Effects.

This has already been mentioned in connection with c¢hess under the
heading of "non-local effects". The basic idea is that the same action may
have different effects in different situations. Thus we cannot simply have an

add and delete list which is frozen for all time and all situations.

An example which reveals some of the problems involved is Sacerdoti's
ladder case: if we actually let the "apply paint" operator delete "has
ladder" as he suggests, then there will be situations where this is not the
apropriate way to model that action., On the other hand, if we do not do so,
then it is difficult to see how the system can be aware of the possible

conflict between its two subgoals,

The worst problem with situation dependent effects, however, is that the
effects of actions can depend on aspects of the situation in ways which are
not amenable to calculation in advance. Thus even assuming that the systenm
had some way of solving all the other problems, and that it could actually
determine in advance exactly what the situation (state description) would be
at the time of doing some action, A, the action could be such that its effects
could not be calculated from this information alone, It might be that the
only way of lknowing A's effects would be to actually perform A and wait to see

what happens,
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At least one researcher is convinced that there is a whole class of
actions 1like this which need somehow to be incorporated into the planning
process. [Haas 1982] investigates the problem of planning (as a subgoal) to
acquire knowledge needed to pursue another goal. This is extremely important
in real domains where the system has incomplete knowledge (see (9) below) and
for a robot which uses sensory inputs in its planning. In some cases, where
the possible outcomes of the attempt to acquire knowledge are known in
advance, it is possible to wuse "conditional planning" [Wilkens 1980] (the
equivalent of a case statement with a suggested path for each possible
outcome) . But this opens the way to the combinatorial explosion; and, in
addition, it is often not possible to anticipate every possible outcome in

advance.
(6) Errors

No system can have a perfect correspondence between its representations
and the world (with the exception of a system like the blocks world planners
where the "world" is artificially constrained to be isomorphic to the system's
internal theory of the "world"), The result is (as many of us know from
painful experience) that systems make mistakes [Goldkind 1982]. If we lump
together mistakes and mal functions under the general heading of "failure," the
effect, as far as Epistemological Non-determinism is concerned, is roughly the
same as that of outside agency and intervening factors. (The intervening
factors are accidentally caused by the system itself). Some work has been
done in this area but the methods are primitive. The basic SL strategy is to
divide things into two seperate phases: (a) plan construction, and (b) plan
execution, If there 1is some sort of failure (i.e. 1if for any reason the

state encountered differs significantly from the state predicted) during the
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execution phase, control is returned to the planning phase. At this point the
planner either attempts to find some way of moving from the present state to
one which is part of the predicted sequence, or else begins the costly process
of plan construction all over again, taking the present state as the new
initial state, Thus the SL planner knows nothing about the possibility of
error, and encounters it only as an anomalous condition during the execution

phase.

Many researchers see such “anomalous" conditions as part and parcel of
non-simple activity in a real world enviromment, and think that some way
should be found to make a planning system's response to such situations more
flexible fthan a simple plan-execute-replan cycle permits, [Srinivas 1978)
deals with the problem by having a special module which has access to
information about possible causes of failure associated with each type of
action. However the method depends on having the appropriate information
about possible failures stored ahead of time. More recent suggested solutions
are to do away with the seperation into planning versus execution phases
[McDermott 1978; Sacerdoti 1979] or to use meta-planning [Wilensky 198%a;

1981b]. Much work remains to be done along these lines,

(7) Subgoal Interactions

We have already addressed the problem of subgoal interactions at some
length, and need not repeat any of that discussion here, It suffices to note
that one important source of epistemological non-determinism is lack of
knowledge about how subgoals acheived will interfere with other subgoals in

the future.
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(8) Unexplored Territory/Incomplete Information

This may be the source of Epistemological MNon-determinism with the
greatest practical importance if we are to use mobile robots for the purpose
of exploring and charting new territories (underwater, on the moon, other
planets, ete...)}. The usual domains for SL systems are such that the "initial
state" can be, and is, completely known. For example, in the blocks world
case, the number, names, and locations of all the blocks are known in advance,
Thus all possible combinations of operator applications, along with their
resultant states can (in principle) be calculated in advance. By definition,
this cannot be the case when a robot is sent to explore unknown territory
{otherwise there would be no reason to explore it). The effects are much the

same when dealing with a complicated domain where there are too many possibly
relevant facts to deal with economically (even if they were all knowable in
advance), since the planner must defer acquiring specific knowledge until
(plan to acquire it at a time when) it becomes necessary to have the
information. 1In either case, the SL system is not equipped to do the

appropriate planning when given incomplete knowledge of the initial state.

SUMMARY:

Given the SL assumption that a sequence of actions needs to be calculated
in advance of plan-execution, and that the sequence must lead in a
deterministic manner from the initial state to the goal state, epistemological
non-determinism presents an extremely difficult problem, since the primary
effect of epistemological non-determinism is to make it impractical (if not

impossible) to construct such a plan ahead of time.
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Any one of the sources of epistemological non-determinism discussed above
would, by itself, present grave problems for SL systems. Of course it is
possible that in each such case ad hoc methods could be found which would
provide solutions for simple domains (as in the case of subgoal interaction),
but when it is considered that there are many different sources of
epistemological non-determinism, it is clear that a more unified approach is

desirable.

If planning systems are to move from constrained deterministic domains to
complex real world applications invelving mobile semi-autonomous sensing
robots, then some way needs to be found to give planning systems a way of
interacting more flexibly with the enviromment., It is now clear that the
limited methods of SL systems do not suffice {Sacerdoti 1979; McDermott 1978;
Wilensky 1981al. Proposed solutions to the problem involve interleaving
planning and execution [Sacerdoti 1979; McDermott 19781, planning to acquire
knowledge (i.e. knowledge necessary for further planning) [Haas 19821, and
meta-planning {Wilensky 1981a; 1981bl. In the following sections I will

suggest a way of wnifying these proposals.



VI. Fuzzy Algorithms

We have seen then, that there are several difficulties which planning
systems must overcome, Among these are at least (1) combinatorial complexity,
(2) subgoal interaction, and (3) Epistemological Non-determinism (all of which
may occur and interact in variocus combinations). Many SL systems have been
enhanced in various ways to attempt to deal with (1) and (2), but, I have
argued, the very framework of SL systems (in particular the technique of
searching a space of world models based on operators composed of add and
delete lists) foredooms such attempts. In addition, while some of the sources
of Epistemological Non-determinism have been attacked, no one seems to have
addressed these problems as a connected whole (except to note their difficulty
[Sacerdoti 1979: MeDermott 1978]). Yet the problems arising from
Epistemological Non-determinism are essentially those that arise in complex,

non-static, real world enviromments.

Assuming that I am (more or 1less) correct in my assessment of the
underlying causes of the difficulties in dealing with such real environments,

it is time to suggest directions in which to 1look for solutions to these

problems.

In connection with the chess example of Figure 4 the point was made that
rather than searching through a space of legal moves (primitive operators) in
a bottom up fashion, the human player could start out with a particular
strategy in mind (viz. to win by queening the passed pawn), This, I
suggested, is the way that humans'deal with the "ecombinatorial quagmire," and

presumably, if we could have a system plan in a top-down manner, then many
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problems with the size of the search space could be alleviated, In addition I
suggested that using global strategies, instead of searching bottom-up through
a space of primitive operators, could provide a mechanism for avoiding much of
the difficulty encountered with subgoal interaction problems. This, then,
should be one of the main objectives for making progress in planning systems:

the development of mechanisms for global planning or strategy.

Whatever the mechanism for acheiving the ability to wuse strategy (do
global planning) it must be able to cope with the problems posed by
Epistemological Non-determinism. To do this it must be flexible enough to
deal with the uncertainties and incomplete knowledge of real world
enviromments., A rigid, prefabricated sequence of primitive actions which must
be executed subsequent to the creation of the sequence of actions will not do;
the creation of the plan must interact with the enviromment as the plan is
created (i.e. planning and execution must be interleaved [Sacerdoti 1979:

McDermott 1978; Goldkind 19811]).

In this section I will propose the notion of a "Fuzzy Algorithm" as a

device for incorporating both strategy and flexibility into a planning system.
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Fuzzy Algorithms

We begin by distinguishing between a fuzzy algorithm and a fuzzy
statement of a non-fuzzy algorithm. We are all familiar with fuzzy statements
of algorithms such as high level descritions (natural language) flow charts,
pseudocode, ete, It is characteristic of these descriptions that they do not
specify the algorithm completely with respect to every level of detail needed
to actually implement the algorithm. But in the case of an ordinary
(non-fuzzy) algorithm, it must always be possible to completely specify the
algorithm in terms of some set of well defined primitives (for some real or
virtual machine) in such a way that any process instantiating the algorithm is
guaranteed to produce the cutputs specified by the algorithm for given inputs
[Knuth 1968]. Moreover, the algorithm can be filled out to this 1level of
detail before being implemented and before any particular inputs are "given,"
A fuzzy algorithm differs from this in that it is impossible to specify every
detail of the algorithm in advance of execution, and also in that there is no
guarantee that the implementation and execution of the fuzzy algorithm will

produce the desired results.

Consider the way an ordinary algorithm might be instantiated
(implemented) . We might start with a vague or fuzzy specification at a high

level, and then go through a series of transformations between different

levels, for example:

high level description (e.g. natural language)
pseudocode

high level language

intermediate code

machine level (virtual or resl).
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In going from any one 1level to the next there is no one particular
transformation that is the '"right" one, but there is at least one that is
guaranteed to produce a sequence of operations at the next lower level which,
on the right wvirtual machine, will produce the input output pairs of the

algorithm,

In the case of a fuzzy algorithm, not only is there no one "right"
transformation, but in addition, we don't even know ahead of time that there
is even one transformation that is guaranteed to work. This 1is because a
fuzzy algorithm has to deal with objects external to the algorithm which may
behave in unexpected, possibly even disorderly ways [McDermott 1978]. Thus,
depending on sometimes unpredictable changes in these external objects, it may
be necessary to overcome additional unforseen obstacles, do things in a
different order, in short: to respond flexibly to the enviromment, Again,
the main point is that the system "following" a fuzzy algorithm is concerned
with objects which are not simply internal data structures which are
reasonably well behaved, but real objects in the world which are subject to
influences the system may not even be aware of [Goldkind 1982]. (Actually we
have already seen that even internal objects of a certain complexity can cause

problems [Waldinger 19751).

What has been said up to this point about fuzzy algorithms (henceforth
"FA" for singular or plural) was not supposed to be a complete account but,
rather, a broad overview meant to provoke in the reader such questions as:
(1) Is there really such a thing as a FA? (2) Even if there is such a thing
as a FA, and even if people somehow use them, (a) how can they be specified

and (b) even if they could be specified, how could a machine "follow" such a
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specification?

I hope to skirt the issue of (1) by answering (2) (since if we c¢an
specify FA, and machines can use them, then we have some evidence for their
existence}. At the same time I will try to answer what was our original
question: (3) How do FA contribute to strategy and flexibility? 1In anaswering
(2), however, I do not mean to imply that a particular representational
formalism has already been found: on the contrary, that is a matter for
further research, The examples given serve merely to give some idea of how
one might go  about representing FA. {Any resemblance between the
representation given here and some future formalism is 1likely to be

coincidental),

Plan Schemas

To be explicated: "A FA consists of a hierarchy of fuzzy plan schemas
which is determined by the heuristics for instantiation accompanying each
schema in the hierarchy." We begin by explaining the notion of a fuzzy plan

schema (FPS for singular and plural),

Even the most specific sequence of actions prefabricated by an SL planner
has a certain amount of generality to it. This is due to an interplay between
the specification language and the world: any one state description has
numerous possible instantiations (realizations) which may differ in ways not
captured by the specification language. The basic idea behind hierarchical
planning, as we have seen, is to allow more generality than this in the

"higher" levels of planning by ommitting details that are capturable by the
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specification language, but which are relatively 1less important, The
motivation behind the idea of a FPS is to put even more generality than this

into the planning process,

A plan schema is something which (if we adhere to the by now almost
"traditional" view of a plan as a sequence of actions) determines not just one
particular sequence of actions, but rather, a set of sequences of actions each
of which 1is a possible instantiation of the plan-schema. This is consonant
with the idea of having the FA incorporate strategy into the planning process.
Strategy need not determine an exact sequence of primitive actions which will
be used to carry out the plan (although in simple cases it might). It serves
instead to constrain the primitive actions in various ways, the exact
particular actions being a matter of tactics, not strategy. As a simple
example of a plan-schema consider:

(GOAL Playchess
(SUBGOALS (1 Playopening)
(2 Playmiddle)
(3 Playend)))

A plan-schema, then, must give some kind of description of a broad
strategy that need not contain any mention of the particular actions which
instantiate it. And planning involves the process of instantiating the
general strategy described in the plan-schema. Notice that if the plan-schema
were to specify subgoals which could in turn be specified completely we would
have been returned rather quickly to a standard sort of problem reduction, say

for example:

(GOAL Give-intersect (X Y)
(SUBGOALS (1 (A1l x IN X (CONSTRAINT {(x in Y)))))).
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What is required is that some or all of the subgoals referred to by a
plan-schema be fuzzy concepts (as deseribed in Section IV). When this is the
case we will say that we have a FPS, and to make things easier to talk about,
we will consider ordinary plan-schemas to be simply degenerate or vacuous

cases of FPS.

Several advantages of the use of FPS are immediately apparant. First of
all, we are not limited ¢o primitive operators at our higher levels of
abstraction. In addition we are not 1limited to decomposition by logical
connectives as the only form of problem decomposition. And, of course, having
a predetermined strategy can often reduce the need to search through the space

of primitive operators.

So far all of this is fairly straightforward (except for a description of
how instantiation of the FPS is to occur, to which we shall return shortly)
and could be accommodated by minor alterations to existent theories. A
Seript, for example, could be construed as a plan-schema (see also the notions
of plans and goals presented in [Shank and Abelson 19771). Scripts were
developed in connection with natural language understanding, and it might seem
coincidental that Seripts could offer the possibility of serving as
plan-schemas, However, the connections between story understanding (and hence

natural language understanding) and planning are now widely recognized [Bruce

and Newman 1978; Wilensky 1981a: 1981b; 19831,

In order to understand a story, a system must be able to understand the
actions and goals (plans) of the characters in the story, If we see
plan-schemas as a way of allowing the planning system to manipulate general

schemas for plans, and in a sense use a schema to "understand" a sequence of
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actions, then it does not come as a great surprise that a concept used in
story understanding has potential utility for planning systems. 1In fact, as
least one researcher is attempting an integrated system which performs both

story understanding and planning [Wilensky 1981a; 19831].

However, given that a planning system is to employ FPS, and that FPS
contain fuzzy concepts (for flexibility and generality) which indicate the
subgoals associated with a particular goal, we come to a seemingly difficult
problem: if the fuzzy concepts are to be used as subgoals, and fuzzy goals,
by hypothesis, cannot be easily defined or specified, what good does it do the
system to bhave a FPS? Admittedly it is fine to give a division of the goal of
playing chess into the further problems of playing the opening, middle, and
endgame but if playing the opening is to be explained by a fuzzy concept,
what good does this do? How is the system to get from the vague information
that it 1is supposed to play the opening, to the point of actually choosing a

particular move to play?

Part of the answer élearly must be that somewhere the system has
information about each of the subgoals in the FPS. Since each subgoal is a
fuzzy goal which cannot be completely specified yet needs to be somehow
specified in order to be used by the system, we choose to use another FPS to
specify it, for example:

(GOAL Playopening
(SUBGOALS (1 Playsicilian)
(2 Playdutch)
(3 PlayQP)
(4 PlaykP) ... [ete.1)).

And in order that each of these further subgoals can in turn be a fuzzy

concept, each of these are also specified by a FPS. And etec, Then, in order



Page U7

that the reduction into subgoals terminate at some point, we must have
ordinary plan-schemas (and perhaps even individual actions) or "degenerate"

FP3 somewhere at the bottom of this hierarchy of FFPS,

This of course, presents us again with a problem: if a partial ordering
can be traced through this hierarchy of plan-schemas which terminates at
leaf-nodes which are non-fuzzy (i.e. determinate or completely specifiable)
then there is no reason to call the variocus subgecals throughout the hierarchy
"fuzzy goals" (since they can, by a process of reduction, be completely
specified), On the other hand, we are faced with an infinite proliferation of

subgoals if the process does not terminate somewhere with something definite,

The answer lies in the following addition to the basic idea of a plan
schema: A FPS consists of a plan-schema (whose subgoals are fuzzy goals) plus
heuristies for instantiation., For example:

(GOAL Playchess
(SUBGOALS (1 Playopening)
(2 Playmiddle)
(3 Playend))
(HEURISTICS (a (SEQUENCE 1 2 3)) ...}...)
Here we have added one heuristiec for instantiation, namely an ordering
requirement on the subgoals which states that the sequence of instantiation is
always to be <Playopening, Playmiddle, Playend>. Of course, this particular
FPS differs not at all in effect from the previous version of Playchess as far
as incorporating any "fuzziness" or flexibility: there is nothing situation
dependent in this specification, and the order of subgoals is predetermined
for all cases. But the intention is to allow the use of heuristics which are

situation dependent %o determine (among other aspects of instantiation)

orderings on subgoals. (For example, if the system were not always required
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to play a game straight through, then there might be heuristics that it would

apply to the board position to determine which phase of the game it was in).

By allowing arbitrary subgoal orderings to be specified we accomplish
part of the goal of allowing for strategy with regard to subgoal interactions,
the heuristics embodying much of the strategy component. The orderings can of

course in principle be much more complicated, for example:

(SEQUENCE 1 {7 5 6} {4 3} 2 8 9) or

(SEQUENCE 1 (COND [(ANY {7 5 61 (3 4)]
[T (2 4 {7 6} 5)1))

where set braces, '{' and '}' indicate independent subgoals to be acheived in
any order (or concurrently) and 'COND' has its usual meaning. Also, the
possibility exists of having the sequence specified less directly in terms of

other FPS.

This ability to deal with subgoal orderings is an important capability,
but the most important source of fuzziness and flexibility FPS lies in the
abilijty to specify arbitrary heuristics, For example, consider the problem of
deciding, (for the Playchess FPS) when it is time to move from the Playopening
phase to the Playmiddle phase, There is no set number of moves which marks
the boundary between opening and middlegame, nor is there any rigid set of

criteria which is always right. But we might expand the Playchess FPS thus:

(GOAL Playchess
(SUBGOALS (1 Playopening)
(2 Playmiddle)
(3 Playend))
(HEURISTICS (a (SEQUENCE 1 2 3))
(b (TRANSITION-INFORMATION 1 2
(MESSAGE TO 1
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["WHEN condition (MESSAGE TO here
["econdition-found"]"]})
(WHEN (READMESSAGE = condition-found)
.+« further heuristics ...followed by
either (DO 2) or (CONTINUE 1)
585 58000 0

No claim is being made here as to the correctness of this way of taking
care of the transition, or that these lisp-like formulations are the best way
to represent FPS. Clearly some sort of message passing facility is
envigsioned, along with the ability of processes to create (sub)processes and
monitor them. In this case, the method is for the controlling process
(designated in the FPS above as "here") to post a message which indicates to
the process instantiating Playmiddle some condition whieh signals the
possibility that a transition may be required, Here we only show one
condition which is to trigger a demon-like response, but it is likely that a
sequence of conditions would need to be considered, with the addition of each
satisfied condition increasing the probability that a transition is actually
required (and possibly alsc requiring that additional heuristics or even FPS
to be used). This sort of incremental interaction between processes
instantiating different 1levels of FPS (in the terminology of hierarchical
planning we would say different "abstraction spaces") should contribute to the
ability of a planner to deal in flexible ways with its enviromment. (See
[Hayes-Roth 197%9al for a description of exactly this sort of flexibility which
they call ‘'heterarchical planning"). We note again that exactly what the
primitives should be for the representation of FPS, and exactly what the
mechanisms for instantiation should be, are subjects for further

investigation. For now, we observe that the answer to the question of 2(a)

is:
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FA are specified by a hierarchy of FPS, the hierarchy being
determined by the heuristics in each of the FPS,

But what about 2(b)? How is the system to "follow" or "execute® a FA? The
answer is that this is done incrementally, moving along a sequence of FPS as
and when the heuristics select the next member of the sequence from the
hierarchy. (This should allow the system, as a special case, to simulate the
so called "blackboard" approach [Hayes-Roth 1979(a-c); Feigenbaum 19831},
This sort of incremental approach allows for greater flexibility [MeDermott
1978]. This is not an entirely new idea; several researchers have suggested
using hierarchical techniques and leaving various parameters un-instantiated
as long as possible [Sacerdoti 1973; Stefik 1981al, but the idea here is to

incorporate even more flexibility than this.

As a result of Epistemological Non-determinism, it is often necessary to
completely abandon a plan and try something completely different. For
example, in chess, it often happens that the opponent makes a bad move which
renders one's whole plan superflous or even inapplicable. As the system moves
along the sequence of FP3S it is called upon by heuristics to execute primitive
actions (degenerate FPS) but it need not always know ahead of time exactly
what it will be doing. For example, at the top level, if it is currently
playing the middle game, it may know that eventually it will do "Playend", but
until it gets to that point, it may not need to do any calculations involving
any of the particulars of exactly how this will be accomplished., Thus the
cost of changing tactics within any one subgoal need have little or no effect
on the overall strategy at a higher level. In addition, and this is the
improvement over most hierarchical schemes, when the system needs to adopt

some new tactics (or even a completely new strategy) all that is required is
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that it hook up with some appropriate FPS, (We will note later that this may
be done through the use of meta-planning). Once it has done so, a new FA is
entered upon based on the heuristics associated with that FPS. Errors,
failures, or anomolous conditions can be handled as special cases of changing
plans and, in addition, there is available the possibility of including
specialized heuristics in a FPS to deal (in a more ad hoc way) with the

failures of specific subgoals (in cases where these are foreseen).



VII, Meta-Planning

The importance of meta-planning is widely recoghized and we will not
attempt a comprehensive survey of the area here., (See [Wilensky 1980, 1981a,
1981b, 1983; Stefik 1981b; Haas 1982:; Hayes-Roth 1979 MeDermott 19781).
Some aspects of meta-planning are already clearly capturable by FPS given the
description of the last section; others require further explanation. We mark

the latter cases with a '#*',
{Wilensky 1981a] notes several important feastures of meta-planning:

*¥(1) Everyday planning situations often involve various goals that can
interact in complicated ways. If both A and B are subgoals of one particular
FPS, P, then it is possible (as mentioned previously) for the heuristics of P
to mediate potential interactions or conflicts between A and B, The
interesting case, however, is where this is not the case, so that & and B are
either completely independent (except for the overlap which produces the
interaction) or else the inter-relation of A and B is not forseen prior to
actually detecting the interaction during planning. In this case there will
be no one particular FPS with heuristics that already deal specifically with
the combination of A and B, but a planning system should be flexible enough to
deal with cases like this. The solution which is advocated by Wilensky and
others is to allow the system to deal with the problem of the interaction
(whatever it might be: e.g. avoiding goal annihilation or combining two
similar activities to gain efficiency) as a new planning problem. To deal
with the problem of how to take care of the interaction, the system can have

"knowledge about planning" (in order to decide how to plan to take care of the



Page 53

interaction properly). This is what Wilensky refers to as meta-planning. The
advantage 1is that if these meta-problems can be formulated as goals (&albeit
meta-goals) they can be solved using the same general methods that the system
normally uses (without, for example, having to consult special purpose

crities).

The notion of FA accomodates this idea easily, since all that is required
is that there be FPS for dealing with various types of interactions (or any
other meta-problems). That is, we should include in our store of FPS ones

which deal with planning as subject matter,

(2) In most planning systems, high-level goals are simply handed to the
planner, often in the form of a problem to be solved or a state to be reached.
But a semi-autonomous planner (e.g. an exploratory robot ocut of contact with
its home base) must be able to infer its goals based on its overall mission
together with the situation in which it finds itself, This can be
accomplished by FPS as described in the last section. Wilensky's example is
of a system for maintaining a nuclear reactor, The robot is in charge of
sustaining the generation of power, keeping the floors clean, preventing
mel tdowns, cleaning up dangerous spills, and maintaining itself. But wusually
most of these goals should have no effect. For example, the robot is not

concerned with cleaning up a spill until one occurs.

It seems desirable then, to design a planner which is capable of
recognizing situations in which these tasks should be performed. This could
be accomplished with a single FPS having each of these as subgoals and
heuristics for determining which subgoal to execute next (i,e, in a sense FPS

are already "meta" plans with respect to their subgoals).
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¥(3) Meta-planning knowledge can be used for both planning and
understanding. Wilensky's version of meta-planning requires that something be
represented declaratively in order to qualify as meta-planning knowledge.
Although this is somewhat narrow if construed as a definition (since there is
no reason in prineciple to exclude the procedural use of meta-knowledge about
planning) his point is well taken. For natural language understanders to cope
with many uses of language they must be able to wunderstand the goals and
intentions both of speakers and of agents spoken about. If the knowledge
about how to resolve conflicts between goals (or any other meta-planning
knowledge) is embedded somewhere inside the control structure of the system,
then it is practically impossible for the system to utilize this knowledge in
explaining, understanding, or reasoning about the goals and behavior of other

systems.

FP3, while not tied to a particular representational scheme (at this
point) were conceived as a generalization and elaboration of declarative
Seript-like representations (e.g. [London 1978bl). Thus, the FPS can be seen
as declaratively representable. It remains a question for further
investigation if and how well the heuristics for instantiation can be captured
in a declarative representation; this however, is the intention of the

present writer. That is, the first stages of investigation should involve a

search for such a declarative representation for heuristics which satisfies
the other constraints on FPS (e.g. that it can serve as a meta-language for
itself -- see [Perlis 1980; Haas 1982] for some initial progress along these

lines).

-
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(4) Meta-planning knowledge allows for more flexibility in dealing with
cases where no solution can be found. This is very similar to (1) if instead
of of unforseen interactions we consider a complete failure of some sort.
Wilensky's point is that if meta-knowledge is used in the first place in the
formulation of the goals which failed, then it c¢an be used again to
reformulate the goals or to try to plan around the problem. This is not
possible if the system has no knowledge about planning (since then it can have
no knowledge about planning failures). FPS can acheive this same effect in
exactly the same way as suggested in (t) viz. have FPS for error recovery,
This can be done in an ad hoc way within particular FPS for particular
applications and also by having Meta-FPS which deal with more general
questions., (See [McDermott 1978: Wilensky 1981a) on "themes" and how they

give rise to meta-goals),

Aside from these important effects of meta-planning mentioned by Wilensky
and others, there are some additionl benifits to be acheived by a particular

sort of meta-planning within the framework of FPS:

¥(5) Meta-planning can be useful for knowledge acquisition and 1learning
(see [Davis 1982]). If FPS can deal with other FPS as objects (i.e. from a
meta-level) then a system can have various (meta)FPS which tell it how to
acquire, construct, delete, alter, and manipulate FPS. Some work has been
done along these lines by [Davis 1982], and this is an important area of
current research, since one of the bottlenecks for expert and knowledge based
systems is the problem of how to get the "knowledge" into the system. Related
research i3 underway in the area of intelligent interfaces to database

systems. The idea which ties these areas together is that of a database
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interface which has (meta)knowledge of the data base schemas and can
interrogate the user to obtain data and construct instances of the schemas.
In the case of a planning system using FPS, however, (since a FPS is a more
complicated sort of schema than most data bases handle) there is a possibility
of going beyond the basic idea of acquiring knowledge about objects and
fitting the knowledge into existant schema. There is also the more exciting
possibility of altering existing schema and acquiring new ones (including
Meta-FPS)., This has been explored to some extent by [Davis 1982] but FPS
offer the additional possibility of changing the schema for acquiring schema,
That is, there exists the possibility of having every activity (with the
exception of some small kernal) governed by the use of appropriate FPS,
ineluding the activity of acquiring new schema and altering old schema. If
arbitrary schemas can be altered, then even the schemas controlling schema
change can be so altered, Thus there seem to be possibilities for research

into the abilities of this sort of system to learn,
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