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Abstract

Sensor network presents us many new challenging practical and theoretical problems. This
paper is concerned with minimal exposure problem in sensor networks. Exposure, proposed
by Megerian and others [3] as a useful metric to describe the sensor coverage of a path in
a sensor field, exhibits interesting properties and induces related open problems. In this
paper, we present a solution to an open one-sensor exposure problem [2, 3] using variational
calculus as our first step in further understanding of the exposure problem in multiple sensor
scenarios.
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Abstract

Sensor network presents us many new challenging practical and theoretical problems. This paper is concerned
with minimal exposure problem in sensor networks. Exposure, proposed by Megerian and others [3] as a new
useful metric to describe the sensor coverage of a path in a sensor field, exhibits interesting properties and
induces related open problems. In this paper, we present a solution to an open one-sensor exposure problem [2, 3]
using variational calculus as our first step in further understanding of the exposure problem in multiple sensor
scenarios.

1. Introduction

Sensor network is drawing more and more attention in recent years as a powerful distributed mechanism for observ-
ing activities in a large environment. Its application areas include environmental monitoring(e.g., vehicle traffic,
area security, forest fire, earth and planetary science), industrial and agricultural sensing and diagnostics (e.g.,
factory condition, grain field health), battlefield awareness (e.g., enemy motion detection, multi-target tracking)
etc.

When a sensor network is deployed as a environment monitoring tool, a key question is how well a sensor
network deployment observes its intended environment? In other words, how well a sensor network “covers” its
environment? Answers to this question is not only important for deployment optimization purpose, but also
important for adversaries of the monitoring task. A sensor network designer would choose to deploy a limited
number of sensors in a way to cover its intended environment as better as possible, while an adversary moving in
a sensor field would prefer to find and use a less covered path.

In order to answer the coverage question from the theoretical perspective, one first needs to have some model
of observation capability of one sensor and collections of sensors. In general, the observation capability of a remote
sensor can be described by a sensitivity function f(s, p), where s is its location and p is an arbitrary point in the
space. The actual form of this function depends on the physical characteristics of the sensor. For instance, while
the accuracy of a remote sensor usually fall as the distance to its target increases, its exact behavior depending on
the sensing techniques used. A laser based distance measure technique usually has lower accuracy changing rate
than a sound based technique.

Given sensor field composed by a set of n sensors S distributed in space at s1, s2, ..., sn, their collective ob-
servation power with respect to a point p is in general a function F of the individual sensing capabilities of all
sensors.

F (S, p) = F (f1(s1, p), f2(s2, p), ..., fn(sn, p))

F is called sensor field “intensity” in [3]. The actual form of the sensor field intensity depends on the sensing strategy
deployed in the sensor network. Meguerdichian and others proposed two types of sensor field intensities [3]: all
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Figure 1: Path exposure in sensor network

sensor field intensity IA(S, p)

IA(S, p) =
n
∑

i=1

fi(si, p) (1)

and closest-sensor field intensity IC(S, p)1

IC(S, p) = max{fi(si, p)|i = 1, ..., n} (2)

The em exposure for an object moving in the sensor field during a interval [t1, t2] along a path p(t) is defined
as [3]:

E(p(t), t1, t2) =

∫ t2

t1

I(S, p(t))|dp(t)

dt
|dt (3)

Finding the minimal exposure path between two arbitrary points in the sensor field is one of fundamental
geometric problems for the applications of sensor networks. Before one can fully answer the minimal exposure
problem for sensor field containing thousands of sensor, one has to solve the case for one sensor field first. In [3],
the authors presented an answer to a special case of the minimal exposure problem for one sensor case: when the
sensitivity function is of form 1/distance(s, p), and the starting point s and the ending point e has equal distance
to the sensor. The minimum exposure path in this case is the shorter arc (between s and e) of the circle centered
at s and passing through s and e.

In this paper, we first solve the following open minimal exposure problem [2, 3] via variational calculus:

Given sensor sensitivity function f(s, p) = 1/d(s, p), where d(s, p) is the distance between the sensor location s
and an arbitrary location p, what is the minimal exposure path from an arbitrary point A to another arbitrary point

B?

Using our theorem, we correct an error in deriving corollary 5 in [3].

Furthermore, we provide a solution to the following more general case:

1Note that the form we present here is general than the one presented in [3]
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Figure 2: Exposure values are likely path dependent

Given sensor sensitivity function f(s, p) = 1/(d(s, p))k, where k ≥ 0, and d(s, p) is the distance between the

sensor location s and an arbitrary location p, what is the minimal exposure path from an arbitrary point A to

another arbitrary point B?

The paper is organized as follows. We first present a short yet hopefully sufficient (for most expected readers)
variational calculus preliminaries in section 2. Then in section 3 we present our solution to the minimum exposure
problem for the 1/(d(s, p)) sensor field intensity case and discussion its implication to some claims in [3, 2]. After
that we present a general solution to the 1/(d(s, p))k case and discuss its implications to the solution to a more
complicated multi-sensor exposure problem in section 4. Then we conclude in section 5.

2. Variational Calculus Preliminary

The definition of exposure by Eq.(3) makes it obviously a path-dependent value. Given two end-points in the field,
different paths between them, as shown in Fig.2, are likely to have different exposure values. Finding a minimal or
minimum exposure path is one key problem of exposure study.

In order to find a minimum/minimal exposure path, apparently one has to compare the exposure values of
all related paths. The difficulty is, the possible paths between two points spans an infinite-dimensional space. In
18th century, Euler (1707-1783) and Lagrange (1736-1813) were concerned with similar problems and developed
variational calculus to help solving them. The following is a key theorem [1] we will use in this paper:

Theorem 2.1. Let J [y] be a function(al) of the form

J [y] =

∫ b

a

F (x, y, y′)dx

defined on the set of functions y(x) which have continuous first derivatives in [a, b] and satisfy the boundary
condition y(a) = A, y(b) = B. Then a necessary condition for J [y] to have an extremum for a given function y(x)
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is that y(x) satisfy the Euler’s equation
∂F

∂y
− d

dx

∂F

∂y′
= 0 (4)

Reader may find a proof of this theorem in most variational calculus or functional analysis book. Note that Eq.(4)
is also often called Euler-Lagrange equation. For convenience, we sketch a simple proof of the above theorem here.

A function y(x) makes J [y] an extremum should have the following property: any admissible variations of y(x)
makes J to have a higher value. Suppose we give y(x) an increment εh(x). In order for the function y(x)+ εh(x) to
continue to satisfy the boundary condition, i.e, has two end points at A and B respectively, we force h(a) = h(b) = 0.
Then we have

∆J = J [y + εh] − J [y] (5)

=

∫ b

a

F (x, y + εh, y′ + εh′)dx −
∫ b

a

F (x, y, y′)dx (6)

= ε

∫ b

a

[Fy(x, y, y′)h + Fy′(x, y, y′)h′]dx + o(ε2) (7)

The last step is achieved by Taylor expansion. The subscripts denote the partial derivatives with respect to the
corresponding arguments. A necessary condition for J [y] to have an extremum at y(x) is the principle linear of ∆J
to be zero. That is

δJ =

∫ b

a

[Fyh + Fy′h′]dx = 0 (8)

Integrating by parts on the second term, we have

δJ =

∫ b

a

[Fyh − dFy′

dx
h]dx + Fy′h(x)|ba (9)

using boundary condition h(a) = h(b) = 0, we have

∫ b

a

[Fy − dFy′

dx
]hdx = 0 (10)

Then use the “fundamental lemma of calculus of variation” which states that, if

∫ b

a

M(x)h(x)dx = 0

for all h(x) with continuous partial derivatives, then M(x) = 0 on (a,b). We have the Euler’s equation.

2.1. A simple example

A classical application example of calculus of variations is to find the shortest path joining two points. While
Archimedes proved long ago that the shortest path joining two points in a plane is a straight line, one still can gain
a glimpse of the power of the variation method. So we present its solution here to better prepare reader for the
next few sections.

Let the two points under consideration be A = (a, c) and B = (b, d). Let y(x) be an curve connecting A and B.
Then the length of the curve y(x) is

∫ b

a

√

(dx)2 + (dy)2 =

∫ b

a

√

1 +

(

dy

dx

)2

dx (11)

So we have
F =

√

1 + (y′)2
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Figure 3: Exposure in one sensor scenario

Applying Euler’s equation (4), we get

∂F

∂y
− d

dx

∂F

∂y′
= 0 − d

dx
(

y′

√

1 + (y′)2
) = 0 (12)

This implies
y′

√

1 + (y′)2
= C(constant) (13)

This possible only if y′ is a constant:
y′ = α

So we can conclude y(x) is a straight line
y = αx + β

where constants α and β can be determined by boundary conditions y(a) = c and y(b) = d. EOF

3. Minimal exposure for one sensor field

In this section, we first use the variation method to derive the following theorem:

Theorem 3.1. Given sensor sensitivity function f(s, p) = 1/d(s, p), where d(s, p) is the distance between the
sensor location s and an arbitrary location p, the minimal exposure path from an arbitrary point A to another
arbitrary point B is of the following form in polar coordinates:

ρ(θ) = ae
ln(b/a)

α θ (14)

where the constant a is the distance from the sensor to A, b is the distance from the sensor to B, and α is the angle
formed by (A-sensor-B), as in Fig.(3).
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Proof: Note that given two points A = (xa, ya) and B = (xb, yb), a path P (A,B) between them can be identified
by a function pair (x(t), y(t)) with boundary conditions x(t1) = xa, x(t2) = xb,y(t1) = ya, y(t2) = yb. Using this
notation, we rewrite Eq. (3) (definition of exposure) in the following equivalent form:

E(x(t), y(t), t1, t2) =

∫ t2

t1

I(x(t), y(t))

√

(

dx(t)

dt

)2

+

(

dy(t)

dt

)2

dt (15)

For convenience, we transform Eq.(15) into polar coordinates (ρ, θ):

x(t) = ρ(t) cos θ(t) (16)

y(t) = ρ(t) sin θ(t) (17)

(18)

E(ρ(t), θ(t), t1, t2) =

∫ t2

t1

I(ρ(t), θ(t))

√

(

ρ
dθ(t)

dt

)2

+

(

dρ(t)

dt

)2

dt (19)

The right-hand side of Eq.(19) is also equivalent to

∫ θ(t2)

θ(t1)

I(ρ(t), θ(t))

√

ρ(t)2 +

(

dρ(t)

dθ(t)

)2

dθ(t) (20)

This means we can drop the variable t entirely and have the following equivalent exposure expression:

E(ρ(θ), 0, α) =

∫ α

0

I(ρ, θ)

√

ρ2 +

(

dρ

dθ

)2

dθ (21)

where α is the constant angle formed by A-sensor-B, as shown in Fig.3. The boundary condition in this new
coordinates is

ρ(0) = a (22)

ρ(α) = b (23)

As the sensitivity function is f(s, p) = 1/d(s, p) = 1/ρ, and here we are only concerned with one sensor, we have

I(ρ, θ) =
1

ρ

Thus, our goal is to find the path function ρ(θ) that minimizes

E(ρ(θ), 0, α) =

∫ α

0

√

ρ2 +
(

dρ
dθ

)2

ρ
dθ (24)

Let

F =

√

ρ2 + (dρ
dθ

)2

ρ
(25)

and apply the Euler-Lagrange equation (4), we get

d

dθ
(

1
√

1 + 1
ρ2

(

dρ
dθ

)2
) = 0 (26)

this implies
1

√

1 + 1
ρ2

(

dρ
dθ

)2
= c(constant) (27)
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Figure 4: Examples of minimal exposure path

after some manipulation of terms, we can obtain:

dρ

dθ
= ±c1ρ (28)

where c1 is a also constant. Solve this equation we get

ρ = c2 exp±c1θ (29)

then use the boundary conditions (22) and (23), we have

ρ(θ) = ae
ln(b/a)

α θ (30)

EOP

A spacial case for theorem (3.1) is by letting a = b, in which we get ρ(θ) = a. So we immediate have the
following corollary by letting a = b:

Corollary 3.1. Given sensor sensitivity function f(s, p) = 1/d(s, p), where d(s, p) is the distance between the
sensor location s and an arbitrary location p. Let A and B be two points having equal distance to the sensor origin.
The minimal exposure path from A to B is the arc of the circle centered at s and passing through A and B.

This corollary is exactly the Lemma 2 derived in [3].

When the sensor is located at the origin (0, 0) with sensitivity 1/d(s, p), Fig.(4) shows a few examples of minimal
exposure paths between point (0, 1) and (1, 0), (2, 0),(3, 0),(4, 0),(5, 0).

Note that theorem 3.1 also implies some arguments and method in [3, 2] in deriving corollary 5 in those papers
are wrong.
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4. A more general case

For a more general case, assume the sensor sensitivity (single sensor field intensity) can be approximated by

S(s, p) =
1

dk(s, p)
, k ≥ 0 (31)

Clearly, the higher the k, the faster its sensitivity attenuates with the increase of distance. Different remote sensor
sensitivity characteristics may be approximated in the first order by choosing appropriate k.

Theorem 4.1. Let sensor sensor field intensity be

S(s, p) =
1

dk(s, p)
k ≥ 0, k 6= 1

where d(s, p) is the distance between the sensor location s and an arbitrary location p. Given two points A and B
with d(s,A) = a and d(s,B) = b. Let α be the angle formed by (A-sensor-B). When

α ≤ π

k − 1
(32)

the minimal exposure path between them is of the following form in polar coordinates:

ρ(θ) = a

(

cos((k − 1)θ) + sin((k − 1)θ)
bk−1

ak−1 − cos((k − 1)α)

sin((k − 1)α)

)

1
k−1

(33)

Proof: Similar to the proof of theorem (3.1), we get

F =

√

ρ2 + (dρ
dθ

)2

ρk
(34)

Applying the Euler-Lagrange equation, we get

d

dθ
(

ρ2

ρk

√

ρ2 + (dρ
dθ

)2
) = 0 (35)

this implies
ρ2

ρk

√

ρ2 + (dρ
dθ

)2
= c(constant) (36)

after some manipulation of terms, we can obtain:

dρ

dθ
= ±

√

c1ρ4−2k − ρ2 (37)

note that
∫

1
√

c1ρ4−2k − ρ2
dρ =

∫

1

ρ2−k
√

c1 − ρ2k−2
dρ =

∫

ρk − 2
√

c1 − ρ2k−2
dρ (38)

where c1 is also a constant. Now do a variable substitution to simplify the expression. Let

q = ρk−1 (39)

For k 6= 1, we have

∫

ρk − 2
√

c1 − ρ2k−2
dρ =

∫

1

(k − 1)
√

c1 − q2
dq = − 1

k − 1
arcsin

(

q√
c1

)

(40)

8



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

π/4 a

b

k=2

k=3

k=4

k=4.9

k=5

k=5

A

B

π/4 a

b

k=2

k=3

k=4

k=4.9

k=5

k=5

A

B

Figure 5: Relation between minimal exposure path and sensitivity attenuation bahavior(k)

Now integrate Eq.(37) with the help of Eq.(40), we get

q(θ) = c3 sin ((k − 1)(θ + c2)) (41)

where c2 is an integral constant. The two constants c3 and c2 can be determined by two boundary conditions

q(0) = ak−1 (42)

q(α) = bk−1 (43)

and we get

c2 =
1

k − 1
arctan

(

sin((k − 1)α)
bk−1

ak−1 − cos((k − 1)α)

)

(44)

c3 =
ak−1

sin((k − 1)c2)
(45)

so we have

ρ(θ) = a

(

sin((k − 1)(θ + c2))

sin((k − 1)c2)

)
1

k−1

(46)

by expanding the numerator and substitute in c2, Eq.(46) can be rewritten as

ρ(θ) = a

(

cos((k − 1)θ) + sin((k − 1)θ)
bk−1

ak−1 − cos((k − 1)α)

sin((k − 1)α)

)

1
k−1

(47)

EOP

One can easily check the original boundary conditions ρ(0) = a and ρ(α) = b are satisfied in Eq.(47).

Fig.(5) shows how the minimal exposure paths between points A and B change with the sensor sensitivity
attenuation exponent k. Note that in this case (α = π/4), when k approaches to 5, the length of the minimal
exposure path approaches infinity. One can easily see

αc(k) =
π

k − 1
(48)
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is the critical angle for the 1
rk sensitivity. It is critical in the sense that once the angle α exceeds αc, the minimal

exposure path always extends infinity.

5. Conclusion

Sensor network presents us many new challenging practical and theoretical problems. In this paper, we solved an
open one-sensor exposure problem for sensor networks using variational methods, and pointed out some errors in
the literature. We believe our results will facilitate further understanding of the exposure problem in more general,
multiple sensor scenarios.
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