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ABSTRACT

This paper describes the design of network virtual storage (NVS) in the Axon host com-
munications architecture for distributed applications. The Axon project is investigat-
ing an integrated design of host architecture, operating systems, and communications
protocols to allow applications to utilize the high bandwidth provided by the next gen-
eration of communications networks. NVS extends segmented paged virtual storage
management and address translation mechanisms to include segments located across
an internetwork. This provides the ability to efficiently use the shared memory para-
digm in non-local environments, as well as the support for a very high speed end-to-
end data path between demanding applications such as scientific visualization and
imaging,
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10th ICDCS Proceedings [StPa90c].

James Sterbenz is on leave of absence from IBM Corporation at Washington Univer-
sity in St. Louis.



wimpet

R



AXON: NETWORK VIRTUAL STORAGE
DESIGN

James P. G. Sterbenz Gurudatta M. Parulkar
jps@wucsl.wustledu guru@flora.wustl.edu
+1 314 726 4203 +1 314 889 4621

1. Introduction

It is being recognised that high performance interprocess communication (IPC) across a network can
benefit from the ability to use the shared memory paradigm. We have proposed a new communication
architecture for distributed applications called Axon [StPa89a, StPag0b] whose principal motivation
is to provide high performance IPC in the future generation of internetwork, which we refer to
as the very high speed internetwork (vusi) [Pa90]. The significant features of Axon are: [1] an
integrated design of host and network interface architecture, operating systems, and communication
protocols; [2] a network virtual storage facility which includes support for virtual shared memory
across networks; [3] a high performance, lightweight object transport facility which can be used by
both message passing and shared memory mechanisms [StPa89b]; [4] a pipelined network interface
which can provide a high bandwidth low latency path directly between the vHSI and host memory
[S190].

This paper describes the Axon network virtual storage (Nvs) design, and is organised as follows:
Section 2 provides a brief overview of the Axon host communications architecture for distributed
systems. Section 3 introduces virtual storage concepts and implementation. Section 4 describes the
NVSs design, by extending the mechanisms for a segmented paged virtual store to include segments
located across an internetwork. Section 5 describes virtual storage management policies, including
alternatives and tradeofls involved in Nvs. Section 6 describes other relevant work, and Section 7
is the conclusion. Appendix A contains the specification of the Nvs address translation data struc-
tures.

2. Overview of the Axon Architecture

This section provides an introduction to the Axon architecture. First, 1PC primitives are discussed
within the framework of the vHsI environment. Then, a brief description is presented for significant
Axon architectural components: system level IPC support, the transport protocol (aLTP-0T), host
and network interface architecture, and the communications processor (CMP).

2.1. IPC in the Axon architecture

Ipc is typically supported as either a shared variable or message passing paradigm. Shared variable
IPC is characterised by the use of read/write (r, w) primitives to shared data structures. Message
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Figure 1: Logical Axon Protocol Hierarchy

passing IPC is characterised by the use of send/receive (s, r) primitives, and requires explicit syn-
chronisation by the processes communicating. A generalised form of remote procedure call (GRPC)
is supported, in which the location of the procedure, data, and execution are all arbitrary. Addition-
ally, segment streaming is supported, which transports multiple segments at high bandwidth with
no explicit per segment request.

A logical view of the Axon protocol hierarchy is presented in Figure 1. It is important to note
that this is a logical view of function only, and does not imply that strict layering (in the 150-0s1
sense) is adhered to.

At the system level, the shared memory mechanism for IPC across the vusI is implemented by
Nvs (network virtual storage). This can be utilised by an application which references segments that
are non-local, through the facilities provided by GRPG, or by the use of segment streaming. Support
for message passing IPC is provided by a network message passing interface (NMP), which provides
the support for invocation of the appropriate message-based transport protocol operations. The
transport mechanism is supplied by an application-oriented lightweight transport protocol (ALTP)
tailored for the class of applications using IPC object transfer; this type is ALTP-OT. ALTP-OT resides
as a set of software modules in the host system, and as hardware in the communications processor
(cmp). The underlying internet/network layers of function is provided by a multipoint congram-
oriented high-speed internet protocol’ (McHIP) [MaPa89, Pa90], and network access protocols (NAP).
The GRPC and segment streaming 1PCc paradigms will now be described.

Generalised remote procedure call. A typical (local) procedure call is of the form:
call (procedure-name) (parameters)

which indicates that control will be transferred to the procedure named procedure-name, with input
parameters passed on invocation and output parameters returned on termination. Axon supports a
more general form of procedure call, in which the code and data segments can be located on arbitrary
and independent hosts, with execution specified for an arbitrary host, referred to as generalised
remote procedure call (GRPC). Conventional RPC [BiNe84] is a restricted form of Grec.

Using GRPC, a procedure is invoked which resides on either the local or remote host, is executed
on any host, with data parameters from any host:

call {procedure-name) {local | remote | (host-name)} (parameters)

t A congram combines the desirable features of a datagram with those of a (soft) connection. For the purposes of
this paper, it can be thought of a connection with the added attributes of rapid setup and survivability in the presence
of network failures.



Sterbenz and Parulkar 3

The symbolic specification of procedure-name is bound by the local system to a virtual address,
which is either on the local system, or on a remote host. The mechanism for accomplishing this is
provided by Nvs, and will be described later in this paper. The second parameter specifies whether
the execution of the procedure will take place on the local, remote (location of procedure-name), or
other specified host-name. The parameters are also bound to virtual addresses which may be local
or remote.

A number of useful call semantics arise from this model, some of which are not incorporated into
conventional RPC. Some of these are:

type program data  execution

program server  remote local tocal
conventional RPC  remote local remote
database access local remote local

Two significant cases arise out of the possible GRPC call types, depending on whether the pro-
cedure is to execute on the local host or on a remote host. This determines which ALTP-0T call is
used to perform the transport.

If the procedure is to execute locally, it does so under the context of the calling process. Any
segments (code and data) needed for the procedure invocation which are not locally resident are
fetched across the network with the get-segment ALTP-OT operation. This is done automatically by
the NVS implementation, based on the resolution of procedure-name and parameters.

If the procedure is to be executed remotely, the code segment (along with any data segments
part of the same segment access group) will be sent to the remote host for execution with the
remote-execute ALTP-OT operation. The corresponding ALTP-OT instantiation at the remote end is
then responsible for issuing the required system calls to create a process context for the procedure
execution. Any other required data segments from other hosts will be gotten at the remote host
using the usual Nvs mechanisms and get-segment operations.

Segment streaming. The special demands of high performance visualisation and imaging appli-
cations motivate an additional 1pc paradigm. Two mechanisms are provided to transfer segment
streams at high bandwidth with low setup overhead.

The first provides for the repetitive transmission of segments, sending them across an open
connection at time intervals specified by the program (interval synchronised), or whenever an ap-
propriate program call is executed {program synchronised). Examples of repeated transfer include
the transmission of successive image frames for motion video applications, and simulation data that
is periodically updated to be sent to a graphics workstation for local visualisation,

"The second type of segment streaming allows for the sequential (interval or program synchronised)
transfer of segments in a segment group. For example, a simulation that produces groups of data
points can transmit automatically when each additional group is complete, by placing the appropriate
program calls after data group generation.

The performance advantage of segment streamning is that a single ALTP-0T call performs the
request for all of the segments, and each segment can be transmitted when ready across a VHSI
connection without the latency of request or setup.
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2.2. System level IPC support

The system level support for the various application level 1Pc paradigms is provided by two com-
ponents: NVS and NMP. Nvs is the system shared memory interface for shared variables, GRPC,
and segment streaming IPC. Nvs is described in detail in Sections 4 and 5. NMP is the system
level message passing interface. It performs relatively straight-forward transformations from appli-
cation level primitives (e.g. send and receive) to ALTP-OT message passing calls (e.g. get-message
and send-message).

2.3. Transport protocol (ALTP-OT)

At the transport level, the VHsI model is best supported by a set of simple application-oriented
lightweight transport protocols (ALTP) for various classes of applications [BhSt88, PaTu90, StPag9b.
These transport protocols can have their critical path function implemented in vist hardware, The
critical path consists of the data path and routine control functions allowing data to flow once a
transport operation has begun. By optimising the critical path functions and processing multiple
packets in a single transport level operation, the per packet processing can be performed in real time
at the full vast data rate. For the protocol to be efficiently implemented in hardware, the protocol,
hardware design, and host operating system should be well integrated.

The ALTP type that is used by Nvs is designed to support 1PC by the transfer of objects {with
primary consideration in supporting Nvs segments), referred to as ALTP-O0T. ALTP-OT uses rate
based flow control, where the rate specification consists only of parameters important to 1PC, and
efficient error control streamlined to include only what is necessary for object transfer. The various
error conditions are handled by ALTP-0T as follows: duplicate packets are discarded; corrupted
packets are discarded with retransmission requested; missing packets are detected by the expiration
of a timer with retransmission requested; packet sequence is ignored since the packets are placed
directly in the proper location of the target store (sequence by placement).

Information is transferred throughout the vHSI in packets. A group of packets corresponding to a
single ALTP-OT sernantic action is a super-packet, consisting of an initial control packet (which may
also contain data), and optionally followed by data packets. In the case of a segment transfer (e.g.
to satisfy a remote segment fault), a super-packet consists of the entire segment. The correspon-
dence between host and network objects, and the resulting correspondence of control (e.g. segment
fault resolution and super-packet processing) provides substantial performance benefits, in terms of
reduced overhead of data buffering/reformatting and control synchronisation.

The ALTP-0T requests-include connection establishment/termination, segment/page/message
transfer, and packet retransmission. ALTP-OT is described in detail in [StPa89b].

2.4. Host and network interface architecture

High performance computer systems typically consist of one or more central processors (cpu), which
communicate with memory banks and 1/0 processors through an interconnection network. Commu-
nication is typically handled by front-end communications processors or network interfaces, which
use the /o interface to the host system. In the VHSI environment, it is necessary to provide high
bandwidth low latency data paths directly to memory, motiving new host architectures. Two host
architecture configurations are defined for the Axon architecture:
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Interconnect interface architecture (11A). The first host configuration gives the cMP (com-
munications processor) a relationship to the system similar to that of /o processors, thus interfacing
the cMP directly into the processor-memory interconnection network. This is referred to as intercon-
nect interface architecture (114). In addition, an interconnection between cMPs and 1/o processors
should be provided to allow direct, high-speed transfers between the network and 1/o0 controllers or
devices (which provides the path to auxiliary or secondary storage). Axon only imposes the require-
ment that the interconnection be rich enough to allow the added ¢MP connections, and high enough
performance to sustain the additional VISI communication traffic.

Memory interface architecture (MIA). The second host configuration interfaces the cMP to
a special multi-ported -communications memory module (cMM), which is referred to as memory
interface architecture (M1a). In this case, the MM has a conventional random access port which
appears like any other memory bank to the processor-memory interconnect. The other ports are
high speed serial access interfaces to the cMP. The design of the cMM is similar in concept to VRAM
(video-raM), and requires that the physical address space of the system be partitioned between
conventional and communications memory. More information on Axon host architecture and the
network interface is presented in [St90].

2.5. Communications processor (CMP)

The Axon architecture interfaces the cMp directly to the processor or memory, specifically as a host—
network interface processor. On the network interface side, the cMP must be capable of receiving
and transmitting packets at the full network data rate. On the host side, the cMP must either
interface to the processor-memory interconnect or the cMM, depending on the host architecture (114
or MIA respectively).

The primary design consideration of the CMP is to serve as the network interface to the VHsI,
as part of an end-to-end pipelined data path between application memory spaces. Thus the cmp
must have the ability to perform critical path functions in real time with no packet buffering, and
incorporate the necessary function in vLs1. This may be realised by organising the cMP as a pipeline,
dynamically reconfigurable based on the ALTP type and options for a particular connection. The
pipeline organisation allows packets to be processed while moving at the vusr interface data rates.
Greater detail on the cMP design is presented in [St90].

3. Virtual Storage Models

This section introduces virtual storage techniques in the context of extending virtual addressing to
the vHSI environment. The purpose is to provide background information, as well as to introduce
notation and ideas that will be built upon in the following sections on Nvs. The segmented model
with underlying paging is based on commonly used principles, as discussed in [De85, De70], and
motivated by a number of real systems, especially Multics [Be72, Or72, MaDo74]. Readers familiar
with the Multics virtual store may wish to only skim this section.

3.1. Introduction

Virtual storage provides the programmer with a logical view of memory, which is independent of the
physical size and organisation. This frees the programmer from storage management issues such as
program placement and relocation, fragmentalion, and garbage collection.
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The programmer within a source language views a name space, consisting of symbolic and relative
numeric addresses. The symbolic name is resolved to a binary address by a binding function:

B: X v

In this function, (v) € £* is a symbolic representation of the address, and v € V is the binary
virtual address to which it is bound. Symbolic addresses will be represented within angle brackets,
following the convention used by Multics. When the binding is performed at compile, link, or load
time, the binding is referred to as static (8,). Dynamic binding (84) is performed on any unresolved
symbols at execution time [MaDoT74].

The binding function allows programs to use symbolic representations of addresses, but it is still
desirable to allow the bound virtual addresses to be arbitrarily mapped to physical storage. The
program virbual address is translated to a physical address at execution time by a dynamic address

translation function (DAT):
a:V—R

where v € V' is a virtual address, and r € R is a physical, or real address. If the mapping for a
particular address does not exist (c{v) = @), then the virtual address specified must be resolved to

a location on auxiliary (backing) store:
o V—A

where a € A is the auxiliary storage location. The contents of @ can then be moved to some r € R
to create the desired mapping: var.

If all processes in the system share the same address space V, a single address space (sAs) virtual
store results. If each process (or set of processes spawned by a single parent), has a separate address
space Vj, the virtual store is referred to as multiple address space (Mas). This means that each

process ¢ has its own DAT function
o Vi— R

Particularly in a MAs system, the total virtual address space size may be much larger than the
real address space. Therefore, assuming that the virtual storage is divided into blocks, only a subset
of each process’ blocks can be in real storage at a time, the working set. The working set can be
modeled as those blocks Ba; C V' that have been referenced during the interval (¢,1 — At) [De68].
This is defined as the working set with window A¢. The working set of blocks in real store is an
approximation of the process locality set [Ma76, Ma82], whick is the subset of addresses in the
address space referenced during a particular phase of the execution.

3.2. Linear address model

In the linear address model, a program (after static binding) is a sequence of addresses
V = {0,1,...N}. The paAT function o maps these virtual addresses to a set of real addresses
R = {0,1,...M}. Typically, N > M to provide a virtual address space larger than the size of
physical storage, but in some cases it makes sense for N < M (e.g. in a time sharing system with
Imany users).

The DAT function is performed by a table lookup. To avoid a table entry for every virtual address
the address space is divided into blocks, allowing a single DAT table entry per block. For ease in
storage management, the blocks may be of equal size, called pages. Thus, the low order bits of v
are the offset into a page, and the high order bits define the page number, which is the index into a
page table.
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Arbitrary sharing of portions of address spaces between processes is difficult to manage, and can
only be accomplished by agreement on the virtual (binary) address ahead of time. This may be done
in systems by reserving virtual address ranges that are global to all processes, and by sharing entries
in a second level page table [IBM83]. Dynamic binding and linking is also difficult to implement
using a linear address model, since there are no logical address ranges to reference by name. Sharing
at the page level imposes artificial boundaries, not related to program structure.

3.3. Segmented address model

In the segmented model, the process name space consists of a set of named segments, each of
which is linearly addressed, either symbolically or by relative numeric offset. Note that the linear
address model can be considered a special case of the segmented model, where there is only one
segment. Segments are of variable size, where the length corresponds to the program or data object
represented. Thus, the virtual address space consists of a set of segments {sp, 51,...5¢}, with the
address range of each segment V; = {0,1, ... N;}.

Program addresses will be specified in the form (s}|o where (s} is the symbolic name of a segment,
and o is a relative offset into the segment (statically bound to a numeric offset).

In contrast to the linear address model, all addresses corresponding to the binary representation
of v do not exist, .e. the address space is sparse. Only offsets bounded by the corresponding segment
size are defined, and only segment identifiers corresponding to segments within the address space of
the process are defined. This provides automatic checking of addressing within segment bounds. An
invalid relative address (offset) still refers to the proper segment, and will generate an out-of-bounds
addressing exception rather than referring to the wrong program or data object.

Sharing of segments between processes follows very easily, simply by providing accessibility to the
same segments from multiple processes. The segment identifier (v.s) for a given segment need not be
the same among processes sharing the segment, and thus no agreement needs to be made a priors.
The segmented model provides a MAs virtual storage, and each process (set) has its own segment
tables. The ability to share segments results in performance benefits. For example, at most one
copy of a (pure, refreshable) code segment or read-only data segment need be active in the system at
once, resulting in lower demands for real storage, allowing larger working sets and higher available
cpPU-memory bandwidth (due to less swapping of multiple copies of segments). Dynamic binding
and linking also follows naturally, since symbolic addressing by segment name can be resolved to
the appropriate segment table entry at execution time.

Shared segments provide an efficient and natural mechanism for 1PC using the shared memory
paradigm. Processes communicate through the use of shared variables in a data segment; the
protection mechanism is automatic. In contrast, since in the linear addressing model the address
range of shared space must be known a priori, shared addresses are typically global to all processes.
The 08 must manage access to this space, to insure protection and correctness between the various
IPC process sets. In this case, much of the efficiency advantage is lost, and the implementation
degenerates to that of message passing, where processes send and receive messages via system calls,
which use the global shared space.

For performance reasons, a grouping of segments, called a segment access group, can be defined.
This specifies a group of segments which are transferred within the storage hierarchy, whenever one
of the segments is moved. This structure is also used to define the related segments for a sequential
segment streaming operation. Note that this is similar to a higher level of segmentation, but its
implementation does not involve part of the virtnal address or address translation process.
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3.4. Segmented model with underlying paging

Segmentation provides a model of virtual storage that is based on logical program structure, allows
natural sharing of program and data objects, and provides the framework for dynamic linking and
shared variable 1Pc. The benefits that paging provides to storage management can be extended
to the segmented model, by allowing individual segments to be paged. Storage management is
considerably easier in a paging system, since the placement policy is trivial, i.e. place a page in ANY
free page frame. The complications of placement, free space management and compaction that are
present under pure segmentation are eliminated. The process name space appears to be that of the
segmented model. Segments are of variable size, but to the resolution of (the lowest level) page size.

The pAT function & maps the virtual address v to a real address r. The low order bits v are the
offset into a segment (v.0), and the high order bits define the segment id., as in a pure segmented
scheme. The low order bits of the segment offset are the offset into a page, and the high order bits
of the segment offset define the page number within the segment. The DAT table lookup maps the
segment id. and page number to a page frame in real storage. Thus, this results in a translation
levels for both the segmentation and the underlying paging. In the simplest case, the virtual address
is split into three fields:

V= 0.5 V.p 0.0

The segment id. v.s is the index into a segment table (whose base address is bgr), which gives a
pointer to the appropriate page table. The page number v.p is the index into this page table, whose
entry contains the address of the page frame in real storage. The translation function is

7 = a(v) = v.0+ app(v.p + @pr(v.5 + bsr))

where opp returns the page frame address from the page table and apr returns the page table address
from the segment table.

As described, the DAT function involves a multi-level table lookup, which results in significant
overhead, since this must be performed for every insiruction fetch and operand reference. This form
of table translation will be referred to as @;. An alternative, which involves very little overhead,
is to use an associative map (o,), which accesses all entries in parallel, within the instruction or
operand fetch phase of the instruction cycle. The problem with this scheme is that the cost of the
associative hardware is high, and grows significantly with the size of the associative table.

The typical approach is to combine the techniques, having a full set of translation tables, and a
small associative map called a translation lookaside buffer (TLB), which contains recently used page
frame address entries for each process, keyed on [process-id., v.s, v.p]. Program address reference
locality allows the number of entries to be small for each process, e.g. for a page size of |p| a sequential
instruction stream trace will hit the same TLB entry |p| times. Sizes of only a few entries per process
are quite adequate to give a high TLB hit ratio. This combination technique will be assumed to be
in use from this point on.

Example implementation. A brief description of the structure of a possible implementation of a
segmented virtual storage with underlying paging will be considered. The data structures described
here are heavily influenced by Multics, as well as by Nos/VE and the System/38. A symbolic
namespace is available to the programmer, with facilities for dynamic linking. The relationship of
the tables discussed in this section are shown in Figure 2.

‘The system consists of a set of users. Each user u; has accessibility to a set of segments U/; through
a user directory UDir;, which can be viewed as a (possibly structured) capability list. Processes are
created by users, and the address space of a process x; consists of a set of segments accessible through
the ubir;, V; C U;.
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Figure 2: Segmented/Paged Address Translation

"The address space of the process is made accessible through the segment descriptor table (spT),
which contains one entry (SDTE) per segment. When a process is invoked, the sDT is built to initially
contain SDTEs for each segment which has been statically bound. If no static binding has taken place,
the sDT initially contains an entry only for the executing code segment. If segment access groups are
used, entries for all other segments in the access group of the executing segment will also be present.
As the process executes, when an unbound symbol is referenced the segment is located through the
uDir of the owner, and dynamically bound by adding an sDTE. To limit the overhead of UDir search
to once for each different segment, a known segment table (ksT) is built for the process, “cacheing”
the bindings (v)34v. Each time an unbound reference is encountered, the KST is searched. The uDir
is searched omnly if the binding is absent from the k3T, which is referred to as a link fault.

Segments are shared by the use of a system active segment table (AST), which contains the
descriptors for every segment in the system in use by some process. A segment is shared when
SDTEs from multiple processes point to a single ASTE (AST entry). Since the ASTE provides the
common pointer to a segment, it also contains all descriptor information for the segment that is
process independent (such as segment type, access allowed). Process specific descriptor information
for each segment resides in the SDT (such as access granted to a particular process).

When a segment referenced is not present (e.g. for the first time after a link fault), referred to
as a segment fault, the original copy is located on auxiliary storage. It is possible that the segment
is in active use by another process. If this is the case the activity bit in the segment header will be
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set, indicating that the AsTE-pointer field contains the address of the ASTE for the segment. In this
case, the sDTE for the process segment-faulting is set to point to this ASTE.

The ASTE for each segment points to the corresponding page descriptor table (PDT) for the
segment. Each PDT entry (PDTE) indicates if a page is in real storage with a presence bit, PDTEp. If
PDTEp = 1, the mapping « is valid, and the page frame address field contains the real address of the
page (r.p). If PDTE, = @, the auxiliary mapping o’ must be used, and a page fault occurs, indicating
that the operating system must retrieve the page slot from auxiliary storage using the page slot
location field of the PDT (a.p). Note that various organisations are possible for the page tables (e.g.
hashed indices), but the implementation of page tables is not important to the extensions that will
be described for the Nvs environment,

4. Network Virtual Storage

This section describes the extensions to the basic segmented paged virtual storage model to allow
segments to reside on non-local host systems. Then, the implementation of NvS in Axon is described,
which is based on extension of the data structures and mechanisms of a Multics-like virtual store.

4.1. Address translation extended to the network

In the Axon environment, segments may be located in any system on the vHsI. Symbolic virtual
addresses are a [segment-name, offset] pair or [host-name, segment-name, offset] triplet:

{v) |o
(R) (s} |0

In the former case, the user directory (Upir) which owns the process will resolve the segment name
(v} to a host name (k) and segment name (s) (on host &, which may be local). The symbolic segment
name is resolved to a binary address by a binding function:

B>V

In this function, {s) € X* is a symbolic representation of the address, and v € V is the binary virtual
address to which it is bound. When the binding is performed at compile, link, or load time, the
binding is referred to as static (4,). Dynamic binding (84} is performed on any unresolved symbols
at execution time [MaDo74].

The symbolic host name is bound to a network path or address, by a host name resolution

function:
v: X H

where (k) € L* is the symbolic name for the host, and & € H is the network address or path (e.g.
source route) of the host.

Note that as described here, the addition of a host portion of the virtual address does not change
the size of the virtual address space, it merely indicates the distribution of segments throughout the
network. Thus the basic unit of addressing to the program is still the segment. Under Nvs, the DAT
(dynamic address translation) function a, maps the virtual address » € V to a real address r € R
for a segment originating on a host & € H. Once a copy of the segment has been obtained locally,
the DAT function is the same as for a local segment:

an:V—R
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but if an(v) =@ the segment must be located on auxiliary (secondary) storage A on the appropriate

host in the internetwork:
al:V—oHxA

There are two ways to account for segments located on other hosts. In the first case, the virtual
address is split into four fields, and referred to as a network virtual address (NVA):

v=v.hv.sv.pv.o

The host id. v.h is the index into a host address table. The segment id. v.s is the index into a segment
table (whose base address is bsr) and the page number v.p is the index into the corresponding page
table, giving the page frame-address in real storage (r.p) and the page slot location in auxiliary
storage (a.p). The translation functions are

h=p(v.h)
r = a(v) = v.0+ app(v.p + app(v.5 + ber))

where ape returns the page frame address from the page table and ap returns the page table address
from the segment table.

In the case of a non-local segment, once the host name is resolved, the transport protocol
(ALTP-0T) is called to get a copy of the segment from host k. Location of (s} on k proceeds in
the same manner as for an h-local segment-fault. ALTP-OT returns a copy of the segment to the lo-
cal host, and the segment descriptors are built. Thus the processing of a segment fault is extended to
include remote link faults which bind to host id. and may interact with an internet name server, and
remote segment faults which require interaction between the virtual and real storage management
routines and the transport protocol.

Since the address space of a process is defined as the set of accessible segments, and the host
name is only necessary on a per segment basis, v.h is not necessary in the virtual address for
address translation. Thus, in this second case, v.h is located in the the segment descriptor, and
is not necessary for execution once a segment has been fetched to the local system. This allows
the use of a local virtual address (Lva) by the DAT hardware, with v.h extracted from the segment
descriptor only on remote segment fault. It should be noted that 1va based translation has the
obvious advantage of more compact address representation, as well as compatibility with many
existing virtual address formats. There may some host architectures, however, where address space
size is not a problem and the use of NVas is desirable, since the presence of v.h as part of the virtual
address provides immediate access without indirection to the sDT (e.g. in the case of page faulting
across the network — see ASR remote placement policy in §5.4), or in the case of a subnetwork of
hosts that form a dense segment space with id. [v.h v.s].

Multiple levels of host addresses, as well as multiple segmentation and paging levels, are possible,
with virtual addresses of the form

v=vhg vy 0 R VS, ViSpo1 .. .81 VP VPm—1 ... 0.0 V.0

This would correspond to a hierarchy of networks (e.g. local net, subnet, internet autonomous
domain), containing a hierarchical organisation of segments, with multiple levels of paging tables
underneath. It will be assumed for this discussion that any host hierarchy is collapsed into a single
level of host name (A1). In particular, if a hierarchical host name (such as in the DoD Internet
domain name system) is used, the hierarchy will be transparent to the local systemn, and will be
resolved by a hierarchical internet name server. A single level of segmentation above a single paging
level will also be assumed.
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Note that Nvs might be thought of as simply another level in the address mapping hierarchy:
cache — real storage — auxiliary storage — network. The behavior of 3-level addressing is well
understood [Ma77]. A very important distinction exists for the network level, however. In the lower
levels, strict assumptions can be made about the behavior of the system. In particular, the network
level adds considerable complexity in the effect of errors (packet duplication, loss, and sequencing).
In addition, at the network level the distribution of end-to-end latency may be considerably different
from lower levels. Furthermore, issues concerning flow/rate control must be considered. It is the
transport protocol (ALTP-0T) that hides this additional complexity from the programmer. Finally,
with the incorporation of video segments the lower level mappings are different than for the case of
code and data segments, e.g. the video frame buffer must be incorporated into the storage hierarchy.

4.2, Implementation

This section provides a brief description of the implementation of the Axon network virtual storage
address translation data structures and mechanism. The relationship of the tables discussed in
this section are shown in Figures 3 (Nva) and 4 (Lva). Address pointers and relative offsets are
represented by arrows on solid lines, and other location information (e.g. disk cylinder, track, record)
by arrows on lines with infrequent breaks. The copying of data structures (e.g. a segment) or fields
(e.g. descriptor information) is represented by arrows on dashed lines. Note that the alternate paths
for the returning segment s labeled RS and As correspond to the remote placement policies real
storage and auxiliary storage (§5.4).

Segment types. Axon segments are of two types: memory and video. Memory segments are
either code or data subtype. Memory segments are divided into pages, and may be organised into
segment access groups of related segments for performance reasons. Video segments are either text or
graphics subtype. Graphics segments are bit-mapped video image frames; text segments correspond
to a text window on a workstation. Video graphics segments are divided into scanlines, and may be
organised into multi-plane images (e.g. a color image of R+G-+B frames).

Segments have attributes of read, write, execute, indicating the type of access allowed. These
access bits in the segment descriptor may differ from the (more restrictive) capabilities that individual
users possess, or the descriptors of individual processes. Code segments are assumed to be pure
(refreshable), and therefore always have access attributes of execute-only. Data segments may be
readable and/or writable.

Host name binding. TFor Nvs a table which maintains the host name to address resolution (h)rh
is necessary, so that v is performed only once per host per process. This is the known host table
(kHT), and for each process contains fields for host name {k), host address/path (h) and connection
id.

If the host name binding is not in the process’ KHT, a kHT-miss occurs. In this case, the
systemwide host address table (HAT) is searched which maintains the host name resolution binding
v, for the entire local system, consisting of host name, host address, and connection id. fields as in
the XHT. If the host address/path is not known to the entire system, a host address fault occurs,
and a request is made to an internet name server. The time-to-live field indicates the life of the
binding, after which the HAT entry (HATE) is deleted. The HATE also points to a chain of pointers
to ASTEs (AST entries), indicating active segments to be located originating from each host. This
allows location of a segment already locally active due to a remote segment fault by another process
(assuming that global access is allowed; otherwise the request will have to be authenticated by the
owning host).
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Figure 3: Network Virtual Storage Address Translation (NvA)

The host name database (HND) is a generic name for the (possibly distributed) database that the
internet name servers use to perform the host name to address/path resolution »;, when requested
by a host. This structure is assumed to exist, and be transparent to local hosts.

As in the local environment, the known segment table (KST) maintains the binding function
(s)Bgv.s, but a field must be added to indicate the host from which the segment came. Thus the
KST entries contain the host id. (v.h) field along with with the segment name (s} and segment id.

(v.s).

Segment descriptors. The segment descriptor table (SDT) contains descriptors for each segment
in the process address space, consisting of the process specific attributes. The fields are access
bits (read, write, execute, shared), state bits (valid, remote-copy), pointers to the segment’s active
segment table (AST) entry and page descriptor table (PDT), the segment location (a.s) in auxiliary
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Figure 4: Network Virtual Storage Address Translation (Lva)

store, and the host id. for Lva format translation. Some of the spT fields mirror AsT fields, to allow
efficient access without indirection to the asT.

The asT (active segment table), which contains the descriptors for every segment in the system,
consists of the segment specific attributes. The AST entry has bits indicating the segment type
and subtype, state bits (present, valid, copy, swappable), access rights (read, write, execute), cache
control bits (cacheable, write-through), the segment location (a.s), and pointers to the PDT and
owning process’ APTE (active process table entry). Nvs requires several additional fields not required
in the local environment. The copy bit indicates if the segment is a copy from a remote host. The
valid bit indicates if the segment contains valid data, or if it has been invalidated by the segment
coherency protocol. The locked priority and queue fields are also used by the segment coherency
protocol. The connection id. field associates a remote segment with a particular MCHIP internet level
logical connection.
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The PDT (page descriptor table) contains descriptors for each page in a segment, consisting of the
page specific atiributes. The fields are access bits (read, write, execute, shared), page-presence, state
bits (nailed, referenced, modified, {segment-Jlocked), cache control bits (cacheable, write-through),
an unreferenced interval time field for the replacement policy, real storage page frame address, and
auxiliary storage page slot location. Note that since sharing is done at the segment level, Nvs has
little impact on the page table organisation, which may be whatever is appropriate for a given
host system. The exception is that if the PDT is used to mark packet arrival, the presence field is
supplemented by a packet-vector, which is a bit vector marking presence for each packet in the page.

Remote segment location. Three mechanisms allow segment location at the remote end of the
connection (e.g. in response to a get-segrment), as indicated in Figure 5.
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Figure 5: Remote Segment Location

[1] A segment request can be associated with a userid at the remote end. In this case, the
associated UDIr will be searched, just as for a local request. If the segment attributes allow public
access, the segment can be returned to the local end. Otherwise, an access control list {acL)
associated with the segment will be checked with the userid and enerypied password of the requester
to check authorisation.

[2] Segment requests can be for well-known segments, which have had their names advertised
throughout the VHSI, and are found through the systemwide well-known segment directory (wsD).
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Access to these segments can either be public, or with ACL verification, as in the previous case.
The WsD entries contain the segment name (s), segment location (a.s), access rights (read, write,
execute), and pointers to the segment owner and 4ci.

[3] When process are engaged in a n-way IPC connection, special data structures assist in segment
location, based on the connection id. {which corresponds to the MCHIP congram id. [MaPa89, Pag0]).
Each 1PC-set has its common portion of the address space defined by a multipoint rPc segment table
(MsT), which provides accessibility to all shared segments involved in the 1PC by connection id. The
MsST entries have a segment name field (s), and pointers to the segment’s ASTE and the owner’s
APTE. The system active interprocess cominunication table (AIT) locates (by connection id. and
possibly IPG subset id.) the MsT for a given 1PC set. Note that all of the segments identified by the
MST must be active (for some process), and therefore have descriptors in the owner’s sDT and AST
for each host involved in the n-way 1PC.

Performance aspects. NVS in Axon is based on natural extensions to data structures and fault
resolution mechanisms of a standard segmented paged virtual store, and many of the performance
issues are similar. In particular, the overhead in DAT table lookup is much the same, with the use
of a TLB to provide adequate performance. Thus the performance of NVs address translation is
the same as for conventional systems, except for remote link and segment faults. The performance
of a remote segment fault is primarily related to the end-to-end latency of the internetwork, the
bandwidth of the connection, and the performance of ALTP-0T, and is thus not discussed here. The
significant performance issues that remain are related to storage management policies, which are
discussed in Section 5.

It should be noted that the speed-of-light component of end-to-end latency does not scale to
VHSI data rates, and is increasingly dominant for wide area networks. One significant benefit of
segmentation as the unit of object transport across the network is that program and data structure
locality is exploited to to prefetch and cache pages, avoiding per page fault delay. Certain applications
may also prefetch segments based on knowledge that they will be needed, either by reference or an
explicit ALTP-OT get-segment call.

4.3, Example NVS segment transfer

The Nvs mechanisms and relationship to ALTP-OT operation in the Axon architecture will be in-
troduced by the description of a segment transfer. Explicit references to Figure 6 in this discussion
are enclosed in brackets: [ ]. Figures 3 and 4 can be consulted for the relationship between Nvs
data structures. Note that certain assumptions and policy choices have been made for clarity in this
discussion.

An executing process has associated with it a virtual address space, which is a subset of the
segments available to the user which owns the process. When a process refers to a remote segment,
either explicitly by name, or via a GRPC, the appropriate segments must be transported from the
desired system. The segment is located, either by an explicit reference to the segment and host
name, or by resolution of the host name associated with the segment capability stored in the user
context directory (Unir). The first time a segment is referred to symbolically, a link fault resolves
the name and location, and adds the segment binding to the ksT (known segment table), and host
name binding to the KHT (known host table) for the process. This allows further symbolic references
to avoid the overhead of searching the user context for segment attributes. In addition, an entry is
added to the process sDT (segment descriptor table), which contains the process specific attributes
of the segment. An entry is added to the system AST (active segment table), which contains the
attributes of the segment commeon to all processes sharing the segment, if the segment is not already
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Figure 6: Interaction of Axon Components

in use by another process. The mechanism for sharing is to have the sDT entries of multiple processes
pointing to a single AST descriptor, which refers to a single instantiation of the segment. When a
remote segment transfer is necessary, the transport mechanism is accomplished by ALTP-OT.

The critical path function of ALTP-0T is implemented in the cmpP hardware [ALTP-critical], and
includes the data path and routine control functions (error and flow control). The non-critical
part resides in the systems software on the host (or CMP assist processor [St90]), and is tightly
integrated with the host architecture and operating system [ALTP-host]. In particular, the host
portion of ALTP-OT must have direct access to operating system services such as the scheduler [os-
sched] through lightweight system calls, and be able to manipulate virtual storage management data
structures [vs-tables].

The remote transfer is initiated by an ALTP-OT operation such as get-segment, which retrieves a
segment from a remote host for local use. This requires a connection between the two hosts, thus
ALTP-OT issues an open call to MCHIP which establishes the connection if not already present from
a previous call. In addition, the cMP data pipeline is configured appropriately for the connection.
ALTP-OT then sends the get-segment control packet out the vHsI link interface and through the
internet, using the established connection.

At the remote end, the CMP receives and decodes the control packet at the internet link interface,
and passes it to the host operating system. The normal mechanisms for locating the segment and
authenticating the request are used. When the segment is found, locks are set (if necessary), and a
copy of the segment is returned to the requesting host in a super-packet along the same connection.
The data packets consist of fragments from each page of the segment, with an integral number of
packets per page. Note that if multiple segments are defined within a segment access group, all of
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them are returned in a single super-packet. Thus the unit of structure is a superpacket [o] consisting
of a segment group [g] of segments [s] of pages [p] of packets [r].

At the local end, storage has been allocated for the returning segment(s), based on the estimated
segment size || and remote segment placement policy in use (either [real store frames] or Jaux store
slots]}. The data packets contain the actual segment size |s|, allowing adjustments to be made in
the estimated storage allocation. The header of each data packet also indicates the packet and page
(and segment) number (%, j, k), as well as the connection and request ids. Since the connection has
been established, the cMP pipeline configured, and storage allocated, packets are placed directly in
storage according to the remote placement policy; no buffering of the data by the cMPp takes place,
the order of packet arrival is not significant (sequence by placement), and there is no involvement of
MCHIP or the host software portion-of ALTP-0T. The structure of data between the cMP and target
memory is the page [p’]. ‘Note that the peer-to-peer connection between ALTPs is physical, without
the strict calling and data copying involved in the osI-or other layered models, and there is none of
the overhead associated with multiple packet encapsulation/decapsulation between layers.

When certain events occur, the CMP issues a signal to the host software portion of ALTP-0T. For
example, each time all of the packets of a given page have been received, the presence bit in the
PDT (page descriptor table) must be set, and a lightweight system call must indicate to the low level
scheduler that the process can be dispatched, as in the standard page fault recovery mechanismi.
When the entire segment has been received, the presence bit in the AST (active segment table) is
set, and the ALTP-OT connection idles until the process ends, or an explicit leave-ipc is issued.

5. Nvs Storage Management Strategies

Given the importance of storage management policies in determining virtual storage performance
in the local environment, they must be reconsidered in Axon to allow the optimisation of NVs
performance, as well as to insure that local operation is not adversely affected by remote segment
access. These policies are fetch (when to get an auxiliary storage object for real store), placement
(where in real storage to put it), and replacement (which object to replace to auxiliary storage to
make space for new fetches). In the NVs environment an entirely new storage management policy
arises: that of remote segment placement, i.e. where segments are physically placed that become
part of the local virtual address space when copied across the vHsI. Each of these policies will be
discussed in the context of Nvs, with particular emphasis on the replacement and remote placement
policies.

5.1. Fetch policy

Local to a system, the fetch policy is that of demand paging. Under NVs, segments that are on
a remote host are fetched demand segment, which can be thought of as anticipatory at the page
level, since when a segment is fetched across the internet all of the segment’s pages are fetched in
anticipation of their possible use. This takes advantage of the program and data structure manifest
in the segmentation to help overcome the end-to-end latency effects in a wide area network or
internetwork.

5.2. Real placement policy

The placement policy determines where objects are placed in real storage. In a local environment,
the consideration is where objects will be placed in real storage to maximise storage utilisation and
minimise overhead. In the Nvs environment this will be referred to as the real placement policy.
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Nvs has no impact on this policy since in a paged system all units of data transferred between real
and auxiliary store are of uniform size, and the placement policy is trivial: use ANY free page frame.

5.3. Replacement policy

There are two levels at which replacement policies are typically implemented. Hardware replacement
can be implemented as not-used-recently (NUR), which uses bits indicating that a page has been
accessed or modified to determine a reasonable candidate for replacement. NUR gives a reasonable
approximation fo the performance of one of the more sophisticated algorithms, such as least-recently-
used (LRU), but with an efficient hardware implementation. In Axon, host systems use whatever
hardware replacement policy is appropriate, such as NUR.

At the software level, the operating system should attempt to maintain a pool of free pages,
avoiding the need to replace a page using hardware replacement. Thus when space for a page is
needed, it is simply reclaimed from the free pool, rather than possibly requiring that a dirty page
be copied back to auxiliary storage. The software algorithm can be any reasonable algorithm, such
as LRU, which provides a good estimate of the locality set. This can run concurrently with all other
processes, and use idle cPU cycles and /o bandwidth to maintain the desired free pool.

Assume that the working set of pages in real storage is Pa; C V (working set window of At)
[De68]. In the NVs environment, pages from local segments Py are considered separately from those
from remote segments P,, the working set is defined as Pray, U Pras, = Pas. By setting ¢, > 14,
remote segments are given a relatively larger share of the process working sets, and are therefore
subject to less page fault delay. For processes that use a remote segment for a short period of
time, this may reduce the total time that a remote segment is held and possibly locked from other
processes. An alternative is to increase the entire (remote and local) working set of processes with
any remote segments, over processes that have no remote segments. This avoids increasing the page
fanlt delay for local segments of processes having some remote segments.

The implementation of this extended working set algorithm is to use LRU, with virtnal time
t,~1; subtracted from the unreferenced interval time field for the appropriate pages. This gives the
appearance that these pages have been more recently used. This can be done either to all remote
pages, or to all pages for processes that are using any remote segments, as discussed above. An-
other mechanism for favoring processes which hold remote segments is to increase their dispatching
priority. The processes with remote segments can also be favored by marking them non-swappable
(ASTEs = 0).

The effectiveness of these schermes is somewhat dependent upon the segment coherency algorithm.
A detailed exploration of coherency algorithms is beyond the scope of this paper; a simple priority
based segment locking scheme is currently assumed.

5.4. Remote segment placement policy

In Axon Nvs, the virtual address space V = V; U V; of a process consists of a set of local segments
Ve and remote segments V.. Since segments of variable size are fetched across the vHsI, there is
significant potential for performance impact and the placement of the segment becomes important.
The algorithm for determining the placement of remote segments is called the remote segment
placement policy. A number of remote segment placement policies can be identified:

AS — auxiliary (or extended) storage placement:
Two possibilities exist for the placement of segments in auxiliary storage. Segments can be
placed in local auxiliary storage (ASL), or remain in remote auxiliary storage (AsR).
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ASL — auxiliary storage local: Remote segments V,. are fetched across the vHsI, and placed in
local auxiliary storage, along with all of the active copies of local segments V;. Pages are moved
to real storage when a page fault occurs, in exactly the same manner as for local segments.
The sub-policy for placement within auxiliary storage needs to be considered, especially if
contiguous disk allocation is used (first-fit, best-fit, etc). In the case of a video segment, the
normal mechanism for fetching to the frame buffer is used. This is the simplest scheme to
implement from the viewpoint of the host operating system.

ASR — auxiliary storage remote: Remote segments are left on the auxiliary storage of the
remote system. In this case, only pages are fetched across the network, with each page fault.
This policy makes sense only when the network latency is considerably less than the disk
latency, e.g. in 2 LAN subnet. On . the other hand, in a high performance local environment,
active pages would be located in extended storage or in the disk controller cache, whose access
time may be below the latency of even a single LAN hop. Therefore the tradeoffs between asL
and ASR are directly affected by internet/subnet and real/auxiliary storage latencies.

RS — real storage placement:

In this scheme, segments are placed directly into page frames in real storage. The main
disadvantage of RS is that this causes the working set of processes to contain all pages of
remote segments, including those which are not part of the locality set for each execution
phase. Clearly this could cause a shortage of real storage for pages of local processes. On the
other hand, Axon provides a direct path from CMP to real storage operating at VHSI network
bandwidths. The path to auxiliary storage may be much slower, introducing considerable
blocking if As is used, particularly in the absence of extended memory or auxiliary storage
controller cache. The choice of RS vs. AS is also affected by the host architectural configuration
(§2.4). In particular, memory interface architecture strongly suggests Rs, since the cMPp is
directly connected to a cMm which is part of real memory. Variants of RS are possible, based
on the pagability and swapability of the segment:

RSN - real storage nailed: the page frames are nailed (non-pagable: PDTE, = @) in real storage,
t.e. the page frames are marked non-pagable, and the segment is non-swappable (ASTE, = §).
This is an attempt to improve performance for processes using remote segments, allowing them
to be released more quickly.

RSS — real storage swappable/nailed: the page frames are nailed (i.e. no individual page move-
ment takes place) but the segment may be swapped to auxiliary store (allowing the 0s to adjust
multiprogramming level and real storage availability). This requires that the swapping rou-
tines called by the intermediate scheduler recognise that a copy does not exist in auxiliary
storage, and swap-out the entire segment rather than just the working set, and is indicated by
a remote segment-(ASTE; = 1) that is swappable (ASTE; = 1) but not pagable (PDTE, = §).
Rss provides some of the benefits of RSN in avoiding the delay associated with page faults,
while still allowing more performance and load balancing control to be exercised by the 0s as
in ASL.

RAS — rea] and auxiliary (or extended) storage placement:
In this scheme an initial working set estimate of the pages Pa; C V; is placed in real stor-
age, and all segments V. are backed to local auxiliary store. Paging and (and conditionally)
swapping are allowed as for any local segment. Clearly the first page referenced should be one
of the pages placed in real storage. This page is determined by ALTP-0T based on the offset
portion of the virtual address. Any additional pages placed are based on a prediction of the
meimory reference trace p(; ¢4ar)- It is not clear that this scheme would be any more successful
than an anticipatory paging scheme in the local environment, although if the operating system
performs limited page prefetches (such as the NEXT sequential page), this may be applied in a

like manner for RAS.
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FB — frame buffer placement:

This policy corresponds to Rrs, but for video segments (assuming that the frame buffer is not
real-memory mapped). This requires that packets are recrganised into the frame buffer format
in real time, including the spatial transformation corresponding to the appropriate coordinates
of the target window. F'B may alsc have implications on error control exercised by ALTP, in
particular relating to packet sequence. One solution is to utilise a double buffered structure,
with the monitor driver from the active frame buffer, and a shadow frame buffer which is
loaded from the cMP. When an entire segment is present in the shadow buffer, the window
can be moved to the active frame buffer. In addition, the structure of the shadow buffer should
account for windows which are obscured by other windows, and hold the entire contents of all
windows for quick response of workstation window manipulation.

6. Related Work

Early work in the research community on IPC and the design of distributed systems was done in the
context of tightly coupled multiprocessor systems, as opposed to loosely coupled systems situated
across local and wide area networks. There were only a few exceptions to this trend, including
DCs [Fa88, FaT75, FaFe73, FaHe70], and the Newhall ring [MaPe75)], but these both were in the Lan
context.

There has been some research on exploring the shared memory paradigm for 1PC over the network,
exemnplified by Memmnet and Locus. Locus [PoWaB5, WaPo83, PoWa81], a UNIX variant based on
a distributed file system, has had uNIx System V communication primitives added, specifically,
messages, semaphores, and shared-memory [F186], with current work extending this support to
provide the shared-memory across a network [FI187].

In the case of Memnet [De88, DeSe88, DeFa85], processes communicate across a ring LAN by
reading and writing into shared memory. Memnet’s emphasis has been on studying cacheing al-
gorithms and their hardware implementations, to reduce the network traffic and to avoid network
latency for remote memory accesses. However, Memnet assumes a perfect communication medium
with no errors, and does not allow virtual storage. The CapNet project [TaFa89)] is extending
the Memnet work in directions complementary to Axon, but with different emphasis. The Apollo
poMaIN [LeLe83, Ap85] system also provides a shared memory interface on a LAN ring.

There are also other research groups that are starting to explore use of shared memory for
IPC across network, including current work on Ivy, Mermaid, Shiva, Ra, and the Tapestry project
[CaRe88, CaRu88]. The Ivy[Li86, LiHu90), Mermaid [LiSt88], and Shiva [LiSc89] research explores
a shared virtual memory, with particular emphasis on providing page level coherency, and accom-
modating heterogeneous systems. Unlike Axon, the granularity of object transfer is the page, rather
than the segment. The Ra [AuHu87] kernel project for the Clouds distributed system includes an
investigation of distributed shared memory (psm). This consists of exploring alternative address
translation schemes and memory management hardware [RaKh88b], with particular emphasis on
the object orientation of the system [RaKh88a].

A segmented, paged virtual store was first implemented by Multics [Be72, Or72, SpOr75] on
a GE-645 and the Ism 360/67 [IBMT72] running 1ss/360 [Co65, Le65, IBM78a]. The Multics line
continued on the His 645, 6180, prs-60/68, DPs-8/M, but has now been terminated. Modern systems
that owe significant heritage to Multics include the Cbc Cyber 800 Nos/VE [CDc84a, CDc84b] and
Prime 50 Primos [Aula83a, AuLa83b]. Segmented virtual store was not used by other operating
systems in the IBM System/360 and 370 family, until the addition of features provided by EsA /370
[ScGaB9, P189, IsM88a] under Mvs/EsA [IBMB8D)].
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Additionally, systems that provide a segmented paged virtual store include the Inm As/400
[IBM88c] and System/38 cpF [IBM78b, IBM86, IBM85], AT&T 3B series [HeKu83, ATT86a, ATT86b],
Intel iapx432 [In81, In83a, In83b] 80386 [In86b, In87] i486 [In89a, In89b] and 80960 [Ind8], and
Motorola 68030 [Mo87].

7. Conclusions

‘There has been significant progress in the areas of communication and computer architecture over the
past {few years. We will soon have communication networks and internetworks that can support data
rates of more than hundreds of Mbps, and have computers that can process numerous demanding
applications such as video distribution, computer imaging, distributed scientific computation and
visualization, distributed file and procedure access, and multimedia conferencing. These applications
in a network environment can be characterised as needing to transmit large bursts of data with sub-
second latency. The major bottleneck in supporting these applications remains at the host-network
interface. In particular, IPC performance across a network has not kept pace with the demands of
applications and the data rates of underlying networks.

We have proposed a new host communication architecture for distributed systems called Axon,
which can support 1Pc with high throughput and low latency across the vAsi. In this paper we have
described the design of Nvs in the Axon architecture. This includes the extension of the standard
segmented paged virtual storage model to include segments across the vasI, and discussion of various
storage management policies and their tradeoffs in the NVS environment. Work is in progress on
analytical and simulation models to evaluate these tradeoffs more rigorously, and on a prototype
Axon implementation.
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A. Network Virtual Storage Data Structures

This appendix gives the specification for the data structures used by nvs. For each table, the
existence item indicates whether it is present on a per user, process, system, or internetwork basis.
Then, a brief summary of the usage of each table is given, followed by an indication of what part
of the table supports the remote aspects of the Nvs environment, which would not be required in a
conventional tightly coupled virtual storage system.

Finally, the format of each structure is given. Pointers are indicated by the | symbol, e.g. Tz
is the address of z. A location indication of an object, which is not an address, is indicated by the
1 symbol, e.g. fs indicates the location of s, which might be in the form of disk [eylinder, track,
sector]. At the top of each table, the descriptive name of each field is given. Within each table, a
row is shown, which gives the symbolic representation of the field (when appropriate). Fields which
are bit strings are represented by a string of variables; a descriptive name of each is below the field.
The fields that index into a table are indicated next to the symbol |.

A.1. KST {Known Segment Table)

¢ Existence: per process

Usage: Stores symbolic segment name bindings (8 : {s) — v.s5,v.h) so that linkage fault
resolution occurs only once per process per segment. The hostname (k) is maintained to allow
the use of multiple segments from different hosts with the same name.

» NVS support: Host name and number fields (A}, (v.h)

e Format:

name | segid | host | hostid

{s) v.§ {h} v.h KSTE

0 = local
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A.2. KHT (Known Host Table)

A.3.

Existence: per process

Usage: Stores symbolic host name to network address or path bindings (v, : {h) — k) so
that host fault resolution occurs only once per process, and that the host name binding is
independent of the binding life of HAT entries. The KHT is indexed by the host number portion

of the virtual address (v.h).
NVS support: Entire table

Forrnat:

host | adr/path | connid

v.h | (h) h ¢ KHTE

SDT (Segment Descriptor Table)

Existence: per process

Usage: Descriptors to provide accessibility to all segments/frames within the address space of
the process. Contains segment attributes that are unique to the process. Address translation
uses the SDT (via the ASTE) to locate the page table (PDT) for each segment. The sSDT is
indexed by the segment number portion of the virtual address (v.s).

NVs support: Remote field; If tva format address translation is used, a v.h field is present.

Format:

TASTE | access | state | hostid | fiseg | TPDT

1.8 es LS ve v.h a.5 by SDTE
read valid LVA for no
write | remote | only indirection
exec

shared
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A4

AST (Active Segment Table)

Existence: per system

Usage: Descriptors to provide accessibility to all segments/frames in active use by the system.
Contains segment atiributes that are common to all processes sharing each segment. Provides
segment accessibility for the system, and to the processes using each segment. The system
address space is defined by the asT.

Nvs support: Copy (of remote segment) and valid state bits, connection id. field, and lock
fields for segment coherency protocol; If the Lva format address is used, a v.h fleld must also
be present.

Format:

fiseg | TPDT | length | type | subtype | state | cache | rights | lock | TaPTE | cid

a.5 by { mfw | ¢/dViig | pucs cw rwz [{p 1Q et e
l5l/l2]l | mem code pres | cache | read | locked
data valid | w-t write | prty
video text copy exec | queue

graphics | swap

PDT (Page Descriptor Table)

Existence: per segment, or a single system page table containing entries for all processes (may
be preferred if a hash function is used to locate PDTES).

Usage: Locates pages/scanlines in real memory (page frames), and in auxiliary or extended
memory (page slots), and provides state information for virtual storage management. The
PDT is indexed by the page number bits of the offset portion of the virtual address (v.p).

Nvs support: Packet presence vector x if implicit PDT packet-to-page mapping is used. Host
id. if Lva format address translation used with -AS® remote placement policy.

ASTE

Format:
Tframe | fislot state presence cache rights | uit | hostid
1
v.p r.p a.p nrml PO - - TWypl /il cw TWE At v.h PDTE
nailed page-presence cache read | unref
referenced | packet-vector | write-thru | write | intvi
modified exec | time

locked
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A.6. HAT (Host Address Table)

Existence: per system

Usage: Caches symbolic host name to network address or path bindings (v; : (h)— h) for the
entire system so that processes do not need to access a name server with every host fault.
Provides accessibility to remote segments active from each host.

NV$ support: ASTE chain pointer and connection id. fields

Formadt:

host | adr/path | TTL | connid | {TASTE

Vg

‘ > | {51) | TASTE; || (s2) [ TasTE; | --- || x | ASTE chain

A.7. HND (Host Name Database)

» Lixistence: per internetwork ~ distributed among name servers

*» Usage: Used by nameservers to resolve host names to network addresses or paths (v, : (k) —h)

e NVS support: None
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A.8. WSD (Well-known Segment Directory)

o Existence: per system

e Usage: Descriptors providing access to segments whose name is advertised as well-known on a
particular systern.

» NVS support: Entire Table

e Format:

name type frseg/wsD | rights | Tparent | Jowner | JACL

{s) s/d a.s rwe by ey l; WSDE
segment read
directory write
exec

A.9. AIT (Active Interprocess Communication Table)

Existence: per system

Usage: Identifies n-way IPC sets based on connection id. and 1p¢ subset id., and provides access
to the associated segments and processes through the msT.

Nvs support: Entire Table

Format:

connid | IPG subset | TMmsT

c i bm AITE
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A.10, MST (Multipoint Interprocess Communication Segment Table)

» Existence: per IPC set

e Usage: Identifies segments involved in an n-way IPC connection, allowing segment location
by other hosts invelved in the connection. If the segment is a code segment that has been
instantiated as a process, a pointer is provided to the corresponding active process table entry.

e NVs support: Entire Table

L]

Format:

ame

TASTE

TAPTE

€g

e MSTE

A.11. TLB (Translation Lookaside Buffer)

Existence: per system

Usage: Associative store of address mapping function (o, : pid, v.s, v.p+— r.p) for fast access
avoiding the overhead of table lookup. Separate entries are maintained for each running

process.

Nvs support: Host id. for dense [v.2, v.s] address space only

Format:
processid | hostid | segid | page#t | Tframe state cache rights
@ v.h v.8 v.p T.p vrmis cw TWE
Cq

—_— valid cache read
referenced | write-thru | write
modified exec

locked

shared

TLBE
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