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ABSTRACT

A nuaber of recent articles have focused on the
design of high speed. discrate-svent siamulation
(DES}) machines for digital legic simulation.
Theee investigations are in response to the aenor-—
mous costs associated with the simuiation of coa-—
plex (VLS51) digital circuits for logic verifica-
tion and fault analysis. One approach to reducing
pimulation costs is to design special purpose
digital computers that are tailored to the logic
sinulation task. This paper is concerned with
the architecture of Buch logic machines. The
paper hag three principal parts. First., a taxon-
omy of logic machine architectures ie presented.
The taxonomy focusee on the central components of
the logic simulation algorithm and on architec-
tural alternatives for increasing the spaed of
the gimulation procees. it thus representa a
basis for discussing and differentiating batween
proposed architectures and also results in the
identitication of =meveral new architectures.
Although developed for digital logic aimulators,
the taxonorny can be used for general DES

machines. Second. a performance oneagure is
presented which permite evaluation of DES
machines. Finally, several DES wmachine designe

are described and cateagorized using the taxon-~
ony.

1. Introduction

Recently, a number of efforts have focused
on the design of high opeed, discrete-event simu-
lation (DES) machines for digital logic aimula-
tion. These efforts are in response to the enor-—
mous costs aesociated with the simulation of com—
plex (VLSI) digital circuits for logic verifica-
tion and fault analysis. Such eimulations can
consume months of machine time (PFIS82A) and have
become an unheralded. but significant, bottleneck
in logic design and test vector genaration.

These high costs have tuwo origins. First,
logic simulation applications are computationally
intensive with running times which. (on an empir-
ical basis), appear to grew on the order of
O(N#%2) to D(N##3) where N is the nuaber of
circuit components, Second. the rapid growth in
VLS1 component/chip densities has required simu-
lation of ever larger circuits. From 1960 until
juat recently. there has been roughly a doubling
ocf the number of circuits/chip every year.
resulting in circuit/chip densities currently

® This research has been sponsored in part by
funding from ONR Contract NJOO14-8D-C-0761 and
NSF Grant HMCS-78-20731.

Mo 63130

approaching 500.000 per chip. While this increase
appears to be "slowing doun” to a doubling about
every two years [ROBI8S41, this sotill represents
subzstantial growth uvhichs in conjunction with the
order effecte associated with the simulation com-
putation, have pade logic simulation a major lim-
itation in the overal! design process.

Approaches to reducing simulation costa fall
into two broad categories. The first is to employ
divide and conquer technigques. That is.» divide
the circuit into smaller, more manageablse modules
tor which sisulation costs are not ae oevers.
Currently, thia is the predeminant approach.
Unfortunately, it often has the difficultly of
not providing effective tests for the interfaces
betwean modules, and for the problems related to
ovarall circuit integration. Thea aecond approach
ig to design special purpose digital computers
tailored to the logic simulation task. Such spe-
c¢ial purpose computers can have performance
ordera of mpagnitude faster than ths current
gottware based siaulators. Recently. geveral
machines have been proposaed and built (KOIK82,
PFIS82A, HOWAB3A., IYCAB3]1 and the referencee
indicate those efforts known to us at this writ-
ing. Since high performance simulation represants
an area ot entrepreneurial interest. other
unreported effortas are undoubtedly also taking
place at this time.

This paper is concerned with the architec-
ture of such logic¢ machines. It is assumed that
it is necessary to have logic @imulations which
yield both functional and timing information. The
paper has three principal parts. First. a taxon—
cay of logic machine architectures is presented.
The taxonomy focuses on the central components of
the logic s8imulation algoriths and on architec-
tural alternatives to speeding the eaimulation
process. [t thus represents a basmis for discums-
ing and differentiating between proposed archi-
tactures and also permits identification of
saveral new architectures. Although restricted to
digital logic seimulatorss the taxonomy can be
used for general DES machines. Second. a parfor-—
mance aeasure is presented which permito evalua-
tion of DES machines. Finally. recent DES machine
de@igna are briefly described and categorized
uaing the taxonomy. The discussion assumes that
the reader is familiar with the operation of
software based discrete event simulators.

2. Speed Up Technigues

To better understand the proposed taxonomy.
it is useful to review scme of the options avail-
abie for increasing the proceseing speed of logic



simulation. Several of these speed—up techniques
are given in Table . Over the years, wsoftuare
logic simulators have improved in spesd due both
to better softuare design (ingenuity) and to the
use of fastar general purpose computers (technol-
ogy). Some further increases can be expected as
logic =8imulation codee are tailored to the next
generation of vector procesgsors.

To achieve the several orders o¢f magnitude
speed increase needed for effective (hopefully
interactive) simulation of VLSI based systeans.
requires use of one or more of the architectural
techniques indicated in Table 1. Functional spe-
cialization refers to those techniques which take
a softuware task and decrease ite execution timo
by placing it in hardware. The basic sequential
nature of the overall siomulation algoritha ie.
however. maintained. Since event list nanagement.
function evaluation and net list oparations are
critical elements in logic siaulation. thay
represent prime candidates for incorporation into
hardware. For example, it i@ posaible to design a
harduare priority queue which, from the viewpoint
of the rest of the simulator, essentially permits
event list manipulations in (Small) constant time
[LEISB1]. Most of the harduare machine proposals
contain some specialized devices. mogt typically
in the function evaluation and net liet manipula-
tion areas.

Further speed increases can only be achieved
by exploiting the inherent concurrency which
exista on the one hand in the circuit to be
simulated. and on the other hand in the simula-
tion algorithm itself. Thia observation leads to
nulti-processor architecturee whars proceesgors in
parallel siaulate subsseta of the entire circuit
and where, uwithin each processor. the sipulation
algorithm is executed in a pipelined fashion. By
placing aiamultaneously active componants on dif-
terent processors. a high degree of concurrency
can be achieved. Provision. of course, nust be

)
L]
ARCHITECTURE H
Functional Specialization H
1. Special event list harduare i
2. Special function evaluation hardware H
3. Special harduare for net list operationsi
Concurrency Exploitation
1. Paralleiism.
2. Pipelining.

Better event list algorithm
More efficient net list data structure

TECHNOLOGY
Use of faster logic family.

H
H
INGENUITY H
i
|

Table 1: Logic Simulation Speed-Up Technigues

made for a fast communications mechanism that |is
needed to transfer circuit state updates between
proceesora. In addition, if many events are to be
processed on a proceseor at a given time step.
then pipelining techniques can be successfully
uged. These techniques., ueed in conjunction with
functional specialization. can provide signiti-
cant increases in simulation speed. The taxonowy
presented below focuses on the concurrency
agpacte of logic machine design.

3. A Taxonomy for DES HMachines

The taxonomy presented here attempts to
depict the wmain architectural tfeatures without
dwalling on fine details. [t ia comprehensive in
that it permits description of currently proposed
architectures while identifying several which are
not immediately obvious. It wuses a shorthand
notation similar in spirit to Fiynn's notation
for parallel wmachine architecture (e.g. WIND.
SIND atc.) [FLYNS6) and Kaendall's notation for
quaveing aystems (a.g. N/M/1. N/D/10., setc.)
{KENDS31.

The basis for the taxocnomy is the observa-
tion that every DES algorithm containe three
essential componants:

1. Time control
2., Event list control
3. Event (function} evaluation.

How these components are ipplemented may vary
from one simulator to another. but they are all
present in one form or another in any DES. The
tipe control component determines the progression
of simulated time. For obvioua reasonss tine
control is often referred to as clock control.
The avent list control component is concerned
with the proper posting and scheduling of avents
(in the event list) in increasing eimulated time
order. The event or function avaluation component
performs tha processing associated with the
accessed events (e.g. evaluation of a logic gate)
and determines it any nee aventa are to be
scheduled.

A taxonomy notation is presented in Table 2.
The taxonomy has four compomnenta: two apecilying
time control characteristics, one for apecifying
the event 1ist control component. and one for the
event avaluation component. The Time Contrel
Hechanien consiata of two partse. The tirst
relates to how the machine advances simulated
time. The simplest approach is to advance time in
Unit Increments (Ul), Indeed many of the early
softuare gimulators uged this approach. In
goftware simulators this approach is inefficient
gince there are often no events to be processed
at a given time. Incrementing the clock on a unit
basia. in thise case, results in a fixed and
unneceasary overhead for each time step. With
Event based time Incrementing (El) the clock is



1. TIME CONTROL MECHANISHS
a- TIMNE ADVANCE

2) HMultiple Nachine (Parallel) =-=> (HM)

H 1) Unit Increment -=—=———=—————- >N
H 2) Event based [ncrement --——-—-> (El) |
: b= TIME SYNCHRONIZATION '
H 1) Global Cleock > (GCY
H 2) Local Clock > (LCY &
{ 2. EVENT LIST ATTRIBUTES H
H 1) Single Liat > (8L) |
i 2) Nultiple Lisat > (HL)
i 3. EVENT/FUNCTION EVALUATION H
H 1} Single Machine (Serial) ===-= > (sH) !
1] .
n +

Table 2t Taxonomy Components

advanced to the time associated with the next
evant to be processed. gkipping over intermediate
times when no events are scheduled to occur.

Since there wmay be severai processors
present, the quesetion of time synchronization
must be addressed. That ia» is8 there a gingle
global clock (GC) which is communicated to all
the processors. or ia the clock distributed (LC).
with each processor controlling its cun vargion
of simulated time? In the latter case. care nust
be taken to ensure that the processorsg maintain
aynchronization: if not simulation arrors can
occur.

Vith geveral processors present. it is also
possible to have the event list located either on
a wsingle processor (SL) (with the proceseor
perhaps broadcasting the next event to be pro-
cesged). or distributed across several or all of
the procesgoras (HL)., The time associated with
avent list proceseing may be reduced by having
multiple lists on wmultiple machines. Further—
more, it may be possible to more fully exploit
pipelining within each processor with a distri-
buted event list.

The final element in the taxonomy relates to
event/function evaluation and demignates whether
the evaluation is performad on a Single Nachine
(SN} or on HNultiple MNachines (MM}. For added
gpeed. these machines may be gpecialized to per—
form logic function evaluations quickly. However.
that is not specified explicitly in this taxon-
omy.

A machine architecture can now be specified
by a four tuple of the following form:

TIHME ADVANCE /
TIHE SYNCHRONIZATION /
EVENT LIST ATTRIBUTES /
EVENT EVALUATION
are gixteen

Note that with this taxonomy there

poswible architectures.

3.1. 8ingle Hachine Architectures

As an exapmple of use of the taxonomy, a
atandard serial wmachine running a "primitive”
unit increment clock simulator would be desig-
nated asg:

U1/GC/SL/SH

" ] )

t 1

i {{——— Single Hachine
i=-=—— Single List

==== Global Clock

==== Unit time Increment

¥
»
]
r
'
1
i
Il
1

Since» with a single machine., a global clock is
identical to ‘a local clock. this notation is
equivalent to UI/LC/SL/SM . Likevwise. the atand-
ard serial wmachine software simulator using event
baged timing increments would be denoted as®
El/GC/SL/sHM or EI/LC/SL/SH

Thuss ordinary serial processor based simulators
comprige four of the sixteen architectures possi-
ble within this taxonoay. The remaining twelve,
however, yield a variety of interesting possibil-
itiea.

3.2, Huitiple Hachine Architectures With Global

lo

b

As pointed out earlier, a natural approach
to exploiting paralleliss is to divide the cir-
cuit to be simulated across several procegsora,
with each processor being responeible for
evaluating events associated with its aseigned
circuit subset. Assume for this discussion that
a global clock is used to minimize time synchron-—
ization problema. There are four possible archi-
tectures which have a global clock:

Ul/GC/SL/MN
Ui/GC/HL/MN

E1/GC/SL/HN and
E1/GC/ML/HN and

The first category, EI/GC/SL/MM. is illus-
trated in Figure 1. The single clock in the
diagram uwith the +E over it indicates that the
architecture uses a global clock with event based
timing increments. In this situation, one of the
processore is designated as a master processor.
This magter procesggor contains the global event
list and increments its clock: based on the time
of the next event in itas list. Ae events are
taken from the list they are gent over the com—
aunicatione network to the multiple processors
for evaluation. The processors perform thia
evaluation in parallsl., and then return new esvent
and state change information to the naster.
which, in turn. updates its global event list.
The cycle is then repeated.



1f, at a given time peoint, there are a
number of events which require proceesing. and if
this event processing can be distributed acroses
the parallel processors. then an increase in
ginulation speed may result. Such an architee-
ture could alao make good use of functional ape-
cialization in the event liat proceesing and in
the function evaluation areas. Note though, that
while centralized event liast proceseing vay eiag-
plity ovarall: operation. it may also produce a
performance bottleneck. Other igsues which wmust
be addregsed here. and in the resaining architse-
tures, relate to cowopunications network design
and logic partitioning.

The UI/GC/SL/NN architecture is saimilar to
the EI/GC/SL/HMM architecture discuessed above.
except that a unit time increment is employed. it
would. however. likely have louwer performance dus
to the overhead associated with processing time
increments that have no associated events.

Coneider next the UI/GC/HNL/MM architecture
shown in Figure 2. This organization has a unit
increment global clock with multiple event liste
and multiple machines. One implesentation
approach would have the master processor send a
control wessage to the n slave proceasora sig-
naling each clock tick. On receipt of the clock
signal the {function evaluation procees would
begin. Each slave processor would in turn per-
form all the evaluations on ita local event list
which are associated with the current time satep.
Thome avaluation results which ippact subcircuits
located on the other processors are now comauni-
cated to the appropriate processors. Vhen these
tasks are coopleted, each siave returns a comple-—
tion msignal to the master processor. After all
slaves have reported completion, the master pro-
cessor proceeds to the naxt clock tick {a simple
clock increment) and the cycle then repeats. Note
that each slave keeps track of the activity asso-
ciated with circuit elements assigned to it, and
events asaociated with these elements are kept on
the local event liat.

The UI/GC/NL/MM architecture achievea its
spead-up through parallel function evaluation and
parallel event list manipulation uaing a eisple
time management scheme. Functional specialization
and pipelining can also be ussd for further spead
increaae. A8 will be seen in Section 5. most
logic simulation machines which have been pro-
posad or built are variants of this architecture.
Clearly, the related architecture EI/GC/HL/MN ie
aigso pessible. Though not requiring unit tipe
incrementing» this approach wuwould require that
additional ewvent time information be returned
from the slave proceesore toc the master 8o that
the global clock could be properly updated. The
simple coopletion signal approach associated with
the Ul/GC/ML/NN architecture avoida these coampli-
cationa, but at the expenme of having clock ticks
vhere no action takes place.

3.3. Multiple Machine Architectures With Local
ocks
The taxonomy suggests the following four

multiple machine. local clock architectures.

U1/LC/SL/MY
Ul/LC/HL/ 1l

El/LC/sSL/nN and
E1/LC/HL/ M and

The EI/LC/SL/MN architesture is illustrated in
Figure 3. Thig is a someuwhat unusual architecture
in that there ie a cosbination of a global event
ligt and local clocks. The local clocks in this
cagse do not appear to enhance performance since
the wingle event list will, in effect. set the
time for the entire ayatem of clocks by determin-
ing the next avent (and its associated time) to
be processed. That ia, the presence of the single
avent }ist appears to have the affect of a
global ciock. Of course» the master processor.
which has the aingle avent list and s=some
knowledge ot avent processing timee, could possi-
bly direct the slave procesaors to perform event
evajuations for different future times. This
would add more complexity to the simulation
algorithms and on the surface, does not appear to
be promising. The UI/LC/SL/MM architecture
appears even lees promising and is mnot pursued
here.

The EI/LC/HL/MN architecture is sghoun in
Figure 4. This system has all the properties of a
true HIND machine running taske in an aeynchro-
nous mannar. An EI/LC/ML/HN simulator viewa tho
simuiation as a set of autonomous. communicating
processes [CHANB1. PEAC79). Once again. subsets
of the entire circuit would be mapped on the dif-
ferent processors. Time synchronization and state
information exchange could be achiaved through
message peesing betwasn the processors. Each mes-
sage could have a local clock time stamp associ-
ated with the proceesor sending the message. Vith
ona algorithm. local clocks would aonly be
advanced to the time sssociated with the lowest
time stamp over all of ite incoming processes.
This would prevent the procassor from evaluating
evants which nay be in its local event list. but
vwhich are too far ahead in time for proper pro-
cessing. Other algorithas would permit the pro-
cegsors to evaluate as many events as possible.
performing rollback mansuvers when synchroniza-
tion errore ocecur [JEFFB3).

Potential speed up in this situation is
obtained through parallel function evaluation.
parallel event list manipulation and diastributed
time management. Distributed time management
allouws circuit component states to be evaluated
as each input value changes. Thus. atates can be
avaluated at the earliest posgible time. In a
global clock s8scheme, time generally cannot be
advanced until all slave processors have finished
their processing for the current time frame. That
ig,» in the global ¢clock case. the speed of the



pimulator is governed by the longeat processing
time in each time frame. Againet these possibie
speed advantages associated with the Ei/LC/HL/MM
gimulator is the compiexity and overhead associ-
ated with distributed process management. The
performance igsues here are not yet fully under-
stood. The related UI/LC/HL/NN architecture would
probably have a somewhat simpler distributed time
management scheme. but at the cost of eliminating
a good deal of potential overlap in processor
function evaluation,

The four remaining architecturea are as fol-
lows:

Ul/GC/ML/ 5
ul/LC/NL/SH

E1/GC/HL/SH and

EI/LC/HL/SH and
it is left to the reader to determine if these
reanants of the taxonony are worthwhile.

a, A Performance Heasure

in order to compare the relative performance
of wsimulation wmachines, a performance measure
nust be developed. In this section certain vari-
ables affecting performance are identified and a
performance measure is propoged. The nmeasure
pregented can form the basie for making compari-
sons among saveral of the machines described in
the literaturs. The pertormance measure. P. is
derived from analyzing the cost of simulation and
includes factores relating to the simulation
machine speed. machine cost. waiting time cost.,
and simulation quality. The propomed performance
measure ig:

P = Te#(Cm + Cw) + fq
= Tas(Cm + fw(Ta)) + fq
where
Te = ginulation time (total real time to
execute a gimulation for a given problem)
Cm = machine coat/unit time
Cw = waiting cost/unit time = {w(Ts)
fq = simulation quality function
Congider the various factors in thie rela—
tion. The longer the running time. Tss of the

simulation, the larger is the cost. The coeffi-
cient relating P and the simulation time is com-
posed of the sum of two costs, the machine usage
cost (Cm} and the cost to the user for waiting
(Cw) wuntil the simulation is {finished. But
observe that the waiting time cost is usually not
linearly reiated to the sipulation time., but
growe in some exponential manner, that is fu(Ts).
The function fwi(Ts) accounte for the pemalty of,
gay, waiting for long simulation turnaround times
or the opportunity loss associated with delays in
introduecing a product. A third property which is

hard to quantify. and theretfore is not included
in our periformance measura. ig related to the
quality of the simulator {(@.g.» unit delay

timings inertial delay. number of states). The
parameter values tor the machine cost component
can be supplied either by measurements of exist-
ing systems or by estimatee obtained by simula-
tion models of the alternative architectures.

The simulation execution time (Te) can be
expreseed in terms of pore basic parameters:

Ta = Ne/Re where
Ne = number of events generated
Re = spead of the machine (events/unit time)

The nuaber of events. Ne» can be eritten as:

Ne = Ng#l[#Nc where
Ng = size of the problem (number of gates)
I = intensity (fraction of gates that change
gtate in an average clock cycle)
Nec = number of clock cycles in the simulation

The speed of the machine (Re) is a function. fa.
of the problem size {Ng). the intensity (I}, and
the architacture (hardwaresgoftware} (A}, of the
machine.

Re = fe(Ng:,1.4A)

Py the performence measure, can mnow be written
ae:

P = Ng#laNce#lCn + fu(Ts)]) / faiNg:[.4)

Thus. we can compare hardware simulatere in termes
of P if uwe are given

1 problem characterigtics (Ng. 1. Nec)
2) pachine characterigtics (A, ie)

3) machine costs (Cm)

&) waiting time costs (fw)

For exaople,» sBuppose the problem charac-
teristics are Ng = 10,000 gatea., an intensity of
I = .1y and Nc = 1.000 clock cycleas [ZIYCAB3).
Then. the number of events generated in a simula-
tion cycle is Ne = Ng#l#Nc = 1.000,000 events.
Yhen the waiting time cost is neglected. the per-—
formance messure P can be computed for eseveral
exiating syatems.

Conmider two systems: 1) the TEGAS sgismula-
tor running on a VAX 11/780. and 2) the ZIYCAD
LE-1001 logic simulation machine. Table 3 com-
pares the P values for the two syatems and shous
that the ZYCAD system has a higher performance
mesgure than TEGAS running onm a VAX 11/780. The
machine cost per unit time Ca was computed by
amortizing tha coet of the hardware and softuare
over a five-year period assuming twe shifts per
day and 200 days per year ol operation. In
estimating the harduare/softuware costs. typical
values were used agsuming only cost recovery.



Cme ($/hour) Re P
Hard- | Soft-
System ware ware |(events/sec)| {(®)
TEGAS-VAX 11/780 | 40 12 S 000 2,80
ZYCAD LE-1001 48 e} 500, 000 . 03,
Table 3¢ A Comparison of Two Simulation Systems

S. A Review of Logic Simulation Machines

Four hardware logic simulators will be oxam—
ined in detail in this section and their location
in the taxonomy satructure will be determined.
Each of these machinea has been reported in the
literature and three of them havea baen wmanufac-
tured. A brief summary of simulator features ie
provided, and since the amount of information
available on each feature varies, some deecrip-
tions are more coamplete than othera.

5.1, The Yorktown Simulation Engine - IBHN

The Yorktown Simulation Engine (YSE) was
tirst described in a series of three papers
presented at the 1982 Design Automation Confer-
ence [PFISB2A,DENNS2,PFIS82B]1. The architecture
is shown in Figure 5 which was reproduced from
[ DENNB2). As indicated in this figure. the YSE
can have up to 256 processors (MM}, plus an array
simulator wused for emulating main memory. cache.
or register files. The processorg coamunicate
with each other during simulation over a high
speed crossbar network of size 256 x 256 x 3
bits. The YSE nwnodels four logic states (0,1,
Undefined(U)s and high impedance(Z}). A logic

state (2-bits) plus a parity bit is tranaferred
via the crossbar. There are no provieions for
logic atrengths: thus switch level simulation
requires the user to provide a gate level

equivalent descripticn. The design supports only
unit delay simuiatien. The simulation algorithm
igs based on making multiple passes over the com-
binational network and propagating signals
through a single element level. Thus. gates are
evaluated independent of their activity.

If the logic deaign is implemented 2o that
it containa gates in identifiable ranks (e.g..» in
a PLA. the AND gates would all be considered in
Rank | and the OR gates in Rank 2), then the exe—
cution speed can be increased by evaluating the
gates in a given rank only once during a simula-
tion cycle. Thia “"rank order™ technique can only
be used with unit delay simulation. For exaampile.
guppoge a network contains N logical elements and
elements are organized by rank with a total depth
(i.e.. number of ranke}) equal to D. Thens» a
machine which does not use the rank order tech-
nique would need to make MNxD evaluationa to
determine the next state of the network. With
the use of rank ordered simulation the YSE
reduces this to N by treating each gate in a

given rank only once.

The machine hae a total gate capacity of 2
million gates and can evaluate approximately 3
billion gates par second. Tha charactaristics
of a gate {(or element) are apeciified during ini-
tialization by loading the appropriate processor
memory with a truth table that describes the
logie function of the element. Each processor
has an instruction memory that containe 8K of 128
bit instructions.

Bafore baginning the simulation, the Ilogic
design ig partitioned into the 256 processors (2
partitioning algorithmns are described in refer-
ence ([PFIS82B)) and a partition is asaigned to
each processor. Each processor has its own 1ist
of instructione that have been prepared by the
hoat computer gprior to simulation. The hoat com-
puter determines the necegsary interconnection
configuration for the crossbar switch and also
provides this to the processorg.

Note that another logic eimulation machine
vag developed somevhat earlier by IBM San Jose,
This aeffort is reported in [BURG831.

S.2. The Harduare Logic Simulator - Nippon Elec—~
tric Corporatjon

The HArdware Logic (HAL) weimulator wae
described in the Spring 1983 COMNPCON (KOIS8313.
and further information wae given at the June.
1983 Design Automation Conference [SASA83]1. Its

basic configuration is shouwn in Figure 6 which
was reproduced from reference KOIK33.
The HAL is sipilar to the YSE configuration

in that it supports only unit delay. has a giobal
clock, hae aultiple processors (28 + 2 agpeciatl
processore for siauviating memory)., and has multi-
ple lists, Its major difference. beyond the
smaller number of processorss is that it main-
tains separate event liste in each processor and
evaluates only those elements that have input
gignal changes. This ig in contrast to the YSE
which evaluates gatea independent of their
activity. Because only active elements are
evaluated, the connectivity and interconnection
network path is not computed statically prior to
simulation. but is determined dynamically during
evaluation and is distributed acrose the proces-
gors via a banyan network. Thus. output changes
from gate i in processor m are transmitted to
gate j in procassor n using a store and forward
protocol. Arbitration at the network input han-
dlee those cages where tuwo or more processgors are
requesting the same output port (i.e., input to
the same element). The banyan network is ot size
32 x 32 with a 23 bit data/control path.

Each processor can model up to 10,000 gates
for a total capacity of nearly 300.000 gates.
Processing speed is about 1.2 billion gate

evaluations per second.



5.3. Bell Telephone Laboratories Hardware
lator

a proposed hardware
simulator was presented and analyzed in the
December. 1982 Bell! Systems Techmical Journal
[LEVEB2]. A subsequent article describing the
application of this architacture for tault
analysis appearsd in LEVES3. Although this
architecture has not been taken to the fabrica-
tion stage. recent discussions with one of the
authora {(Levendel) indicates that an ieplementa-
tion is still being considered.

An architecture for

A block diagram of the proposed eimulator is
shouwn in Figure 7 and was reproduced from LEVES2.
Thig architecture haa multiple processors and two
typee of interprocessor comaunication. An algo-
rithe that can be used to partition the netuwork
is described.

The processors are all commercial micropro-
cegmors {axaoples uaing the Intel BOBG and the
Am29116 are described). Those procassora that
model elementary gates are termed "siople avalua-
tora®, and thoee that model higher functional
alements (e.g.. an adder) are termed "functional
avalyvatore”. A crogsbhar ie uged for comaunica-
tion between simpie avaluators because sibple
evaluations are carriad out rapidly and informa-
tion tranafer between sinmple evaluatorse requires
a high bandwidth channel. A conventional paral-
lel bus i used for coamunication between func-
tion evaiuators because they take approximataely
30 to 50 times longer than aimple evaluators and
information transfer requires a low bandwidth
channel, Since thig is a proposal for a simula-
tor rather than a description of an implamenta-
tion, only a theoretical gvaluation of the
architecture ia presentad in the paper. Faor
example. curves {(@se Figure 18 of [LEVEB21) are
developed illustrating how the communication time
and processing time (per active element) are
affected by the number of proceescrs and by the
type of interconnection netsork (bug or
crogabar).

The gimulator differs from the [BH YSE and
the NEC HAL machinee in that it can asimulate ays-
tems in which the propagation delay of elemants
i@ not limited to unit dalay. In the Ball aimou-
lator, general LH and HL delays can be used
(e.g.» 15 na. 7 ns).

Based on various processor and interconnec-
tion network assuaptions. estimatea of machine
performance are presentad in LEVEB3. For exaaple
with 256 procegsors. the authora compute that
processing rates of 10 million events per second
could be achieved.

S5.4. The Zycad Logic Evaluator

At the time of this writing. it appears that
there is only one hardware logic simulator that

Simu-—

ig available on the comaercial market (although
other companies are rumored to have active pro-
jects)., This is the Zycad Corporatien’s Logic
Evaluater (LE 1001 and LE !002) [ZYCA83]. &
block diagram of this system is shown in Figure 8
which vas reproduced from a "nes product”
description in IVERS82.

The Zycad architecture is basically the same
as the Bell architecture, with the exception that
no crosabar awitch is used., There are a paximum
of 16 processors which communicate via a single
high apeed (250 megabits/sec) bus. Communication
to the host coaoputer is via a siowar bus. The
logic syetem to be simulated must be deacribed in
a language called ZIF but no compilation is
neaded {(ae with YSE and HAL). The system can
modal 3 togic levels 1(0.1,X) and 3 logic
strengths (Strong, Resistive, Weak). Thus, both
gate level and suwitch lovel simulationse can be
perforned as well as modelling busess tristate.
and opan collector configurations. Since each

processar can accommodate 65,000 three input
gatess 1 million pates can be simulated with 16
procegsors. An event list is used in each pro-

ceggor and a rate of approximately 16 million
events per second can be achieved uwith 16 proces-
sors.

5.5. Logic Machine Summary

Table 4 summarizes several of the important
featuree of the four logic¢ evaluators that have
been discussed above and their place in the
architecure taxonomy is indicated. In additiomn,
the performance of a rapresentative single
machine, software baesed simulator [SZIYG72) is
aleo listed.

6. Conclysion

The initial etepw in providing a systematic
approach to evaluating alternative DES machine

architectures has been taken. A taxonomy which
highlighte the implementation of the main DES
features has been presented. Existing logic

gimulation machines are easily incorporated into
the taxonomy. A pertormance measure uwhich can be
used to rank alternative architectures was
presgented. Several exieting machinea uwere com-
pared using thias meagure. Finally. the detailed

structure of three contemporary logic simulation
machinee wvere reviewed.
Given the high costs associated with VLSI

level logic simulation and fault analysie. it
seems clear that a host of logic simulation
machine proposals will be forthcoming in the near
future. These standalone and attached processor
sBimulatore will revelutionize logic design,
making the task largely an interactive procass.
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SOFTWARE HARDWARE
Super
Mainfrome Mainframe
Computer Computer Bell 1BM Nlppon ZYCAD
Function (Event) m——- am- Micro- Special Pur{ Dynomic Special Pur-
Evaluation processor pose Proc, | Gote Array pose Proc,
Number of 1 1 256 256 30 16
Processors
Communtcations --= === Bus 2 Crossbar Banyan Bus
Network Crossbar
Preprocessor -— -—- Hoderate very High High Moderote
Complexity
Speed 5-10K 90K 3-18M 3B* 1.28° 1M to 16M
{Events/Sec) {Cyber 176)
Copacity (gates) 7 M 3N 1M
Cnpgclty (memory) ? ? 2M Bytes 3M Bytes
Test vector/Fault Y/H Y/N N N N Y
Capabiiities
Status Bullt Built Paper Prototype Under Several
Study Butlt** | Construc- | Delivered
rion
Category EI/GC/SL/SM | EL/GC/SL/SM { EI/GC/ML/MM | UL/GC/ML/MA | UT/GC/ML/MM | EE/GC/ME /MM

* Subject to {nterpretation
{gate evaluations/second)
Table 4: Current Logic Simulator Charccteristics ** Excluding Memory (Array Stmulation:
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