
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-30

2005-08-31

NCBI BLASTN Stage 1 in Reconfigurable Hardware NCBI BLASTN Stage 1 in Reconfigurable Hardware

Kwame Gyang

Recent advances in DNA sequencing have resulted in several terabytes of DNA sequences.

These sequences themselves are not informative. Biologists usually perform comparative

analysis of DNA queries against these large terabyte databases for the purpose of developing

hypotheses pertaining to function and relation. This is typically done using software on a

general multiprocessor. However, these data sets far exceed the capabilities of the modern

processor and performing sequence similarity analysis is increasingly becoming less efficient.

There is an urgent need for more efficient ways of querying large DNA sequences for sequence

similarities. Here, we describe an FPGA-based hardware solution... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Gyang, Kwame, "NCBI BLASTN Stage 1 in Reconfigurable Hardware" Report Number: WUCSE-2005-30
(2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/949

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/949?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/949

NCBI BLASTN Stage 1 in Reconfigurable Hardware NCBI BLASTN Stage 1 in Reconfigurable Hardware

Kwame Gyang

Complete Abstract: Complete Abstract:

Recent advances in DNA sequencing have resulted in several terabytes of DNA sequences. These
sequences themselves are not informative. Biologists usually perform comparative analysis of DNA
queries against these large terabyte databases for the purpose of developing hypotheses pertaining to
function and relation. This is typically done using software on a general multiprocessor. However, these
data sets far exceed the capabilities of the modern processor and performing sequence similarity
analysis is increasingly becoming less efficient. There is an urgent need for more efficient ways of
querying large DNA sequences for sequence similarities. Here, we describe an FPGA-based hardware
solution that implements Stage 1 of NCBI BLASTN, a commonly used sequence analysis application.

https://openscholarship.wustl.edu/cse_research/949?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/949?utm_source=openscholarship.wustl.edu%2Fcse_research%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages

NCBI BLASTN Stage 1 in Reconfigurable Hardware

Kwame Gyang

Kwame Gyang, “NCBI BLASTN Stage 1 in Reconfigurable Hardware,”
Master’s Project, Department of Computer Science and Engineering,
Washington University, August 2004, Technical Report WUCSE-2005-30,
2005.

School of Engineering and Applied Science
Washington University
Campus Box 1045
One Brookings Dr.
St. Louis, MO 63130-4899

NCBI BLASTN STAGE 1 IN RECONFIGURABLE HARDWARE
Kwame Gyang

Department of Computer Science and Engineering

Washington University in St Louis

Abstract

Recent advances in DNA sequencing have resulted in several terabytes of DNA sequences. These sequences

themselves are not informative. Biologists usually perform comparative analysis of DNA queries against

these large terabyte databases for the purpose of developing hypotheses pertaining to function and relation.

This is typically done using software on a general multiprocessor. However, these data sets far exceed the

capabilities of the modern processor and performing sequence similarity analysis is increasingly becoming

less efficient. There is an urgent need for more efficient ways of querying large DNA sequences for sequence

similarities. Here, we describe an FPGA-based hardware solution that implements Stage 1 of NCBI

BLASTN, a commonly used sequence analysis application.

1. Introduction

In recent years, there has been tremendous growth in DNA sequencing technologies resulting in

large terabytes of DNA sequence maps. These sequences themselves are not informative. To develop

hypotheses on the relation and function of a sequence, biologists need to perform comparative analysis on

selected streams of gene sequences against these large DNA databases. Traditional string matching

algorithms using software on general microprocessors are increasingly becoming slower, and hence, less

attractive. This is partially because DNA sequence on the hard disk needs to be first loaded into main

memory, and then to the cache for the CPU to execute the search algorithm on the data. The throughput is

inhibited by the bandwidth of the I/O bus from the disk to main memory. Here, we explore a new approach

to DNA string matching using reconfigurable hardware.

The most widely used software for rapid searching of nucleotides and protein databases is called BLAST,

(Basic Local Alignment Search Tool) [9]. There are several variants of BLAST, but this work focuses on the

open source distribution of BLAST by the National Center for Biological Information (NCBI) for finding

similarities in nucleotides called NCBI BLASTN. As shown in Figure 1, NCBI BLASTN is a 3 stage

pipeline consisting of word-matching, ungapped extension, and gapped extension stages. In the word-

matching stage, a query is pre-loaded and broken up into overlapping smaller substrings of length w. For

example, a query of ACTGACTGACTG can be broken up into 5 overlapping substrings {ACTGACTG,

1

CTGACTGA, TGACTGAC, GACTGACT, ACTGACTG} of length w = 8. (In this implementation w = 12, and

the substring of length w is referred to, henceforth, as a w-mer). These w-mers are then compared to w-mers

in a database. Matched w-mers, and their absolute positions in the query and database, are fed to the second

stage of the pipeline. Each word match is filtered through stage 2, which tries to extend it into an ungapped

alignment between query and database. Ungapped alignments with too few matching base pairs are

discarded, while the remainder is further filtered in stage 3 of the pipeline.

To reduce the amount of unnecessary computations performed in stage 2, redundant matches can be

eliminated prior to being sent to stage 2. This can be achieved by a redundancy filter that eliminates

overlapping matches. Although each stage of BLASTN is more computationally intensive than the last, each

stage also discards a substantial fraction of the inputs received from the previous stage. The volume of data

that is processed at each gradually decreases. This fact is illustrated in Figure 1 by the triangular-shaped

encapsulation of the 3 pipeline stages. The tapering of the triangle depicts the substantial elimination of input

w-mers from stage 1 to stage 3. Table 1 from [2] quantifies the data reduction at each stage of the pipeline.

The match rate pi in Table 1, represents the probability that an output from stage i is generated from an

individual input into that stage. For stage 1, p1 measures the number of matches per DNA base read from the

database. In performances analysis performed by Krishnamurthy et al. [2], it was shown that the time spent

in Stage 1 of the pipeline dominated the time spent in the other stages even though the other stages are more

computationally intensive. They also concluded that Stage 1 was the performance bottleneck in the NCBI

BLASTN pipeline. Table 2, also from [2], gives the distribution of the time spent in various stages of NCBI

BLASTN with varying query sizes. Improving this stage would produce significant speed-up in the overall

performance of the pipeline. This is the motivation behind this project. In this project, we implement stage 1

of NCBI BLASTN in hardware on a reconfigurable hardware platform with the goal of improving stage 1 of

NCBI BLASTN, and hence, the entire pipeline. The remaining pipeline stages remain in software. It was also

shown in [2] that stage 2 becomes the pipeline bottleneck after improvements in Stage 1. Hardware

improvement of stage 2 will be implemented in future work.

In this work, the word-matching stage of the NCBI BLASTN pipeline was replaced by an FPGA-based

hardware application. This hardware application consists of 2 main components; the hardware solution of

NCBI stage 1 (henceforth referred to as hBLASTN) and a redundancy filter component. hBLASTN was

implemented as a 5-stage pipeline; Input Processing, Parallel Bloom Filter, String Buffering, GGPerf

Hashing, and Look-Up Table Units. Apart from the Parallel Bloom Filter and the redundancy filter

components, which were based upon work done by [5] and [1] respectively, all other components in this

work were designed and implemented by the author. hBLASTN and hardware application is used

interchangeably throughout.

2

The content of this paper is organized as follows: Section 2 describes the Hardware Module Interface;

Section 3 talks about the Data Input and Output Specifications; Section 4 describes the implementation of

hBLASTN; Section 5 describes the redundancy filter; Section 6 provides analysis of timing and scalability of

hBLASTN and finally, Section 7 describes tests performed to ascertain functional correctness of the

application and Section 8 concludes by providing an overall summary and potential extensions to hBLASTN

in future work.

Figure 1: Pipeline stages of NCBI BLASTN [2]

Table 1: Match rate p across pipeline stages [2]

Query Size (bases) Stage 1 (p1) Stage 2 (p2) Stage 3 (p3)

10K 0.00858 0.0000550 0.320

100K 0.0841 0.0000174 0.175

1M 0.837 0.0000175 0.117

Table 2: Percentage of pipeline time spent in each stage of NCBI BLASTN [2]

Query Size (bases) Stage 1 Stage 2 Stage 3

10K 86.5 ± 1.51% 13.24 ± 1.99% 0.23 ± 0.017%

100K 83.35 ± 1.28% 16.57 ± 2.17% 0.08 ± 0.007%

1M 85.29 ±2.40% 14.68 ± 3.70% 0.03 ± 0.002%

3

2 . Hardware Module Interface

The top level interface of the hardware module is shown in Figure 2. This top level interface was modeled

after a commercial version to conform to the commercial interface and to enhance portability and

interchangeability of this design [7]. This interface borrows ideas from the network prototype wrapper

interface [10] used in the Field Programmable Port eXtender (FPX) [8]. The typical arrangement using this

interface is shown in Figure 2a where the hardware implementation, hBLASTN, is enveloped in a wrapper

layer. The wrapper handles input/output regardless of the source of input data, i.e. whether from the network

[8] or disk [7]. In this configuration, we concentrate only on the hBLASTN implementation and leave the

input/output details to the wrapper layer. Furthermore, hBLASTN would still work seamlessly if the source

of data was from the network (i.e. in this work, the data is sent via ATM cells to the hardware module) or if

the source of data was from a disk (i.e. the commercial version).

Figure 2: Module Input and Output Interface

Figure 2a: Hardware Module with a four-layered wrapper

4

Upstream Signals to Hardware Module

Inputs:

ctrl_in_valid (1 bit signal) – This is a control signal to indicate that the data on the data_in bus holds valid

control data. Active when high.

data_in_valid (1 bit signal) – Control signal to indicate that the data on the data_in bus holds valid data.

Active when high.

data_in (63:0 bus) - 64 bit data and control bus. When data_in_valid is active, the 64 bits on the data_in

bus should be interpreted as valid data. When ctrl_in_valid is active, data on the data_bus should be

interpreted as a control command.

clock (1 bit signal) – The input clock is targeted at 80 MHz. This clock frequency is dependent on the

critical path of the external modules to this hardware unit.

Output:

wait_upstrm (1 bit signal) – Control to tell upstream modules to temporarily stop sending data.

Downstream Signals from Hardware Module

Outputs:

data_out_valid (1 bit signal) – Control signal to indicate that the data on the data_out bus holds valid data.

Active when high.

ctrl_out_valid (1 bit signal) – Control signal to indicate that the data on the data_out holds valid control

data. Active when high.

data_out (63:0 bus) – When data_out_valid is active, the 64-bits should be interpreted as valid data. When

ctrl_out_valid is active, data on the data_out should be interpreted as control command.

Input:

wait_dnstrm (1 bit signal) – Control signal to indicate that downstream modules cannot receive any more

data.

3. Data Input and Output Specification

 The hardware module receives strings of DNA sequences encoded using 4-bits per base as shown in Table 3

below. NCBI BLASTN chooses to implement the encoding using 2-bits per base. This compression

minimizes storage and I/O bandwidth at the cost of being unable to process special characters through the

pipeline. hBLASTN receives command (specific instruction to hBLASTN) and DNA base streams from a

query and database via the 64-bit data_in bus. When data_in_valid is asserted, data_in is a data stream, and if

ctrl_in_valid is asserted, data_in is a command. When both signals are asserted, hBLASTN interprets data_in

as a command since it first examines the ctrl_in_valid signals. The wait_upstrm is asserted when

5

wait_dnstrm is asserted, or any of the hBLASTN’s components are not ready, or the internal hBLASTN

buffers are full. This causes the upstream components to stop sending data or command information to

hBLASTN.

The output format is displayed in Table 4. The last 14 bits represent the position of w in the query string. The

next 14 bits are debugging signals, and the remaining 36 bits represent the position of the w-mer in the

database.

Table 3: Table shows input data specification for hardware unit.

DNA CHARACTER / BASE ENCODED BIT STREAM

A 1100

a 1000

C 1101

c 1001

G 1110

g 1010

T 1111

t 1011

N 0010

X 0001

Table 4: Table describes the output data specification for hardware unit.

64-bit output value Significance of bit Positions in Output

data_out [63 – 28] 36 bits Represents position of w-mers in database stream

data_out[27 – 14] 14 bits Represents debugging signals

data_out[13 – 0] 14 bits Represents position of w-mers in query

4. Description of hBLASTN

hBLASTN is a highly pipelined circuit. This was achieved by breaking complex processing with flip-flops in

order to reduce critical paths but at the expense of overall latency. This enabled us to achieve clock rates of

about 80 MHz, but the overall design has a 70 clock cycle latency. hBLASTN consists of five major pipeline

stages or circuit components. These are the Input Processing Unit, Parallel Bloom Filter, String Buffering

6

Unit, GGPerf Hashing Unit, and a Look-Up Unit. Figure 3 shows the relationship among these pipeline

stages. Bloom Filters are used to discover word-matches between query and database streams.

The goal of hBLASTN is to discover word-matches between the query and the database and also output the

position of the matched w-mer in the database and all positions of all occurrences of the matched w-mer in

the query. A simple counter is used to keep track of the database position, however, tracking the query

position is not quite so simple. A typical approach is to maintain a hash table that will map each w-mer in the

query to its position in the query. However, typical hashing results in collisions which need to be resolved.

Resolving collisions in hardware consumes extra memory resources, which was critical especially on the

Xilinx Virtex II XCV2000E FPGA device on which hBLASTN was designed. In trying to resolve this

problem, a novel approach was taken. We implemented a Perfect Hashing Unit in hardware (GGPerf

Hashing Unit Stage) which guaranteed zero collision and modest memory utilization. This is described

further in section 4e.

All incoming data and control signals are first received via the Input Processing Unit. This component is

responsible for interpreting commands and asserting or de-asserting appropriate control signals in the entire

module, and also creating 16 simultaneous w-mers from 2 cycles of the 64-bit data on the input data bus.

Output from the Input Processing Unit enters the Parallel Bloom Filter Unit. This component is responsible

for performing membership queries and detecting w-mer matches in the database stream. Results of

membership queries from this stage are buffered in the next stage of the pipeline, the String Buffering Unit,

and the matched w-mers serialized into the subsequent stage, GGPerf Hashing Unit. This component

performs perfect hashing on the w-mer to determine its position in the query stream. This computed w-mer

position is used as an address by the Look-Up Table Unit to probe for other entries of w-mer in the query

stream. At this point in the pipeline stage, we have the database position of the matched w-mer, which is

tracked by means of a simple counter, and all possible positions of the w-mer in the query. The database

position is combined with each of the possible w-mer positions, formatted according to the output

specification described in Section 2 and is then output to the next stage of the implementation.

Figure 3: hBLASTN pipeline Stages

Stage E

Look-Up Table
Unit

Stage D

GGPerf
Hashing Unit

Stage C

String Buffer
Unit

Stage B

Parallel Bloom
Filter

Stage A

Input
Processing
Unit

7

Figure 3a: hBLASTN with Redundancy Filter

Figure 3b: hBLASTN with Redundancy Filter in relation to NCBI BLASTN pipeline

 Decreasing input stream

 Increasing Computational intensity

Input Output

stream stream

Stage 1:
Hardware
Module

Stage 3:
Gapped
Extension

Stage 2:
Ungapped
Extension

4a. Input Processing Unit

The Input Processing Unit is the first stage of hBLASTN pipeline and is made up of two components; the

Controller and Fragmentator units. The Controller Unit is a big finite state machine that monitors the

ctrl_in_valid, data_in_valid, and data_in signals to hBLASTN. When ctrl_in_valid is asserted, data_in is

8

treated as a control or command signal to hBLASTN. Controller Unit handles a predefined set of commands

and sets the appropriate output signals that control the entire module. These commands and function are

shown in Table 5 below. The format of the command on the 64-bit data bus is described in [7].

Table 5: hBLASTN Commands

Command Function Results
QW (QUERY) Queries Hardware module for unique Module Num. Return module number
RS (RESET) Reset hBLASTN Initialize memory, counters to zero
ED (EOD) End of database stream Reset database counter
EH (EOH) End of duplicate stream
SD (STAD) Start of database stream Initialize database counter
SQ (STAQ) Start of query stream
PASSTHU Pass input data through module unmodified Pass data though pipeline
CONFIG Configure specific module Specific module modified
SH(STOH) Start of duplicate stream

All commands assert or de-assert control signals in the Hardware Module. For example, STAQ command

asserts the enable, write enable, and bit data signals on the Parallel Bloom Filter component. This prepares

the Unit to start writing incoming data into memory.

9

Figure 9: Finite Stage Machine of Controller. (Note: Not all commands are not shown in this figure)

On each rising edge of the clock, there is a new 64-bit data (or 16 bases) on the data_in bus if data_in_valid

is asserted. The Fragmentator Unit fragments 32 bases into 16 w-mers (as outlined in Section 1) for the

Parallel Bloom Filter component to use to either program (write to memory) or query (read from memory)

the Bloom Filters. In this Fragmentator implementation, DNA bases were not case sensitive, hence 2-bit/base

encoding was used for all valid DNA bases (i.e. A, C, T, and G). If a w-mer contained an invalid DNA base

(i.e. X, N and T), an invalid bit was asserted. Each of the 16 w-mer is a 25-bit data bus corresponding to 12

bases (2-bits/base), and the last bit used to signal a valid w-mer.

10

4b. Bloom Filter Overview

Bloom filter, a randomized, space-efficient data structure for representing a set of inputs and supports

membership queries, was first proposed by Burton Bloom in 1970 and was originally used as spell checker

on Unix platforms [3]. An important property of a Bloom filter is that it never generates a false negative

result on membership queries, and has a rather small false positive rate. Bloom filters have been historically

used in modern applications such as Content Networks, Summary Caches, Packet Routing and collaborating

in overlay and peer-to-peer networks [4].

Bloom Filters

A set of inputs, n is passed through a Bloom filter which performs k hashes on each α belonging to the set n.

This generates a set K outputs for each α, where |K| = k. Each β belonging to K is used as an index into a bit

vector of length m (previously initialized to 0) where that location is set to 1. This is called “programming

the Bloom filter”. Figure 4 illustrates this programming of the Bloom filter. The set of inputs, n could present

the set of w-mers of a query for which comparative analysis is desired.

Figure 4: A Bloom filter performs k = 8 hashes on the input string. Each hash value is used as an index to program the 1-bit

array.

Streaming database w-mers can then be also passed through the Bloom filter to check for membership.

Again, the Bloom filter performs k hashes on an input. This generates a set K of hashed values which are

11

used as keys into the programmed m bit vector. In performing membership queries, the values in the hash

locations are read and all K outputs are “logically ANDed”. If the result is 1, this indicates, to a certain

degree of confidence, a possible w-mer content match. Figure 5 illustrates the process of membership

queries.

Figure 5: Bloom filter performing membership queries.

FALSE POSITIVES ANALYSIS

Bloom filters do have a small false positive rate. Hence a given w-mer from the database could be wrongly

flagged by the Bloom filter as having matched a w-mer in the query. The false rate, f, is given by the

expression

 f = (1 – e –nk/m)k

where n is the number of w-mers programmed in Bloom filter, i.e. the query size. k is the number of hash

functions, m, the length of 1-bit array. The false positive rate, f, can be reduced by choosing appropriate

values for m and k for a given member set n [5]. It is quite clear from the equation that m needs to be quite

large compared to n. Also for a given m/n ratio, the false positive rate can be decreased by increasing k, the

number of hashes performed by the Bloom filter. In the optimal case, which the false positive probability

minimized with respect to k, k is given by the expression below.

 k = (m/n)ln2

This results in a false positive probability of

 f = (1/2)k

12

4c. Parallel Bloom Filter

The Parallel Bloom Filter component is the second stage of hBLASTN pipeline and is responsible for

identifying matches between w-mers in the query and the database stream. This is built from 16 large Bloom

filters. Each large Bloom filter was built from 5 partial Bloom filters. Each partial Bloom Filter component

consists of a 4096 by 1 dual port Block RAM. Each partial Bloom filter supports 2 simultaneous reads and

writes, thus k =2 in this configuration. By combining 5 partial Bloom filters into a large Bloom filter, each

large Bloom filter now supports 10 reads and writes (k = 10). Figures 5, 6 and 7 show the construction of the

Parallel Bloom Filter. The combination of 16 large Bloom filters into a Parallel Bloom Filter Unit enables 16

simultaneous query w-mer look ups, thus improving throughput of hBLASTN. Since searching for query

matches in the database stream is the most computationally intensive part of hBLASTN, this component is

highly pipelined and exhibits significant parallelism. This component alone consumes 60% of the Block

RAM resources on the Xilinx Virtex II 2000E FPGA.

Figure 6: Diagram illustrates the internal components of the Partial Bloom filter

13

Figure 7: Internal components of the Large Bloom filter.

Figure 8: This describes the internal structure of the Parallel Large Bloom Filter component

14

4d. String Buffer Unit

String Buffer Unit (SBU) is the third stage of hBLASTN pipeline and consists a Finite State Machine (FSM)

and 16 FIFOs or buffers, each capable of storing 16 entries. The previous stage, Parallel Bloom Filter unit,

has 16 25-bit data output signal, each with its corresponding match bit signal. These match signals are

asserted if its w-mer, with a high degree of certainty, matches a w-mer in the query. If any of the matches is

asserted, the SBU is enabled. Its purpose is to accept 16 simultaneous 25-bit data output signals from the

Parallel Bloom Filter and stream out, in order, each of the 16 w-mers to the next component in the pipeline as

illustrated in Figure 10 below.

Figure 10: String Buffering Unit internals

15

 When the SBU is enabled, all 16 25-bit data output signals from Parallel Bloom Filter unit and their

corresponding match bit signal are written into the 16 buffers. The FSM is triggered as soon as the buffers

are non-empty. The first task of the FSM is to read and latch all 16 entries. The next task of the FSM is to

visit each of its 16 output states with the match bit asserted to output the 25-bit data to the next component in

the pipeline, thus serializing the 16 parallel entries. The SBU was made more efficient by having the FSM

visit only states with the match bit asserted. Since it takes 16 clock cycles, in the worst case, to serialize all

16 inputs to the SBU, the buffers can easily be filled. The SBU asserts a back pressure signal when the

buffers are half-filled (due to the latency in the previous stages of the pipeline). The back pressure signal is

fed to the wait_upstrm signal which causes hBLASTN not to receive any more input while the SBU

processes entries in the buffers.

4e. GGPerf Hashing Unit

The GGPerf Hashing Unit is the fourth stage of the hBLASTN pipeline. Its function is to accept w-mers from

the previous pipeline stage, SBU, and determine its position in the query. GGPerf Hashing Unit is a hardware

implementation of GGPerf [6] which is an improvement over Gperf, commonly found in unix/linux

operating systems. Gperf is a program-generating-program, meaning it is a program that generates a high

level program. The generated program is a minimal perfect hash function capable of retrieving information in

one probe [6]. GGPerf, Greater than GPerf, is a more robust and stable Gperf program.

4e-1. What is a Minimal Perfect Hash Function

In general a hash function, h, is a function that maps an element (key) in a domain , K (the set of all w-mers

in the query stream) to its corresponding address in the range, I (the set of all addresses). The address is used

to retrieve a record from a database corresponding to the key. This database is the hash table. It is possible

that h maps n (n > 1) keys to the same address. When this occurs, a collision is said to have happened. To

resolve collisions, we need to relocate n-1 records to other locations, leaving only one record. Hash

functions, therefore, yield probable addresses. In general, a hash function will map a key in the set K (where

|K| = x) into some interval of integers in the set I, say [0 …m-1], where m ≥ x.

 h

 a: K I , |K| ≤ |I|
 general hash function yields probable address

16

A perfect hash function, p, on the other hand uniquely transforms each key (or domain element) into an

address in the hash table without any collisions. Perfect hash functions yield definite address instead of

probable address. A property of perfect hash function is that only a single key probe into the hash table is

required to obtain the address thus improving time efficiency of the hash table [6].

 p

 b: K I , |K| ≤ |I| and m ≥ x
 perfect hash function yields definite address

If |K| = |I| and m = x, then p is a minimal hash function.

 p

 b: K I , |K| = |I|
 minimal perfect hash function

For a minimal perfect hash function, that hash table is the most time and space efficient [6].

4e-2. GGPerf in hardware

Input to GGPerf software is a query (see Appendix A) fragmented into overlapping w-mers (see Appendix

B), and it generates another high level program (see Appendix C). This program consists of 4 tables of

constants and a hash function. This hash function uses the 4 tables to compute a mapping between the key

(w-mer in this case) and its address. GGPerf Hashing Unit only implements the hashing function algorithm in

hardware. GGPerf source code was modified to generate a hardware-ready table of constants (see Appendix

D) to be used with GGPerf Hashing Unit.

4e-3. GGPerf Hardware Characteristics

GGPerf software translates string keys into another high level program. This program is a minimal perfect

hash function which translates the string keys into unique addresses. The string keys input to GGPerf have to

be unique. To ensure the string keys are unique, a separate preprocessor program first parses and fragments

the raw query and removes all occurrences of duplicates. The duplicates are processed separately and stored

in a Look up Table. This is illustrated in the example below.

17

Consider this raw query:

TGGTTTTTCTCCTGGTTTTTCTCCA

This is fragmented into overlapping w-mers as shown below

1. TGGTTTTTCTCC

2. GGTTTTTCTCCT

3. GTTTTTCTCCTG

4. TTTTTCTCCTGG

5. TTTTCTCCTGGT

6. TTTCTCCTGGTT

7. TTCTCCTGGTTT

8. TCTCCTGGTTTT

9. CTCCTGGTTTTT

10. TCCTGGTTTTTC

11. CCTGGTTTTTCT

12. CTGGTTTTTCTC

TGGTTTTTCTCC duplicate w-mer. Duplicates are subsequently replaced by fillers.

13. GGTTTTTCTCCA

By removing all duplicate occurrences, GGPerf software is now capable of processing these unique string

keys (w-mers) into another high level program. The generated high level program has a minimal perfect hash

function, p, that can map each of the string keys to a unique address, a, such that a is a number between 0

and 12).

Keys Hash (p) Address

1. TGGTTTTTCTCC 0
2. GGTTTTTCTCCT 1
3. GTTTTTCTCCTG 2
4. TTTTTCTCCTGG 3
5. TTTTCTCCTGGT 4
6. TTTCTCCTGGTT 5
7. TTCTCCTGGTTT 6
8. TCTCCTGGTTTT 7
9. CTCCTGGTTTTT 8
10. TCCTGGTTTTTC 9
11. CCTGGTTTTTCT 10
12. CTGGTTTTTCTC : 11
13. GGTTTTTCTCCA 12

Perfect
Hash
Function

An important observation from the above analysis is the fact that the address computed by the minimal hash

function on a key (w-mer) is the position of the w-mer in the raw query of hBLASTN. This statement is true

18

only if there are no duplicates. If duplicate w-mers are removed the w-mer GGTTTTTCTCCA at position 13

would hash to the address 12 as shown above but w-mer GGTTTTTCTCCA begins at position 13 in the query

stream. Rather than removing duplicate w-mers, a filler is inserted in place of the duplicate. Fillers are

unique w-mers which are randomly generated. By replacing the duplicate TGGTTTTTCTCC with a filler

AAAAAAAAAAAA, the w-mer GGTTTTTCTCCA is moved to position 14 and hashes to address 13 which is the

correct query position of this w-mer.

GGPerf Hashing Unit takes in as input, matched w-mers from the Parallel Bloom Filter Unit and computes

its address which also corresponds to the position of the w-mer in the query stream. However, since the

Parallel Bloom Filter has a false positive rate, it is possible for false w-mers to enter the GGPerf Hashing

Unit. From the equations in section 4b, Bloom filters have a (1/2)10 optimal false positive rate. Most of these

false positive w-mers will be detected by the GGPerf Hashing Unit. The remainder will subsequently be

detected by the other stages of NCBI BLASTN.

Furthermore, by inserting fillers in place of duplicates in the query stream, we decrease the selectivity of

GGperf Hashing Unit, since any false positive w-mer which happens to be the same as the filler will have a

valid GGPerf Hash address. This decrease in selectivity is minimized because of the relatively few duplicates

that are usually detected in query streams.

4f. Look Up Table

The Look Up Table (LUT) is the last stage of the hBLASTN pipeline. In this implementation, LUT has as

many entries as there are query bases. This assumes the worst case scenario where all the DNA bases in the

query are the same. However, a best or average case could be implemented rather than the worst case

scenario in order to efficiently utilize memory resources on the hardware platform. LUT is used to determine

if there are any more occurrences of a w-mer in the query stream. This table is populated with the duplicates

extracted from the query by the preprocessor software program. At the GGPerf Hashing Unit stage of the

pipeline, we have identified a w-mer match between the query and database. We also know the position of

the first occurrence of the w-mer in the query stream and its corresponding database position. The w-mer

position from GGPerf Hashing Unit is used to probe the LUT for other w-mer positions (if any) of the same

w-mer in the query stream. LUT is constructed from single port Block RAMs and its 30-bits wide and the w-

mer position from GGPerf Hashing Unit is used as an address to the LUT. If the least significant bit (LSB)

of the 30-bit record of an address is 0, then there are no further occurrences of the w-mer in the query stream.

The first position is the only position of the w-mer in the query. However, if the LSB is 1, then the next 14-

bits from the LSB corresponds to the next position of the w-mer in the query stream. The last 14-bits

19

correspond to the address in the LUT where another position of the w-mer can be obtained if it is non-zero.

This chaining of positions corresponding to a particular w-mer in the query stream is determined in software

and streamed into the LUT during initialization phase of hBLASTN using STOH (Start of Duplicate Stream)

and EOH (End of Duplicate Stream) commands.

5. Redundancy Filter

The following description of Redundancy filter is from work done in [1]

Redundant matches are seen in the form of overlapping matches. Given an exact match of length W

and a trailing gap of length G, a second match is seen as redundant if it has query-database

coordinates which lie within W+G characters of the previous match coordinates and its coordinates

lie on the same row or diagonal as the previous match coordinates. It is the purpose of the

hardware redundancy filter to remove these redundant matches. Figure 11 illustrates the concept of

the database-query index matrix with examples of the various valid and redundant matches.

Figure 11: Database-Query Matrix [1]

6. Timing and Scalability of hBLASTN

The main motivation for hBLASTN is to improve throughput of NCBI BLASTN. At 80MHz and with a 16

bases/clock data bus means hBLASTN has a maximum processing rate of 1280MBases/sec. This rate is not

quite achievable in practice since back pressure signals in hBLASTN may slow down the input rate. There is

20

a significant pre-processing overhead before and during the initialization phase of hBLASTN. GGPerf

software accounts for a significant fraction of this overhead. Table 6 shows the time spent by GGPerf in

generating the high level program output for different query sizes.

Table 6: GGPerf software runtime performance1

Size of Query GGPerf time (seconds)

1KBases 1.33

10 KBases 65.59

100 KBases 5828.77

1MBases Out of Memory

 Another concern is how well this design scales up as the size of the query increases. To analyze scalability

of hBLASTN we examined how each stage of the pipeline performs when query size is scaled up. Also, we

analyzed how well the design scales in hardware on the Xilinx XCV2000E FPGA. Stage A of the pipeline is

independent of the size of query, hence scaling of query has no significant effect on the performance. Stage

B, however, is affected significantly by the scaling up of query size while memory requirements of the

Parallel Bloom Filter remain constant. Since the false positive rate is proportional to the size of query, an

increase in the query size increases the false positive rate of the Parallel Bloom Filter Unit. A Block RAM is

a 4096 bit array with 2 read/write ports. This can be used in a Bloom Filter to support 2 hash functions (k =

2). This filter can handle n = (m/k)ln2 = 1419 w-mers generating an optimal false positive rate of (1/2)10 (for

k = 10 hash functions) [5]. In order to achieve an optimal false positive rate for different query sizes, the

memory requirements of the Parallel Bloom Filter Unit, m, or the number of hash functions, k, need to be

adjusted according to the false positive analysis equations.

Moreover, false positive w-mers will be mostly eliminated during Stage D of the pipeline. This is because,

GGPerf Hashing Unit will detect that a false positive w-mer has no address mapping. This will therefore be

dropped from valid w-mer matches input into the LUT stage of the pipeline. However, a small fraction of

input w-mers (typically about 10 -13 %) will not be eliminated and will continue into the next stage of the

pipeline. Eventually, these false results will be detected and eliminated by stage B of the pipeline.

There is also no impact of scaling on Stage C, String Buffer Unit of the pipeline except that a significant

number of false positive w-mers will cause the buffers in SBU to be constantly filled. This could potentially

decrease the throughput of hBLASTN.

1 Measurements performed on a dual 930MHz Pentium III processor with 512KB of memory

21

Stage D is independent of query size. However Stage E is dependent on scaling. Increasing query size can

cause the buffers in LUT to fill quickly, and thus causing the back pressure signal to be asserted. This will

decrease the throughput of hBLASTN. The entire performance of hBLASTN could be adversely affected by

increasing query size as a result of Stages 3 and 5 if there are no corresponding changes to the memory

requirements of the Parallel Bloom Filter Unit.

In analyzing how well resources on the Xilinx XCV2000E FPGA scaled up with query size, we generated

several hardware GGPerf tables for different query sizes. These tables are significantly larger for increasing

query sizes, and hence, quickly consume LUT resources on the FPGA device. Table 8 shows the percentage

of LUT use on the FPGA with increasing query sizes.

Table 8: Hardware LUT utilization 2

Size of Query Percentage of LUT

1 KBases 34%

10 KBases 43%

100 KBases 51%

1 MBases Unknown

7. Tests and Validation

A testbench was created for each of the five pipeline components of hBLASTN as well as for the entire

hBLASTN application. This allowed for separate pipeline stage simulation as well as for the entire

hBLASTN. For stage 1 of the pipeline, Input Processing Unit, the testbench supplied the component with

varying 64-bit data and command on the data_in bus. When cntrl_in_valid was asserted, the output control

signals of the Unit was examined to determine if the appropriate control signals were asserted for the

particular command. When the data_in_valid signal was asserted, the 16 output signals were examined for

the correct w-mers. Similar testbenches were created for the other stages, and the outputs validated

independently.

2 Results from Synplicity

22

To validate the entire hBLASTN module, software which performs the exact function as hBLASTN was

created. The same inputs were passed into the software application as well as the testbench for hBLASTN.

The output from hBLASTN testbench simulation was written to a file (See Appendix E). Output from the

software application is also written to a file. In order to compare entries in both files, a separate application

parses the output from hbLASTN testbench, which is in hexadecimals, and generates an output similar to the

format used in the software output (See Appendix F). A simple unix diff or compare command us used to

compare both files, line by line. This validates the correct functionality of hbLASTN.

8. Conclusions and Future Work

This paper presented the design of a hardware implementation of Stage 1 of NCBI BLASTN, hBLASTN,

with a Redundancy Filter on a reconfigurable hardware platform. hBLASTN provides a significant

improvement in throughput, and performance of Stage 1 of NCBI BLASTN, and also a significant reduction

in data flow to Stage 2 of the pipeline. hBLASTN’s flexibility and scalability is limited by the memory

provided by the hardware platform. hBLASTN also incurs significant offline software overhead.

Notwithstanding these limitations however, hBLASTN offers significant improvement over software stage 1

NCBI BLASTN. In order to realize the full potential of hBLASTN, further work is needed to convert it from

a behavioral model into a fully functional reconfigurable circuit. Also, further throughput and speed

improvement can be realized with a hardware implementation of stage 2 of NCBI BLASTN.

23

9. References

[1] C. Behrens, J. Lancaster, and B. Wun “BLASTN Redundancy Filter in Reprogrammable Hardware”, in

CSE 535 Final Project Submission, Fall 2003.

[2] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang and J. Lancaster, “Biosequence

Similarity Search on the Mercury System” in Proc. IEEE Int’l Conf. of Application-specific Systems,

Architecture, and Processors, 2004. To appear.

[3] B. Bloom. “Space/time trade-offs in hashing code with allowable errors”. ACM, 13(7):422-426, May

1970.

[4] A. Broder and M. Mitzenmacher. “Network Applications of Bloom Filters”, A survey.

[5] S. Dharmapurikar, M. Attig, and J. Lockwood, “Design and Implementation of a String Matching System

for Network Intrusion Detection using FPGA-based Bloom Filters”. Washington University, Department of

Computer Science and Engineering, Technical Report, 2004.

[6] Jiejun Kong, “GGPerf: A Perfect Hash Function Generator”,

http://www.cs.ucla.edu/jkong/public/soft/GGPerf, 1997.

[7] M. Franklin, R. Chamberlain, M. Henricks, B. Shands, and J. White, “An Architecture for Fast

Processing of Large Unstructured Data Sets”, in International Conference on Computer Design” October

2004. To appear.

[8] J. Lockwood et al., “Field Programmable Port Extender (FPX) User Guide: Version 2.2”, Washington

University, Department of Computer Science and Engineering, Technical Report WUCS-02-15, June 2002.

[9] S. F. Altschul,W. Gish,W. Miller,E . W. Myers, et al. “Basic local alignment search tool.” Journal of

Molecular Biology, 215:403–10, 1990.

[10] F. Braun, J. Lockwood, and M. Waldvogel. “Reconfigurable router modules using network protocol

wrappers”. In Proceedings of Field-Programmable Logic and Applications, pages 254-263, Belfast, Northern

Ireland, Aug 2001

24

http://www.cs.ucla.edu/jkong/public/soft/GGPerf

9. Appendices

APPENDIX A
(Query Sample)

TGGTTTTT
CTCCAGTT
TGTTATTT
GTCATTTC

APPENDIX B
(GGPerf Input)

%{
// File Auto Generated from Preprocessor Program...
// Generated on Wed Jun 09 16:26:35 CDT 2004
%}
%%
TGGTTTTTCTCC
GGTTTTTCTCCA
GTTTTTCTCCAG
TTTTTCTCCAGT
TTTTCTCCAGTT
TTTCTCCAGTTT
TTCTCCAGTTTG
TCTCCAGTTTGT
CTCCAGTTTGTT
TCCAGTTTGTTA
CCAGTTTGTTAT
CAGTTTGTTATT
AGTTTGTTATTT
GTTTGTTATTTG
TTTGTTATTTGT
TTGTTATTTGTC
TGTTATTTGTCA
GTTATTTGTCAT
TTATTTGTCATT
TATTTGTCATTT
ATTTGTCATTTC
%%

APPENDIX C
(GGPerf generated high level program in software)

// File Auto Generated from GGPerf Program...
// Generated on Wed Jun 09 16:26:35 CDT 2004

class G_index
{
 public static final int TOTAL_KEYWORDS = 21;
 public static final int MIN_HASH_VAL = 0;
 public static final int MAX_HASH_VAL = 20;
 public static final int MIN_CHAR_VAL = 'A';
 public static final int MAX_CHAR_VAL = 'T';
 public static final int MIN_WORD_LENG = 12;
 public static final int MAX_WORD_LENG = 12;
 private static final int MAX_TABLE_HEIGHT = 12;
 private static final int MAX_GRAPH_NODE_VAL = 105;
 private static final int T1[][]=
 {
 {41,-1,4,-1,-1,-1,54,-1,-1,-1,-1,-1,-1,-1,-1,

 -1,-1,-1,-1,52},
 {20,-1,56,-1,-1,-1,51,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,100},
 {19,-1,92,-1,-1,-1,52,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,92},
 {40,-1,48,-1,-1,-1,60,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,62},
 {69,-1,94,-1,-1,-1,81,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,103},
 {95,-1,5,-1,-1,-1,35,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,104},
 {85,-1,21,-1,-1,-1,73,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,40},
 {18,-1,91,-1,-1,-1,5,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,15},
 {28,-1,45,-1,-1,-1,29,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,0},
 {13,-1,21,-1,-1,-1,2,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,60},
 {18,-1,58,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,85},
 {61,-1,104,-1,-1,-1,32,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,52},
 };
 private static final int T2[][]=
 {
 {38,-1,41,-1,-1,-1,103,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,19},
 {31,-1,8,-1,-1,-1,31,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,63},
 {16,-1,60,-1,-1,-1,14,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,35},
 {34,-1,22,-1,-1,-1,5,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,34},
 {44,-1,80,-1,-1,-1,34,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,77},
 {66,-1,9,-1,-1,-1,86,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,67},
 {68,-1,55,-1,-1,-1,45,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,80},
 {103,-1,43,-1,-1,-1,98,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,44},
 {8,-1,46,-1,-1,-1,24,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,49},
 {36,-1,89,-1,-1,-1,65,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,64},
 {16,-1,4,-1,-1,-1,7,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,16},
 {32,-1,52,-1,-1,-1,46,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,26},
 };
 private static final int MAX_NODE_NUM = 35;
 private static final int node[]=
 {11,7,2,14,37,45,26,55,48,91,35,93,42,81,8,
 17,71,85,62,101,22,58,60,34,98,64,94,104,80,54,63,
 69,90,99,33};
 private static final int G[]=
 {0,0,0,1,0,2,0,3,0,4,0,5,0,6,5,
 0,8,0,9,0,10,0,11,11,0,13,18,17,0,15,16,
 13,0,19,20};
 private static String[] wordlist = new String[21];

 private static void init()
 {

25

 wordlist[0] = new String("TGGTTTTTCTCC");
 wordlist[1] = new String("GGTTTTTCTCCA");
 wordlist[2] = new String("GTTTTTCTCCAG");
 wordlist[3] = new String("TTTTTCTCCAGT");
 wordlist[4] = new String("TTTTCTCCAGTT");
 wordlist[5] = new String("TTTCTCCAGTTT");
 wordlist[6] = new String("TTCTCCAGTTTG");
 wordlist[7] = new String("TCTCCAGTTTGT");
 wordlist[8] = new String("CTCCAGTTTGTT");
 wordlist[9] = new String("TCCAGTTTGTTA");
 wordlist[10] = new String("CCAGTTTGTTAT");
 wordlist[11] = new String("CAGTTTGTTATT");
 wordlist[12] = new String("AGTTTGTTATTT");
 wordlist[13] = new String("GTTTGTTATTTG");
 wordlist[14] = new String("TTTGTTATTTGT");
 wordlist[15] = new String("TTGTTATTTGTC");
 wordlist[16] = new String("TGTTATTTGTCA");
 wordlist[17] = new String("GTTATTTGTCAT");
 wordlist[18] = new String("TTATTTGTCATT");
 wordlist[19] = new String("TATTTGTCATTT");
 wordlist[20] = new String("ATTTGTCATTTC");
 }

 private static int G_index(int n)
 {
 int i;
 for(i=0; i<MAX_NODE_NUM; i++)
 if(node[i] == n)
 return i;
 return -1;
 }

 public static int hash(String key)
 {
 int i, leng=key.length(), f1=0, f2=0, n1=-1, n2=-1, t1, t2;
 for(i=0; i<leng; i++)
 {
 char c = key.charAt(i);
 if(c < MIN_CHAR_VAL || c >
MAX_CHAR_VAL)
 return -1;
 t1 = T1[i][key.charAt(i)-MIN_CHAR_VAL];
 t2 = T2[i][key.charAt(i)-MIN_CHAR_VAL];
 if(t1 == -1 || t2 == -1)
 return -1;
 f1 += t1;
 f2 += t2;
 }
 f1 %= MAX_GRAPH_NODE_VAL;
 f2 %= MAX_GRAPH_NODE_VAL;
 n1 = G_index(f1);
 n2 = G_index(f2);
 return (G[n1]+G[n2]) % TOTAL_KEYWORDS;
 }

 public static String in_word_set(String key)
 {
 int len=key.length();

if(len<=MAX_WORD_LENG&&len>=MIN_WORD_LEN
G)
 {
 int ind = hash(key);
 if(ind <= MAX_HASH_VAL && ind >= 0)

 {
 String rec = wordlist[ind];
 if(rec.compareTo(key) == 0)
 return rec;
 }
 }
 return null;
 }
}

APPENDIX D
(GGPerf generated hardware tables.)

perfect_hash.vhd

--Author: Kwame Gyang
--Generated Automatically from GGPerf
-- Fri Jun 11 14:52:46 CDT 2004

LIBRARY IEEE;

PACKAGE perfect_hash IS
CONSTANT TOTAL_KEYWORDS : INTEGER := 21;
CONSTANT T_HASH_BITS : INTEGER := 7 ;
CONSTANT T_ROWS :INTEGER := 12 ;
CONSTANT MAX_GRAPH_NODE_VAL: INTEGER :=
105;
CONSTANT MAX_NODE_NUM : INTEGER := 36;
CONSTANT A_TO_MINVAL : INTEGER := 0;
CONSTANT C_TO_MINVAL : INTEGER := 2;
CONSTANT T_TO_MINVAL : INTEGER := 19;
CONSTANT G_TO_MINVAL : INTEGER := 6;

TYPE hash_array is ARRAY (0 to 19) of INTEGER;
TYPE perfect_hash_T1 is ARRAY (0 to T_ROWS -1) of
hash_array;
TYPE perfect_hash_T2 is ARRAY (0 to T_ROWS -1) of
hash_array;
SUBTYPE ggperf_integer is integer range 0 to 35 ;
TYPE perfect_hash_node is ARRAY (0 to
MAX_NODE_NUM -1) of INTEGER;
TYPE perfect_hash_g is ARRAY(0 to MAX_NODE_NUM -
1) of INTEGER;
CONSTANT T1 : perfect_hash_T1 :=

 (
(73,-1,24,-1,-1,-1,66,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,7),
(8,-1,7,-1,-1,-1,72,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,17),
(30,-1,58,-1,-1,-1,9,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,80),
(97,-1,72,-1,-1,-1,52,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,92),
(12,-1,82,-1,-1,-1,11,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,77),
(36,-1,29,-1,-1,-1,102,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,37),
(9,-1,1,-1,-1,-1,50,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,14),
(12,-1,69,-1,-1,-1,28,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,70),
(92,-1,82,-1,-1,-1,80,-1,-1,-1,-1,-1,-1,-1,-1,

26

 -1,-1,-1,-1,79),
(44,-1,3,-1,-1,-1,19,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,104),
(59,-1,38,-1,-1,-1,85,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,9),
(63,-1,52,-1,-1,-1,82,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,55)
);

CONSTANT T2 : perfect_hash_T2 :=

 (
(20,-1,77,-1,-1,-1,89,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,97),
(36,-1,66,-1,-1,-1,73,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,79),
(39,-1,84,-1,-1,-1,86,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,51),
(81,-1,102,-1,-1,-1,40,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,81),
(37,-1,32,-1,-1,-1,32,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,74),
(98,-1,73,-1,-1,-1,75,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,12),
(73,-1,32,-1,-1,-1,13,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,89),
(85,-1,33,-1,-1,-1,97,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,17),
(89,-1,22,-1,-1,-1,95,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,18),
(96,-1,47,-1,-1,-1,48,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,48),
(62,-1,49,-1,-1,-1,86,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,51),
(34,-1,10,-1,-1,-1,14,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,81)
);

CONSTANT node : perfect_hash_node :=

(
24,28,60,20,36,55,21,22,35,56,18,71,12,97,79,
 6,23,32,76,41,73,29,0,14,78,19,42,46,61,13,39,
 53,87,45,70,99);

CONSTANT G : perfect_hash_g :=

(
0,0,0,1,0,2,0,3,0,4,5,0,6,0,7,
 0,8,0,9,0,10,5,0,12,0,13,0,14,0,15,0,
 16,20,18,12,20);

END perfect_hash;
PACKAGE BODY perfect_hash IS
END perfect_hash;

APPENDIX E
(Hexadecimal output from hBLASTN)

0000000000000008
0000000510000001
0000000520000002
0000000530000003
0000000540000004
0000000550000005
0000000560000006
0000000570000007
0000000580000008
0000000590000009
00000005A000000A
00000005B000000B
00000005C000000C
00000005D000000D
00000005E000000E
00000005F000000F
0000000600000010
0000000610000011
0000000620000012
0000000630000013
0000000640000014

APPENDIX F
(Test software output. Separate parses program formats
hBLASTN hexadecimal output to software format shown
here)

match found: string TGGTTTTTCTCC. dpos = 80, qpos = 0
match found: string GGTTTTTCTCCA. dpos = 81, qpos = 1
match found: string GTTTTTCTCCAG. dpos = 82, qpos = 2
match found: string TTTTTCTCCAGT. dpos = 83, qpos = 3
match found: string TTTTCTCCAGTT. dpos = 84, qpos = 4
match found: string TTTCTCCAGTTT. dpos = 85, qpos = 5
match found: string TTCTCCAGTTTG. dpos = 86, qpos = 6
match found: string TCTCCAGTTTGT. dpos = 87, qpos = 7
match found: string CTCCAGTTTGTT. dpos = 88, qpos = 8
match found: string TCCAGTTTGTTA. dpos = 89, qpos = 9
match found: string CCAGTTTGTTAT. dpos = 90, qpos =10
match found: string CAGTTTGTTATT. dpos = 91, qpos =11
match found: string AGTTTGTTATTT. dpos = 92, qpos = 12
match found: string GTTTGTTATTTG. dpos = 93, qpos = 13
match found: string TTTGTTATTTGT. dpos = 94, qpos = 14
match found: string TTGTTATTTGTC. dpos = 95, qpos = 15
match found: string TGTTATTTGTCA. dpos = 96, qpos =16
match found: string GTTATTTGTCAT. dpos = 97, qpos =17
match found: string TTATTTGTCATT. dpos = 98, qpos = 18
match found: string TATTTGTCATTT. dpos = 99, qpos = 19
match found: string ATTTGTCATTTC. dpos = 100,qpos= 20

27

	NCBI BLASTN Stage 1 in Reconfigurable Hardware
	Recommended Citation
	NCBI BLASTN Stage 1 in Reconfigurable Hardware

	tmp.1469562486.pdf.lzovp

	Abstract: Abstract: Recent advances in DNA sequencing have resulted in several terabytes of DNA sequences. These sequences themselves are not informative. Biologists usually perform comparative analysis of DNA queries against these large terabyte databases for the purpose of developing hypotheses pertaining to function and relation. This is typically done using software on a general multiprocessor. However, these data sets far exceed the capabilities of the modern processor and performing sequence similarity analysis is increasingly becoming less efficient. There is an urgent need for more efficient ways of querying large DNA sequences for sequence similarities. Here, we describe an FPGA-based hardware solution that implements Stage 1 of NCBI BLASTN, a commonly used sequence analysis application.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: August 31, 2004
	Author: Authors: Gyang, Kwame
	Title: NCBI BLASTN Stage 1 in Reconfigurable Hardware
	ReportNumber: 2005-30
	DepartmentName: Department of Computer Science & Engineering

