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1. Overview

This working paper reports several aspects of a series of experiments using Laws’ texture
eNeTgy measures (1l {TEM) to classify texture in aerial photographs. Within this work, the
standard training set paradigm was used. Results will be presented which (a) indicate the
accuracy of Laws’ TEM when the training set is in the same image as the points which are to be
classified, {b) indicate the accuracy when the training set is.in a different image than the points
which are to be classified (when the images are in the same photographic space and different
photographic spaces), and (¢) show the results of classifying an entire 512x512 image, both when

the training set is in that image and when it is not.

Previous work has been done to determine the effectiveness of Laws’ TEM for classifying
texture. This is an extension of that work. For a description of the training set paradigm and

a comparison between co-occurrence matrix methods and Laws’ TEM, see [2].

1.1. Images

Three images were used in these experiments. These three images are portions of a stereo
pair (left and right photograph) of the Washington, DC area. The left photograph and right
photograph will be termed to reside in different photographic spaces because they were taken at
different times of the day and have different photographic properties. Specifically, the left
photograph has a morning haze which tends to obscure features in the photograph, while the
right image has no morning haze and is much sharper. There are other artifacts which

differentiate them also, such as the length of shadows and the presence of cars.

The image shown in Figure 1, image.r, is a 512x512 "chip" from the right photograph
showing a portion of the Washington DC area around the Lincoln Memorial. Figure 2, image.l,
is the corresponding "chip” from the left photograph. Figure 3, image.o, is a “chip" from the

right photograph just above image.r and overlaps it slightly; this third image was chosen
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Figure 2: image.}

because it contains all the texture fields present in the other two "chips".
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Figure 3: image.o

All three images will be used to determine the accuracy of Laws’ TEM as training/test
sets are used within an image and across images. All pixels in image.r and image.o will be

classified using a training set of points selected from image.r.

1.2. Training/Test Sets

Ten training/test sets were developed for use in these experiments: cttsl.r, ctts2. T,
and etts.r reside in image.r; cttsl.l, ctts2.1, and etts.1 reside in image.l;
cttsl.o, ctts2.o0,and etts.o reside in image.o; btts.r resides in image.r. The
training/test sets cttsl.r, ctts2.r, cttsl.l, ctts2.1, cttsl.o, ctts2.o, etts.o
and btts.r will be designated as central training/test sets because their points lie in the
center of texture fields. The training/test sets etts.r, etts.1, and etts.o will be
designated as edge training/test sets because their points lie near the edge of texture fields (2 or
3 pixels from the edge). (ctts stands for central training/test set, etts stands for edge

training/test set, and btts stands for big training/test set.) The first nine of these training /test
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sets are based on a set of seven pre-selected categories: tree, grass, water, roof, earth, road, and
shadow. Each contains 84 point, 12 points from each of the seven categories. These
training/test sets will be used to determine the accuracy of Laws’ TEM and will not be used to

classify an entire image.

The last training/test set, btts.r, is based on a more refined category structure. It
contains 208 points from 47 pre-selected categories; the 47 categories can be abstracted into 11
supercategories. This concept of category vs. supercategory is introduced because of the human
semantics or perceptions placed on texture. More specifically, two different regions of an image
that humans might claim are both grassy areas may have significantly different texture (even to
the human) even though we would conceptually wish them to be placed into the same semantic
category, grass. For this reason, the conceptual categories (supercategories) are broken down
into conceptual subcategories {categories) having similar actual texture. The conceptual
subcategories are easily recombined back into their abstracted conceptual categories within the
software. The 11 supercategories in this training/test set are: tree, water, earth, grass, bush,
roof, steps, wall, parking-lot, road, and shadow. The 47 categories (along with the number of
points in each) are: treel (4), tree2 (7), tree3 (3), treed (3), waterl (5), water2 (5), earthl (5),
earth2 (2), grassl (1), grass2 (5), grass3 (7), grass4 (4), grass5 (3), grass6 (5), grass7 (3), bushl
(4), bush2 (4), bush3 (5), roofI (9}, roof2 (6), roof3 (3), roof4 (4}, roof5 (3), roof6 (6), stepsl {8),
steps2 (3), walll (4), wall2 (3), wall3 (4), wall4 (3), wall5 (3), parking-lot (6), roadl {4), road?2 (5),
road3 (4), road4 (7}, roads (3), roadé (4), road7 (4), roads (1), road9 (3}, road10 (4), roadll (4),

roadl12 (4), roadl3 (3), shadowl {6), shadow?2 (6).

The training/test sets cttsl.r and etts.r reside in image.r and are shown in Figures
4 and 5, respectively. For brevity, ctts2.r is not shown, but it is similar to cttsl.r. These
are the same training sets used in the comparative study of [2l. The training/test sets
cttsl.l, ctts2.1, and etts.l (not shown) reside in image.l; the points in these

training/test sets correspond to exactly the same point present in training/test sets cttsl.r,
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Figure 5: Training/Test Set etts.r
ctts2.r, and etts.r, respectively; the correspondence was done by human visual inspection.

The training/test sets cttsl.o, ctts2.0,and etts.o (not shown) reside in image.o.
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There is no relationship between the positions of points in these training/test sets and the

positions of points in any other training/test set.

The last training/test set, btts.r, contains 208 points in 47 categories; these points lie in
the center of texture fields. It will be used as the training set for classifying the entire images of
image.r and image.o. It is not shown here for brevity and because it is difficult to specify in

photographic form the semantics of the 47 categories.

2. Laws’ Texture Energy Measures

In this section, we discuss Laws’ general approach, and our specific implementation of it.

2.1. Laws’ General Approach

Laws found, after analyzing many texture analysis methods, that certain 1-dimensional
convolution masks identified or extracted certain important properties of an image that are

useful in texture analysis. Specifically, the four most important that he found were:

I5=[1L 4 6 4 1]
E5=[-1-20 2 i
S5=[-102 0 1]

RE={l —4 6 —4 1]

These convolution masks enhance intensity level, edges, spots, and ripples, respectively, in any
specific direction that the mask is applied. The cross product of these four masks in the
horizontal and vertical directions produce 16 2-dimensional convolution masks, which he found
extracted information useful in texture analysis. As an example, the E5E5 2-dimensional

convolution mask is given by:
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1 2 0 -2 —1
2 4 0 —4 -2
C 00 0 0
—2 40 4 2
-1 20 2 1

The L5L5 mask does not produce useful information for direct texture analysis, but was found
useful for normalizing the other 15 convolutions as a function of intensity level. Laws found the
other 15 masks to be useful in texture analysis, and these are the ones we have used in our

implementation.

The images produced by applying the 15 convolutions masks to the original image are not
directly useful in texture analysis because the information at each pixel is very local to that
pixel (no more than two pixels away). However, it does extract local artifacts of the original
image (e.g., edges, spots, and ripples). In essence, a blurring affect is needed to collect
information from more distant pixels. Taking a standard deviation over a macrowindow of size
nXxn produces an appropriate blurring affect by pulling in information from adjacent pixels.
However, taking the standard deviation is a computationally intensive process; a very close
approximation can be obtained by instead taking an average (over the same nXn
macrowindow) of the absolute value of the convoluted image. This is much less computationally

intensive, and is the method that we have chosen.

Using these 15 images (i.e., the averages over the absolute value of the convolution for the
15 different convolution masks), each pixel can be considered to be a vector in 15-dimensional
space. Using these vectors as his definition of texture space, he performed a texture analysis by
specifying predefined categories, selecting a training set, performing a discriminant analysis[3],

and classifying an entire image based on closeness to category centers in discriminant space.
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2.2. Implementation

In this subsection, we describe our implementation of Laws’ TEM {used in the experiments
presented in Section 3), and present a pictorial representation of convolution images and
averaged images. The important components of the implementation will be presented by giving

a scenario of the computational activities, in the sequence in which they occur.

Step 1: Convolution Masks
Fifteen different 2-dimensional convolution masks are applied to the original image. Each
convolution is performed by a standalone preprogrammed convolution process. We have
convolution software (conv) that runs directly on the VAX/750 and separate software
(dvpconv}) that runs on the Digital Video Processor (DVP) of the DeAnzaltl. We have
created the 15 convolution images (convolutions) using the VAX /750 software. Each of
these convolutions extracts or enhances certain artifacts of the original image. Asan
example of what these convolution masks extract, the results of applying convolution mask
E5ES5 to image.r (shown in Figure 1) is shown in Figure 6; the ESE5 mask extracts edges in

both the horizontal and vertical directions.

Step 2: Averaging over an nXn Window
The absolute value of each of the 15 convoluted images is then averaged over an nXn
macrowindow (where n ranges from 5 to 15 in increments of 2). Again, this is performed by
a standalone preprogrammed averaging software (dvpavg); in this case we have created the
15 averaged images (averages) using a version that runs on the DVP of the DeAnza. This
averaging has the affect of blurring the image and pulling in information from distant pixels
(a maximum of 7 pixels away). The averaging over a 15X15 pixel macrowindow for the

convoluted image shown is Figure 6 is presented in Figure 7. Note the blurring affect.

The results of Step 2 supply the preprocessed information needed by the remaining processing,

including category and training set selection, discriminant analysis, and classification. As
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Figure 7: Figure 6 Averaged Over A 15x15 Macrowindow

subsequent processing changes (e.g., using different training/test sets), these two steps need not

be repeated.
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Step 3: Category and Training Set Selection
The seven categories and various combinations of the nine training/test sets are used for

different analyses.

Step 4: Diseriminant Analysis
A diseriminant analysism based on the texture space of a specific training set is performed.
We are currently using an interactive statistical package called slél 4o perform this analysis;
however, we suspect that the discriminant analysis of any given statistical package would
be sufficient for this computational component. S has been very useful to us in
understanding the nature of our training sets because it is easy to interactively compute
and display (in both tabular and graphical form) the results of our analyses. The insights
that can be obtained from such an interactive statistical tool have been invaluable. The
discriminant analysis in 8 produces a transformation (in the form of a 15X15 matrix) of

texture space into discriminant space.

Step 5: Classification
A classification analysis is performed both in the original texture space and in discriminant
space. Centers of categories are calculated in the original texture space. Then each point
of the given training set is transformed into discriminant space and centers of the categories

are calculated there.

Each point in a given test set is compared against the centers of the categories in the
original texture space, and classified into the corresponding category there. Then each
point is transformed into discriminant space and compared against the centers of the

categories in diseriminant space.

Calculations of the centers, transformation into discriminant space, and comparisons to

categories are all done in S.
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3. Accuracy of Laws' TEM

There are a number of important questions that can be asked about a texture
classification scheme based on a training set paradigm. How sensitive is the accuracy of the
classification to the selection of a specific training set? What happens as training point or test
points approach the edge of a texture field? Do the photographic properties (e.g., sharp or hazy)
of an image affect the accuracy? How is accuracy affected if the training set is selected from
the image in which points are to be classified vs. being selected from a different image? These

are the kinds of questions that will be addressed in this section.

Figure 8 presents the scheme for the tables that will be presented showing the percentage
of correct classification that oceurs for combinations of training/test sets. The CE-CE region
corresponds to central training/test sets being used as both training sets and test sets. The
ED-CE region corresponds to an edge training/test set being used as a training set and central
training/test sets being used as test sets. The CE-ED region corresponds to central
training/test sets being used as training sets and an edge training/test set being used as a test
set. The ED-ED region corresponds to an edge training/test set being used as both a training

set and a test set.

Training Set
TSZS: Wlsrilzd:w cttsl ctts2 etts
cttsl 5-15
CE-CE ED-CE
ctts2 5-15
etts 5-15 CE-ED ED-ED

Figure 8: Scheme For Percentage Of Correct Classification Tables
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3.1. Accuracy Within an Image

In this section, data are presented to indicate the accuracy of Laws’ TEM when the
training set and test set are selected from the same image. Table 1 presents percentage of
correct classification data (extracted from image.r) for training/test sets cttsl.r, ctts2.r,
and etts.r combined in all combinations. Note that, as a general rule, accuracy tends to
increase as window size increases. Comparing main diagonal entries to off diagonal entries,
observe that the percentage of correct classification (both in texture space and discriminant
space) tends to be highest when a training/test set is used both as a training set and as a test
seb, as might be expected. This is even true for the etts.r training/test set, although the

Table 1
Percentage Correct Classification Within image.r

Training Set
(texture, discriminant)
Test WII‘IdOW cttsl.r cttsi.r etts.r
Set Size
5 71,88 64,70 48,63
7 75,89 68,79 46,67
9 80,90 69,82 48,74
cttsl.r 11 81,94 70,88 46,73
13 82,04 75,90 54,76
15 79,94 76,88 56,76
Summary | 71-82,88-94  64-76,70-90 || 46-56,63-76
5 58,68 74,81 42,50
7 68,79 75,82 46,62
9 80,86 80,88 48,76
ctts2.r 11 82,36 77,98 48,77
13 87,88 86,96 55,82
15 37,87 85,96 58,80
Summary | 58-87 68-88 74-86.81-98 || 42-58,50-82
5 42,38 35,38 64,82
7 44,50 42,44 65,81
g 45,54 44,50 63,86
etts.r 11 49,52 4349 62,85
13 48,55 45,48 63,86
15 46,51 49 52 63,86
Summary | 42-49,38-55  35-49,38-52 || 62-65,81-86
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accuracy is somewhat less than that for the central training/test sets.

Restricting our attention to the CE-CE region, main diagonal entries range from 71-86%
correct classification in texture space and 81-98% correct classification in diseriminant space.
Off diagonal entries (where the training set is not the test set) range from 58-87% correct
classification in texture space and 68-90% correct classification in discriminant space. This
indicates a slight drop in accuracy in texture space when a test set other than the training set
is used, and a more significant drop in accuracy for discriminant space. However, the off
diagonal entries are the only ones that are really relevant to analyze, since in a production

environment one attempts to classify points for which the category is not known.

Moving our attention to the etts.r training/test set, we see that accuracy always drops
off when edges of texture fields are involved, as might be expected. Note however that aceuracy
is significantly higher (in both texture space and discriminant space) in the ED-CE region than
in the CE-ED region. This indicates that it is not extremely detrimental to have training
points near the edge of texture fields, but whether or not edge training points are present, it is

difficult to classify edge test points with high accuracy.

Table 2 presents similar information for image.l using the corresponding training/test sets
cttsl.l, ctts2.1, and etts.l. Although the actual data presented here are slightly

different, the pattern suggested above for image.r seems to be identical here.

Table 3 presents percentage of correct classification data for the training/test sets
cttsl.o, ctts2.o,and etts.o in image.o. The data presented here again exhibit patterns

similar to Tables 1 and 2.
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Table 2

Percentage Correct Classification Within image.l

Training Set

(texture, discriminant)

Test Window | is1.1 ctts2.1 etts.1l
Set Size
5 71,82 67,64 49 45
7 74,89 70,70 52,56
9 79,82 71,85 56,62
cttsl.1l 11 77,86 76,81 57,65
13 80,94 79,76 60,70
15 82,96 77,83 64,74
Summary | 71-82,82-96  67-79,64-85 || 49-64,45-74
5 70,62 81,89 49,58
7 71,75 81,90 51,52
9 79,80 79,93 50,63
ctts2.1 11 77,81 79,90 5471
13 80,87 80,92 60,71
15 85,87 81,95 64,76
Summary | 70-8562-87  79-81.80-95 || 40-64,52-76
5 39,38 39,29 56,70
7 42,39 37,31 52,70
9 38,40 37,35 56,74
etts.1 11 39,46 33,40 60,80
13 38,49 33,42 61,83
15 40,56 37,46 58,85
Summary | 38-42,38-56  33-39,29-46 || 52-61,70-85

Section 3.1.
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Table 3
Percentage Correct Classification Within image.o

Training Set
(texture, discriminant)
'IS‘ZS: ngl;l:w cttsl.o cttsZ.o etts.o
5 69,86 63,65 42,49
7 63,38 71,32 42,62
] 64,92 69,88 40,64
cttsl.o 11 70,92 70,85 37,65
13 7494 70,89 37,75
15 76,80 75,88 39,76
Summary | 63-76,86-94  63-75,65-89 37-42,49-76
5 64,70 89,88 46,58
7 62,75 73,90 48,63
g 67,85 76,94 43,68
ctts2.o 11 79,83 79,95 44,71
13 83,92 86,95 44,77
15 85,90 82,95 42,80
Summary | 62-85,70-92  69-86,88-95 || 42-48 58-80
5 33,40 3739 63,71
7 33,38 36,54 57,80
9 38,45 39,50 58,83
etts.o 11 42,49 37 54 61,81
13 44,56 © 35,46 68,83
15 45,55 37,62 65,83
Summary | 33-45,38-56 _ 35-39,39-54 || 57-68,71-33

3.2, Accuracy Across Images

In this section, we examine the accuracy of Laws’ TEM across images, i.e., when a training
set from one image is used to classify a test set in another image. In this analysis, all three
images, image.r, image.l, and image.o, will be used. Training sets and test sets will be

selected from each image to see if results are symmetric as the training set image changes.

3.2,1. Similar Photographic Spaces

In this section, we examine accuracy across images in the same photographic space. The
only image pair that resides in the same photographic space is (image.r, image.o). Table 4

presents percentage of correct classification data for training sets selected from image.r and
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test sets selected from image.o. Table 5 presents percentage of correct classification data for
training sets selected for image.o and test sets selected from image.r. Note that the overall
accuracy indicated by the data in Tables 4 and 5 is lower than that for Tables 1, 2 and 3 (even
though there are a few random entries that indicate higher accuracy). This indicates that some
accuracy is lost as we move across images. Of course, we had hoped that no loss of aceuracy
would occur across images in similar photographic spaces, but this seems not to be the case.
This loss of accuracy might be due to the training/test sets, although we believe that this is not
the case. We suspect that this loss of accuracy is actually due to real changes in perceived
textures across the images. Such texture changes might occur because of: (2) a different sun
angle, (b) a different photographic angle, (¢) a different watering pattern for foliage, or (d) a

Table 4
Percentage Correct Classification From image.r To image.o

Training Set
{texture, discriminant)
T.eSt' W1‘1‘1dow cttsl.r ctts2.r etts.r
Set Size
5 48,58 45 56 26,42
7 53,70 56,62 26,44
9 61,75 5570 29 49
cttsl.o 11 56,73 55,71 31,55
13 52,79 52,76 31,51
15 54,82 54,79 38,49
Summary | 48-6158-82  45-56,56-79 26-38,42-55
5 52,55 48,52 30,37
7 60,61 56,61 29 42
9 63,71 61,67 30,51
ctts2.o 11 67,69 64,71 31,57
13 64,76 67,30 36,57
15 68,80 65,80 43,50
Summary | 52-68,55-80  48-67.52-80 1] 29-43.37-57
5 40,38 40,37 45,51
7 38,44 45,42 48,57
9 36,39 42 38 54,60
etts.o 11 35,44 31,37 50,60
13 32,51 35,48 49,62
15 29.52 31,51 45,58
Summary | 29-40,38-52  31-45,37-51 || 45-54,51-62
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Table 5

Percentage Correct Classification From image.o To image.r

Section 3.2.1.

Training Set

(texture, discriminant)

Test er_ldow cttsl.o ctts2.o etts.o
Set Size
5 42,50 44 50 51,51
7 43,56 48,50 54,50
9 49 57 49,63 49,60
cttsi.r 11 55,67 55,63 49,61
13 65,70 62,64 91,68
15 64,75 63,70 56,73
Summary | 42-64,50-75  44-63,50-70 || 49-56,50-73
5 45,46 43,52 51,62
7 50,57 46,54 51,55
9 52,60 57,57 51,57
ctts2.r 11 58,67 62,69 52,61
13 68,77 64,67 52,87
15 70,73 85,76 60,74
Summary | 45-70.46-77 43-65,52-76 |i51-60,52-74
5 23,30 23,35 49,49
7 17,31 25,37 49,51
9 23,40 27,44 46,64
etts.r 11 30,38 27,40 46,56
13 33,37 33,36 51,56
15 33,32 36,38 46,55
Summary | 17-33,30-40  23-36,35-44 || 46-51,49-64

different usage pattern for foliage. Specifically, in these two images, there is a difference

between the "richness” of grass and trees that is visually evident. Grass and trees in image.o

seem to be more uniform and darker than grass and trees in image.r.

Contrasting Tables 4 and 5 with themselves, we see a surprising lack of symmetry. In the

CE-* region of Table 4, the accuracies are significantly higher than those of Table 5. However,

in the ED-CE region, the reverse is true. We have no explanation for this asymmetry.

However, this may suggest a methodology for determining an image (or images) from which the

"best" training sets should be selected. In this case, image.r is clearly the better image, since

we are primarily interested in the CE-* region.
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3.2.2. Dissimilar Photographic Spaces

In this section, we examine accuracy across images in Aiﬁerent photographic spaces. Here,
we have two such image pairs, (image.r, image.l) and (image.l, image.o). Tables 6 and 7
present the percentage of correct classification data for the (image.r, image.l) image pair.
Comparing these tables to Tables 4 and 5, we see a significant drop in aceuracy (we assume due

to the dissimilar photographic spaces), as might be expected.

Contrasting Tables 6 and 7 with themselves, we see the similar pattern of asymmetry as
was present in Tables 4 and 5 of the previous subsection. Here, the discriminant space
accuracies for Table 6 are uniformly higher than those of Table 7. However, note that the

Table 8 ‘
Percentage Correct Classification From image.r To image.l

Training Set
(texture, discriminant)
T‘ESt W}r}dow cttsl.r ctts2.r etts.r
Set Size
5 39,55 43,55 17,42
7 40,58 44,60 19,39
9 39,54 43,61 21 40
cttsl.l 11 34,56 42,61 24,39
13 33,52 39,57 24,40
15 30,56 37,61 25,36
Summary | 30-40,52-58  37-44,55-61 || 17-25,36-42
5 39,49 38,50 19,33
7 39,54 40,61 19,40
9 37,52 38,62 21,36
ctts2.1 11 32,51 38,68 25,36
13 30,50 38,58 26,32
15 30,50 36,57 26,33
Summary | 30-39.40-54 36-40,50-62 19-26,32-40
5 32,33 29,35 21,38
7 32,31 25,31 23,40
9 26,25 23 31 26,37
etts. 1 11 20,26 19,31 26,35
13 19,26 23 96 26,31
15 18,27 19,30 25,30
Summary 18-32,25-33 19-20,26-35 1| 21-26,30-40
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Table 7
Percentage Correct Classification From image.l To image.r

Training Set
(texture, discriminant)
’IS‘Z? nglf:“r ctitsl.]l ctts2.1 etts,l
5 50,43 38,35 51,35
7 45,43 32,31 57,30
9 38,36 33,32 57,31
cttsl.r 11 40,40 35,30 50,29
13 37,42 30,32 43,29
15 39,43 30,32 44,29
Summary | 37-50,36-43  30-38,30-35 || 43-57,29-35
5 48,40 39,39 44,36
7 40,38 37,36 52,33
9 39,39 37,32 50,29
ctts2.r 11 40,45 35,32 49,30
13 40,43 35,33 43,29
15 43,43 35,30 42,29
Summary | 39-48.38-45 _ 35-39.30-39 || 42-52,29-36
5 29,21 20,17 36,33
7 21,18 18,18 33,29
9 19,20 17,20 35,35
etts.r 11 20,26 17,19 32,32
13 19,24 15,25 32,27
15 17,24 15,23 31,29
Summary | 17-29,18-26  15-20,17-25 |] 31-36,27-35

texture space accuracies for the cttsl.r and etts.r training sets are generally higher in
Table 7 than in Table 6. Since we are primarily interested in discriminant space, image.r

seems to be the preferred image from which to select training sets.

Looking at Tables 6 and 7 more closely, we note an interesting pattern in the texture
space entries of the CE-* region. There seems to be a tendency for accuracy to decrease as
window size increases. This pattern is even present in the ED-* region of Table 7 (and the
CE-ED region of Table 4). This is in contrast to the discriminant space accuracies in which

accuracies are relatively stable or tend to increase as window size increases.
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Tables 8 and 9 present percentage of correct classification data for the (image.l, image.o)
image pair. Note that accuracies here are very similar to those present in Tables 6 and 7.
Contrasting Tables 8 and 9 with themselves, we find that accuracies are higher in Table 9,
indicating that image.o is the preferred image from which to select training sets, as might be
expected. Looking at Tables 8 and 9 more closely, we note that the texture space pattern of

decreasing accuracy as window size increases is not as prevalent as it was in Tables 6 and 7.

Table 8

Percentage Correct Classification From image.l To image.o

Training Set
{texture, discriminant)
Test Window | 1.1 ctesz.1 etts.1
Set Size
5 46,39 39,44 46,35
7 49,40 42,38 43,37
9 49,49 39,39 48,38
cttsl.o 11 49,42 40,38 45,36
13 52,52 42,37 3827
15 49 48 44,43 36,30
Summary | 46-52,39-52 39-44 37-44 || 36-48,27-38
5 44 37 32,40 39,35
7 49,36 31,36 46,37
9 40,39 37,35 46,35
ctts2.o 11 43,46 37,40 40,31
13 45,50 37,35 36,27
15 50,42 42 42 36,30
Summary | 40-50,36-50 31-42 35-42 36-46.27-37
5 27,18 18,17 36,32
7 18,14 15,14 36,33
9 14,13 15,14 31,27
etts.o 11 17,12 15,17 29,29
13 20,19 14,15 29,27
15 23,18 18,17 26,27
Summary | 17-27,12-19  14-18,14-17 || 26-39,27-33
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Table 9
Percentage Correct Classification From image.o To image.l

Training Set
(texture, discriminant)
Test Wn:_ldow cttsl.o ctts2.o etts.o
Set Size

5 40,39 37,40 21,37
7 49,39 37,42 23,38
9 51,42 31,52 23,36
cttsl.l 11 49,40 33,62 24,38
13 45,55 32,61 25,38
15 38,55 33,62 24,37

Summary | 38-51,39-55  31-37,40-62 || 21-25 36-38
5 40,45 30,42 927,39
7 42,44 31,45 26,37
9 43,45 29,51 26,37
ctts2.1 11 40,48 27,60 27,36
13 40,58 29 57 27,35
15 39,51 33,61 27,36

Summary | 89-43.44-58  27-33.42-61 || 26-27.85-39
5 33,29 24,29 36,38
7 37,24 32,26 33,38
9 37,29 29 26 30,42
etts.l 11 26,21 21,29 30,39
13 23,23 20,27 30,43
15 23,18 23,29 25,43

Summary | 23-37,18-20  20-32,26-29 || 25-36,36-43

3.3. Categories vs, Supercategories

In the next major section, entire images will be classified. In performing this classification
the concept of abstracting categories into supercategories i; introduced. In order to support the
effectiveness of this abstraction, this section presents percentage of correct classification data for
the large training/test set btts.r when the points are perceived to reside in different

abstractions of categories.

Table 10 presents percentage of correct classification data for training/test set btts.r.
Here, the 47 categories are considered to be stand alone categories for which no abstraction

(into the 11 supercategories) is performed. Note that the accuracies here are less that those of
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Table 10
Percentage Correct Classification -- 47 Categories

Training Set
(texture, discriminant)
Test, Window
Set Size btts.r
5 84,77
7 63,75
4] 69,80
btts.r 11 72,83
13 75,85
15 75,88
Summary 63-75,75-88

the diagonal entries of the CE-CE regions of Tables 1, 2, and 3.

Table 11 presents percentage of correct classification data for this same training/test set
except that alter preliminary classification has been perforfned, similar categories are
abstracted into the appropriate supercategories. For examiﬂe, any points classified into the
categories of treel, tree2, treeld, or treed are now classified into the supercategory of tree. Note
that the accuracies present in this table are comparable to those of the diagonal entries of the
CE-CE regions of Tables 1, 2, and 3. Thus, we are able to retain high accuracies by breaking
conceptual semantic categories down into different physical categories (with similar texture) and

Table 11
Percentage Correct Classification -- 47 Categories (11 Supercategories)

Training Set
(texture, discriminant)
Test Window
Set Size btts.r
5 74,83
7 76,85
9 78,85
btts.r 11 81,89
13 82,90
15 82, 94
Summary 74-82,83-94
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recombining after the fact.

In contrast, if we combine the 47 categories into their 11 semantic categories before the
preliminary classification analysis, we obtain the results shown in Table 12. Note that the

accuracies indicated in this table are significantly less than those of Tables 10 and 11.

3.4. Conclusions

The training/test sets used in these experiments have not been "tuned" to produce
maximal accuracies. They were selected in 2 random ad hoc manner, the way we assume that
training sets might be selected in a production environment. It may be possible to develop a
methodology in which preliminary training points are selected and then "moved" slightly by
some algorithmic means until maximal accuracies are obtained (similar to many root finding
methods). If this is done, higher accuracies can probably be achieved. In general, the data
presented here does indicate that the selection of specific training sets does effect the accuracy
of classification, but if training sets are selected in a "reasonable” manner, this is not the

overwhelming factor.

Table 12
Percentage Correct Classification -- 11 Categories

Training Set
{texture, discriminant)
Test Window
Set Size bets.r
5 48,62
7 48 61
9 47,65
btts.r 11 50,66
13 48,66
15 50,72
Summary 47-50,61-72
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If training sets are selected from the actual image that is to be classified, accuracies in the
range of 83-92% correct classification can be achieved; this range was arrived at by looking at
the off diagonal entries of the CE-CE regions of Tables 1, 2, and 3 for window sizes of 13 and
15. This range may be a little high, because points near edges of texture fields will also be
present (42-56% correct classification). The actual range will depend on the percentage of

central points vs. edge points present in the specific image being classified.

If training sets are to be used across images having similar photographic properties,
accuracies in the range of 64-82% correct classification (32-52% correct classification for edges

of texture fields) can be achieved. This is somewhat lower, but still significantly high.

If training sets are to be used across images having dissimilar photographic properties,
accuracies in the range of 30-61% correct classification (15-30% correct classification for edges
of texture fields) can be achieved. These accuracies are low enough that it is probably not
productive to attempt such classifications. Note that in the CE-ED regions of Tables 6
through 8, many of the entries indicate that the aceuracy is no better than random chance, ie.,

there is really no information retained in the training set paradigm.

Looking at all the information in all the tables, we aléo conclude that higher accuracies
are obtained from images that have "sharp" photographic properties instead of "hazy" ones, as
might be expected. We also note that the highest accuracy does not always occur for the
largest window size of 15. Often, this is achieved for window sizes of 11 or 13. We suspect that
this is an artifact of the specific images that we are analyzing, in which many of the actual
texture fields are "narrow", e.g., narrow roads and shadows and small trees. We suspect that
maximum accuracy has been achieved somewhere in the 11-15 window range; however, this may
not be true for images with "wider" texture fields, and even higher accuracies may be
achievable. Laws found that even higher accuracies were obtainable for window sizes in the 31

range. In general, our results are consistent with Laws’ results.
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The data presented here suggest the possibility of developing methodologies for
determining "good" images from which to select training sets and for determining "good"
training sets. Also, the technique of dividing semantic categories into different physical
categories (with similar internal texture) seems to be effective as the number of categories and

training points increases.

4. Classifying an Entire Image

In this section, we refine the computational scenario presented in Section 2.2, show
pictorial results for classifying the entire images of image.r and image.o, and present a space

and time analysis.

4.1. Implementation

The computational scenario for classifying an entire image is very similar to that of

Section 2.2. Here, we present a refinement of that scenario.

Step 1: Convolution Masks

Same as that of Section 2.2.

Step 2: Averaging over a 15x15 Window

In this case, we average over only the maximum window size, i.e., a 15X15 window.

Step 3: Category and Training Set Selection
In this case, we use the btts.r training set containing 208 points over 47 categories

abstracted into 11 supercategories.

Collection of training points is done by a C program called laws. It has three major

inputs: (a) the 15 images (averages) produced by Step 2, (b} a file containing the 47
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category names (class.def), and (c) a file containing the trajning set points (btts.r).
Training set points are specified by: (i) an (x, y) pixel coordinate, (ii) a unique name, and

(iii) the name of the category to which the point belongs.

It has two major outputs: (a) a 512X512 image (overlay.train) indicating the positions of
the training points (this is how Figures 4 and 5 were produces), and (b) the collected data
(in S format) to be analyzed by S. These data are written in four files: (i} the number of
training points, (i) the unique names of the points, (iii) the category names corresponding to

the points, and (iv) the vectors in 15-dimensional space selected from the 15 images,

Step 4: Discriminant Analysis

Same as that of Section 2.2.

The discriminant analysis in S produces 2 transformation (in the form of a 15x15 matrix) of
texture space into discriminant space. The texture space of the training set is transformed

into discriminant space, and the transformation matrix and centers of the 47 categories are

written to files (transform and class.cent) for use in subsequent processing (Step 8).

Step 5: Classification
Each pixel of the original image is transformed into discriminant space (using the
transformation produced by the S analysis) and classified into one of the 47 categories based
on the category center to which it is closest. Although.S is very good for interactive work,
it is relatively inefficient for processing large amounts of data because it is interpreted
interactively. Based on our preliminary tests, we estimate that it would require 52 hours of
CPU time to process the 512X512 pixels of an original image. Thus, we have chosen to

offioad the classification activity to a more efficient C program.

The C program (c¢lassify) reads in (a} the 15 images (averages) produced by Step 2, (b)

the category names (class.def), and {¢) the transformation (transform) and category
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centers (class.cent) produced by Step 4. It classifies each pixel into one of the 47
categories by performing the required matrix multiplication (transforming the points into
discriminant space) and determining the category based on the closest center algorithm.
Three "images" are produced as the output of this classification analysis: (a) a 512x512
class "image" containing the values from I to 47, indicating the category into which the
corresponding pixel was classified, (b) a 512X512 superclass "image" containing the values
from 1 to 11, indicating which of the 11 supercategories the corresponding pixel falls, and (c)
a 512X512 certainty "image" containing the values from 0 to 255, indicating the certainty

of correct classification of the corresponding pixel.

Besides the three "images" that are its primary output, classify creates a number of
output files to be used as utilities during display of images (see Step 6 below). The file
anot.class contains a shell file for annotating the color legend of the class "image" by
name of category. The class.cmap file is a shell file that is used (by colorize)to map
pixel classifications into specific pseudocolor for the class "image". The files anot.sclass

and sclass.cmap contain analogous information for the superclass "image",

For each supercategory, two files are produced to help select and display all the pixels

classified into that specific supercategory: zdi.supeat and zcm.supecat {where supcat is
the name of the specific supercategory). =zdi.supcat is a shell file that selects only those
pixels classified into the supercategory supcat and overlays them over the original image.

zcm.supceat is a color mapping file that is used by zdi.supeat in the selection process.

Besides these files, which are used to display different aspects of the classification process, a
file center.dist is produced which gives the distance from every category center to every
other category center. This can be used to determine which categories are "close to" one
another. This information can be used in a methodology for ereating or deleting specific

categories and selecting training set points to be placed in or removed from categories.
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Step 6: Display
We have chosen to display the texture classification by mapping the pixel classification into
color space. The DeAnza has three color channels: Red, Green and Blue. In order to
visually superimpose the original image along with the texture classification, we have chosen
to display the original image in Red and map the texture classification into different shades
of combinations of Green and Blue. Then by temporarily suspending specific ¢color channels,
it is possible to quickly determine the accuracy of the texture classification by visually

identifying those region which have and have not been classified correctly.

We have developed a C program (called colorize) which produces a pseudocolorization
by mapping a specific intensity (or range of intensities) of an image into a 3-color display
image. (In this application, the Red channel is always mapped to zero intensity.) Other

peripheral software has been developed to annotate the pseudocolors with respect to their

corresponding categories.

A overview of the dataflow involved in Steps 1 through 6 is shown in Figure 9.

4.2. Pictorizal Results

In this subsection, we present pictorial results for claséifying the two images image.r and
image.o, using btts.r as the training set. Figure 10 disp}ays the colorized class "image"
after the computational scenario of the previous subsection is applied to image.r. Note the
annotations along the sides of the image, giving a legend of the correspondence between the 47
category and pseudocolor. Figure 11 displays the colorized superclass "image" showing the
classification into the 11 supercategories. It is not instructive to attempt to show the
superposition of the original image (in the Red channel) in the photographic representation of
this working paper. Only the physical manipulation of the DeAnza monitor makes this

superposition technique useful. Figure 12 displays the certainty "image"; dark regions indicate
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Figure 9: Dataflow For Steps 1 Through 6
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Figure 11: superclass Colorization Of image.r With 11 Supercategories
high certainty, and bright regions indicate low certainty (as a function of distance to the closest
category center). Note certain regions of low certainty: boundaries around the water, and the

center of the Lincoln Memorial. Given a display methodology such as this, it is relatively easy
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Figure 12: certainty Image For image.r

to quickly identify regions which have been misclassified. Once these regions are identified, new
categories and training set points can be added and the classification process (only Steps 4-6)
can be reapplied and further refinements made. Here, we have suggested a methodology
involving visual inspection for identifying potentially misclassified regions. However, this is
easily transformed into a more quantitative methodology, since the intensities in the cerfainty
image are simply a scaling of the distance to the nearest category center. Clearly, a threshold

can be supplied for which a specific classification is assumed to be invalid.

It is somewhat difficult to discriminate the different classifications based on the
pseudocolor in Figure 11. In order to see the supercategories more clearly, four categories
(water, tree, grass, and road) have been selected for a more binary display (using the zdi and
zem files). Figure 13 displays those pixels from superclass that were classified as water. Note
that there are no pixels classifled into this supercategory that do not correspond to water.
However, there are pixels around the edge of the water bodies that were not classified into this

supercategory (see figure 12). Figures 14 through 16 display the corresponding classification for
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Figure 13: superclass.water Image For image.r

tree, grass and roof, respectively. Note that there s misclassification (in both directions) of

Figure 14: superclass.tree Image For image.r
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Figure 16: superclass.road Image For image.r

pixels for each of these supercategories. Trees and grass have a relatively high accuracy of

classification. Road has a lower accuracy, but the basic abstract road structure can be seen in
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Figure 16. Most of the misclassification in this category is caused by roofs being classified as

roads.

The same classification analysis that was performed for image.r has also been performed
for image.o. Note that only Steps 5 and 6 need be performed. Figure 17 is a display of the
colorized superclass "image" for image.o. Figure 18 displays the corresponding certainty
"image". Note again that the edges around the water have a high probability of being
misclassified. Figures 19 through 22 display the binary classification for water, tree, grass, and

road, respectively. These results are similar to those for image.r.

4.3. Space and Time Analysis

Each of the 15 images produced by Step 1 require 0.25 megabytes of disk storage, for a

total of 3.75 megabytes. Each of the 15 images produced by Step 2 requires exactly the same

Figure 17: superclass Colorization Of image.o
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Figure 18: certainty Image For image.o

Figure 19: superclass.water Image For image.o
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Figure 21: superclass.grass Image For image.o
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Figure 22: superclass.road Image For image.o

space; once these images are available, the 15 images produced by Step 1 can be removed
(unless further averaging over a different macrowindow size is desired). The image
overlay.train requires 0.25 megabytes of disk storage. Each of the class, superclass and
certainty "images" require 0.25 megabytes of disk, and each of the two colorized display images
requires 0.75 megabytes of disk (these are pixel interleaved images for all three color channels).
Thus, during development and refinement of the classification processing, a maximum of 6.25
megabytes of disk storage is required for images. Once the category and training set selection is
finalized, this can be reduced to 4.0 megabytes {eliminating the class, certainty, and
overlay.train "images" and the colorized display images). Besides the disk space required for
images, approximately 0.5 megabytes are required for source and object programs and other

small files that communicate information between computational components.

In the following time analysis, both CPU and wall clock times will be given. These times
will be given in the form XX:YY, where X3 is the number of minutes and YY is the number of

seconds (eg., 3:19 means 3 minutes and 19 seconds). These times represent execution on a
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quiescent VAX/750 with 8 megabytes of primary memory with only one user on.

In order to understand the speedup possible by using special purpose hardware {in our
case, the DVP of the DeAnza), we have performed the convolution computation {Step 1) on both
the VAX and the DVP of the DeAnza. On the VAX, the total of all 15 convolutions took 73:08
CPU time (87:13 wall clock time). Breaking this CPU time down into user time and system
time, 4171 seconds was spent in user time and 217 seconds was spent in system time; i.e., 95% of
the time was spent in the primary algorithm, and only 5% of the time was spent in system
support. On the DVP of the DeAnza, the corresponding computation took 6:28 CPU time (8:17
wall clock time). Breaking this CPU time down, 76 seconds was spent in user time and 313
seconds was spent in system time; i.e., only 20% of the total time was spent in the primary VAX
algorithm, and 80% was spent in system support. The increased system time here {over the
VAX-based convolution) is attributable to image movement between the VAX memory and the
DeAnza memory and reformatting the images into PDS (6] format. The total CPU time here
represents the VAX time required to (a) load images into the DeAnza memory, (b) extract
images from the DeAnza memory (and reformat those images into PDS format on the VAX),
and (c) generate and send instructions to the DVP of the DeAnza. Of the total CPU time here,
110 seconds was spent in reformatting raw images (on the VAX) into PDS format. While this is
of practical interest to us, it is not conceptually necessary; the image is the same no matter
what its format. If we subtract this 110 seconds from the DeAnza-based convolution time, we
see a factor of 15 in speedup from the VAX-based convolution to the DeAnza-based convolution.
In other experiments (specifically, a standard deviation over a 15x15 window), we have found

speedup factors of close to 100.

The averaging over a 15X15 macrowindow (Step 2) was only performed on the DVP of the
DeAnza. Execution time for all 15 images {combined) requires 8:58 CPU time (8:56 wall clock
time). A significant speedup can be derived by combining Steps 1 and 2 directly on the DeAnza

and not retrieving the intermediate results of Step 1 into the VAX memory. (Since the result of



Laws TEM - 39 - Seection 4.3.

the convolution is already in DeAnza memory, it can be immediately averaged over the 15x15
macrowindow without retrieving the intermediate result.) When Steps 1 and 2 are combined on

the DeAnza, the execution time is 8:32 CPU time (11:12 wall clock time).

Collecting the texture space information for the 208 points of the training set (Step 3)
takes in 0:39 CPU time (0:51 wall clock time;. This is a very simple "gluing” algorithm. In fact,

20 of the 39 seconds of CPU time is spent in reading in the 15 images,

The discriminant analysis and ceater calculation in S (Step 4) requires 5:28 CPU time
(7:55 wall clock time). This time could be significantly reduced by implementing a C program
which performs the same function. However, this would require understanding all the details of
the discriminant analysis, which is not the central issue here. Since the training sets are
relatively small and the absolute time required to perform this analysis in S is small, we have

chosen to retain flexibility by keeping this function inside S.

Classification of the entire 512X512 image image.r and writting the appropriate files
(Step 5) requires 146:42 CPU time (165:21 wall clock time). This is the major computational
component in the entire analysis. The two major algorithmic components are (a) multiplying a
15%2!% array by a 15x15 transformation, and (b) computing the distance between each of the

218 15-vectors (in discriminant space) and the 47 category centers.

Converting a classification “image" to a pseudocolor (colorize) image (Step 6) requires
0:17 CPU time (0:23 wall clock time). This must be done for both the class "image" and the
superclass "Image”. It is also done while producing the binary display for each of the separate

supercategories in superclass.
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4.4. Conclusions

A relatively good job was done in classifying these two images. For image.r, we estimate
the accuracy to be in the 75-85% range; for image.o, we estimate the accuracy to be in the 70-
80% range. These estimates are based on visual inspection. A more quantitative analysis

would require some form of hand segmentation of the images; this has not been done.

During the development of this system, we have developed a methodology for refining the
classification. The file center.dist can be used to identify categories whose centers are close
in discriminant space, and therefore may be "too close” to one another to be able to be
discriminated. Specifically, one or more categories within a supercategory may be "close" and
the user can combine them. If categories in different supercategories are "close", the user may
change some of the points in the training set to attempt to separate the categories more. In
any event, the user is made aware of what categories may be misclassified. This type of

analysis can be applied prior to the actual classification or display of any specific image.

The display portion of the methodology allows the user to overlay classifications (either as
a whole or separately) over the original image to quickly identify regions of the image which
may have been misclassified. The certainty image can also be overlaid on either the original
image or the colorized classification image to identify potentially misclassified portions of the
image. Once misclassified regions of the image have been identified, the user can modify the

training set by adding (or deleting) categories and/or training set points.

In the case of these two images, we immediately find that the regions around water bodies
are misclassified. The user can create a new category, say water-edge, select training set points
(for instance, using the data in the etts.r file), place water-edge in the supercategory of

water, and attempt another classification (using Steps 3 through 6).
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Besides the direct texture classification processing described in this working paper,
postprocessing may be applied to increase accuracy. Specifically, the processing presented here
performs a pixel-by-pixel classification of an image, with no abstract concepts (such as
continuity) involved. However, we know that certain physical phenomenon cannot occur in
discontinuous ways. For example, we may choose to apply some postprocessing which eliminates
small patches of isolated texture fields when surrounded by large massive dominating texture
fields, replacing the classification of the isolated pixels with the dominant texture in the region.

Many other postprocessing techniques may 2lso be applicable.

The major computational component in this system is the classification process
{classify) itself. The two major algorithmic components here are the transformation into
discriminant space (performed by a large matrix multiplication) and a search for the closest
category center. This could be significantly speeded up if these two components can be "moved"

to the DVP of the DeAnza.

By visual inspection of the classified images, we find that those categories which have
"wide" texture fields in the images (such as water, grass, and tree) have a relatively high
accuracy of correct classification, and those categories that have "narrow” texture fields in the
images (such as roof, shadow, and road) are classified somewhat less accurately. This is not a

surprising result. We suspect that accuracy will increase in images with "wider” texture fields.

5. Summary

In general, Laws’ TEM seems to be a viable method for texture classification. A relatively
high accuracy of correct texture classification can be obtained across images with similar
photographic properties. Accuracy across images with dissimilar photographic properties is low
enough that it is probably inappropriate to attempt such classifications. Methodologies for

determining "good" training images and "good" training sets can be developed. Such
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methodologies may incorporate human visual inspection of displays and quantitative automated

algorithms,
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