View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-40

2003-04-15

Contaminated Garbage Collection

Dante J. Cannarozzi

We describe a new method for determining when an object can be garbage collected. The
method does not require marking live objects. Instead, each object X is dynamically associated
with a stack frame M, such that X is collectable when M pops. Because X could have been dead
earlier, our method is conservative. Our results demonstrate that the method nonetheless
identifies a large percentage of collectable objects. The method has been implemented in Sun's
Java Virtual Machine interpreter, and results are presented based on this implementation.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cannarozzi, Dante J., "Contaminated Garbage Collection" Report Number: WUCSE-2003-40 (2003). All
Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1085

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1085?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-40

Contaminated Garbage Collection - Master's Thesis, May 2003

Authors: Cannarozzi, Dante J.

April 15, 2003

Abstract: We describe a new method for determining when an object can be garbage collected. The method
does not require marking live objects. Instead, each object X is dynamically associated with a stack frame M,
such that X is collectable when M pops. Because X could have been dead earlier, our method is conservative.
Our results demonstrate that the method nonetheless identifies a large percentage of collectable objects. The
method has been implemented in Sun's Java Virtual Machine interpreter, and results are presented based on
this implementation.

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

ShortTitle: ContaminatedsarbageCollection CannarozziM.Sc.2003

WASHINGTON UNIVERSITY
SEVERINSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTERSCIENCEAND ENGINEERING

CONTAMIN ATED GARBAGE COLLECTION
by
DanteJohnCannarozzi

Preparedinderthedirectionof Dr. RonK. Cytron

A thesispresentedo the Sever Instituteof
WashingtorlUniversityin partialfulfillment
of therequirementgor the degreeof

Masterof Science

May, 2003

SaintLouis, Missouri

WASHINGTON UNIVERSITY
SEVERINSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTERSCIENCEAND ENGINEERING

ABSTRACT

CONTAMIN ATED GARBAGE COLLECTION

by DanteJohnCannarozzi

ADVISOR: Dr. RonK. Cytron

May, 2003

SaintLouis, Missouri

We describea new methodfor determiningwhenanobjectcanbe garbagecollected. The
methoddoesnot requiremarkinglive objects.Instead eachobject X is dynamicallyasso-
ciatedwith a stackframe M, suchthat X is collectablewhen M pops. BecauseX could
have beendeadearlier ourmethods conserative. Ourresultsdemonstratéhatthemethod
nonethelesglentifiesa large percentag®f collectableobjects. The methodhasbeenim-

plementedn SunsJava™ Virtual Machineinterpreterandresultsarepresentedhasecn

thisimplementation.

To my family

Contents

List of Figures e vV
Acknowledgments L Vii
1 Introduction. e 1
1.1 Background. 3
2 Approach 5
2.1 Example. e 5
2.2 SUMMANY . . . o o e e e e e e 9
3 Implementation 11
3.1 DataStructuresandModifications 12
3.1.1 Objects. e 12

3.1.2 Frames e 14

3.1.3 Staticvariables. oo 14

3.1.4 TaintedObjects. 15

3.2 InterpreterGeneratedbtaticReferences. L. 15
3.3 Multiple ThreadsandNativeCode 16
3.4 A StaticOptimization. e 17
3.5 ShrinkingtheCG HandleSize 18

3.6 ResettingCG StructuredDuring TraditionalGarbageCollection 18

3.7 Regrclingof CGObjects. 19
4 EXperiments. e 21
4.1 CollectableObjects. 21
4.2 StaticObjects. e 22
4.3 ThreadBehavior 24
4.4 SizeandAgeoftheEquiliveBlocks 26
4.5 PerformancandOverhead. 28
4.6 LargerSPECRUNS e 29
4.7 ResettingResults e 31
4.8 RegclingResults. o 32
5 Generally RelatedWork 35
5.1 TheTrainAlgorithm 36
6 Conclusionand FutureWork 38
AppendixAData 41
References 46
Vita . . e 49

List of Figures

2.1
2.2

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Frameghatkeepobjectslive

Instructionsaffectobjectlifetime,
Twothreadssharinganobject

Percentag®f objectscollectableby our approachwithout and with the
optimizationdescribedn Section3.4.
Percentagef objectsthatwe treatasstatic(live for theprograms duration)
anddueto sharingamongthreadgsizel)
Percentagef objectsthatwe treatasstatic(live for theprogramsduration)
anddueto sharingamongthreadgsize10).
Percentagef objectsthatwe treatasstatic(live for theprogramsduration)
anddueto sharingamongthreadqsize100)
Distributionof blocksizes, .
Age atdeathof objectswecollect
Timing results. The rightmostcolumn shavs the speedupof over tradi-
tional collectorin theJDK 1.1.8systemfor sizel
Timing results. The rightmostcolumn shavs the speedupof over tradi-
tional collectorin the JDK 1.1.8systenmfor sizel0

SPECbenchmarkdargeruns.

22

4.10 Speedumf our approactover JDK 1.1.8.For thelargerun, npegaudi o

andconpr ess took overanhourto completewith eithersystem 30
4.11 SPECbenchmarkssmallruns 32
4.12 Reg/cletiming,smallruns 33
4.13 Numberof objectsregycled,smallruns 33

A.1 Percentagef objectsthatwe treatasstatic(livefor theprogramsduration)

dueto sharingamongthreads. 41
A.2 Objectbreakdovn,smallruns 42
A.3 Objectbreakdovn, mediumruns 42
A.4 Objectbreakdevn,largeruns. 42
A5 SPECbenchmarkssmallruns 43
A.6 SPECbenchmarksmediumruns. 44
A.7 SPECbenchmarkdargeruns. 45

Vi

Acknowledgments

| would like to thankmy advisor Dr. Ron K. Cytronfor his guidancewith this work and
my committee Dr. KennethGoldmanandDr. Aaron Stump.| would like to thankl thank
Guy Steeledr. andSunMicrosystemdor accesgo their Java Virtual Machine. This work
wasfundedby the National Sciencd~oundationundergranti TR—-0081214.

| would alsolik e to thankmy parentsDanteand Elayneand my sisterMelissafor
their supportandencouragemerhroughoutmy academicareer

| amindebtedto the currentand pastmembersof the DOC group. Without their
help, it would have taken me far longerto completethis work. Especiallyhelpful were
Morgan Deters,Steve Donahue and Matt Hampton,asthey were constantlyavailableto
answermy guestions.

I would like to againthankMorganDetersfor his diligentreadsandrereadof my
thesisfor errors.Without his graciouslydonatecdeditingtime, this thesiswould have taken
muchlonget

DanteJohnCannarozzi

WashingtornUniversityin SaintLouis
May 2003

Vil

Chapter 1

Intr oduction

Garbagecollectionis the regycling of objects(memory)thatis know to be “dead” (no
longerin use)for the durationof the program.Thereareseveraldifferentkinds of garbage
collectionalgorithmsincludinggenerationahndmarkandsweep(MSA).

Generationatollectionis basedon the ideathatrecentlycreatedobjectsare more
likely to die thanolder objectsandthat as objectsage,their chanceof dying decreases.
The algorithmworks by associatingpbjectswith generations.Newly createdobjectsare
addedto the “youngest” generationand can progressto older generationgif they don't
die).

Mark andsweeptakesa differentapproach.Thefirst phasgmarking)traversesall
the reachablglive) objectsand marksthem. This phasestartswith what are called the
“roots of computation”,which refersto the variableson the stack. Thenthe sweepphase
regyclesany memorythatisn’t alreadymarked aswell asattemptgo compacimemoryso
thatit is contiguous.

In education,researchand industry useof garbage-collectethnguagesuchas
Java[4] and ML[14] remainsstrong. However, despitemary advances,the costof au-
tomatic garbagecollection continuesto be prohibitive in someareasnotablyembedded,

real-time,andscientificapplications.

2
e CPUcyclesmustbedevotedto collectingthegarbagelncrementakystemsamortize

thecost,andextraprocessorsanhidethecostif thoseprocessorbave nothingbetter

to do.
e Theneedfor collectioncanoccurat unpredictablendinopportundimes.

e Storagebecomedragmentedunlessobjectsare moved, but objectrelocationfools
mostunderlyingstoragesystemsFor example,anobjectcanbein cacheput known
by its former address. Accessof the object at the newv addresgesultsin a fault

followedby afetchfrom slower storage.

e Exactgarbagecollectorsmarklive objects. While generationatollectioncanlimit
suchmarkingto a subsebf a programs live objects the markingphasepollutesthe

cacheasthelive objectsaretouched.

In thisthesis we proposeandevaluatethe performancef a new schemethecontaminated

garbage (CG) collector. This new collectorhasthefollowing properties:

e It canoperatein concertwith a traditionalcollector decreasinghe frequeng with

which thetraditionalcollectormustbe called.

¢ It doesnotrequirea“marking” phasesothatdatacachesemainvalid evenasobjects

arecollected.
e It isincrementaldoingconstantvork afterevery methodfinishes
e It collectsareasonabl@ercentag€éon average 53%) of deadobjects.

e It correctlyidentifiesdeadobjects,but objectsthatit thinks arelive mayin factbe

dead.

To elaboratenthelastpoint, CG collectionis “consenative”, thoughnotin thetraditional

senseof thatterm. Consenrative collectionhasbeenproposedor languagegsuchasC)

3
in which referencevariablescannotbe preciselydetermined;suchcollectorsare conser

vative becausdghey may be forcedto treata valueasa pointer[5]. The CG collectoris

conserative in adifferentway andfor differentreasonsaswe explainin chapter2.

1.1 Background

Wilson presentsan excellent surwey of storageallocation[23] and collection[22] tech-
niques. All known methodsfor exact garbagecollectionrequiremarkinglive objectsto
someextent. Generationakollection limits the scopeof the marking phaseto a set of
objectsthatarebelievedmostlyto bedead.

Oneway of comparingour work is to examinehow variousapproachesiew the

notionof agenemtion.

e Traditional generationakollection[3 definesa generationby the longevity of its
objects. This separatesewver from older objects,so that garbagecollection can
concentrateon the newer (presumablyshorterlived) objects. More recently it has

beenproposedo focuson otherthantheyoungesgeneratiorj18].

e Thetrain algorithm[17, discussedelow, views objectsnot only in termsof their
longevity, but alsoin termsof their interconnection. Objectsthat referenceeach
othertendto be clusteredn the samegeneration.This nicely accommodatesyclic

datastructuresasthey becomedree atthe sametime.

e Ouralgorithmattemptgo clusterobjects notin termsof theirlongevity, butin terms
of their expectedexpiration. Whenthey mustdie—nothow longthey have lived—is
our key concern. We dynamicallycomputethe time at which a clusterof objects

mustbe dead basedon thereferencesmongtheobjects.

Ourthesisorganizedasfollows: Chaptel2 explainsour approachusingasimpleex-

ample.Chapter3 describeganimplementatiorof a CG collector alongwith complications

4
that arisefrom multiple threadsand native code. Chapter5 comparesour approachwith

previouswork. Chapterd presentsexperimentsbasedon this implementation.Chapteré

presentgonclusionsaandideasfor futurework in this area.

Chapter 2

Approach

Ourideais basedon thefollowing propertyof single-threadegrogramgmultiple threads
are addressedn Chapter3). Eachobject X in the heapis live due to referenceghat
ultimately begin in the programs runtime stackandstaticareas. Whenthe setof frames
containingdirector indirectreferenceso X is poppedthenX is nolongerlive andit can
be collected.

Moreover, owing to the natureof a stack,the setof framesthatkeep X live must
containsomeframe M thatis last-to-be-poppe(bldestlamongthe set's frames.Thelive-

nessof X canthusbetiedto frameM: whenframeM pops,X canbecollected.

2.1 Example

We illustratethe CG collectorusingthe exampleshavn in Figure2.1. The stackframes
areshovn numberedrom 0 to 5; frameb is youngestirame,andframe0 is not popped
until the programfinishes. Eachframe corresponds$o a methodinvocation,andthelocal
variablesfor eachmethodresidewithin the methods frame. The objects,labeledwith

lettersA throughF, residein theheap.Arrowsin Figure2.1depictthereference$rom the

We view staticreferencesisstemmingfrom a programsinitial stackframe.

Qe >@
2 Q

%fo

Figure2.1: Frameghatkeepobjectslive.

methods’local variablesto the heapobjects. Thoughnot shavn in Figure2.1, we assume
eachobjectX hasafield x thatis capableof referencingary otherobject.Also, we assume
in this examplethatany methodcanaccesshe programs staticvariables.

Given the frame referenceshawvn in Figure 2.1, the livenessof the objectsis as

follows.

Object Referencing-rames EarliestFrame

A 3,5 3
B 2,5 2
C 1,5 1
D 4,5 4
E 0 0

Although A is referencedy two frames,the objectis live until frame3 is popped. This
illustratesanimportantpropertyof ourapproachWith eachobjectX, weassociat@single
frame M suchthatwhen ! is popped, X is known to be dead—wethensaythat X’s life
depend®nframe M, or that M is X’sdependentrame.

As a specialcase,we associatdrame 0 with objectsthat are referenceddy static

variables.Thus,CG collectiondeterminesghatvariablessuchasE in Figure2.1appeato

Bb+ A <[1]
C.c+ B <[2]
D.d+ C <[3]
Ee+ D <4]
EFe+ 1 <[5]

Figure2.2: Instructionsaffect objectlifetime.

belive for the durationof the program.Frame0 alsosenesto represenbbjectsfor which
we (currently)cannotdeterminea dependentrame,asdiscussedn Chapter3.

With the situationshowvn in Figure2.1, it is clearthat D could be collectedwhen
frame4 pops. However, programscan causeone objectto referenceanothey which has
the effect of changinganobject's dependentrame. We next examinethelivenesf each
objectasthe programshown in Figure 2.2 executesstatementshat causeone objectto
referenceanother All of thesestatementsre executedwithin Figure2.1’s frame5— the
frameof the currentlyactve method.For our example,we assumehis methodhasaccess
to all objectsasfollows. ObjectsA throughD arereferencedisingframe5’s parameters
(localsin the JVM); objectE is staticandglobally accessible.

The effectsof the programs stepson the livenessf the heapobjectsaredescribed

asfollows.

B now referenced\. With this referenceestablishedA canbe collectedno earlierthan

B. Thus,A’sdependentrameis changedrom 3 to 2.
We saythatB hascontaminated by touching(referencing)t.

C now contaminate8 whichstill reference#\. Thus,thelivenes®f bothB andA must

beadjustedsothatthey arenow dependentn framel.

Although D now contaminate€, D depend®on frame4, which will be poppedbefore
C isdead.Thus,thedependentramesof A, B, andC arenotchanged—thosebjects

all dependonframel.

8
However, D now hasaccesso thoseobjects.If D’s liveneschangedthenthelive-

nessof thoseobjectsmight alsobe affected. Our algorithmtrackssuchinformation

efficiently, thoughconsenratively.

Sureenough E now contaminate®, which makesall the objectstake onits liveness.

Thus,all objectshecomedependenbdn frame0.

Although E hascontaminated, E no longerreferencest. ldeally, this shouldrevert
the actuallivenesof A-D to the situationafter[4]. For example,A canbecollected

whenframel pops.

In our approachhowever, contaminatiorcannotbe undone. OnceE contaminates
theothervariablegindirectly, by contaminatind), they becomedependenbnframe

0. Theirdependenceannotbeimprovedto ayoungerframe.

An extremeexampleof thisis the“staticfingerof liveness”.Suppose staticvariable
referencesvery heapobject. At eachcontaminationthe affectedobjectbecomes
dependenbn frame0, which isn’t poppeduntil the programfinishes. As shown in

Chapter4, actualprogramshave bettermanners.

An unresoledissuefrom the above discussiorconcerndhow to trackthe effectsof a pro-
gram’s future behaior after[3]. The problemis thatD doesnt changeary objects lifetime
by referencingC. However, future changedo D’s dependentramemay affect objectsthat
canbereferencedrom D.

We accommodatéhis problemby assertinghatcontaminations symmetric affect-
ing both X andY whenX referenced’. Thus,in theabove example,D’sdependentrame
becomessynorymouswith C’s, sothatfuture changedo D arecorrectlyaccommodated.

Unfortunately this conseratively makesD dependenonframel after[3] executes.

2.2 Summary

In summarythe CG collectoroperatessfollows.

¢ \We maintainan equilive equivalencerelation over a programs heap-allocateab-
jects. Objectsin the sameblock of the inducedpartition are viewed ashaving the

saméifetime andaredependenbn the sameframe.

Equilive setsgrow throughunion operationsan equilive set's dependenframecan

changeasthe programexecuteshut alwaysby moving to anolderframe.

e Whenaframe M pops,all equilive setsassociateavith M containobjectsthatmust
bedead.SuchobjectscanbesafelycollectedwhenM pops.If theobjectsarealready
in somekind of list L, thenthe objectscanbe returnedto the available storagepool
by joining L to the free-storagdist. This can be accomplishedvith two storage

accessegyhich shouldnot disruptthe effectivenes®f the datacache.

e Two blocks.A andB of therelationaremeged(by a unionoperationwhenobjects
A € AandB € B contaminateeachother This could happerbecaused references

B, or becauseB references.
An exceptionto this policy occursin anoptimizationdescribedn Section3.4.

e Whena new block is formedby meging two existing blocks,the new block is de-

pendenbntheolder(lowernumberedpf the existing blocks’ dependentrames.

e Thelivenes®f anobject.X, andthereforeX’sblock, is affectedif a methodreturns
X toits caller Thelivenessf X'’s block mustbe adjustedso that its dependent

frameis poppedno soonetthanits caller’s.

Thereflexive andtransitve aspect®f equilive areaccurate However, the symmetricprop-

erty introducesconserativenessasillustratedwith theexampleof D above.

10
Our approachs thereforeconserative—thoughnot becauseve cant tell whatis a

referenceandwhatis not[5]. TheCG collectormayoverestimatehelifetime of anobject.
For suchobjects traditionalgarbagecollectionmay collectthe objectwhenwe would not.
We thereforeevaluateour approachn Chapterd by shaving the percentagef objectsthat
arecollectableusingCG.

Our approachdoeshave thefollowing advantage®ver traditionalcollection.

e Traditionalcollectionrequiresmarkinglive objects.While somegenerationatollec-
tors[22,12] canlimit themselesto markingasubsebf thelive objects this phaseof
garbagecollectionpollutesthe cachglandmoredistantvirtual memorycomponents)

with objectsthatarenotreferencedctively by therunningprogram[11].

e Maintainingthe equilive relationcanbe accomplishecfficiently if the disjoint sets
of objectsaremaintainedusing Tarjan's unionby rankandpathcompessiorheuris-
tics [9]. Theresultingoverheads a (nearly) constantamountof work per storage

reference.

11

Chapter 3

Implementation

We implementedur approachn the context of Sun’s Java system Java DevelopmentKit
(JDK) 1.1.8. Our changeswere confinedto thoseportionsof the Java Virtual Machine
(JVM) [13] that dealwith objectcreation,frame creation(in responsdo methodcalls),

methodreturn,andthe base(traditional)garbagecollection. Suns 1.1.8systemoffersthe

following JVM interpreters.
e Thereferencanterpretelis written entirelyin C.

e A more efficient interpreterimplementsthe most frequently executedportionsin

(Sparc)assemblyanguage.

To facilitate our implementation,we basedour work on the C version. However, the
changesve madearecompatiblewith thearchitectureof the (speedierpssemblyersion.

We next sketchour basicimplementatioranddescribenow we accommodateter-
pretergeneratedtaticreferencegandthe moreconceptuallydemandingcharacteristicef

the JVM—namely multiple threadsandnative code.

1This JVM doesnot provide Just-In-Tme (JIT) compilation thoughlaterversionsdo.

12
3.1 Data Structur esand Modifications

SunsJVM interpretemanagesbjectsusinghandles Eachhandlecontainsapointerto the
object’s currentlocationaswell asareferencdo anappropriatanethodtablefor (virtual)
method-lookup Referencebetweerobjectsindirectthroughthe handles.Thus,if objects
arerelocatedduringgarbagecollection,for example) thenonly thehandles pointerto the
objectneeddo beupdated.

Theinterpreternffersa standardreatmenbf method-calndmethod-returnEach
activationrecordis pusheddntoathread-specifistack[1].

To implementour approachwe modified Sun’s JDK 1.1.8systemasdescribedn

thefollowing sections.

3.1.1 Objects

We augmentedkachobjecthandlewith fields to accommodatenion/find of the equilive
sets. We alsoaddedfields to maintainthe list of setsaswell asfor eachset. We useda
parentpointerandanintegerrankfor union/find. To traverseeachequilive set,we maintain
anext pointeraswell asa lastpointer which pointsto the lasthandlein the equilive set.
Eachsetis onadoublylinkedlist onaframeandhasa pointerto the previousandnext set.
To allow for easyaccesdo a handles associatedrame, we have alsoincludeda pointer
backto its frame. To dealwith multiple threadswe usea pointerto thethreadwhereeach
allocationoccured.Althoughnot requiredfor ourimplementationye alsoaddeda unique
integerID aswell asa birth depth(of the stack),so thatwe could track at what depthan

objectwasallocated.

Union/Find on Disjoint Sets

Ourapproachusesunion/findon disjoint setsto organizeits data. Thebasicideais to have

two operations:uni on andf i nd. The designof the algorithmassureghat objectsare

13
in exactly oneset. Eachsethasanassociatedankthatis usedto determinethe parentset

duringtheunionoperation Duringaunion,which ever sethasthehighestrankis choserto
betheparent,f bothranksareequal,a setis chosenPathcompressiois usedto improve
the performanceof the algorithm. Wheneer a find operationis executed|f the parentof
the setis nottheroot, find is recursvely calledandtheresultis storedasthe parentof the
currentset. Every objectthatfind is called on hasits parentupdatedto be the root and
we avoid degeneratestructures.For more detailson the algorithmand Tarjan’s analysis,
see[9]).

A straightforvardimplementatiorwould requireone“ancestor’field andoneinte-
gerfield to representherank. Of course,'primiti ve” objects(suchasintegers)do notuse
handlesandthusdo notincurary overhead.

A morecleverrepresentatiogcanbe achieved by notingthatthe lower bits of JVM
objectpointersarealreadyresered,andarethereforeassumedio bezero. Theequilive sets
canthenbe maintainedsothattheranknever exceedsa predeterminedhreshold.Thus,the
union/findalgorithmcanbeimplementedvith oneadditionalword perobjecthandle.

Our approachrequiresthe ability to determineary objects dependentrame. In a
straightforvardimplementationthis canbe achiezed simply by introducinga pointerinto
the handle,suchthatthe pointerreferenceshe the object’s dependentrame. This pointer
canbeeliminatedf eachequilive setsrepresentatie elemenpointsto thedependenframe
for theentireset.

In summarytheresultsreportedn thisthesiswereobtainedoy introducinganaddi-
tional eightwords(thirty-two bytes)into whatwasformerly atwo word (eightbyte)handle.
The implementatioralsohasan additionalsix wordsthat are usedfor othergarbagecol-
lectionschemesAs will bediscussedn Section3.5,the handlesizecansqueezedh half.

The original interpreterdividedthe heapup into two parts,onefor handlesandone

for the objects. This division was 20% for handlesand 80% for objects. To accountfor

14
our overhead,we adjustthe spaceallocatedfor the handlesso that it is eight timesthe

original. This maintainsthe original objectspace(sincethe objectsizehasnot changed),

but expandsthe handlespaceoroportionalto the spaceve addedn thehandle.

Arrays An arrayis treatedasjust anotherobject—wedo not differentiateanarrays ele-
ments.Thus,ary objectstoredinto anarraycauseshearrayandthe objectto contaminate

eachother asdescribedaterin this section.

3.1.2 Frames

Whena frameis popped,the equilive objectsthat dependon the frame canbe collected.
Thus,eachframeis equippedwvith areferenceo alist of its dependen¢quilive blocks. We

alsogave eachframeauniquelD number

3.1.3 Static Variables

We maintainalist of objectsthataredependenonour “frame0”. Suchvariablesarenever

collectedby our approach.

Essentiallythe JVM interpretemusttake actionfor thoseJVM instructionghatcauseone
objectto referto another The JVM instructionsetconvenientlyseparatetheseby whether

thereferencingobjectis static.

e Whenan objectis created,it is associatedvith the frame of the currently active

method.

e The ar et ur n instructioncausesa methodto return an objectto its caller The
object’s equilive block is adjustedto dependon the caller’s frame,unlessthe object

is alreadydependenbnanolderframe.

15
e Theput fi el d instructioncause®bjectX toreferencey. If Y is notnull, thenX

andY contaminateeachother asdescribedearlier

In thespecialkcasewhereY is alreadystatic,theoptimizationdescribedn Section3.4

avoidscontaminatingX .

e Theput st ati c instructioncan causea staticvariableto referencean object. If
so, the referencedbijects equilive block is addedto the list of frame$ dependent

blocks.

3.1.4 Tainted Objects

We alsomaintainalist of objectswhichweknow to bedead.Keepingtheseobjectsonalist
allows usto checkfuture referencesndhelpsto assurehe correctnes®f our algorithm.

Anytime we find anobjectto be dead,we addit to this list.

We beganwith almostno familiarity of Suns JVM interpreter Nonethelessit took only
six weeksto implementour initial approachn thatsystem.While this is a tribute to the
interpreters design,it alsounderscorethe simplicity of our approach Similarly, the code
generatoof anatve-codecompilercould easilybe modifiedto emitthe necessargodeto
maintainour structures.Subsequentnodificationsdescribedn sections3.6 and3.7 have

occuredsincethe originalimplementation.

3.2 Inter preter-GeneratedStatic References

For ourapproacho work, it mustbeableto take actionwhenoneobjectreferencesnother
For codewritten in Java, this requirementposesno problem. However, the interpreter
canitself generataeferencedo objects,andwe hadto integratesuchreferencesnto our

garbagecollector

16
A goodexampleof this kind of problemis thei nt er n() methodof theSt ri ng

class. A programcould generatanultiple St r i ng objects,eachwith the samecontents.
Thei ntern() methodmapsary Stri ng to a unique occurrencewith its contents.
Thus, givenary two strings,equality of their contentscanbe testedusing“==" oncethe
stringsare mappedusingi nt er n() . JDK 1.1.8implementsi nt er n() usinga hash
table—internato theinterpreter—to maintainreferenceso the uniqueoccurrencesf any
St ri ng mappedsiai nt er n() . Thereference$rom thehashtableareessentiallystatic,
sincea St r i ng mustmapto thesamereferenceviai nt er n() for thedurationof a pro-
gram.

Becausehis actwity is not part of the JVM instructionstream,we hadto insert
callsintheSt r i ng classto tell ourcollectorthatany St ri ng mappedviai nt ern() is
static.

TheclassoaderandJNI?-processingomponentsvereothersourcesf staticrefer
encedo theheap.Mostlik ely, ary implementatiorof JVM will maintainsuchreferences.
To useour approachtheseneedto be identifiedandpropercallsto our collectormustbe

inserted.

3.3 Multiple Threadsand Native Code

Thediscussiorsofar hasbeenlimited to singlethreadsandJava-sourcgrograms.in this
section,we describeour currently simple treatmentof multiple threadsand native code.
More sophistications possible put thatis a subjectof future work.

Our assumptiorthatanobjectis dependentor its life on a singlestackframedoes
notholdif aprogramsharesuchanobjectamongmultiplethreadsasshownin Figure3.1.
Within Threadl, A is dependenbn frame3; however, Thread2 canalsoaccess\ until its

framel is popped.

2Java Native Interface

17

5 _ | 5
—
4 4
3 3
2 2
1 1
0 0
Thread 1 Thread 2

Figure3.1: Two threadssharinganobject.

For thepurpose®f thisthesiswe dynamicallydiscover objectsthatareaccessetly
multiple threadsandwe treattheir equilive blocks as static—dependerdn the programs
frame0.

Sun’s JVM systemallows native (e.g.,C) codeto beinterspersedavith Java code—
eachcancall the other A mechanisn{objectpinning)is alreadyprovided so native code
canrely on anobjects address However, whenC codecalls Javza methodsijt is possible
thatobjectsarecreatedandreturned perhapdriefly, to the native caller. To be consera-

tive, we catchsuchallocationsandtreatthe equilive blocksasif they werestatic.

3.4 A Static Optimization

While the approactdescribedn Section2 is correct,Plezber{6] identifieda situationfor

which we canoffer a bettertreatment Considertheresultsof theassignment

Aa+ S
where S is static—associatewith the last-to-be-poppedtackframe. As describedin
Chapter2, our approachwould unionthe equilive blockscontainingA andS. As aresult,
A would alsobe regardedasstatic, existing for the lifetime of the program. However, in

this case suchactionis unnecessarilgonserative. TheobjectsS is alreadydeterminedot

18
to becollectableuntil the programis over. No furtheractioncancauseS to beregardedas

morelive thanthat. Thus,if S is believedto lastfor the durationof the program,thereis
noreasorto join A’sequilive bockwith S’swhen A references.
Therresultspresentedn Sectiond includethis optimization,exceptfor onecolumn

in Figure4.1whichis designedo show the benefitsof the optimization.

3.5 Shrinking the CG Handle Size

We alsohave anotherimplementatiorin which we squeezedur sixteenword handledown

to eight words. This was accomplishedhroughthe combining of the rank and parent
structure.This canbedonebecausef two factors.First,we know that,in generaltherank
doesnot exceedten (for the SPECjvm98benchmarksjynd that the handlesare aligned
basedon their size. In our case,the handlesare alignedon an eight word boundary so
we canguarantedhat the bottomfour bits will never be usedfor a handleaddress.The
rank was storedin the parentpointerand we usea maskto setandrestoreit. This has
the obvious benefitthatit takes half asmuch memoryfor eachhandleas our previously

discusse@pproach.

3.6 ResettingCG Structur esDuring Traditional Garbage
Collection

While CG works well, it is alsousefulto considerusingit in additionto the traditional
collector If CG operatesn concertwith thetraditionalcollector it would beadvantageous
to have it resetour structureswhile running. The useof equilive setsmakes our method
moreconsenrative, andsincethe traditional collector startswith the rootsof computation

andfollows all the referencedo other objects,we could take advantageof this time to

19
updateour information. To implementthis resetting,we needto modify the collection

phaseThecollectorstartswith eachstackframeandmarkseachobjectthat’slive andthen
ary objectit referencesBeforeeachstackframeis consideredye remove all the equilive
setsfrom the frame. As eachobjectis consideredy the traditional collector we resetit

to be associatedvith the currentframe. Eachobjectis thensearchedo find ary objects
thatit pointsto. At this point, we union the objects’ setstogetherand have our updated
information. The benefitsof this approacharethat,ideally, aftereachcall to the collector

CG would have the samdivenesdor all objects.Unfortunately dueto the additive nature
of our approachthis is only approximatelytrue. The traditional collector also benefits

becauseve areableto free moreobjectsandthe collectoris calledlessoften.

3.7 Recyclingof CG Obijects

Anotherpossibleimprovementon Chapter2 dealswith whatwe do with the objectsonce
they have beenidentifiedasdead.Uponeachmethodreturn,we have alist of equilive sets
of objectswhich we know to be dead.Normally we iteratethroughthis list, visiting each
objectandfreeingit. A betterapproachwould be to deferthe freeing of the objectand
regycle theseobjectssothatthey canbe usedduringsuccessie allocations.

To accomplistthis task,we disconnecthelist of equilive setsfrom the frameatfter
it is poppedandprependt to alist of regycledobjects.Then,duringallocation,wetraverse
this list anddo a “first-fit” searchfor anobjectof the correctsize. Now, insteadof having
to free eachobjectin every equilive setafter a methodreturn, we only updatea pointer
This lowersCG overheadby deferringthe “freeing” until allocation. Allocation from our
freelist happensvhentheallocatorfails to allocateanobject,beforeit triesto run MSA.

We hypothesizedhat this optimizationwould be beneficialin several ways. We
have discoveredthat,in generalmostof the objectsin Java programsareof the samesize

(16 bytes).The default allocatorin JDK 1.1.8doesa linear searchthroughthe objectpool

20
to find the first objectthatis at leastasbig asrequestedandalsotries to coalescewo

contiguousobjectsto make a block big enough). We can guaranteehat every time the
JVM (duringallocation)looksatour list of deadobjects,it will belooking atafreeobject.
Theallocatorkeepstrackof thelastlocationwhereit allocatedanobjectfrom, soit would
notseenmto be muchof animprovementwhile theheaphasspaceavailable. Oncetheheap
hasfilled (or thefirst attemptat allocationfails) the allocatorhasto rescarthe heapto find

free objectandrecgycling would seemmostuseful.

21

Chapter 4

Experiments

We implementedurapproaclasdescribedn Section3.4. We thenconductedxperiments
ontheapproachusingtheprogramsiescribedn Figure4.1. WeusedtheSPECbhenchmark
suite[10]. The suitehaseightdifferentbenchmarkshatimplementvariousteststhatcan

berunfor differentsizes(1, 10,100).?

4.1 CollectableObjects

For eachbenchmarkfFigure4.1 shavs the numberof objectscreatedduringits run. The
right two columnsshaw the percentagef all objectsthat were collectedby our method.
The rightmostcolumnshaows the percentagef collectableobjectswhenthe optimization
describedn Section3.4 is enabled;this is of coursethe preferredimplementation. For
comparisorpurposesye alsoshow the percentag®f objectscollectablewithout the op-
timization. All otherobjectsweretreatedby our methodas static—live until the end of
the program. Given our approachsuchobjectsare eitherdeclaredstaticor elsethey are

referencedndirectly by a staticobject.

Thent rt programis amultithreadedsersionof r ayt r ace; however, multiple threadsarerequiredfor
computatioronly for thelargerproblemsizes.Thus,our resultsfor thesetwo programsarevery similar.

22

benchmark description lines objects collectable
of source created noopt with opt
compress Modified Lempel-Zv 920 5123 9% 11%
jess ExpertSystem 570| 45867 35% 61%
raytrace RayTracer 3750| 276960 98% 98%
db DatabaséManager 1020 7608 18% 36%
javac JavaCompiler 9485| 26116 23% 24%
mpegaudio MPEG-3decompressor N/A 7550 6% 7%
mtrt RayTracer threaded 3750| 276084 98% 98%
jack PCCTStool N/A | 393742 69% 89%

Figure4.1: Percentagef objectscollectableby our approachwithout andwith the opti-
mizationdescribedn Section3.4.

The ray-tracing,path-naigating, andj ack programswere over 90% collectable
usingtheCG collector Thenpegaudi o andconpr ess programsio notgeneratenary
objects;the objectsthataregeneratedarefairly long-lived. Thus,we did not collectmuch
for thoseprograms but neitherwould an exact approach.For the otherbenchmarksye
arefrom 7%-60%successfulAlthoughthosenumberamay seemlow, evenif we areonly
50% successfulthis meansthat the traditional collectorwould be called half asoften as

without our approach.

4.2 Static Objects

Objectsthat we believe to be staticlive for the durationof the program. One metric to
measurehe effectivenessof our approachs the numberof static objectsversusthe total
numberof collectableobjects.Figure4.2 shavs that, for smallruns(sizel), conpr ess,
db, andnpegaudi o have a large numberof staticobjects. We obsenre thatj ess and
j avac have aboutthe samenumberof staticascollectableobjects.Otherwisethenumber
of staticobjectsis relatively small. For largersizes(10 and100),Figure4.3andFigure4.4,

shaw significantimprovementwith the exceptionof conpr ess andnpegaudi o, which

23

Legend
. Collected Static Thread

100%
90% —
80%
70%
60%
50%
40%
30%
20%
10%

0%

Figure4.2: Percentagef objectsthat we treatasstatic (live for the programs duration)
anddueto sharingamongthreadqsizel).

allocateonly a few objectsanddo mostly compuatartion.For the otherbenchmarksthe
numberof staticobjectsincreasedy a smallamountandthe numberof collectableobjects
shawvs a dramaticincrease. Theseresultslead us to believe that our approachwould be
usefulin longerrunningbenchmark&ndapplications. Senersandwebbasedservietsare

examplesof suchprogramgshatmight benefitfrom our approach.

24

Legend
. Collected Static Thread

100%

90% —]
80%
70%
60%
50%
40% [
30%
20%
10% —
0%
P

Figure4.3: Percentagef objectsthat we treatasstatic (live for the programs duration)
anddueto sharingamongthreadqsize10).

4.3 ThreadBehavior

Becausave treatmultiple threadsconsenratively, we measuredhe numberof objectsthat
wereforcedinto the staticsetwhenthey were accessedyy multiple threads. Recallthat
objectsin the static set are treatedby our approachas live for the programé duration.
Figure 4.2 shows that mostof our benchmarkdad very few thread-sharedbjects. The
nrt andraytrace programsare equippedto run multithreaded but shaved only a

very small percentagef their objectsbeingsharedacrossmultiple threads.Thej avac

25

Legend

. Collected Static Thread
100%
90%
80%
70% B
60%
50%
40%
30%
20%
10%

0%
& & \@0@ ¥ & £ "
c)°{Q @

Figure4.4: Percentagef objectsthat we treatasstatic (live for the programs duration)
anddueto sharingamongthreadqsize100).

benchmarkadthe largestnumberof thread-sharedbjects(over 72% of the total objects

andmorethantwo timesthe collectableor staticobjects)).As the sizeof the benchmarks

increase(to 10 and 100), we seeimproved effectivenessof our approach,as shavn in

Figure4.3 and Figure 4.4. In a similar fashionto static objects,the relatve numberof

thread-sharedbjectsincreaseslowly, while the numberof collectableobjectsincreases

quickly. Thelargerrunsshaw j avac having almosttwice asmary collectableobjectsas

thread-sharedbjects.

26

benchmark total numberof blocksof size percent

collectable 1 2 3 4 5 6-10>10 exact
compress 5123 176 65 31 7 2 0 2 3%
jess 45867 3050 7193 3156 20 68 43 18 7%
raytrace 276960| 40415 9446 1503 1834 3 4277 2 15%
db 7608 330 93 319 5 2 0 3 4%
javac 26111| 2792 526 337 177 142 1 1 11%
mpegaudio 7550 177 63 37 9 2 0 1 2%
mtrt 276084 40290 9321 1474 1800 2 4277 2 15%
jack 393742| 119252 85418 13515 4720 30 26 1 30%

Figure4.5: Distribution of block sizes.

4.4 Sizeand Age of the Equili ve Blocks

Recallthat blocks containingobjects A and B are megedwhen A referencesB (or B
references!). For thefollowing reasonsywe werecuriousaboutthe numberof objectsthat

accruein eachblock prior to the block’s collectionusingCG.

e Blocksthatcontainasingleobjectareexact: no unionsareperformedandsowe can

returnsuchobjectsat the next method-return.

e If mostblocksaresizel, thenan approachthat looks only for suchblocks might

work well withoutthe overheadf our moregeneralpproach.

e Recallingour examplefrom Section2, we wereforcedto overestimateD’s lifetime
whenit wasmemgedwith C. Our approachcould be improved by keepingtrack of
dependentramesperobjectinsteadof perblock. However, thiswould beunreason

ableif thereweremary objectsperblock.

Figure 4.5 shaws the size of the collectableblocks createdduring the runs of our
benchmarks Although mostblocks containmorethanone object,the majority of blocks

do containthreeor fewer objects.

27

benchmark Distancefrom birth to deathframes

0 1 2 3 4 5 >5
compress 146 151 140 69 29 10 0
jess 5,824 8,926 12,272 640 249 79 1
raytrace 35,707 36,590 29,183 1,050 11,285 6,368 152,133
db 180 613 1,200 554 30 74 50
javac 3,445 1,477 930 203 305 4 2
mpegaudio 146 163 153 58 24 3 0
mtrt 35,550 36,526 28,990 861 11,221 6,272 152,036
jack 63,230 263,574 20,992 1,961 168 7 4

Figure4.6: Age at deathof objectswe collect.

Next, we measuredhedistanceo die for objectsthatwe wereableto collect. Sup-
poseanobject X is bornin frame M. When X is finally collected,it mustdependon a
frameat leastasold as M. The singletonblocksmentionedearlie—for which our infor-
mationis exact—maynot die in their allocatingframe,because framecanreturnaresult
to its caller. Figure4.6 shavstheage,in framedistancepf objectswhenthey die.

Objectsthatarecollectedin the0 columnneverescapeheframein whichthey were
allocated.Many collectableobjectsfall into that category. However, mostare associated
with olderframes.For thej avac benchmarka significantportionof objectsallocatedn
aframearedetectectollectablevhenthatframe’s callerreturns.

For thoseobjectsthatdiein theirbirth framesjt maybeworth consideringhow such
objectscouldbe collectedsoonerthantheir dependentramepops. The singletonsetscan
becollectedonceit canbeshownn thatnolocal variablereferencesheobject. As described
in Sectionl.1, staticapproachesaysene well here.lt is interestingto notestaticescape
analysig21] is practicallylimited to analysisof two frames while our approactcandetect

anarbitrarynumberof frames?

2personatommunicatiorwith Martin Rinard

28

benchmark CG JDK speedup
compress | 318.9908 292.6376 0.92
jess 5.7176 5.1144 0.89
raytrace 35.217 27.8904 0.79
db 0.692 0.6558 0.95
javac 3.335 3.7172 1.11
mpegaudio| 34.3276 33.3924 0.97
jack 70.6476 64.2296 0.91

Figure4.7: Timing results. The rightmostcolumn shows the speeduof over traditional
collectorin the JDK 1.1.8systemfor sizel.

4.5 Performanceand Overhead

Finally, we examinethe run-timeoverheadof our approachn Figure4.7. We beganwith
Suns JDK 1.1.8(call this the basesystem)andmodifiedit to useour CG algorithm. All
testswererunon a SunUlItra Sparcs workstationwith 128MB of realmemoryand1.6GB
of virtual memory The processois a UltraSparc-Ilirunningat 400MHz. The rightmost
columnof Figure4.7 shavs the speedumbtainedby CG. Recallthatour approachncurs
overheadfor maintainingthe equilive blocks. Also, actionis taken at eachst or e and
r et ur n operation. The basesystemdoesnot incur such overhead,but doespauseto
garbagecollectwhenits heapbecomeselatively full.

Therightmostcolumnshaws at best,an 11%improvementin executiontime using
CG. Thisrepresentainabsolutesarings of time usingour approactover the basesystem,
eventhoughwe performextra work at every st or e operation. Thus,the savings canbe
attributedto avoidanceof the traditionalgarbagecollector Moreover, we setup the runs
to avoid heapcompaction.Thus, the savings stemsprimarily from avoiding the marking
phaseof garbagecollection. In general thoughwe do showv a slowdown, we are within
10%—-20%of the basesystems executiontime.

To isolatethe overheadof maintainingthe equilive sets,we ran the basesystem

with theasynchronou§&C disabledaswell asgiving is plentyof storage.This allowedthe

benchmark CG JDK speedup
compress | 372.7318 346.6596 0.93
jess 54.4978 49.4348 0.91
raytrace 97.9964 78.0694 0.80
db 43.1086 39.3572 0.91
javac 31.9388 29.3018 0.92
mpegaudio| 354.9622 345.6264 0.97
jack 140.8294 128.9202 0.92

29

Figure4.8: Timing results. The rightmostcolumn shows the speeduof over traditional
collectorin the JDK 1.1.8systemfor size10.

benchmarkso run without runningthe MSA collector Thus,the middle columnof num-
bersin Figure4.7 andFigure4.8 shovsthe speedugtypically slowdown) of our approach
over the basesystemfor sizesl and10, repectvely. In generalwe arewithin 10% of the

thebasesystem.

4.6 Larger SPECRuns

We next examinedthe performanceof our approachon the “larger” SPECbenchmarks.
Thesearereally the sameprogramsusedpreviously, but with longerrunningtimes. As
shown in Figure 4.9, mostof the benchmarkgeneratedgubstantiallynore objects. The
exceptionsto this areconpr ess andnpegaudi o, which arecomputationain nature.
Interestingly our approachworked only betterin termsof the percentagef collectable
objects.Notably, db andj avac wentfrom 41% and24% collectablein the smallrunto
91% and 99% collectablein the large run. Similarly, the numberof objectsthat we can

collectexactly mostlyimprovedin thelargeruns,exceptfor db.

30

Name Objects Collectable Exactly
Created Withopt Collectable

compress 6,959 28% 27%
jess 7,924,661 41% 42%
raytrace 6,346,978 99% 82%
db 3,211,531 99% 0%
javac 5,879,703 91% 12%
mpegaudio 7,582 9% 30%
mtrt 6,585,974 99% 80%
jack 6,863,344 90% 37%

Figure4.9: SPECbenchmarkslargeruns.

benchmark sizel sizel0 sizel00
compress 0.97 0.97 0.98

jess 0.93 0.96 3.18
raytrace 0.87 0.85 1.71
db 0.95 0.94 0.94
javac 1.14 0.96 2.77
mpegaudio 1.00 1.00 1.30
jack 0.93 0.94 1.98

Figure4.10: Speedumf ourapproactover JDK 1.1.8.For thelargerun,npegaudi o and
conpr ess took overanhourto completewith eithersystem.

Finally, we compareexecutiontimesfor the SPECbenchmarksn Figure4.10.The
“small” speedupsrereprisedfrom Figure4.7; includedalsoarethe speedupgandslow-
downs)of our methodfor the medium-andlarge-scalagunsof thebenchmarksWe shav a
slightimprovementin thesize10runsanda significantjumpin size100.

Our approachworked well for the smallruns,andit shouldbe notedthateventhe

“small” runstake substantiatime.

31
4.7 ResettingResults

In Section3.6 we describehow a normalMSA passfor garbagecollectioncanresetob-

jectinformationfor CG. In this section,we presentesultsfrom resettingCG structures,

shawing the effectsof resettingon the quality of objectcollectionunderCG.
Supposeanobijectis actuallydeadattime ¢. Thatobjects collectionunderCG falls

generallyinto oneof thefollowing threecategories:

1. Within aboundableamountof time after¢, aframepop occursandCG collectsthe

object. Thisis thebestcasefor our approach.

2. The objectis collectedin the sameframe asabove, but the methodspendsan un-
boundableamountof time prior to the frame pop. Sincewe associatdéhe liveness
of objectswith frames,we only canonly tell if objectsaredeadwhenaframepops.
If anobjectbecomesleadduringa method,our approachwill not discoverit dead
until the next framepop. For exmaple,the methodmay containa loop that prevents

usfrom collectingthe objectexpeditiously

3. In the above two casesCG is accurateo the next framepop. Thatis, if anobject
dieswhile framef is active,thenwe collectthe objectwhenframe f pops.Thus,the
lastcasefor our methodis whenCG associatethe objectwith aframelongerlived
than f. For example,the objectcould be associatedvith the staticset. This happens
mostoften whena static objecttouchesanotherobjectand thenpointsaway. Our
approachwould beto putthe objectbeingreferencednto the staticsetandit would

live“forever”. Theoptimizationmetionedn Section3.4 helpsto avoid this situation.

During the mark phaseof MSA, we verify and updateour CG structuresas described
in section3.6. The net effect of suchan updateis to correctthe approximationerrors

introducedby our approach.

32

name collectedby MSA lesslive GCcycles
compress 227 1 9554
jess 13210 41 90
raytrace 232003 13 540
db 2258 1 24
javac 10359 1 66
mpegaudio 206 1 1165
mtrt 231654 14 531
jack 38215 2 1005

Figure4.11: SPECbenchmarkssmallruns.

We instrumentedhe JVM to run garbagecollection after a certainnumberof in-
structionshadbeenexecuted.For theseresults,we ran MSA every 100,000JVM instruc-
tions. Figure4.11shownstheresultswe found. The“collectedby” columnshownsthatmost
objectsweredeterminedo beunreachablandthereforedroppedout of our structuresand
werecollectedby the sweepphaseof MSA. A small numberof objectsweredetermined
to be “less live” thanour staticset. Thoseobjectsthat did move from the staticsetonly
moved a few frames. The nonstaticobjectsshoved no movementbetweerframesat all.

Experimentationwith largersizesshovednoimprovementandthoseresultsarenotshown.

4.8 RecyclingResults

Figure4.12showvsthatthe benefitsof regycling objectsarealmostasgoodaspredicted.In
generalve arewithin 4% of theoriginal timings,with speedupiappeningnoreoftenthan
not. conpr ess is the bestperformer with a 3% increase Figure4.13shows the number
of objectsthatwe regycle versusthe total numberof objectsallocated. The conpr ess,
db, andnpegaudi o benchmarksll shov a smallnumberof objectsregycled, while the
otherbenchmarkshov 10% to 60% of objectsbeingrecycled. In the benchmarkghat

regycled a large numberof objects,we seea smallerspeedup.Sincethe JVM allocator

33

Name CGtime CGwith speedupsing
seconds regycling regycling
compress 311.53 303.38 1.03
jess 7.50 7.57 0.99
raytrace 43.27 44.60 0.97
db 0.89 0.88 1.01
javac 4.40 4.42 0.99
mpegaudio 35.22 34.60 1.02
mtrt 45.15 44.36 1.02
jack 171.69 171.40 1.00

Figure4.12:Regy/cle timing, smallruns.

Name objects percentof
reg/cled total
compress 308 6.01
jess 13728 29.93
raytrace 32175 11.62
db 702 9.23
javac 5701 21.83
mpegaudio 313 4.15
mitrt 31432 11.38
jack 222344 56.47

Figure4.13: Numberof objectsregycled,smallruns.

progressesequentiallythroughthe heapandremembershe locationof its lastallocation,
it canquickly find the next free object. This style of allocationonly works the first time
throughthe heap. With longer running benchmarksthe heapwill becomefull andthe
allocatorwill beforcedto startits searchatthe beginning of the heap.Searchingbecomes
moredifficult becausét hasto find free spaceamongthe objects.

Ourlist of equilive setsis notorderedandwe have to searchthrougheachset(doing
afirstfit) everytime, leadingto aworstcaseof O(n) for n objectsin ourregycle list. Note
that becauseof first fit, we expectto do betterthan the averagecaseof O(n/2), aswe

only have to find an objectat leastasbig asrequestedThis could be furtherimproved by

34
keepingthe objectssortedon the equilive sets but thatwould make our CG approacteven

slower. Anotherpossibilitywould beto keepthe setsorganizedby type, sothatwe could

merelylook for a specifictype of object,andresetits structures.

35

Chapter 5

Generally Related Work

Appel [2] hasobsenredthat stack-allocatedtorage(i.e., local variables)canbe managed
more efficiently using the (more general)heap. Insteadof reclaimingeachframe indi-
vidually uponits methods return, multiple framesare collectedwhengarbagecollection
transpires.In summaryAppel proposedo treatstack-allocateabjectsasheap-allocated.
We areessentiallytrying the dual of thatapproachwe modelheap-allocatedbjectsasif
they wereallocatedin a stackframe,but we continuallyrevise which stackframeholdsa
heap-allocatedbject.

Staticanalysistechniqueg7, 16, 24] attemptto determinethe lifetime of objects,
by finding environmentsfrom which suchobjectscannotescape.The representatiorfior
suchervironmentscanbe a stackframe[15], sothatobjectsaredirectly associateavith a
“deeper’stackframethanthe methodin which they areinstantiated.

Also, the notion of an ernvironment-escap&asbeengeneralizedo that of a re-
gion[20, 19]. Regionsareperhapgheclosesin natureto theideasexpressedn thisthesis.
As with our approachyegionscandecreasehe needfor mark-basedyarbagecollection.
A region essentiallyintroducesa stack-basegbair of allocationanddeallocationsitesfor

anobject,wherethe sitesaredeterminedy staticanalysisandnot by a programs syntax.

36
The distinguishingfeaturebetweenregions and our work is that regions are determined

statically while our approacloperateslynamically

It is notclearthatregionsarebetteror worsethanour approach.

e Our approactcontinuallyenlagesthe “region” associateavith anobject,whenthe
objectis referencedy objectswith longerlifetimes. For example theinstructionse-
guenceshawn in Figure2.2leavesall objectsdependendn frame0 in our approach.
Staticanalysis(suchas proposedn the “regions” work) could easily shav that A

couldbecollectedwhenframel pops.

e Becausstaticmethodsnustaccommodatany paththroughaprogramit is possible
thatour approactcanfarebetterbecausé adjusttheexpectedexpirationof objects
dynamically asdeterminedyy actualexecutionpathsin a program.Thus,we might
determinghatanobjectcanbereleasedt a point prior to thatwhich staticanalysis

canshaw thattheobijectis free.

Theintegrationof our methodwith staticapproachess the subjectof futurework.

5.1 The Train Algorithm

Our approachis influencedby the train algorithm [12, 17]. That algorithm continually
reoiganizesthe heapso that objectsthat referenceeachother are clusteredat the time
thatsuchobjectsaredead. In the jargon of thetrain algorithm[12], our approactcanbe
expresseasfollows. Eachstackframeis associateavith atrain. Whenthe stackframeis
poppedall carsof theframestrainareknown to befree,sowe simply returnthoseobjects
to the heap. The train algorithm moves objectsbetweencars of trains during garbage
collection,with the goal of clusteringobjectsthatreferenceeachother Insteadof moving
individual objects,our approachessentiallyjoins two trains,leaving themattachedo the

appropriatestackframe.We arelessprecisethanthetrain algorithm,becauseve dealwith

37
objectsonly in termsof their containingtrains. Also, oncetrainsare joined, we do not

considerseparatinghemunlesswe have resettingof our structuresenabled asdescribed
in section3.6.

The train algorithmis more precise,but—like all generationabpproaches—ite-
quireskeepingtrack of certainkinds of references.In summary our approachdoesnot
supplantthe train algorithm. Both approachesreincremental:objectsthat aredeadmay
go uncollectedfor sometime. Our approachavoids marking, and storageis returnedas
methodframesare popped. The integrationof our methodwith the train algorithmis the

subjectof futurework, asdiscussedn Chapter6.

38

Chapter 6

Conclusionand Futur e Work

We have presentech simplebut conserative approactfor trackingan object’s dependent

frame.Our experimentsshaow thefollowing.

e A reasonablgercentag®f objectsare collectableby our approachFigure4.1 and

Figure4.9).

e Of thoseobjectsthat are CG-collectable,mostoccurin blockswith threeor fewer

objects(Figure4.5).

e Forsomeprogramgqsuchasj avac andj ack), mostobjectsthatwe cancollectare
collectedwithin oneor two framesof their birth (Figure4.6). For otherprograms
(suchasr ayt race andnpegaudi 0), a majority of objectsare collectedmore

than5 framespasttheir birth frame.

e Although our approachperformsreasonablywell for the small runs of the SPEC

benchmarksywe seeimprovementon themorepracticalsizesof 10 and100.

In responseo theseobsenrations,our plansfor thefutureincludethefollowing.
To gainbetterinsightinto whenandhow well objectscan be collected,we planto

identify the pointatwhich

39
e anobjectbecome<ollectable

¢ traditional(exact)garbagecollectioncollectsit
e CG collectsit

While it appearghata large numberof objectscanbe reclaimedefficiently by our

approachpurresultssuggesthe following possibilitiesfor futurework.

e Theoperationneededo maintainthe equilive setsaresuficiently simplethatthey

might beincorporatedlirectly into a storagearchitecture.

e The equilive singletonsetscould be maintained‘by type”. Thus, whena frame
is popped,therewould be a collection of free objectsof a giventype. Insteadof
returningsuchobjectsto agenerafree-storageool, they couldberecycledthe next
time objectsof that type are needed. For languagedike Java, whereobjectsof a
giventype alwaystake the samesize(exceptfor arrays),suchobjectregycling could

have a big payof.

Moreover, this couldimprovethereferencdocality of aprogram.Otherd8, 11] have
suggestedisinggarbagecollectionasatime to reolganize(live) storageto improve
locality. If CG canregycle the deadstoragethenthe next instantiationof an object

type may have its dataalreadyin cache.

e Onits own, our approacmever improvesthe dependentrameof anequilive block.
However, it may be possiblethat suchinformation could be resetwhentraditional
collectionis performed. Suchfresh startsmay give our approachmore latitudein

finding deadobjects.

e Becausenary objectsappeato becollectablevhentheirbirth framepops,it is worth

consideringhow suchobjectscould be collectedsooner In particular anobjectin a

40
size-1setcanbe collectedonceits dependentrameno longerreferenceshe object.

This couldhappenwell beforethe executingmethods framepops.

Staticanalysig[7, 19] may help determinewheresuchvariablesdie. Also, it is pos-

siblethatanefficient dynamicschemecoulddetectthatsuchvariablesaredead.

Staticanalysismight alsohelp by determiningthe conditionallivenesf objects.If
objectX canbeshowvnto beaslive asobjectY’, andwe cantell that X is dead then

Y mustalsobedead.

Ourtreatmenbf thread-sharedbjectsis to considetthemlive for the programs du-
ration. Insteada setof dependenstackframescould be associatedavith anequilive
block. Furtherinvestigationis neededo explore the expenseandbenefitsof a more

generalpproach.

Ourapproactcouldcomplimenthetrain algorithmby collectingobjectswhenmeth-
odsreturn. Exactcollectionmight be requiredlessfrequently Also, thetrain algo-
rithm could updateour structuresvhenit doesrun, sharpeninghe effectivenesof

ourapproach.

41

Appendix A

Data

benchmark Total Percentage
num of of staticobjects
staticobjects dueto threads

compress 4578 0%
jess 17876 0%
raytrace 4644 1%
db 4907 0%
javac 19745 72%
mpegaudio 7003 0%
mtrt 4628 1%
jack 43806 0%

FigureA.1: Percentagef objectsthatwe treatasstatic (live for the programs duration)
dueto sharingamongthreads.

benchmark popped static thread

compress 545 4576 2
jess 27991 17874 2
raytrace 272316 4599 45
db 2701 4905 2
javac 6366 5490 14255
mpegaudio 547 7001 2
mtrt 271456 4583 45
jack 349936 43804 2

FigureA.2: Objectbreakdaevn, smallruns.

benchmark popped static thread

compress 629 4602 2
jess 84723 21788 2
raytrace 554204 4599 99
db 116123 5889 2
javac 112789 5972 92060
mpegaudio 591 8493 2
mtrt 794189 4585 116
jack 699794 80525 2

FigureA.3: Objectbreakdevn, mediumruns.

benchmark popped static thread

compress 1862 4708 2
jess 7846779 77882 2
raytrace 6342111 4455 414
db 3206483 5048 2
javac 3806149 8464 2045161
mpegaudio 718 6864 2
mtrt 6582100 4445 431
jack 6232144 631184 2

FigureA.4: Objectbreakdevn, largeruns.

42

Benchmark] CG JDK

compress | 319022 292.779
compress | 319515 292.628
compress | 318993 292.277
compress | 318564 292.493
compress | 31886 293.011
jess 5.76 5.114
jess 5.726 5.072
jess 5.706 5.118
jess 5692 5.062
jess 5.704 5.206
raytrace 33726 27.639
raytrace 4112 27.729
raytrace 3371 27.686
raytrace 3382 28.461
raytrace 33709 27.937
db 0.688 0.636
db 0.689 0.639
db 0.689 0.637
db 0.699 0.664
db 0.695 0.703
javac 3.326 3.609
javac 3.333 3.605
javac 3.33 3.64
javac 3.336 3.619
javac 3.35 4.113
mpegaudio | 34018 33.284
mpegaudio | 34393 33.343
mpegaudio | 34426 33.361
mpegaudio | 34028 335

mpegaudio | 34773 33.474
jack 70554 64.187
jack 70729 64.086
jack 70493 64.203
jack 70866 64.222
jack 70596 64.45

FigureA.5: SPECbenchmarkssmallruns.

43

Benchmark] CG JDK

compress | 372657 346.708
compress | 372731 347.075
compress | 372729 346.671
compress | 372701 346.164
compress | 372841 346.68
jess 545 49.725
jess 54431 49.759
jess 54575 49.103
jess 54433 49.678
jess 5455 48.909
raytrace 99598 78.017
raytrace 97524 77.937
raytrace 97706 78.198
raytrace 97574 77.816
raytrace 9758 78.379
db 42925 39.352
db 42916 39.338
db 43571 39.353
db 43166 39.363
db 42965 39.38
javac 31794 29.454
javac 31648 29.185
javac 31807 29.208
javac 32673 29.16
javac 31772 29.502
mpegaudio | 355008 345.737
mpegaudio | 352475 346.363
mpegaudio | 353407 345.186
mpegaudio | 361457 345.33
mpegaudio | 352464 345.516
jack 140567 128.599
jack 140969 128.852
jack 140979 128.719
jack 140946 129.304
jack 140686 129.127

FigureA.6: SPECbenchmarksmediumruns.

44

Benchmark| CG JDK

compress | 5536811 5444246
compress | 5546523 5458166
compress | 5540937 5460112
compress | 5544716 5461799
compress | 5529341 5456450
jess 1107007 3668475
jess 1268469 3628811
jess 1135807 375079
jess 1114949 3635839
jess 1113318 3563147
raytrace 142578 2321214
raytrace 1394654 2339595
raytrace 1417778 234003
raytrace 1385052 261847
raytrace 1354019 2344222
db 3227322 3043220
db 3231903 3039893
db 3237756 3055134
db 3229218 3057607
db 3228809 3042432
javac 1755543 4949161
javac 1776483 499091
javac 1799675 4931495
javac 1835242 5006536
javac 1799431 4931756
mpegaudio | 3600563 3914408
mpegaudio | 3599813 3873521
mpegaudio | 3606237 3701674
mpegaudio | 3597167 8363869
mpegaudio | 3683987 3654349
jack 1323306 2771095
jack 1338635 276107
jack 1471035 2700231
jack 133317 2669262
jack 1343598 2610093

FigureA.7: SPECbenchmarksargeruns.

45

46

References

[1] A.V. Aho, R. Sethi,andJ.D.Uliman. Compiless: Principles, Tedhniques,and Tools.
Addison-Wesleg/, ReadingMass.,1986.

[2] Andrew Appel. Empiricalandanalyticstudyof stackversusheapcostfor languages

with closures.Journal of FunctionalProgramming 6(1):47—74,1996.

[3] Andrew W. Appel. Simplegenerationagjarbagecollectionandfastallocation. Soft-

ware Practiceand Experiencel19(2):171-1831989.

[4] KenArnold, JamesGosling,andDavid Holmes. TheJava ProgrammingLanguaye.

Addison-Wesley, Boston,2000.

[5] Hans-JuegenBoehm.Spaceefficientconserative garbagecollection. SIGPLANNo-
tices 28(6):197-206Junel993. Proceeding®f the ACM SIGPLAN'93 Confeence

on ProgrammingLanguae Designand Implementation

[6] DanteJ.CannarozziMichaelP. PlezbertandRonK. Cytron. Contaminatedjarbage
collection. ProgrammingLanguae Designand Implementation pages264—-273,

2000.

[7] D. R. Chase. Garbage Collectionand Other Optimizations PhD thesis,Dept. of
ComputerSci.,Rice U., Houston,TX, August1987.

47
[8] Trishul Chilimbi andJamed.arus. Using generationagjarbagecollectionto imple-

mentcache-conscioudataplacement.Proceeding®f the International Symposium

on MemoryManagemen}1998.

[9] ThomasH. Cormen,CharlesE. Leiserson,and RonaldL. Rivest. Introductionto

Algorithms TheMIT PressCambridgeMass.,1990.

[10] SPECCorporationJavaSPECbhenchmarksTechnicakeport,SPEC,1999.Available

by purchasdrom SPEC.

[11] ScottHaug. Automaticstorageoptimizationvia garbagecollection. Mastersthesis,

WashingtorlUniversity, 1999.

[12] RichardL. Hudson,RonMorrison, J. Eliot B. Moss,andDavid S. Munro. Garbage
collectingtheworld: Onecaratatime. In OOPSLA7 ACM Confeenceon Object-
OrientedSystemd,anguagesand Applications— TwelthAnnualConfeence volume

32(10)of ACM SIGPLANNotices ACM PressOctoberl997.

[13] Tim Lindholm andFrankYellin. TheJava Virtual Machine Specification Addison-
Weslegy, 1997.

[14] Robin Milner, Mads Tofte, and RobertW. Harper The Definition of Standad ML.
MIT PressCambridgeMassachusett4,990.

[15] AlastairReid,JohnMcCorquodaleJasorBaker, Wilson Hsieh,andJoseptZachary
Theneedfor predictablegc. Proceeding®f the SecondAbrkshopon CompilerSup-
port for SystenSoftwae, 1999.

[16] CristinaRuggieriandThomagsP. Murtagh.Lifetime analysisof dynamicallyallocated
objects.In ConfeenceRecod of the FifteenthAnnualACM Symposiunen Principles

of ProgrammingLanguages page285-293 SanDiego, California,Januaryl988.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

48
JacobSeligmannand Stefen Grarup. Incrementaimaturegarbagecollectionusing

thetrain algorithm. Proceeding®f ECOOP’95, pages235—-2521995.

Darko Stefanovic. Propertiesof Age-BasedAutomaticMemoryReclamationAlgo-

rithms. PhDthesis,University of Massachusett&mherst,1999.

MadsTofte. A briefintroductionto regions. Proceeding®f theInternationalSympo-

siumon MemoryManagement{ISMM), pagesl86—195,1998.

Mads Tofte and Jean-Pierrélalpin. Implementationof the typed call-by-value A-
calculususing a stackof regions. In ConfeenceRecod of POPL’94: 21stACM
SIGPLAN-SIGAT Symposiunon Principles of ProgrammingLanguayes pages
188-201 Portland,Oregon,Januaryl994.

F. VivienandM. Rinard.Incrementalizeghointerandescapeanalysis.In Proceedings
of the SIGPLAN'01 Confeenceon Program Language Designand Implementation
Snaowbird, Utah,June2001.

Paul R. Wilson. UniprocessogarbagecollectiontechniquegLong Version).Submit-

tedto ACM ComputingSuneys, 1994.

Paul R. Wilson, Mark S. JohnstonelMichaelNeely andDavid Boles. Dynamicstor
ageallocation: A surwey andcritical review. In Henry Baker, editor, Proceedingof
International Workshopon Memory Management volume 986 of Lecture Notesin

ComputerScienceKinross,Scotland Septembel 995.SpringerVerlag.

KwangKeunYi andWilliams Ludwell Harrison. Interproceduratiataflow analysis
for compile-timememorymanagement.TechnicalReport CSRD 1244, University
of lllinois atUrbana-ChampaigrGenterfor SupercomputingResearctandDevelop-

ment,Urbana,L 61801,USA, August1992.

Date of Birth

Degrees

Professional
Societies

Publications

49

Vita

DanteJohnCannarozzi

May 11,1979

B.S.2001,
from Washingtonniversity, St. Louis, Missouri.

Associationfor ComputingMachinery

DanteJ. CannarozziMichael P. PlezbertRonK. Cytron. “Con-
taminatedGarbageCollection” ProgrammingLanguage De-
signandImplementationVancouer, Canada2000.

May 2003

	Contaminated Garbage Collection
	Recommended Citation

	tmp.1471023011.pdf.fe5PC

	Abstract: Abstract: We describe a new method for determining when an object can be garbage collected. The method does not require marking live objects. Instead, each object X is dynamically associated with a stack frame M, such that X is collectable when M pops. Because X could have been dead earlier, our method is conservative. Our results demonstrate that the method nonetheless identifies a large percentage of collectable objects. The method has been implemented in Sun's Java Virtual Machine interpreter, and results are presented based on this implementation.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 15, 2003
	Author: Authors: Cannarozzi, Dante J.
	Title: Contaminated Garbage Collection - Master's Thesis, May 2003
	ReportNumber: 2003-40
	DepartmentName: Department of Computer Science & Engineering

