Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-08

1990-12-01

SwarmExec: A Prolog-Based Execution Engine for a Shared-
Database Language with Visualization Capabilities

Kenneth C. Cox, C. Donald Wilcox, and Jerome Y. Plum

We have implemented a Prolog execution engine for the shared-database language Swarm
extended with visualization capabilities. We call this execution engine SwarmExec. SwarmExec
runs on a Macintosh lifx under Advanced A.l. Systems' Prolog (AAIS) and communicates over
an Ethernet connection with a Silicon Graphics Personal Iris which serves as a graphical engine
and renders the visualizations. This paper describes the major design elements of SwarmExec.
A basic familiarity with Swarm and its visualization extensions is assumed; the interested reader
is referred to the referenced papers.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cox, Kenneth C.; Wilcox, C. Donald; and Plum, Jerome Y., "SwarmExec: A Prolog-Based Execution Engine
for a Shared-Database Language with Visualization Capabilities” Report Number: WUCS-91-08 (1990). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/626

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/626?utm_source=openscholarship.wustl.edu%2Fcse_research%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

SwarmExec:

A Prolog-Based Execution Engine
for a Shared-Dataspace Language
with Visualization Capabilites

Kenneth C., Cox
C. Donald Wilcox
Jerome Y. Plun

WUCS-91-08

December 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

1 Introduction

We have implemented a Prolog execution engine for the shared-dataspace language Swarm extended
with visualization capabilities. We call this execution engine SwarmFExec. SwarmExec runs on a
Macintosh® TIfx under Advanced A. 1. Systems’ Prolog (AAIS) and communicates over an Ethernet
connection with a Silicon Graphics Personal Iris® which servesasa graphical engine and renders the
visualizations. This paper describes the major design elements of SwarmExec. A basic familiarity with
Swarm and its visualization extensions is assumed; the interested reader is referred to the referenced papers.

Section 2 of this paper briefly discusses the translation of Swarm programs into the form used by
SwarmExec, called SwarmProlog; this topic will be discussed more completely in a forthcoming paper by
Plun and Wilcox on the implementation of a graphical editor and compiler for the language. Section 3
discusses the execution of SwarmExec and the manner in which the Swarm transactions are executed.
Section 4 describes the interface between SwarmExec and the Macintosh user and the Ethernet interface with
the Personal Iris graphical engine.

2 Translation of Swarm into SwarmProlog

All Swarm language components are translated into Prolog before execution by SwarmExec. We
refer to the translated form of these components as SwarmProlog, since (although they are simply Prolog)
the SwarmProlog elements require the framework of SwarmExec to be executed. Three main components
of the Swarm language are represented in SwarmProlog: the Swarm dataspace and visualization spaces, the
Swarm transaction definitions, and the visualization mappings.

2.1 Dataspaces

Swarm, as exiended with visualization capabilities, uses several distinct dataspaces (collections of
tuples) representing the computation state. These spaces include the tuple space, the transaction space and
the synchrony relation of Swarm, and the proof, previous proof, object, previous object, and animation
spaces of the visualization extension.

Each of these spaces is represented by a collection of facts in the Prolog database. Each fact has
the form

space name(tuple_type{ tuple parameters)).

where space_name is one of tuple, proof, eic., tuple_type is the Swarm tuple type, and
tuple parameters is the parameter list (if any) of the particular tuple. Appropriate syntactic
adjustments must be made to accommodate Prolog syntax; for example, the tuple type and all other
atoms should begin with small letters, as capital letters are used as variables in Prolog.

A Prolog goal with the name initialize dataspace must be provided as part of the
completed SwarmProlog program, The function of this goal is to generate the initial contents of the
dataspaces, using the Prolog assert goal.

2.2 Transaction Definitions

A Swarm transaction consists of a collection of parallel subtransactions, each consisting of a list
of variables, a query part, and an action part;

ransaction(parameters) =
variables] : query] — action
I variablesp : queryp —» action)

I variablesy, : queryy — actiony

Such a transaction definition is translated into a Prolog goal of the form:

transaction{ parameters) :-
translation of subtransaction 1,
translation of subtransaction 2,

transiation of subtransaction n.

Each subtransaction translation has the form

setquerytype(type),

{ translation of query,
1
.r
transiation of action,
itsucceeded
itfailed

)

The setquerytype goal, defined by the SwarmExec code, selects the type of the subtransaction; the
type for a simple or local subtransaction is 1ocal, the type for a NOR subtransaction is nor, and so on.
The remainder of the translation consists of a Prolog alternative construct; either the translation of the query
succeeds, in which case the translation of the action and the goal it succeeded are executed, or the
translation of the query fails, in which case the goal itfailed is executed. itsucceeded and
it.failed are goals defined by the SwarmExec code.

The variables are represented by Prolog variables, Care must be taken with variable names, since
the scope rules of Swarm and Prolog differ (in Swarm the variable scope is confined to its subtransaction;
in Prolog, it applies to the entire goal).

The translation of the query is quite direct; for example, to determine if the tuple (1) is in the
dataspace, the Prolog goal tuple (t (1)) would be used. Queries for the presence of transactions are
translated similarly; the goal sw_doubletilde (t1,t2) is used to query the closure of the synchrony
relation. The action is also directly translated; the utility goals insert tuple, insert_trans, and
insert_sync are provided for inserting dataspace elements, and the goals delete_ tuple,
delete_trans,and delete_sync are provided for deletion. Various other utility goals to perform
such operations as generators, summations, products, universal and existential quantifiers, and so forth are
also provided and can be used in either the query or action parts of the translated goal; the implementation of
these goals is discussed in section 3.

2.3 Visualization Mappings

A visualization consists of three distinct mappings (collections of visualization rules), the proof
mapping, the object mapping, and the animation mapping. Each mapping transforms one or more input
spaces o an output space; for example, the proof mapping transforms the state space (the Swarm dataspace)
into the object space. A visualization rule consisis of a list of variables, a query over one or more spaces,
and a list of tuples to be produced:

variables : query = production

The interpretation of such a rule is as follows: For all instantiations of the variables such that the
query is true, include the list of tuples in the production in the output space This is exactly the same
definition as a Swarm generator, except that queries over the dataspace are not permitted in a Swarm
generator; the same translation mechanism suffices. Specifically, a rule such as the above would be
translated into three Prolog goals:

name :-— sw_visualization rule([variables],
variables"query_ goal (variables), production_goal).

query goal{variables) :~ translation of query.
production goal (variables) :- translation of production.

The name for the first goal is arbitrarily chosen; its purpose is to identify the goal for the mapping list, as
described below. The sw_visualization goal, a part of SwarmExec, finds all instantiations of the
variable list which satisfy the query_goal; for each such instantiation, the production_goal is
executed. The additional syntactic elements (such as the carat between the variables and the

query goal) are required by the underlying Prolog mechanisms, as discussed in section 3.3.

In addition to the rule translations, the collection of rules which make up each mapping must be
represented. This is achieved by providing lists of all the rule names; for example, the proof mapping is
specified by a Prolog fact

vis_rules(proof([namej, names, ..])).
where each of the namej is the name of one of the rules making up the mapping.
3 Internal Mechanics of SwarmExec

SwarmExec consists of a collection of Prolog goals which, when provided with appropriate
SwarmProlog, “executes” the SwarmProlog program. To use SwarmExec, Prolog is started on the
Macintosh; the file containing SwarmExec is then consulted, afier which the file(s) containing the
SwarmProlog are consulted. (A more convenient interface for starting SwarmExec and consulting user
programs is contemplated.)

3.1 Primary Control

The swarm run goal is executed following loading of the files containing the SwarmProlog
goals. All remaining execution is controlled by swarm_run. The swarm run goal is defined as

Swarm run :-
iris_open,
swarm restart dataspace,
init handler,
repeat,
swarm_step,
L
kill handler,
iris_close.

The goal iris_open initiates communication with the Silicon Graphics Personal Iris over the
Ethemnet. swarm restart_ dataspace uses the provided initialize dataspace goal 1o create
the initial dataspace. init_handler creates a dialog box with which the user can interact with
SwarmExec. After this initialization is completed, the goal swarm_step is repeatedly called.
swarm_step succeeds if the execution of SwarmExec finishes (because the user stops execution) and fails
if the SwarmProlog program successfully executed another step; coupled with the repeat goal, this
means that swarm_step will be executed until the SwarmProlog program finishes. Once this occurs, the
goalskill handlerand iris_close terminate the interaction with the user and with the Personal
Iris, respectively.

The goal swarm_step performs the operations associated with performing a single atomic action
of the underlying Swarm program. This goal is:

swarm step :-
sw_rsrc_interaction (BUTTON, DoAStep, DoQueries,
DoVisualization, SchedulingPolicy),
{ DoQueries > 0 -> sw_do queries (BUTTCON,DoAStep) ; true),
Y
{
BUTTON =:= 5 => true

-
r

BUTTON =:= 4 -> swarm restart dataspace, !,fail

DoAStep > 0 ->
{
sw_select trans(SchedulingPolicy, Trans)
->
sw_group (Trans, Group),
sw_readyupdate,
sw_execgroup (Group),
sw_doupdate
true

r
DoVisualization > 0 -> sw_do_visualization ; true),

., e

r
fail
fail

Y.

The first action taken in the step is to interact with the user through the previously-mentioned
dialog box; this is accomplished by the sw_rsrc_interaction goal. The dialog box, depicted in
Figure 1, has five buttons to control the progress of SwarmExec and three “radio buttons” which control
other aspects of behavior. If any of the five buttons is selected by the user, the button number is returned
through the variable BUTTON; otherwise the value 0 is returned. The three radio buttons control the values
returned in DoQueries, DoVisualization, and SchedulingPolicy. Finally, the value of
DoAStep is positive if SwarmExec should perform one atomic action of the SwarmProlog program.

The rest of the goal simply consists of properly handling the results of the user interaction. If
DoQueries is true, the goal sw_do_queries is performed (at this time, this goal has no effect; it is
included for a designed enhancement in which the user will be able to have continuously-updated queries
over the dataspace displayed in separate Macintosh wmdows) If the user selects button 5 (Quit) the goal
terminates successfully, resulling in termination of the main swarm_run goal as described previously. If
the user selects button 4 (Restart) the dataspace is re-initialized and control returns io Swarm rum

If a siep should be performed, a transaction is first selected by the goal sw_select trans;ifa
transaction is found, the four steps from sw_group to sw_doupdate execute the group and update the
dataspace as described in the next subsection. Finally, if DoVisualization is true the visualization
mappings are applied and the results sent to the Personal Iris. Note that swarm_step succeeds only when
the user selects the Quit button.

SwarmEgec Control Panel

(Cstepws) [0

Perform queries: O Yes
(6o%6 | ® No

Disualization mappings: on
(Continue %C) bping % 0ff
[Restart 3R J Scheduling policy: O User-defined
Default

(quitsa)
Activity: swarm run Step: 16/100

Figure 1. The SwarmExec control panel.

3.2 Selection and Execution of Synchronic Groups

Selection of a transaction is performed by the sw_select_trans goal. Currently, this goal
merely locates a transaction in the dataspace. It is included to permit later expansions in which the user
can exercise a greater degree of control over the selection and sequencing of transaction executions.

Once a transaction is selected the sw_group goal determines the synchronic group to which the
transaction belongs. sw_group simply performs a exhaustive search from the initial transaction through
the closure of the synchronic relation, using standard search techniques. The synchronic group is
represented as a Prolog list of transactions with parameters. Note that the gronp may contain fransactions
which are not actually present in the dataspace; by the Swarm definition, only those transactions which are
actually present will be executed.

The next step is to prepare for execution of the group. The sw_readyupdate goal performs
this task. The most important function of this goal is 1o initialize a collection of counters which are used
in the processing of the special Swarm queries such as NOR, NAND, and so forth. These three counters
are sw_total_count, which counts the total number of local subtransactions (those not involving
special queries) and sw_succ_count and sw_fail count, which count the number of local
subtransactions which succeeded and failed.

Execution of the group then follows, with the sw_execgroup goal. This goal simply traverses
the list of transactions making up the group. If a transaction in the group is also present in the dataspace,
it is executed by the sw_exectrans goal:

sw_exectrans(Trans) :-
assert(sw_deletion{true,trans(Trans))),
call (Trans) .

The use of the sw_deletion tuple here is notable. Swarm’s semantics requires that all queries
involved in a single atomic operation must occur before the dataspace is altered. We therefore record all
dataspace modifications, such as the deletion of a tuple when it is executed, in the Prolog database using the
sw_deletionand sw_insertion tuples. These tuples are then processed after execution of the group
to perform the dataspace update. The second component of a sw_deletion or sw_insertion tupleis

the element to be removed or added; the first component is a tag which gives the type of subtransaction
which resulted in the modification (i.e., local, t rue, nor, eic.).

After the fact that the transaction should be removed from the dataspace is recorded, the transaction
is executed using the call goal. At this point the syntactic elements discussed in section 2.2 are applied.
Recall that the transaction consists of a sequence of subtransactions, each represented in the form

setquerytype (type),

{ translation of query,
!
7
translation of action,
itsucceeded
itfailed

)

The setquerytype goal makes a temporary record of the type of the subtransaction; this is
then referenced when generating sw_deletion or sw_insertion tuples to determine the first
component. The query is performed; if it succeeds, the action is performed (possibly generating
sw_deletionand sw_insertion tuples) and the goal itsucceeded is executed, Ifthe
subtransaction was a local type, 1t succeeded increments the counters sw_total count and
sw_succ_count, thus recording that one subtransaction succeeded. itfailed acts similarly but
increments sw_total count and sw_fail count.

After all transactions in the synchronic group are executed, the dataspace is updated by the
sw_doupdate goal. The first action of this goal is to determine what types of special transactions are
successful using the sw_legaltags goal. This goal examines the counters sw_total count,
sw_suce_count,and sw_fail count to determine which such transactions are successful. For
example, the OR transactions succeed if any of the local subtransactions succeeded, i.e. if the count held by
sw_succ_count is greater than zero. The success of AND, NAND, and NOR special subtransactions
is similarly determined. The local subtransactions and those of special type TRUE always succeed. If a
transaction type is successful, a fact of the form sw_legaltag (type) is asserted.

The sw_deletionand sw_insertion tuples are then processed, with the deletions performed
before the insertions (again, this is Swarm semantics). Only tuples with successful tags, as determined by
the sw_legaltags goal, are processed; the others are discarded. The actual updating of the dataspace is
then a matter of traversing the lists of tuples to be deleted and added, with the only slight complication
being the need to maintain the spaces as sets of tuples (i.e., no duplicate tuples are permitted).

3.3 Generators and Similar Constructs
The Swarm generator construct has the form
[variables : predicate : list]

and is interpreted in the following manner: For each instantiation of the variables such that the predicate is
true, create all the objects in the list. The generator is particularly useful in the initialization part of Swarm
programs. As mentioned previously, the behavior of the visualization rules is quite similar. Two
additional Swarm constructs, the subtransaction generator (which is used in transactions to specify a
collection of subtransactions) and the universal quantifier (v v : p : q) are also similar in behavior. In all
four cases, we want to determine all instantiations of a collection of variables such that a particular predicate
(or query) is true, then perform some action for all such instantiations.

Two Prolog goals, forall and forall_worker, each with two clauses, suffice to provide all
four of these constructs:

forall (VarkList,Predicate,Action) :-—

bagof (VarList,Predicate, TheBag),

!
r

forall worker (TheBag,Action).
forall{ , ,).

forall worker([],_).

forall workex([HIT],Action) ;=
apply (Action, H),
forall worker(T,Action).

forall uses the built-in Prolog goal bagof to find all instantiations of VarList such that
Predicate can be satisfied. The list of all such instantiations is bound to TheBag, which is then
passed to forall worker. The latter goal recursively iterates the list and performs the action for each
variable instantiation in the list. Although forall is sufficient, we include goals named
sw_generator, sw_subtrans_generator,and sw_visualization rule for clarity; all are
identical and interchangeable.

As a general rule, each invocation of forall will be accompanied by definitions of two
additional goals used for the Predicate and Action goals. Because of the behavior of bagof, some
exira syntactic elements must be included in invocations of £orall. These elements serve to existentially
quantify the variables of VarLi st for the bagof goal, ensuring all possible instantiations will be found.
For example, the query

(¥ x, y : tuple1{x,y) : tuple2(x,y,3))
would be translated into SwarmProlog as

forall ({¥,¥Y]l, X~¥Y"*goall(X,Y),goall)
with the subsidiary goals goall and goal2 being defined as

goall (X,Y) :- tuple(tuplel(X,¥)).
goal2(X,Y) :- tuple(tupleZ(X,Y,3)).

Note that this goal will succeed if and only if for every instantiation of X and ¥ such that goall is true,
goal? is also true. This is typical of a universal quantifier; in the case of a generator or visualization rule,
goal2 would not be a predicate but would instead be some action (probably an assertion) which always
succeeds, and the forall would then also always succeed (as desired of a generator).

A similar thereexists goal is also provided, with the same syntactic form (which is not
actually required in this case; however, keeping the forms similar simplifies the programmer’s task).
thereexists succeeds if it can find any instantiations of the variables for which both predicates succeed:

thereexists(V,P,Q) :- P, apply{(Q,V).

Finally, several goals are provided to produce sums, products, and so forth. These are all similar
in form and closely related to the generator, as illustrated by sw_sumand sw_sum worker:

sw_sum(Goal,Expr,Sum) :-
bagof (Expr, Goal, TheBag),
sw_sum worker (TheBag, Sum) .
sw_sum{_, ,0).

sw_sum worker([1,0).

sw_sum worker{[H|T],Sum}) :-
sw_sum worker (T, SubSum),
Sum is SubSum 4+ (H).

sw_sum collects all instantiations of the Expzr such that the Goal is true and passes the
resulting list to sw_sum_worker, which recursively sums the expressions. The result is “returned”
through the variable Sum.

3.4 Visualization Mappings

The goal sw_do_visualization applies the visualization rules to the current Swarm
dataspace and sends the results to the Personal Iris. sw_do_visualization first copies the current
proof space and object space to the previous proof and previous object spaces respectively, then clears the
proof, object, and animation spaces. Each of the three mappings — proof, object, and animation — is then
applied in turn to generate the spaces. Finally, the animation space is sent to the Personal Iris over the
interface described in section 4.2.

The key operation in this sequence is the application of each mapping. As discussed in section
2.3, the mapping is represented by a list of names of rules which are to be applied; definitions of the rules
are given separately using the sw_visualization rule goal described in the previous section.
Applying rules is simply a matter of finding the list of names, then applying the vis_apply rules
goal which recursively calls each rule in the list:

vis_apply rules([]).
vis_apply rules{[H|T]) :- call(H), vis_apply rules(T).

4 Interfaces

SwarmExec has two primary interfaces through which it interacts with the user and the Personal
Iris graphical engine. Both of these interfaces are implemented as “CODE resources”, a Macintosh term
referring to a pre-compiled code segment which can be loaded and used by other applications. AAIS Prolog
provides several goals which allow easy use of such resounrces.

4.1 VUser Interface

The user interface has been briefly described in section 3,1, ' When the CODE resource is initialized
by the goal init_handler, the dialog box depicted in Figure 1 is created. The goal
sw_rsrc_interaction is used to interact with the CODE resource. kill_ handler disposes of the
dialog box when interaction is complete.

The five buttons to the left of the dialog box control the progress of the SwarmExec interpretation
of the SwarmProlog program. The first button, Step, has an associated “edit box™ (displaying 100 in
Figure 1). If the user enters a number greater than 0 into the edit box and hits Step, SwarmExec will
perform steps of the SwarmProlog program until the number entered in the edit box is reached; execution
then pauses. As the steps are performed, the step number is displayed in the lower right corner of the dialog
box. The second button, Go, is similar to Step except execution continues without limit.

The Continue/Pause button allows execution (either in Step or in Go) to be temporarily halted and
then resumed. The fourth button, Restart, starts the SwarmProlog computation from the beginning by
refracting the current dataspace and re-initializing it using the user-provided initialize dataspace
roatine, The final button, Quit, ends SwarmExec.

On the right side of the dialog box are three pairs of “radio buttons™; in each pair, exactly one of
the two choices is selected at any time. These three pairs influence the behavior of SwarmExec on each
step; the first determines whether query windows should be updated, the second whether visualization should
be performed, and the third whether a user-defined scheduling policy should be used. (At this time, only the
second button has any effect; the others are included for planned enhancements.)

4.2 Graphical Engine Interface

The Macintosh and Personal Iris communicate over an Ethemet connection. The Personal Iris runs
IRIX®, a UNIX®.-like system which implements the standard UNIX socket interfaces. The graphical
engine interface on the Macintosh provides UNIX-compatible communications between the machines using
a client-server protocol in which the Personal Iris acts as server.

The interface is implemented as a CODE resource. The goal iris_open initiates
communication with the Personal Iris server daemon. The daemon initiates a process on the Iris which
opens a graphical window, reads and interprets the animation space tuples sent by the Macintosh, and
generates the images. The goal 1ris close ends the connection, resulting in termination of the
graphical process on the Iris. The operation of the Iris graphical process, including a description of the
animation space tuples and interpretation, is described in a companion paper.

The required communication is bidirectional, After each atomic action of the SwarmProlog
program, SwarmExec sends the the animation space tuples to the Personal Iris, When the Personal Iris has
finished displaying the graphics associated with an animation space, it sends back an acknowledgment; this
protocol assures that the machines remain coordinated.

Tuples are sent from the Macintosh to the Iris in the form of strings. Each animation space tuple
is converted into a string and transmitted using the goal ixis_send. For efficiency, the CODE resource
buffers the sirings; the goal iris f£lush is used to force transmission of the buffer to the Iris. After
transmission of the space is completed, SwarmExec pauses until it receives the acknowledgment from the
Personal Iris,

5 Acknowledgments

The authors would like to thank Dr. Jerome R. Cox of the Department of Computer Science at
Washington University for his support. This research was supported in part by the National Fellowship
Program in Parallel Processing, supported by DARPA/NASA and administered by the University of
Maryland Institute for Advanced Computer Studies (UMIACS).

Bibliography
Research on visualization of concurrent computations at Washington University:

Cox, K. C., Visualization of Concurrent Computations (Doctor of Science Dissertation Proposal),
Technical Report WUCS-89-32, Department of Computer Science, Washington University in St.
Louis (June, 1989).

Cox, K. C. and Roman, G.-C., “Visualizing Concurrent Computations”, Technical Report
WUCS-90-31, Department of Computer Science, Washington University in St. Louis, September
1990. Submitted to the 13th International Conference on Software Engineering.

Cox, K. C., “Visualization in Concurrent Contexis: A Model", Technical Report WUCS-91-7,
Department of Computer Science, Washington University in St. Louis, November 1990,

Cox, K. C., Wilcox, C. D,, and Plun, J. Y., “SwarmExec: A Prolog-Based Execution Engine for
a Shared-Dataspace Language with Visualization Capabilities”, Technical Report WUCS-91-8,
Department of Computer Science, Washington University in St. Louis, December 1990,

Cox, K. C.,, “SwarmView: A Graphical Engine for the Interpretation and Display of
Visualizations”, Technical Report WUCS-91-9, Department of Computer Science, Washington
University in St. Louis, January 1991.

Cox, K. C,, “SwarmView Animation Vocabulary and Interpretation™, Technical Report WUCS-
91-10, Department of Computer Science, Washington University in St. Louis, November 1990.

Roman, G.-C. and Cox, K., “A Declarative Approach to Visualizing Concurrent Computations”,
IEEE Computer, Vol 22 No. 10, pp. 25-36 (October 1989).

Roman, G.-C. and Cox, K., “Declarative Visualization in the Shared Dataspace Paradigm”,
Proceedings of the 11th International Conference on Software Engineering (May 1989).

Swarm notation and proof system:

Cunningham, H. C., The Shared Dataspace Approach to Concurrent Computation: The Swarm
Programming Model, Notation, and Logic, Doctor of Science Dissertation, Department of
Computer Science, Washington University in St. Louis, August, 1989,

Cunningham, H. C. and Roman, G.-C., "A UNITY-Style Programming Logic for a Shared
Dataspace Language,” IEEE Transactions on Distributed and Parallel Computing Vol.1, No. 3, pp.
365-376 (July 1990).

Roman, G.-C. and Cunningham, H. C., "A Shared Dataspace Model of Concurrency - Language

and Programming Implications," Proceedings of the 9th International Conference on Distributed
Computing Systems, pp. 270-279 (June 1989),

10

Appendix 1. Grammar

The following is a BNF grammar of the language. Terminals are in bold. The symbol A
represents the null string. The “terminal” identifier represents any legal identifier (anything described by
the LEX-style regular expression [a-z][a-zA-Z_0-91*); number represent any legal numeral, ¢ither integer
or real,

language = iransition_list
transition_list u= (rangition transition_list
[A
transition = pge ; transition
] end;
pge = _name { attribute_list)
l _name (}
type_name = identifier
attribute_list »= attribute , attribute list
l attribute
attribute = attribute_name = expression
attribute_name z= identifier
expression = function
| constant
function = primitive_function

I { primitive_function_list]

primitive_fanction_]Jist y= primitive_function , primitive_function_Jst
| primitive_function

primitive_function ©= identifier (constant_list)
constant_list = constant, constant_list
| constant
constant = number
t_max

{ constant_{ist]

Appendix 2.

Graphical Objects

The following graphical objects are provided by the interpreter. All objects have a lifetime
atiribute, which is of type list of two numbers. The type coordinate is a shorthand for “list of three
numbers” and specifies the X/Y/Z coordinates of the point. The type color is “list of three numbers” and
specifies the red/green/blue color values, each in the range 0 to 255. The default color is white, or

[255, 255, 255].
Object Type Attribute Type Default Notes
point position coordinate 0,0, 0] location of point
color color white color of point
line from coordinate [0,0,0] one endpoint
to coordinate [0, 0, 01 the other endpoint
color color white
width number 1 width of line {(screen pixels)
rectangle corner coordinate i0,0,0] fower left comer
xsize number 1 dimensions
ysize number 1
color color white
fill number 0 if non-zero, rectangle is fifled
xrot nurnber 0 rotation about X-axis, degrees
yrot number 0 rotation about Y-axis
zrot number 0 rotation about Z-axis
crect center coordinate [0, 0, 0] centroid
xsize number i dimensions
ysize number 1
color color white
fill number 0 if non-zero, rectangle is filled
xrot number 0 rotation about X-axis, degrees
yrot number 0 rotation: about Y-axis
zrot number 0 rotation about Z-axis
polygon vertices list of coordinates [[0, 0, 01] in the order to be connected
color color white
fill number 0
circle center coordinate [0, 0, 0]
radinsg number 1
color color white
filt number 0
Xrot number 0 as in crect
yrot number 0
zrot number 0
sphere center coordinate [0, 0, 01
radius number 1
color color white

A2

Appendix 3. Functions

Function Start End Value Value during Value
time time before after
step (1, v0, V1) t t v() N/A vi
ramp(19, v0, t1, v1) © t1 V0 linear interpolation vi
from v at 1 to v1
attg
constani(ig, v, 11)) i1 v v v
square(t, t1, Don, Poffs Yon. Voff) 4] 5] Voff squar¢c wave: von = Voff
for pon ticks, voff
for poff ticks

The square function takes value vgp at time t)), then alternates between voq and vosf for the rest of
the during period. Ass vop periods last a complete ime pop; if the interval remaining in the during period
is insufficient for a complete vop, the value will be held at voff until the expiration of the during period.
The foliowing diagram gives some examples of this for clarification. Both graphs show a square wave with
Pon = 3 and poff = 2. In the upper graph the last vop period ends at tick 11; if another period were started,
it would begin at time 13 and end at time 16, after the expiration of the during. In the lower graph there is
sufficient time for an addition vy period 1o be included.

A :

4] 0 OO0 :

3 - ' '

2] i :

T e *—0 ® E

T T T T T T T T T Tt T T T T T
1] 5 10 15 20

square(3,15,3,2,4,1)

A 5 :

4— ¢—0 e6—0 e——

3 — ' !

] s

1 o) e—O @—O N

0 N Y R Y N By N S S My S S N R
0 5 16 15 20

square(3,16, 3,2, 4,1)

	SwarmExec: A Prolog-Based Execution Engine for a Shared-Database Language with Visualization Capabilities
	Recommended Citation

	tmp.1455646060.pdf.RozeT

