View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-92-41

1992-10-01

Hyperflow: A Visual Programming Language for Pen Computers

Takayuki Dan Kimura

This paper presents the design philosophy of the Hyperflow visual programming language. It
also gives an overview of its semantic model. The primary purpose of language is to provide a
user interface for a pen-based multimedia computer system designed for school children. Yet it
is versatile enough to be used as a system programming language. The concept of visually
interactive process, vip in short, is introduced as the fundamental element of the semantics.
Vips communicate with each other through exchange of signals, either discrete or continuous.
Each vip communicates with the user through its own interface box by displaying... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Kimura, Takayuki Dan, "Hyperflow: A Visual Programming Language for Pen Computers" Report Number:
WUCS-92-41 (1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/603

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233199271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/603?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/603

Hyperflow: A Visual Programming Language for Pen Computers

Takayuki Dan Kimura

Complete Abstract:

This paper presents the design philosophy of the Hyperflow visual programming language. It also gives
an overview of its semantic model. The primary purpose of language is to provide a user interface for a
pen-based multimedia computer system designed for school children. Yet it is versatile enough to be
used as a system programming language. The concept of visually interactive process, vip in short, is
introduced as the fundamental element of the semantics. Vips communicate with each other through
exchange of signals, either discrete or continuous. Each vip communicates with the user through its own
interface box by displaying on the box information about the vip and by receiving information pen-scribed
on the box. There are four different communication modes: mailing, posting, channeling, and
broadcasting. Mailing and posting are for discrete signals and channeling and broadcasting are for
continuous signals. Simple Hyperflow programs are given for the purpose of illustration, including a
Hyperflow specification for the Line-Clock device driver.

https://openscholarship.wustl.edu/cse_research/603?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/603?utm_source=openscholarship.wustl.edu%2Fcse_research%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages

Hyperflow: A Visual Programming Language for
Pen Computers

Takayuki Dan Kimura

WUCS-92-41

October, 1992

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

To appear in the Proceedings of 1992 IEEE Workshop on Visual Languages,
Seattle, Washington.

This research is partially supported by the Kumon Machine Project.

Hyperflow: A Visual Programming Language for Pen Computers!

Takayuki Dan Kimura
Department of Computer Science
Washington University in St. Louis
(314) 935-6122 tdk@wucsl.wustl.edu

Abstract

This paper presents the design philosophy of the Hyperflow visual programming language. It also
gives an overview of its semantic model. The primary purpose of the language is to provide a user
interface for a pen-based multimedia computer system designed for school children, Yetitis
versatile enough to be used as a system programming language. The concept of visually
interactive process, vip in short, is introduced as the fundamental element of the semantics. Vips
communicate with each other through exchange of signals, either discrete or continuous. Each vip
communicates with the user through its own inferface box by displaying on the box information
about the vip and by receiving information pen-scribed on the box. There are four different
communication modes: mailing, posting, channeling, and broadcasting. Mailing and posting are
for discrete signals and channeling and broadcasting are for continuous signals. Simple Hyperflow
programs are given for the purpose of illustration, including a Hyperflow specification for the
Line-Clock device driver.

1. Introduction

This is a progress report on Hyperflow. Development of the Hyperflow (HF in short) visual
programming language is a part of the research project in progress since January 1991 to develop a
pen-based multimedia computer system. The pen computer is to be used for teaching mathematics
to children from the pre-school level up to the 12th grade. The project is expected to be completed
in 1995. The project also involves development of MC68030-based hardware and toolkit
firmware with the pen user interface. The silicon paper technology, our term for the pen computer
technology, is discussed in [6] and [7]. An overview of the project is given in [8].

HF 1s an extension of Show and Tell [5]. From the Show and Tell project we have learned two
major lessons: that the mouse/CRT is not adequate for visual programming, and that entirely
pictorial visual programming is not practical. We use the pen instead of the mouse and combine
texts with icons in HF. As in Show and Teli, the syntax consists of boxes and arrows, a box
representing a process and an arrow representing a data flow between processes, While data types
in Show and Tell are limited to discrete types, continuous data types such as audio signals and
animations are available in HF. Continuous data types are necessary not only for multimedia
processing but also for processing pen-strokes.

HF is an user interface framework as well as a visual programming language. The two aspects of
HF are inseparable. As an interface framework, HF is an extension of various window systems
with a dataflow architecture and more independent computation power for each window. A HF

To appear in the Proceedings of 1992 IEEE Workshop on Visual Languages, Seattle, Washington.
This research is partially supported by the Kumon Machine Project.

window, called the interface box, communicates not only with the user but also with other
windows through visually specifiable dataflow. The user controls the activities of a window by
scribing a gestic command on it. Each window has a separate set of commands to be activated by
the user’s gestures. As in X Windows[10], buttons, menu items, scroll bars and their "thumbs’, are
all windows in HF. Each HF widget can respond to a large variety of gestic commands if
necessary, in contrast with the mouse-based widgets that can respond to only clicking and
dragging.

In the remaining part of this section, we discuss the purposes and goals of HF and a new software
engineering approach incorporated in the HF design that we propose for the construction of
interactive application software. In Section 2, we present an overview of the conceptual
{semantic) mode! of HF. Due to space limitations our presentation will be limited to the
communication aspects of the model. In Section 3, we introduce some syntactic components with
sample programs. A complete definition of the HF syntax would be premature because we are still
experimenting with different syntactic representations of semantic concepts,

1.1 Purposes
The purpose of HF are presented in the following three tiers, listed in order of sophistication:

Level-1: Pen user interface. End-users, both school children and math instructors, interface with
the pen compuier through handwritten characters, numbers, and geometric shapes. The traditional
mouse-based interface tools, (e.g. widgets of X Windows,) are not appropriate for pen computers.
The pen interface requires a new paradigm in which gesturing and handwriting, instead of pointing
and dragging, play a prominent role. By a single gesture, instead of two steps necessary in the
menu-based interface, the user can select both an object and an operation. If the menu is to be
eliminated from the user interface framework, what should be its replacement? HF offers a
visually interactive process (vip in short) as the fundamental element of the pen user interface
(replacing menus). The user communicates with a vip via gestures, The vip is described in
Section 3.

Level-2: Visual shell language. The power of the UNIX operating systern comes partly from its
shell language. The end users of the graphic user interface are deprived of such a shell language.
The philosophy of direct object manipulation and WYSIWYG makes design of a graphic shell
language very challenging. Our conjecture is that a visual shell language is a natural application
of visual programming languages where the control structures of procedure definition, selection,
and iteration arc available. HF has these capabilities,

Level-3: Visual system programming. It is commonly believed that visual programming

languages are good for novice users but not for system programmers. However, recent software
development tools, such as symbolic debuggers of various types [1] and Interface Builders [3], are
becoming more graphics-oriented. This suggests that visual interfaces are also useful for system
programmers, and a visual language for system programming should not be considered unsound, if
an efficient compiler can be constructed. Is it possible to design a visual language in which a
compiler and an operating system can be implemented? For example, how can we specify an
interrupt driven device driver in visual form? HF is our proposal for such a visual system
programming language,

1.2 Goals
HF has been designed as a programming language to achieve the following four goals:

Understandability. A computer system for school children needs an easy to understand
programming language. In order to make HF programs easier to construct and easier to
understand, three properties are incorporated: First, it is a visual language. A two dimensional
arrangement of iconic modules manifests inter-relationships better than a linear textual
specification. Secondly, it is dataflow based. Our experience with the Show and Tell language
proved that the concept of dataflow is easier for school children to learn than the concept of
control flow. Finally, it is parsimonious. A HF program specifies an ensemble of homogeneous
communicating processes. There are no other constructs such as functions and procedures. We
presume that the parsimony enhances the understandability.

Responsiveness. Itis a common misconception that novice computer users do not demand
instantanecous response from the computer, On the contrary, the less familiar the user is with
computer technology, the more he expects rapid responses from the computer. The run-time
support system (kemel) of HF includes real-time tasking based on preemptive scheduling.
Processing the user entry of pen gestures has the highest scheduling priority.

Universality. A general goal of programming language design is to offer the most expressive
power with the least variety of constructs. HF demonstrates its universality in four areas: First, it
can emulate most of the traditional graphic user interfaces such as X widgets. Second, it can
represent not only conventional discrete data types but also continuous data types. Thus, it is
equipped to deal with myltimedia applications. Third, it is capable of integrating computation,
database, and communication applications into a single paradigm. This is the same goal we set
and achieved successfully for the Show and Tell language. Finally, it is a system programming
langnage as well as an end user programming language. This goal requires the capability of
concurrent processing with adequate synchronization primitives, a rich set of abstraction
mechanisms, and the development of an optimizing compiler.

Extensibility. As a system programming language, HF has to provide a set of tools to manage
orderly growth of software complexity, There are three aspects of HF that will contribute to its
extensibility: First, it is object-oriented to encourage modular programming, A vip is an
encapsulation mechanism. It can interact with another vip only through the exchange of signals.
Secondly, it is prototype based [12]. Vips can be copied and pasted individually or in groups.
There is no need to artificially define a virtual class. Inheritance of attributes from a prototype to a
copy can be controlled by designating each attribute in the prototype as private or public. Finally,
it allows multi-lingual programming. Programming of a vip can be done visually in HF, or
textually in C, in Assembly Languoage, or in any other language whose compiler is made available
to the HF system. This makes importing programming modules from other environments easier.
It also serves to improve the performance of critical vips by hand-coding them in traditional
textual programming languages.

1.3 System Decomposition

The concept of communicative organization was introduced as a conceptual model of distributed
computation in [4] and it is used as the foundation of HF semantics. A communicative
organization is defined as a collection of active entities (processes), distributed over time and
space, communicating with each other through exchange of passive entities (symbols) to achieve
some common goal. A program specifies the social structure as well as the communication
behavior of individual processes in the organization.

In HF design, we consider that the user and the computer system form a communicative
organization consisting of the user process, software processes, and hardware processes (Figure 1).
The user and hardware processes are extrinsic, and the rest are intrinsic. The HF system is a
software 100l to specify and manage the intrinsic processes. Among the intrinsic processes, some
of them interact directly with hardware processes. We call them device processes, All processes
including device processes may directly interact with the user process.

User Process
User
/ gestaring®,
ya ¥ h | 'Y
Infrinsic Visual Processes
Device Processes
A A [[
Device Device Device Device

Hardware Processes
Figure 1; Communicating Processes

In the traditional development of application software for graphic workstations, the software
system is decomposed into two parts, the interface and the application, e.g. the server-client model
of the X Window System [10]. Each part is then decomposed into modules and sub-units. This
approach presumes that the two parts are loosely coupled, and that infrequent subroutine calls and
callbacks are sufficient to connect the two. However, in many applications the user interface
modules require much tighter coupling, and there are some efforts to reduce the needs for call

backs [9].

We adopt an alternative approach to the software system decomposition (Figure 2). In our
approach, the system is first decomposed into functional modules, (i.e., vips), then each module is
divided into the interface part and the computation (application) part. This approach presumes that
the user interface is as ubiquitous as the computation. The unification of user interface and
application has been recently urged by van Dam in his keynote speech at the 4th UIST
Symposium[13]. He observed that the the user interface needs more "semantic feedback” from the
application and that there should be a single environment for development of user interface and
application. Our approach is consonant with his observation. HF is designed to provide just such

a single environment.
Traditional Approach

]
g © L]

i

- —]

=

Interface Modutes Application Modules

Y

¥

Hyperflow Approach

Visually Interactive Processes (VIPs)
Figure 2: System Decomposition

We go one step further in the efforts to integrate the user interface with computation. Some
computational processes are system processes for managing various types of resources as a part of
the operating system. Device processes are typical of such system processes. Traditional user
interface management systems do not interact directly with system processes. It is our hypothesis,
however, that all processes, system or application, need to have an interface with the user at one
time or another. For example, a graphic symbolic debugger provides system programmers with a
visual interface to system processes including device drivers. Therefore, all intrinsic processes are
visually interactive in HF at the user’s option.

2. The Semantic Model

As stated earlier the semantic model of HF is based on the concept of communicative organization,
a collection of active elements (which communicate), passive elements (which are communicated),
and the environment (where communication takes place) [4]. In HF, the concept of visually
interactive process (vip) is introduced as the active element, and the concept of signal as the

passive element of communication. Vip also provides the communication environment. Vip is an
extension of the traditional concept of process and signal is an extension of data. Each vip has a
set of commands to be activated directly by a user’s gesture or by a signal from another vip.

2.1 Signals

There are two categories of signals, discrete and continuous. The traditional data types, such as
numbers, text, Boolean values and bitmaps, are all discrete signal (data) types. Continuous signals
are imed data streams such as audio and video[2], Pen-strokes are also examples of continuous
signals. Each signal consists of a reader and a body. The header specifies how to interpret the
body. We call a signal with the empty header a datum. Signals can be hierarchically structured;
i.e., a signal may contain another signal,

2.2 Communication Modes

Humans utilize different modes of communication under different circumstances, We use
telephone (channeling) for private and continuous communication and letters (mailing) for private
and discrete communication. The telephone is synchronous; mailing is asynchronous. Both
modes can be used for global (long distance) communication. We also use bulletin board (posting)
and TV (broadcasting) for public and local communication. Posting is discrete and asynchronous,
and broadcasting is continuous and synchronous. In public communication, the receiver must
know the identification of the sender, while in private communication the sender must know the
identification of the receiver.

In computation models, message passing which corresponds to mailing is the dominant mode of
communication. Communication through a shared variable corresponds to posting. In general a
memory cell can be considered a bulletin board which posts a datum received from mailing,
Broadcasting and channeling have not been used in traditional software models due to the lack of
capabilities for handling continuous data types.

In HF vips can communicate in all four different modes: mailing, posting, channeling, and
broadcasting. Each mode is represented by a different type of arrow in the HF syntax. They are
summarized in Figure 3. Note that a vip is represenied by a box.

Private Public
Global Local
Asynchronous A B R B
Blocking
Biscrete Mailing Posting
Synchronous S
Non-blocking A » B P A B
Continuous L
Channeling Broadcasting

Figure 3: Communication Modes

Mailing is denoted by a regular arrow. Vip A sends a mail item (discrete signal) to vip B by
executing the command sendmail. Vip B has a mailbox, which is a FIFO queue of discrete signals.
If B’s mailbox is full, the sendmail operation is blocked. B has two options in its open-mailbox

" policy, auromatic and manual. If the mailbox is set to aufomatic, the next mail will be opened
automnatically (as soon as possible) and its head will be interpreted as the name of command (o be
executed by B. If the mailbox is set to manual, the next mail will be opened when B execute the
command openmail. If the mailbox is empty when openmail is executed, the operation will be
blocked.

Posting is denoted by a dotted arrow. Vip A has a bulletinboard on which A can post a note
{discrete signal} by exccuting the command postnote. Any vip, B, in the same environment
(locality) as A, can read the note on A by executing the command readnote. If there is no note
posted on A, the readnote operation will be blocked. A has two options in its policy for removing
notes from the bulletinboard (deposting), automatic and manual. If the bulletin board is set to
automatic, whenever the note is read by some vip, it will be removed simultaneously; i.e., only
one vip can consume the note. If the bulletinboard is set to manual, the note remains posted until
A excutes the command depost or A posts a new note which replaces the old note.

Channeling is denoted by a fat arrow. Vip A starts sending a continuous signal to vip B by
executing the command startsend and stops the signal by the command stopsend. The signal will
be sent to B regardless of whether B is ready to receive it . B has two options in the acceptance
policy, automatic and manual. If the B’s channel is set to automatic, B starts receiving the signal
as soon as it arrives. If the channel is set to manual, B starts receiving the signal when the
command startreceive is executed and stops when stopreceive is executed. Both startsend and
Startreceive are non-blocking operations.

Broadcasting is not denoted by any arrow. Instead, the sender, A, is identified by a dotted box.
Any vip, B, in the same environment as A, can listen to the signal transmitted by A, A starts
transmission of a continucus signal by the command startbroadcast and stops it with
stopbroadeast. B has two options in its listening policy, automatic and manual. In manual
listening B starts listening to A by executing the command startlisten and stops it by stoplister. In
automatic listening B starts listening preemptively as soon as A starts transmission. All foar
operations are non-blocking,

2.3 VIP: Visually Interactive Process

A vip is a concurrent process (task) with a user interface. It is the only unit of system
decomposition in HF. There are no variables, functions, procedures, or packages, Computations
are carried out by a homogeneous community of vips interacting with each other through the
exchange of signals. We call such a community a vip ensemble. The user monitors and controls
activities of the ensemble by directly communicating with the individual members. Every vip is
visually accessible to the user unless the user chooses to hide it.

A vip consists of two parts, the inferfacing part and the processing part (Figure 4), The interfacing
part is responsible for communication with the user through visual display of the vip’s internal
states and through accepting and interpreting pen-strokes entered by the user. The processing part
is responsible for the management of communication with other vips. A vip is either active or

inactive. A vip is active when both the processing part and the interfacing part are ready to
communicate. It is passive if only the interfacing part is ready to communicate. Note that the
interface part is always active and therefore the visual representation of a vip is always responsive,
the third level of liveness defined by [11], in other words, it can respond to a user’s pen-stroke at
any time preemptively.

interface boxes
icon name

text name
mailbox
bulletin board
viewer

bedy
commandl

command2
conunand3

Visual Planes

N

processing
part

Figure 4; VIP Structure

The processing part consists of the following elements (some vips may not have all elements):

mailbox a bounded FIFO queue of discrete signals,
bulletinboard adiscrete signal,

viewer a slice of a continuous signal,

body an ensemble,

commands a sequence of named ensembles,

A vip has at most one mailbox and one bulletinboard. The viewer is a buffer for one skice of a
continual signal, e.g., a video frame or an andio sample value. The body is the container of the
main activities of the vip, Itis static; i.c., whenever the vip is active so is the body, A commandis
a spontaneous source of activities. The vip has a set of commands, each of which has a textual
name, A command is dynamic in the sense that the command (i.e. the named ensemble) becomes
active only when its activation is requested by mail, by broadcasting, or by a user’s gesture, Only
one comimnand can be active at a time. The body is active concurrently with a command. Any
member of an ensemble, the body or a command, can access the mailbox, the bulletin board, and
the viewer. The vip provides the local communication environment for its ensemble members.
Posting and broadcasting are effective only among the ensemble members owned by the same vip,

‘The interfacing part consists of interface boxes (or simply boxes) and visual planes (Figure 4), An
interface box corresponds to the (server) window in the traditional graphic user interfaces. It has
a rendering on the two dimensional display screen. The user can change the size and location of
the box by a simple gestic action. Through an interface box the user can inspect the content of any
visual plane. Each visual plane is a two dimensional bitmap with its own coordinate system
containing a visual representation of various information in the vip. This information includes the
vip’s iconic name, textual name, the content of the bulletin board, and the contents of the mailbox.
Other displayable items are the source and object codes of the body and commands, and their
documentation. The user can create an arbitrary number of visual planes for each vip.

There may be more than one interface box for a vip, each displaying a different aspect of the vip.

Two boxes belonging to the same vip are connected by a line (not an arrow). The user can create a
new box and delete an old box with gestures. The user can also select, with a gesture, a visual
plane and its portion to be displayed as the content of an interface box. Two boxes may display
two different sections of the same visual plane. When the last box is deleted by the user, the vip
itself is also deleted.

An interface box has the two parts, the frame and content. The frame of a box is a bitmap pattern
of various width that borders the box. The content is the remaining internal part of the box.
Different frame patterns are used for different types of contents. The user also can design the
frame patterns. The content part displays a clipped portion of a visual plane. The user can select
and edit a visual plane by entering an appropriate gesture command on the content part of the box.

There are system defined commands innate to all vips. Some of them are listed below:

start make the vip active

stop make the vip inactive

duplicate create a copy of the vip

delete destroy the vip

move move the interface box to new location
resize change the size of the interface box.

These commands can be acivated either by mailing, by broadcasting, or with a gesture scribed on
the interface box by the user.

The body and commands of a vip can be encoded individually either in the two dimensional
syntax of HF or in any textoal programming language such as C, Pascal, or assembly language. A
vip may have a multi-lingual specification for its processing part. When a vip ensemble becomes
active (to be executed), if it is specified by a HF program using the graphical syntax, its execution
will be simulated by the HF interpreter. If the HF program is already transkated into machine code
by the HF compiler, it will be executed directly. Textual programs must be compiled before
execution, In textual programming each vip is referenced by its textual name. Communication
protocols {e.g., how to access the mailbox of a vip and how to broadcast signals to other vips) are
provided by a function library constructed for each textual language.

A vip is a self-contained module in the sense that it contains all of its relevant information,
including its identification, source codes, object codes, manuals, and graphic atisibutes, All of the
information is visually accessible to the user, upon demand, through a set of interface boxes.

Figure 5 gives an example of a vip that computes the Fibonacci sequence. Figure 5.2 presents a
HF program to compute 10th Fibonacci number using the vip defined in Figure 5.1. The
Fibonacci vip of Figure 5.1 is visualized through twelve interface boxes. Its body contains two
memory cell vips, x and y, which are referenced in the command program. A memory cell posts
whatever data it receives by mail, with the automatic open-mail policy and manual de-posting
policy. The Fibonacci vip has two commands, inif and next. The inif command initializes the
meimnory cells in the body. The nexf command computes the next Fibonacci number and the result
of computation is posted at the bulletin board. The body and the commands are encoded in
different langunages, Pascal and HF, to illustrate the multi-lingual programming concept,

icon name viewer

lext name
@; Fibonacci /§\\/\
body language name
X,y: integer; Pascal 1
— language name
init giag " bulletin board
x=0; C
y=1
commandl Comments
next |)
Assembly Codes Change the bulletin
m l'—_'l Y value to the next
T 41 Fibonacci number
L ,""‘\ ¥ y=y+x
I y [| X I Binary Codes X=y-X;
5 post(y);
command? Figure 5.1: Fibonacci VIP

(init)

Y

10 o | | (nexty —» ﬁ -

Figure 5.2: Computing Fib{10)

In the next command program, the character ’!* in the HF syntax denotes the vip that readnotes and
posts to the bulletin board. The fat horizontal line on the top edge of the command2 box denotes
the vips in the box are to be activated sequentially from left 1o right, then top to the bottom, i.e., in
this example, the execution order will be +, -, y, x, and!. The vip + reads two values from the
bulletin boards of x and y, then sends the sum to y by mail. The vip - reads the values from y and
then x, and send the difference to x by mail. The vip y posts the value received from + by mail,
The vip x posts the value received from -. Then, the system defined vip ! posts the value (the
bulletin board)} of y onto the the bulletin board of the Fibonacci vip.

In Figure 5.2, the doublely framed box represents the system defined iteration vip which
sequentially iterates the execution of its body for the number of times specified by a mail. The
empty box represents another system defined show vip which reads a value from the bulletin board
of another vip and posts it on its own bulletin board.

Every vip is visually accessible to the user. However, there are other modes of communication
between the user and a vip. In general the user sends signals 10 vips through:

scribing pen-strokes for gestures, texts, and shapes,

scanning a bitmap,
keyboarding text,
speaking a voice, and
taping a video.

A vip sends signals to the user through:
printing text,
drawing a bitmap,
voicing speech,
sounding sounds, and
viewing video.

The current hardware system does not support scanning, taping, and viewing.
2.4 Prototyping and Inheritance

The Hyperflow language is an object-oriented language without classes. As in SELF [12], objects
(vips) are created by duplicating other objects (protatypes). Every vip is potentially a prototype
for another vip. When a vip is duplicated, its body and commands are duplicated independently,
thus all the descendant vips will be recursively duplicated. Also, the user can select a set of vips
(a part of an vip ensemble) as a group, then make a copy of the set in one gesture,

The cloned vip inherits all the attributes of the prototype vip. The user can modify, (i.e., delete
and augment} any attributes of the clone as long as the attributes are designated as public in the
prototype vip. The HF system keeps track of the is-a-copy-of relation, and any change in the value
of a private attribute will be antomatically propagated through the descendant clones. In HF there
is no mechanism for muitiple inheritance.

One technical problem associated with object-oriented programming without classes is the
creation of large regular data structures, e.g., a 100 x 100 cell spread sheet. It would be tedious
work to generate 10,000 copies of an object by repeated applications of a duplication operation,
even with the power of group duplication. We propose to solve this problem in two ways. One
way is to provide a system defined prototype vip with a unit size, e.g., a 1x1 spreadsheet, and to
allow the user to change the size parameter as a public attribute. The other way is to provide the
user with a special gesture command for multiple duplication with a particular layout arrangement.
Our proposed gesture is illustrated in Figure 6. The latter method works only up to two
dimensional structures. For higher dimensions we have to depend upon the first method.

o< R

J

Figure 6: A Gesture for Multiple Copying

3. Hyperflow Syntax and Sample Programs

We will illustrate some of the semantic concepts introduced in Section 2 through a set of sample
HF programs vsing the current version of the HF syntax. We expect to modify the syntax after the
preliminary implementation.

3.1 Fibonacci and GCD

In this example we demonstrate the vispal similarity between the Fibonacei function and the GCD
function. Figure 7.1 defines the Fibonacci function in iterative form. In this figure the box for the
icon and the box for the body are touched together, instead of being connected by a line. They are

Synonymous.

i i)
h
[
[y

_ > +! [+!

Figure 7.1: Fibonacci Function

‘The body of vip +! consists of three members. The vertical fat line denotes that the three members
are sequentially executed from top to bottom then from left to right. First, vip ? opens mail if it is
available, then sends it to the posting vip 1. Otherwise, it does nothing. Second, vip 1, which is
an agent of +!, readnotes from the vip connected to +! by a dotted arrow. If there is no note to
read, it broadcast a signal to all the vips in the second member to stop immediately. Vip ! plays
the role of a formal parameter as empty boxes in Show and Tell. The binding rule for HF is also
the same as Show and Tell, The vip ! posts the value received by mail. The double framed box in
FIB represents a vip for unbounded iteration. The vertical fat line denotes that each iteration
executes the body (the content ensemble) sequentially from top o bottom,

Figure 7.2 defines the GCD function. Vip -!is similar to vip +! except that the second member
contains a vip that plays the role of predicate and the - vip is used instead of the + vip. The system
defined predicate vip, <, broadcasts the stop signal to ail of the neighboring vips, if the condition
is not satisfied. Otherwise, it does nothing. The notion of consistency in Skow and Tell is
replaced by the notion of broadcasting in HF.

r
N

Figure 7.2: The GCD Function

Figure 7.3 illustrates how the GCD vip is used.

45 36

[V R T S

Figure 7.3: Using the GCD VIP

3.2 Line Clock Driver

In order to demonstrate how device processes can be specified in HF, we present a device driver
for line clock hardware which causes a CPU interrupt every 1/60th of a second. The device has
the Conirol Status Register (CSR) through which CPU interrupts can be enabled or disabled.
When an interrupt occurs, the Interrupt Vector Address (IVA), $40, the starting address of the
interrupt handling routine for this example, is transferred to the CPU (Figure 8.1).

1 = start (interrupt enable}

0 = stop (interrupt disable

[csao-| st Gtempt i
Line Clock interrupt (IVA = 540)

Figure 8.1: Line-Clock

CPU

The device driver in Figure 8.2 has three commands; reset, interrupt ($40), and read. The body is
displayed on the right side of the three commands shown in sequence. The body contains two
vips; CSR, which represents the hardware register, and the tic counter. The interface box for CSR
has an additional L-shape pattern on the four corners to indicate that this vip is unique; i.e., there is
only one in the HF system.

® reset F 3
1 * CSR
L o

0
$40
1 pee -+ [© N '
read !
| TS IS |

Figure 8.2: A Device Driver for Line-Clock

Figure 8.3 shows how to use the device driver. Note that the L-shaped corner patterns indicate
that there is only one line-clock driver.

r 1
{reset) @
L |
r 1
(read) > ® ------------- | Printer
L -

Figure 8.3: Using Device Driver

References

(1]

(21

[3]

[4]

[5]

BugByte, an advanced window based debugger for the NeXT Computer, User’s
Reference Manual, ONyX Systems, Inc., Fort Worth, TX 76185, 1991,

Herrtwich, R. G. "Timed Data Streams in Continuous-Media Systems," ICSI Technical
Report TR-90-017, Berkeley, California, May 1990.

"Interface Builder", NeXTstep Concepts manual , NeXT Computer, Inc., Redwood City,
CA 94063, 1990, pp. 8-1 to 8-108.

Kimura, T.D, and Gillett, W.1D. "Communicative Processes: A Model of
Communication," Proceedings of the 10th IMACS World Congress on Systems
Simulation and Scientific Computation, Montreal, Canada, August 1982.

Kimura, T.D., Chot, J.W. and Mack, J.M. "A Visual Language for Keyboardless

[6]

(7]

(8]

91

{10]

[11]

[12]

[13]

Programming,” Technical Report WUCS-86-6, Department of Computer Science,
Washington University, St. Louis, June 1986.

Kimura, T.D. “Silicon Paper and A Visoal Interface for Neural Networks," Proceedings
of 1990 IEEE Workshop on Visual Languages, Chicago, 1L, October 1990, pp. 241-246.

Kimura, T.D. "Pen-based User Interface," Panel session chiarman®s position paper,
Proceedings of 1991 IEEE Workshop on Visual Languages, Kobe, Japan, October 1991,
pp. 168-173.

Kimura, T.D. "Learning Math with Silicon Paper,” Technical Report WUCS-92-12,
Department of Computer Science, Washington University, St. Louis, February 1992,

Myers, B. "Separating Application Code from Toolkits: Eliminating the Spaghetti of
Call-Backs," Proceeding of the Forth Annual ACM Symposium on User iNterface
Saftware and Technology, Hilton Head, SC, November 1991.

Scheifler, R.W., Gettys, J. and Newman, R. X Window System. Digital Press, 1988.
‘Tanimoto, S. L. "Towards a Theory of Progressive Operators For Live Visual
Programming Environments," Proceedings of 1990 IEEE Workshop on Visual

Languages, Chicago, IL, October 1990, pp. 80-85.

Ungar D., Smith, R.B. "SELF: The Power of Simplicity," OOPSLA’87 Proceedings.
Published as SIGPLAN Notices, 22,12 (1987) 227-241.

Van Dam, A. Keynote Speech, at the Forth Annual ACM Symposium on User Interface
Software and Technology, Hilton Head, SC, November 1991,

	Hyperflow: A Visual Programming Language for Pen Computers
	Recommended Citation
	Hyperflow: A Visual Programming Language for Pen Computers

	tmp.1454425567.pdf.dMxQB

