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Abstract

In this paper we consider the probable performance of three polynomial time approximation algo-
rithms for the Steiner tree problem with respect to a specific random graph model, The Steiner
problem asks us to find a minimum cost spanning subgraph (tree) for a subset D of nodes in a graph.

id
In our model, graphs have an edge probability that is given by p(n)= (Cnlonn) . Graphs with edge

1/d
probability (Cnlonn) , where d € Z* — {1} and C>2, have diameter equal to d almost always (a.a.)

according to the results of work done by Bela Bollobas. We show for k (n)<n"4@*) for any & > 0
that all three algorithms yield solutions with identical cost a.a., where k{(n)=D1. In addition if
en V@ gk (n)< (nlogn ) for any & > 0 we show that one algorithm a.a. produces a solution with
cost less than that of the other two.

This work supported by Bell Communications Research, Itatel SIT, NEC and National Science Foun-
dation grant DCI-8600947,






PROBABLE PERFORMANCE OF STEINER
TREE ALGORITHMS

Bernard M. Waxman

1. Introduction

In this paper we consider a version of the Steiner tree problem referred to as the Steiner
tree problem in graphs. In this problem we are given an undirected graph GV, E), a
cost function C: E — Z%, and D C V. We are asked to find a spanning subgraph for
D with minimum cost, called the minimum Steiner tree, where the cost of a graph is
defined to be the sum of its edge costs. This problem was shown to be NP-complete by
Karp in 1972 [5] and remains NP-complete even if C is a constant function. Thus, there
is interest in polynomial time approximation algorithms for the Steiner problem.

There are a number of approximation algorithms for deriving solutions to the Steiner
tree problem in graphs which run in polynomial time. None of these is known to give a
solution that is better than twice the optimal solution in the worst case. In this paper
we consider three algorithms: the minimum distance tree heuristic (MDT), the minimum
spanning tree heuristic (MST), and Rayward-Smith’s algorithm (RS).

In the first algorithm, MDT, we designate one node in D to be the root r. We then
construct a shortest path tree from r to the other nodes in D. MDT can be implemented
using any of the shortest path algorithms, and thus, has the virtue of being relatively
simple. Unfortunately it has worst case performance which can be nearly as bad as k
times the cost of an optimal solution, where &k = |D|.

The second algorithm, MST, begins by constructing a complete graph on the set D,
where the distances between nodes correspond to the distances in the original graph G.
A minimum spanuing tree for this derived graph is then determined using one of the
standard minimum spanning tree algorithms. Finally each edge of this tree is translated
into a path in G to produce a solution. MST will produce solutions whose cost is no
worse than twice the cost of an optimal solution. In addition two is the best worst case
bound since we can construct examples for which MST yields a solution which has cost
(2 — €) times optimal for any € > 0. For more details on MST see [1,4].

RS is an algorithm developed by Rayward-Smith [6,7]. RS works by defining a function
f:V — Rt Initially we create a collection of single node trees 7 consisting of the nodes
in D. At each stage of RS we choose a node v, for which f(v) is minimum, and a pair
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of trees in 7', which are two trees closest to v. The pair of trees is joined by a shortest
path through v. In other words RS is analogous to Kruskal’s algorithm, where the role
of a shortest edge is replaced by a path through vertex v for which f(v) is minimum,

Informally f is the average cost of making r joins to » + 1 trees through a node v, where
1 < r < [7T|. More formally we define

. 1 )
fitv) = Sggﬁ%n {Tm Z dlSt(’U,T)} .

Tes
for each stage « € [0..|D] — 1] of RS.

Our graph model will consist of the sample space of all labeled graphs of order n with
edge probability 0 < p(n) < 1. In addition we choose a cost function that maps each edge
to 1. We indicate that a graph G is drawn from this sample space by saying G € Q,(p),
i.e. G is a standard random graph with edge probability p and edge weight of 1. We
use the expression almost always (a.a.) to indicate that a graph drawn from ,(p) has
a given property with probability approaching 1 as n — co. For many of our results we
choose a specific class of functions for p(rn). This work was inspired by some interesting
results on the diameter of random graphs [2] due to Bela Bollobas. We use the following
proposition.

Proposition 1.1 If we let p(n) = &‘I‘Zﬁw for fized d € Z — {1} and C > 2, we
have that graphs in Q,.(p(n)) have diameter d, a.a.

This follows directly from corollary 7(i) for d = 2 and from corollary 8(i) for d > 2 in the
paper by Bollobas.

For convenience we shall refer to the model Qn(gcn—hfﬁﬂi) for fixed d € Zt — {1} and
fixed C' > 0 as A,(C,d).

2. Preliminaries

Throughout this paper we make use of the following notation. We let P(expr) stand for
the probability that expr is true, f(n) — v stand for the 7}523 f(n) and f(n) ~ g(n)
indicate that %% — 1. For a graph G(V, E) we will always use n to stand for |V| and we
define V;(w) to be all nodes at a distance of ¢ from u for 0 < i < dia(G) and 0 otherwise.
We then define n;(u) = |Vi(u)|, Si(u) = Ui Vi(w) and s;(u) = [Si(u)|. Often we
drop the the u where no confusion results. Finally we indicate by g € B(n,p) that g is
drawn from a binomial distribution of order n with probability p.

We state a number of facts which we use in several proofs that follow. Note that p
stands for a probability so 0 < p < 1.

1. For the geometric series R, = 3.7, 7" if r > 1 it is clear that »* < R, < -Z5r™.

71
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2. Giveni < féﬂ‘— it follows that (3e > 0)([(1 + €)(pn)]* < n).
3. Hence, given i < 11—‘;51; we have (Je > 0)([(1 + e)(pn)]"*p < 1).

4, 1—(1~p)® < pzifz> 1

Finally we state a second proposition (Bela Bollobas [2]) which gives concrete limits
for the tails of a binomial distribution, derived from the De Moivre-Laplace limit theorem.

Proposition 2.1 Let z € B(n,p), 0 <p <}, 0<e< L, and enp > 40. Then

_Enp 2
P([a: —pn| > enp) < EC—P(—%—) < <=:xp(--~6 np) :
e(np)* 3

Although not stated explicitly we assume, throughout this paper, that ¢ <3 L 7 Whenever
we make use of proposition 2.1. We also note that for A,(C,d) the other conditions
required for this proposition hold, for large enough n.

3. Distance in A,(C, d)

Lemma 3.1 Given G(V,E) € A(C,d)), u €V, and i € ZF, there exists an N > 0 such
that for alln > N and all <

Pl(w) < [+amm) 2 (1-ew(-T2Y) 1 @
for any e > 0.

Proof: Let t(n) = iif’f;’;#. Then for 7 > t(n) we have n; < n, and the lemma clearly
holds. For ¢ < ¢(n) we prove P(n,;(u) <[(1+ e)pn]") >{(1-— exp(—%ﬂ))”‘ — 1 for large
enough N by induction on . Clearly for ¢ = 0 this statement holds by definition of V().

Assume the result holds for i—1 > 0 where 7 < #(n). Then n; € B(n—s;_1,1—(1—p)™-)
so that

ni < (14e)(n—sia)(l—(1-p)"?)
with probability > 1 — exp(—%:ﬂ) by proposition 2.1. Then
(1 +e)n(l — (1 —p)™—+)
< (14 én(ni_ip)
< (1 +en[(l+e)pn]p
= [(1+e)pn]

with probability > (1 — exp( ——ﬁg&))".
()

IA

N
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Lemma 3.2 Given G(V, E) € A(C,d) and u € V, there ezists an N > 0 such that

s;(u 1+ )t
P < CE) > -

e2np.
")

Vv

forany 0 < e< & ifn > N. Thus ‘9—‘%) — 0 for 0 < ¢ < d with probability approaching
1.

Proof: By lemma 3.1 and fact 1 on geometric series we have for € > 0, with probability
> (1 — exp(— ——?—)) that

() _ Fl+ )
pr) £2_(1 ?— e)

P PR (1 + ¢)f
(pn)t=

IA

(2)

where ¢ > d — fiﬁf;. Note that

logn logn _ dlogn

logpn ~ ilog(Cnlogn) ~ [log C + logn -+ loglog n]

Thus, lim d— %%S;_n = 0 and hence, we can choose ¢ < ¢ for large enough N; where

n > N1 CTE we choose N, large enough then for all n > N, we have that i <l+te

Then if we let N = max{N;, N;} the lemma follows,
0

Theorem 3.1 Given G(V, E) € A.(C,d), we have for any u,v € V the following:

1. dist(u,v) > d
2. if C > 2 then dist(u,v) =

Proof: These result follows directly from lemma 3.2 and proposition 1.1.
O

4. Performance of MDT, MST, RS When |D| is Fixed

Using the results from the previous section we can say something about the cost of Steiner
trees in graphs G(V, E) € A,(C,d) where C > 2. Proposition 1.1, due to Bollobas,
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clearly indicates that for any D C V there will a.a. be a Steiner tree of cost d(k — 1)
where k = |D|. For fixed |D| it follows from theorem 3.1 that MST and MDT will yield
trees of cost d(k — 1) a.a. In the next section we make this result stronger by by showing
that MST and MDT still yield solutions with cost d(k — 1) even if &k = k(n) grows as a
function of n as long as k(n) < (nlogn)~9/24 for some € > 0. Of course we assume that
k(n) € Z+ — {1} {for all n.

We prove that the solutions produced by RS also have cost d(k — 1) a.a. for fixed
k € Z*. Thus, as long as the size of the set D is fixed all three algorithms have the
same probable performance. We note that a solution produced by RS will be better than
that given by MST iff there exists a node z such that f(z) < d, where f is the function
defined in RS. We proceed by proving that no such node z is expected to exist if k is
fixed. In the next section we consider what happens when % grows as a function of n.

In the next lemma we evaluate the limit of an expression which we use in theorem 4.1
to determine the probability that a node z is connected to every node in a set S ¢ V'
with a cost < (£+ 1)|S], for a graph G(V, E) € A.(C,d), where £ + 1 < dia(@). We
note that a node z is connected to a node u by a path of length < £+ 1 with probability
approaching 1 — (1 — p)**{*) since s,(u)/n — 0. Then clearly the probability that z is
connected to each node in § with a path of length < £+ 1 is given by [1 — (1 — p)*]®
where b = |§|. Finally, noting that there are at most n possible choices for the node z,
we see that the expression in the lemma below is related to the desired probability.

Lemma 4.1 Let b,d > 2 let 0 <£ < d—1 and let §,C > 0. If ({+1)(3) > d(b— 1) then

1/dy 4(Cnlogn)t/dqbyn
- - - ey
else if (£ + 1)(b) < d(b— 1)
1/d~ §(Cnlogn)tdqbyn
o - o (-

Proof: Using the binomial expansion we note that

(6a)* 441
(1—3) - 1-g@

n i

If we set a = (Cnlogn)/? we have lim §/%

00 n

(6a)* £+1
1= (127~ et
n n

Substituting a for (Cnlogn)*? and g = g(n) for §*a*¢n? it follows that

1/dy §4(Cnlogn)t/drby n (8a)41by n
- -9
n—oo n L

. (1 P abletl) ) n
= 1 — —_—

[ nb

= lim [(1—g)¥]"

T OO0

= 0 for £ < d — 1 therefore,
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The second equality follows from the fact that 11111 (1—f)"= hm (1—h)*if f ~hand
lim A = 0. Note that ¢ is a function of n that i 1s stnctly decreasmg and with hm g = 0.

n—+00

Therefore, we have that

lim [(1—9)"]" = lim exp(—gn)

n—eo
Then expanding g we have that

gn = §*%(Onlog n)ﬂfﬁﬂlnl"b

= &%(Clogn) MR -t

Since lim 6%(C log 1*7.)2(%(‘!l — co we have that

lim exp(—gn) = 0

n—0oo
if &1 1
lim nt~0~"F) — 1 or lim np!-tC—5H

N— 00 n—oQ

and since n dominates logn

OO

lim exp(—gn) = 1

if
lim n!—t-4) — g,
Thus if -
+
- - >
1—5 (1 4 ) z 0
we have that (3) holds and if
L p(1— -“—1)

we have that (4) holds and the lemma follows.
(]

Theorem 4.1 Suppose we are given a graph G(V, E) € A,(C,d) with C > 2 and a set
of point S, with |S| =b. Then

P((3s € 6) (X dist(z,v) < d(b—1))) — o.

vES

Proof: We note that s;(u) < ((20nlogn)/?) a.a. using the results of lemma 3.1.
We also note that for G(V, E) € A,(C, d) that a vertex z is connected to u by a path of
length < j + 1 with probability less than

1 ( (C"n, log n)lld) 27 (Cnlogn)i/d
— 1 _\wnlogn)’

n

(5)
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for large enough n. Then « is connected to each node u; € $ by a path of length < 7;+1
with probability less than

. (1___ (cnmgn)l/d)2""(0“1"8“)"‘"‘ ﬁzﬁ(cnmgn)ﬁ%i

1z=1 n =1 n
_ 21"1(01'7,10gn)é{lntil
= -
C 1/dy 24(Cnlogn)t/d= b
ol e e RO

where £ = 1/b3%7; j;. We use the argument from lemma 4.1 that

2afi Fi g i1
a 2%q
1— (1 - _) ~
el o)

to get the result derived in (6) above.
Therefore, lemma 4.1 can be used to give us the probability that

(-3 € v(6)) (Z;dist(:r,,v,-) < d(b-1)). (7

If (£+1)(8) < d(b— 1) then equation (4) of lemma 4.1 holds and we have that the
probability of (7) goes to 1.
0

Corollary 4.1 Let D C V, where G(V, E) € A,(C,d), C > 2, and let k = |D| be fized.
(Vue V)(Vi e [0.k—1])(fi(v) > d), where f; is the function defined in RS.

Proof: If k and d are fixed then the number of choices for the set § in theorem 4.1 is
fixed for each step of RS. Thus, this corollary is a direct consequence of theorem 4.1.
O

Theorem 4.2 Let D C V, where G(V, E) € A,(C,d), C > 2. If k= |D| is fized MDT,
MST, and RS will produce solutions with cost d(k — 1) a.a.

Proof: This result follows directly from corollary 4.1 and theorem 3.1.
d

We conjecture that when % is fixed the solutions found by each of the algorithms is
optimal but do not attempt to prove it here.
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5. When MST is Better than MDT

At this point we have shown that for fixed diameter graphs and for fixed size of the set D
the cost of a solution produced by either MST, MDT, or RS is almost always d(|D| —1).
We now consider the case in which the size of D grows as a function of n, that is we let
|D| = k(n), where, as in the previous section, k(rn) € Z+ — {1} for all n.

Lemma 5.1 Given G(V, E) € An(C,d), with C > 2, if k(n) < (nlogn)3=, for any
€ > 0, a solution produced by MST for an instance (G, D) of the Steiner tree p'roblem has
cost d(k —1) a.a.

Proof: Given two nodes 1 and v, from lemma 3.2 we have -

P(dist(u,v) > d) > (1 - exp(—ﬂ)) (l — ((;7;16_):[) (8)

for any € > 0 i.e. as long we choose n > N for N large enough. Given a set of nodes D
such that |D| = k(n) it follows that

P((Vu,v € D)dist(u,v) > d)) > )d 1(1 - o E)](k(;))

- (@ = D e - 2] ()

( pn)t-
> (e 2]
= [1—exp(— <np )] (@08 = (p_n‘%___] K )
[

where o = (1 —I— e)*. Hence, for any function k(n) such that k(n) < (nlogn)%& 5=

[(1/C)*/4pn] 72", for some € > 0, the expression in (9) above will go to 1 as n — oo as
long as we choose €, 0 < € < €. Thus, using proposition 1.1 we have that the distance
between all pairs u,v € D will be d a.a. and the lemma follows.

(|

We can prove a similar result for the MDT algorithm which we state in the next
lemma.

Lemma 5.2 Given G(V,E) € A,(C,d), with C > 2, if k(n) < (nlogn)lﬁﬁ, for any
€ > 0, a solution produced by MDT for an instance (G, D) of the Steiner tree problem
has cost d(k — 1) a.a.

Proof: The proof is nearly identical to the proof of lemma 5.1 except that we only
consider pairs of nodes r,v where » is the root chosen by MDT. Thus we need consider

only k(n) pairs instead of (k(;)).
|
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Lemma 5.3 Let &(V,E) € A,(C,d), v €V, and i€ ZF. Ifi < d
P(ni(u) > ((1 — e)pn)’) — 1 (10)
for any e > 0.

Proof: We prove P(n;(u) > ((1—€)pn)) — 1 by induction on ¢ < d. Clearly the result
holds for z = 0. Assume it holds for i—1, where i < d, thenn; € B(n—s;_y,1—(1—p)™-1)
and it follows that

i > (1 - g) (1 — sia (1 — (L — p)™—2) (11)

with probability approaching 1. By lemma 3.2, n—s;_; > (1 — 5)n for large enough n so

ng > (1»-«%) (l—g)n(l—(lup)”iml)

> (1 - "26")2npni—1
> (1= enp((1 - e)pn)™"
2> ((1—e)pn).

O

Lemma 5.4 Let G(V, E) € A,(C,d), with C > 2. Ifk(n) > (nlog n)liﬂéi, for some e > 0,
a solution produced by MST for an instance (G, D) of the Steiner tree problem has cost
<d(k—1) a.a.

Proof:  Using the result of the previous lemma and proposition 2.1 we have that
there exist an N > 0 such for alln > N

() o [(- Jpnl*
(1 —e)d?
(pn)

with probability > (1 mexp(uﬁ:;&))d‘l. Therefore, if we let a = (1 —exp(—éé"’ﬂ))"l“1 then
the probability of finding a pair of nodes u,v € D such that dist(u,v) < dfor n > N is
given by

P((Ju,v € D)(dist{u,v) < d)) > 1— [1 - a—(l;—;)d—l] (=) .

So if k(n) > (nlogn)(+)/2d then for some ¢, 0 < ¢ < ¢ it follows that (k(;)) >

(1 — e)*~?Cnlog n)(*+)/¢ assuming that n > N for large enough N. Therefore, since
pn = (Cnlogn)'/?, it follows that
P((Ju,v € D)(dist(u,v) < d))

=
—_—

1 —exp (ma(C’n log n)%)
1
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since @ — 1 and (Cnlogn) /¢ — oo,
O

Theorem 5.1 Let G(V, E) € A,(C,d), with C > 2. The cost of a solution produced by
MST for an instance (G, D) of the Steiner tree problem is a.a. less than the cost of a
solution produced by MDT if

(nlogn)sd <k(n) < (nlogn)'T,

for any € > 0.

Proof: This theorem follows directly from lemmas 5.2 and 5.4.
0

6. When RS is Better than MST and MDT

From lemma 5.3 we can conclude that n; > (2)* for any a > 1 so, for example, we can
choose a = 2. Then using an argument similar to that used in the proof of lemma 4.1 we
have the following.

Lemma 6.1 Let G(V, E) € A,(C,d) where C > 2,let S C D, letb = [S|, and let 0 < £ <
d, where b((I+1) € Z*. Then the probability that (32: € V)(EIS C D) (T,.esdist(z,v;) <
b(f—!— 1)) goes to 1 if

and goes to 0 if

Proof: This lemma follows from an argument similar to that given in the proof of
lemma 4.1, When 0 < 7 < d we note that n—s; > 2 from lemma 3.2 and that n; > )
from lemma 5.3. We note that the whether § in Iemma, 4.1 equals % or 2 has no effect on
the result of the lemma. Thus expression (5) actually is asymptot:tc to the probability
that a node u is connected to a node v by a path of length < 5 + 1. Therefore, from
theorem 4.1 we have the existence of a node = with probability approaching

- {fi- (- (- YD

for some «, 1 < a < 2. Using an argument identical to that of lernma 4.1 we have that

(14)
{£41) 1 k(n)
= lim 1-— [ex m(l(c*log'n)“;L nl_b(l_%”))]( &)

=k OO

= lim 1-— (exp (k(n)) (C’lt:}g'n,)_(ﬁl 1-5(1- j—))

N
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b(£41)
d

Since 2(Clogn) — oo and since n dominates log n the result follows.
]

We note, for fixed d, that if k(n) — oo then (ﬁg;)) ~ (k(n))**! and we have the
following lernma.

Lemma 6.2 Let G(V,E) € Ay(C,d), C>2, DCV, andb=d+1. If |ID| = k(n) >
ent ) for any € > 0 then Iz € V and IS C D with |S| = b such that z is connected
to every u € S with a path of length less that d, e.g. £+ 1 < d — 1, with probability
approaching 1.

Proof: If£+4+1=d—1 and k(n) > en™ D for an ¢ > 0 then

lim k(n) ntb(1~£5) m k(n) pl-(d+1)(1—451)
b d+1

n—co —oo

~  lim (k(n))*? i@+ -2432)

M+ OO

d+1, 5 1—(d+1)(1-452)

> Hm €*'néin
n— oo
) =11

= lim epTta
N—0

Pt

Since € > 0 we have that ¢! > 0. Thus lemma 6.1 yields the correct result. O

Theorem 6.1 Let G(V, E) € A,(C,d), with C > 2. Ifen?/4#+1) < k(n) < (nlogn)-9/2d,
for some € > O, then the cost of a solution produced by RS, for an instance (@, D) of the
Steiner tree problem, is almost always less than the cost of a solution produced by MST.

Proof: By lerama 5.1 the cost of a solution produced by MST is a.a. d(|D|—1) under
the conditions specified. From lemma 6.2 for some S C D with |S| = d + 1 there exists
an z € V such that dist(z,s) < d— 1 for all s € S. Therefore, the cost to connect the
nodes in S will be less that or equal to (d — 1)(d + 1) = d(]S| — 1) — 1. RS will find
the node x or one that yields a solution at least as good. Hence the cost of a solution
produced by RS will be less than or equal to d(| D] — 1) — 1. We therefore, conclude that
RS yields a solution which is better than the solution given by MST or MDT provided
that k(n) grows at the rate specified.
|

Lemma 6.3 Let G(V, E) € Ay(C,d), withC > 2, and let D C V. Ifk(n) < ni=9/dd+)
for any € > 0, then Vz € V and VS C D with b = |S] it follows that T,¢g dist(z, %) >
d(b — 1) with probability approaching 1.

Proof: Let us assume that we have a set § C D and anode z such that 3,5 dist(z,u) <
d(b — 1) where b = [5]. Then clearly (35’ C S)(Tyes dist(z,u) < d(b — 1)) and
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(Vu € §')(dist(z,u) < d). Thus without loss of generality we need only consider pairs
(z,S) where (Vu € §)(dist(z,u) < d — 1). We now consider two cases.

case ¢ {b>d} In this case we need consider only those sets S where |S| = d+ 1. If
|S] > d+1 and there is a node z such that 3, ¢ dist(z, 1) < d(b—1) then VS’ C § such
that | 5’| = d + 1 it follows that T,cs dist(w,u) < d(b— 1) since (Vu € §)(dist(z,u) <
d—1). Thus, we can substitute S’ for S. Using a derivation similar to that in lemma 6.2
and noting that £ 41 < d — 1 we have, for k(n) < n(1=9/dd+1) thay

lim (k(;))nl—b(l"%i) < lim n'Tn7

n—oo n—00

. ot
= lim n¥=
T—rCO

0

for any e > 0. Thus this theorem hold for case (i).

case 4 {b < d} Inthisb=d~ 7, for an integer 7, where 0 < 7 < d — 2. Then, for
any pair (z,S) such that 3°,cg dist(z,u) < d(b — 1), it follows that

E+)d—7) < dd—j—1)—1,

where b(£ + 1) = 3°,c ¢ dist(z, u), since the sum must be an integer. Thus for a fixed j
using the derivation in lemma 6.2 we have for k(n) < n{t—9)/dd+1} that

lim (k(;))nl_b(l"%l) = lm (k(;%))nl_(d_j)(l' d_;;‘ =) (15)

—300 N—rC0
. k n -1
= lim ( (n) na
noo b
. 1=s =1
< llmn<an?
=00
-

= lim n3

n—rCo

= 0

for any € > 0. Thus by lemma 6.1 we have the required result.
O

This last lemma allows us to strengthen the result that tells us that the three algo-
rithms do equally well as long as the size of D is fixed. The next theorem states this
stronger result.

Theorem 6.2 Let G(V, E) € A.(C,d), with C > 2. If k(n) < n&HD then MDT, MST,
and RS yield solutions of cost d(k(n) — 1) a.a. for an instance (G, D) of the Steiner tree
problem.

Proof: This theorem follows immediately from lemmas 5.1, 5.2 and 6.3.
(|
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7. Conclusion

We have compared the performance of three Steiner tree approximation algorithms on a
random graph model for which the diameter is almost always constant. We have shown
that all three perform equally well almost always when the size of the set I, for which
we are to find a Steiner tree, grows more slowly than n(=9/4+) for any 0 < € < 1.
We also have shown that MST almost always does better than MDT when k(n) = |D|
satisfies (nlogn)+/% < k(n) < (nlogn)®~9/4, Finally we have shown that RS does
better than both MST and MDT when en'/%4+1) < g(n) < (nlogn)t-9/4",

If £(n) > (nlogn)*=9/% we conjecture that RS still does better than the other two
algorithms with some nonzero probability, even though the results presented here tell us
nothing about the relative performance in this case. In addition our results do not give
us any quantitative comparison of the performance of the three algorithms nor do they
tell us anything about how the performance of these algorithms compares to that of an
optimal algorithm.

Each of the points in the paragraph above warrant further investigation. The consid-
eration of other random graph models to further compare the three algorithms discussed
in this paper, as well as others, should also prove to be useful. Most helpful would be
a random graph model for which the cost of an optimal solution, or at least an upper
bound, is known. Unfortunately at this time it is not clear to us how %o construct such
a model so that it will yield useful information.
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