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Supervised Competitive Learning
Part I: SCL with Backpropagation Networks

Thomas H. Fuller, Jr.7 and Takayuki D. Kimura

Department of Computer Science, Washington University in St. Louis

ABSTRACT

SCL assembles a set of learning modules into a supervised
learning system to address the stability-plasticity dilemma. Each
learning module acts as a similarity detector for a prototype, and
includes prototype resetting (akin to that of ART) to respond to
new prototypes. Here (Part I) we report SCL results using back-
propagation networks as the learning modules. We used two fea-
ture extractors: about 30 energy-based features, and a combination
of energy-based and graphical features (about 60). SCL recog-
nized 98% (energy) and 99% (energy/graphical) of test digits, and
91% (energy) and 96% (energy/graphical) of test letters. In the
accompanying paper (Part II), we report the results of SCL using
fuzzy sets as learning modules for recognizing handwritten digits.

1. Introduction

When an adaptive learning system such as a backpropagation (BP) net is used to
encode input patterns from an evolving environment, it suffers the the stability-
plasticity dilemma formulated by Grossberg [Grossberg 1986] for the competitive
learning paradigm: How can a learning system remain plastic in response to
significant events and yet remain stable in response to irrelevant or routine
events? How can it maintain previous knowledge while continuing to gain new?

An example application is handwritten character recognition. Suppose a
system has been successfully trained to recognize the handwritten character 7"
by a person who writes "7" consistently with two strokes (European style). Now,
the sarne system is to be trained by another person who writes "7" with one stroke.
After adapting to the one-stroke "7," it may not be able to recognize the two-
stroke "7" as well as it used to. A similar problem arises when a system learns
alphabetic characters after mastering numeric characters.

Adaptive resonance theory (ART) was proposed by Carpenter and Grossberg
[Carpenter 1988] as a possible solution for the stability-plasticity dilemma in the
competitive learning paradigm. It consists of two sets of processing nodes: the
attention subsystem and the orienting subsystem. The nodes in the attention
subsystem compete with each other when activated by an input pattern. The
winning node represents the learned category of the input pattern and also carries
the prototype (attention) pattern associated with the category.  The orienting
subsystem compares the prototype with the input, and if the two are significantly
different, it resets (disables) the winning node for a new round of competition,
with the assumption that the input pattern does not belong to a category
represented by the current winner. If all prototype patterns in the attention
subsystem are sufficiently different from the input, the input pattern itself
becomes the prototype of a new node representing a new category. The degree of
similarity is controlled by the vigilance parameter.

The ART model assumes no teaching input and performs unsupervised
learning. It organizes itself to group “similar” input patterns into the same
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category. Category proliferation is controlled by the vigilance parameter. An
ART systern with low vigilance will permit grouping of only grossly similar
patterns, and a system with high vigilance will try to form separate categories for
patterns that have only minor differences. In the ART2/BP network, Sorheim
uses the ART2 [Carpenter 1987] model to build a supervised backpropagation
network in his attempt to resolve the stability-plasticity dilemma [Sorheim 1991].
A simple backpropagation net is connected to each output unit of the ART2
subsystem. The competitive learning occurs in the ART2 subsystem, and no
competition exists among the backpropagation nets.

We propose a scheme of compounding a set of learning modules into a super-
vised learning system called Supervised Competitive Learning (SCL). We use
each learning module as a similarity detector for one prototype and adopt a
prototype resetting mechanism (akin to that of ART) to create new prototypes.
Any learning model can be used for component modules; backpropagation nets
and pattern classification models based on fuzzy logic are two natural candidates.

Kohonen has advanced a related scheme in his topology-preserving maps in
general [Kohonen 1982], and Linear Vector Quantization in particular [Kohonen
1988, 1990]. But LVQ processors are critically dependent on their neighbors to
establish pairwise boundary surfaces, and consequently require more processing
units (ten per category instead of the one to four prototypes typical of SCL).
Also, SCL prototypes are topologically independent; a classification category may
be represented by prototypes scattered widely over the featare space (cf. Section
4). In this respect our work is closer to that of Reilly er al. [1982], though
employing different control mechanisms.

Our intended application for SCL is a handwriting recognition system for pen
computers. Input patterns for such a system vary from alphanumeric characters to
geometric shapes such as circles and rectangles. Users of pen computers also vary
from young children to adults. Thus the system has to be open-ended; its
implementation demands adaptive coding for a complex environment, embracing
different character sets and different handwriting styles. The system is required to
remain in the learning (training) mode. When the system mistakes the input
pattern, the user is asked to enter the correct response and the system trains itself
until it can recognize the same pattern consistently.

We assume that the environment consists of a set of categories (characters) and
that each category has a set of subcategories (character prototypes). For example,
a single stroke "7" and a double stroke "7" are subcategories of the category
representing the numeral "7."

To demeonstrate the utility of SCL, a simulator was constructed as a handwrit-
ing recognition system for a pen computer. In this work (Part I) we report the
results of SCL simulation using backpropagation networks as the learning
modules, SCL/BP. In the accompanying paper (Part II) we report the results of
SCL simulation using fuzzy sets as learning modules, SCL/FZ, for the same
problem of recognizing handwritten digits.

2. Supervised Competitive Learning (SCL) Model

The schematic definition of SCL is given in Figure 1. SCL receives the input
pattern X and outputs the category name C. If the system fails to produce the
correct category name, then the correct name is given to the system as the
teaching value Y. The system learns the association between X and Y so that it
may respond correctly to the input X next time.

An SCL system consists of a set of N (>0) profotype units (attention subsys-
tem) and a Selector (orienting subsystem). Each prototype unit, n; (1<i<N), is
responsible for identifying all the input patterns that belong to a particular
subcategory (prototype). When the input pattern X is given, the output value,
ny(X), from the unit n; represents the certainty of X belonging to the subcategory



of the unit. Or equivalently, it represents the similarity between the input pattern
and the prototype pattern of that subcategory. We assume that the output of each
prototype unit is normalized to [-1,1]; i.e, -1 < ny(X) £ 1,
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Figure 1: SCL Scheme

The Selector selects, as the winning unit, the unit whose output is larger than a
threshold value and the largest among those above the threshold.  Then it
produces the name of the category, to which the winning unit belongs, as the
output of the SCL system. If there is no winner, then the input X is considered to
be a member of a new subcategory, and a spare (unused) prototype unit is
assigned to represent it. If no spare unit is available, the unit winning least
frequently, presumably representing the least significant subcategory of input
patterns, will be assigned to represent the new subcategory.

If the winning unit is wrongly selected, the teaching value, Y, is used to train
the prototype units as follows: The units of the category Y that respond to X with
low outputs will be trained to increase their outputs for X up to . Those units
representing categories other than Y that respond to X with high outputs will be
trained to decrease their outputs down to o;. We assume that each unit is
trainable to produce high output values for members of its subcategory and to
produce low output values for non-members.

Associated with each prototype unit, n;, the system maintains the following
information: the name of the category, C;, to which the subcategory belongs, a set
of typical input patterns, Bj, that are selected by n;, and the frequency, fj , of nj’s
winning the competition. Initially each unit has the null category name, A.

The algorithm for the Selector is given below:

Parameters: -l<op <p<oy <1
Initialization: Cj= A, fj =0, Bj:= ¢ (the empty set), for 1 <i <N,

Get the input pattern X.

K:={ilC{# Aand ni(X)>p}.

If K=¢ then Produce A; Goto 7.

Find j such that nj(X) =max{ ny(X)lie K}.
Produce C;.

If accepteé then Goto 1.

Get the correct category name Y,
K:={ilC;=Y and ni(X) > p}.

If K= ¢ then Goto 14.

Find j such that ny(X) = max{ n;{X} i e K}.
Train 0 with {()dl)}u{(u,i) fue Bj} until nj(X) > Oy.
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12. B; :=Bju{X}; fj = fj+1.
13. For all 1 such that1 ¢ Kand nj(X) = oy,
train nj with {(X,~1)}w{(u,1) v € Bj} until ni(X) <gy; Goto 1.
14. K:={ilCj=A}
15. If K#¢ then Select je K; Goto 11.
16. Find j such that f; = min{ f; [ 1 i< N}
17. t:iz:O;Bj =0 Gotoll.

When the input pattern X is received, each unit predicts the certainty that X
belongs to the unit’s subcategory. The unit, nj, with the largest output value
greater than the vigilance p, is selected as the winher, and its category name Cjis
given as the output. If the output is correct (A never being correct), no prototypes
are changed. Otherwise, the system receives the correct category name Y. If
there is no winner, but a unit remains with the empty name A, it becomes the
winner with Y as its category. If there are no more units with A, then the unit
with the smallest frequency count {(of winning) will become the winner after re-
Initializing its settings. The winning unit updates its history set B; by con-
catenating X to it and increments its frequency count f;. Then the winning unit is
positively trained on all the patterns in B; until the dutput value n;(X) becomes
greater than the high confidence value, Gy, for the input pattern X. ~Those losing
units n; whose category name is not Y and whose output value n;(X) is greater
than oy, get positively trained on all the patterns in Bj as well as negatively
trained on X until nj(X) becomes less than the low confidence value 6. Losing
units with category name Y are not trained.

3. SCL/BP: SCL with Backpropagation Nets

The first task for SCL/BP was to recognize handwritten digits, 0 - 9, collected on
a pen-based Lombard computer from GO Corporation. The data is captured by
the x and y movement of the pen on a digitizing tablet. A series of points is
combined into a stroke, and a series of strokes is combined into a scribble.
Details of the energy-based feature abstraction algorithm are in [Fuller 1992].

For example, the raw data for a five scribble is sampled by the tablet as:

108 5 2

15 103,56 103,51 102,47 102,41 102,37 107,40 116,40 119,39
121,37 123,35 121,27 117,23 113,21 107,21 102,21

4 104,60 107,61 109,63 115,63

This scribble has the tag 108, value 5, and consists of 2 strokes. The first
stroke consists of 15 points and the second one of 4 points. The velocity is
divided into 7 sections and the acceleration is divided into 6 sections. The
average X and Y components of velocity and acceleration for each section are
divided by the maximum values to generate 26 floating point features, and the
stroke count is used as the 27th feature.

SCL/BP is limited to 40 prototype units (N=40). Each unit is an acyclic
backpropagation net [Kimura 1990] consisting of 3 layers; typically, 27 input
units, 2 hidden units, and 1 output unit. The input layer is fully connected to both
the hidden layer and the output layer. The hidden layer is fully connected to the
output layer. There are no lateral connections, that is, no connections within the
same layer. We used the activation and error functions of Kalman and Kwasny
[1991, 1992}, namely,

a=AX)=(1-eX)/(l+eX) (activation function)
e =3(c2/(NE)=Z(c2/(1-2ad) (error function)

¢ is the difference between the rraining value (1 if correct, -1 if incorrect) and the
actual activation value of the unit. Note that the output value of the prototype unit



ranges from -1to 1. The learning rate and the momentum value (1 and ¢ in the
table below) were typically fixed to 0.0005 and 0.4, respectively.

In SCL/BP each prototype unit keeps a set of randomly selected input patterns
other than the members of its history set, to be used for smoothing the learning
progression. Training of the prototype units, n; , (Steps 11 and 13 of the Selector
algorithm) utilizes the history set, B;, the inpu‘l pattern X, and the set of randomly
selected input patterns, Rj, as negative exemplars.

4. Experiments

Early experiments used only energy-based features in SCL/BP to recognize 1400
handwritten digits (600 test digits after Trials training on 800 training digits,
collected from 20 subjects) collected on the Lombard computer. A trial is one
backpropagation for one prototype unit. In the first experiment below, for
example, since 19 prototypes in total were generated, each unit was trained an
average of 22,000 times. After the training iterations, the system was tested by
600 digit patterns obtaining 92.7% recognition. The column Time is training time
on a NeXTstation (25 MHz MC68040-based).

Several later experiments using a combination of 57 to 63 real-valued features
(stroke count, 20 to 26 energy-based features, and 36 static features based on
position and orientation of scribble segments). Recent experiments with our
actual pen-based prototype (Kumon Machine, or KM) used 1600 digits (1280
train, 320 test) and 4160 letters (3328 train, 832 test). Improvements to the
preprocessing of feature extraction and the reduction to two hidden units
significantly sped up learning convergence. The 63 features, training set, and
testing set are identical to those used for SCL fuzzy logic digit training reported in
"Supervised Competitive Learning, Part II: SCL with Fuzzy Logic," permitting
comparison of SCL under the two regimens.

SCL Parameters Hidden Prototypes Time

n oy P O], units created Trials (min) Recognition
(GO-collected digits -- Energy only)
.0005 0.5 ~-0.10 -0.5 4 19 211,761 <20 92.7%
L0005 0.5 -0.10 -0.5 4 26 2,791,989 <250 94.8%
{GO-collected digits -- Energy/Graphical)
L0010 0.3 0.05 -0.5 4 35 048,287 32 97.5%
{KM~collected digits -- Energy only)
.0010 0.9 0.10 -0.5 2 39 712,466 9 98.4%
(KMi-collected digits -~ 63 Energy/Graphical features)
.0010 0.8 0.10 -0.5 2 29 65,921 2 97.5%
.0010 0.9 0.05% -0.5 2 35 906,315 19 99.7%
(KM-collected letters -- Energy only)
.0010 0.9 0.10 -0.5 2 144 3,383,493 <200 91.1%
{KM-collected letters -- Energy/Graphical)
.0010 0.9 -0.10 -0.5 2 139 2,079,554 139 895.2%
.0010 0.9 -G.05 -0.5 2 143 3,271,052 181 95.7%

Importantly, the system exhibits a high correlation between "confidence"
(difference between the first and second highest output activations divided by the
maximum, 2.0) and correctness. This confidence is greater than 0.35 for about
half of the test set of handwritten lower case letters. For these items, SCL/BP is
99.0% correct. Confidence is greater than 0.2 for 78% of the test data, and the
system is 98.3% correct for these.

Following are several examples of members of the training set selected by
various prototype units as being "similar".



One unit selected single-stroke fives; another assembled double-stroke fives:

55855 55 75 €

One prototype unit gathered single-stroke eights, and another garnered double-
stroke eights with an interesting exception. Eights that began in the middle of the
two loops, but that were drawn with a single continuous stroke were also collected
by this adventurous unit.

5B 2,0

5. Conclusions and future work

The experiments (99% for digits and 96% for letters, and comparable results for
gestures) demonstrate the success of SCL in negotiating the stability/plasticity
dilemma. SCL/BP adapts to new environments without losing the recognition
capability obtained in the old environment. We are currently using SCL/BP with
on-line training of unrecognized characters. This adaptability leads to desirable
collaboration between the user and the pen computer. The next phase of our SCL
evaluation is to continue training SCL/BP to recognize alphabetic characters and
various gesture command sets for pen computers.
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