
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2014-53

2014

Inferring Memory Map Instructions Inferring Memory Map Instructions

Paul T. Scheid, Ari J. Spilo, and Ron K. Cytron

We describe the problem of inferring a set of memory map instructions from a reference trace,

with the goal of minimizing the number of such instructions as well as the number of

unreferenced but mapped storage locations. We prove the related decision problem NP-

complete. We then present and compare the results of two heuristic approaches on some

actual traces.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Scheid, Paul T.; Spilo, Ari J.; and Cytron, Ron K., "Inferring Memory Map Instructions" Report Number:
WUCSE-2014-53 (2014). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/110

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/110?utm_source=openscholarship.wustl.edu%2Fcse_research%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Department of Computer Science & Engineering

2014-53

Inferring Memory Map Instructions

Authors: Paul T. Scheid, Ari J. Spilo, and Ron K. Cytron

Abstract: We describe the problem of inferring a set of memory map instructions from a reference trace, with the
goal of minimizing the number of such instructions as well as the number of unreferenced but mapped storage
locations. We prove the related decision problem NP-complete. We then present and compare the results of
two heuristic approaches on some actual traces.

Type of Report: MS Project Report

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Inferring Memory Map Instructions∗

Paul T. Scheid, Ari J. Spilo, and Ron K. Cytron
Washington University

August 6, 2014

Abstract

We describe the problem of inferring a set of memory map instructions from a ref-

erence trace, with the goal of minimizing the number of such instructions as well as

the number of unreferenced but mapped storage locations. We prove the related deci-

sion problem NP-complete. We then present and compare the results of two heuristic

approaches on some actual traces.

1 Introduction and Problem Statement

The problem we consider in this paper arose from the following situation. We are using two
tools, valgrind and cachesim. The valgrind tool produces a trace of a program’s load and
store operations as show below:

S:100:8

L:112:8

S:400:8

L:412:8

The first character specifies whether the reference is a store (S) or load (L) instruction.
The next field specifies the starting address of the affected storage. The last field specifies
the length of the affected storage, in bytes. The above sequence corresponds to the shaded
regions shown in Figure 1.

This trace is then supplied to the cachesim tool, which allows experimentation with new
cache-management algorithms and provides statistics about the algorithms’ effectiveness.
That tool requires not only the trace but also a specification of the regions of storage that the
traces references will access. These regions are usually declared by a running program using
operating system calls such as sbrk to establish or increase the data segment of the program.
The valgrind traces unfortunately do not contain any direct capture of instructions that

∗This work was supported by the National Science Foundation through grant EAGER 1237425.

Submitted to ACM SIGACT News 1

280

8

108

120

400

408

100

A B

8

8

4

112

412

4

8

Figure 1: Example of mapped and unmapped memory regions. Each region is labeled with
its starting address. The shaded regions, each of size 8 bytes, are referenced by the program.
The unshaded regions, of sizes 4 and 280 bytes, are never referenced by the program. Two
possible interval constructions are shown, A and B, which result in densities of .1 and .8,
respectively.

establish data segment regions. The problem we therefore address here concerns inferring
such regions from the references in a trace.

Here, we call each such specified region an interval. Given the storage references of a
program, one such specification could simply be a single interval sufficiently large to capture
all of the references. Interval A in Figure 1 is such a specification for the trace shown above.
We define the density of an interval as the ratio of the interval’s referenced bytes to its total
number of bytes. The density of Interval A is 32

320
or 0.1. If this single (large and low-density)

interval is supplied to cachesim, then that tool would allocate a single 420-byte region of
storage, but most of those bytes would never be referenced by the trace. While the example
shown in Figure 1 wastes only 288 bytes, most real programs would waste much more space
with a single such declared region. The relatively large gap in the middle of Figure 1 typically
separates the stack and heap areas of a program, so that they can grow toward each other
without interference. In a 64-bit address space, the middle gap would be much larger, and
a single interval could consist of the entire 64-bit address space.

On the other hand, consider the intervals shown as B in Figure 1. This specification
results in two intervals, each of density 16

20
or 0.8. Although not shown in Figure 1, intervals

can always be found with unity density using the storage-referencing instructions themselves.
In our example, four such intervals would result from this treatment, each containing 8 bytes.
However, in a typical address trace, the result of such a construction would be millions of
intervals. Such as specification, while correct, would require excessive time to process by

Submitted to ACM SIGACT News 2

cachesim.
Given a trace of a program’s the load and store operations, we seek to infer the fewest

regions, subject to a minimum required density for each such region. The rest of this paper is
organized as follows. Section 2 presents a decision problem and proves that it is NP-complete.
Section 3 presents two heuristics and compares their speed and effectiveness.

2 Related Decision Problem

To show the NP-hardness of our problem we restate it as a decision problem:

Given a trace of a program’s load and store instructions, can we formulate a set

of intervals that wastes exactly K bytes?

In other words, the inetrvals found would contain all of the storage locations referenced by
the trace, but they would also contain exactly K unreferenced locations.

To prove the above problem NP-complete, we offer a reduction from the subset sum
problem:

Given as set of integers S = {n1, n2, . . . , nT}, and an integer K, is there a subset

of S whose values sum exactly to K?

We use the notation [a, b) to denote the half-closed, half-open interval that starts at a and
runs up to, but not including, b. Such an interval contains b− a bytes. From an instance of
subset sum, we create the following instance of our decision problem:

Number Instruction
1 S: 0 :1

[Gap n1]

2 S: n1 + 1 :1
[Gap K + 1]

3 S: n1 + 1 + (K + 2) :1
[Gap n2]

4 S: n1 + 1 + (K + 2) + n2 + 1 :1
[Gap K + 1]

5 S: n1 + 1 + (K + 2) + n2 + 1 + (K + 2) :1
. . . .

[Gap K + 1]

2T -1 S:
∑

T−1
i=1 ni + (T − 1) + (T − 1)(K + 2) :1

[Gap nT]

2T S:
∑

T

i=1 ni + (T) + (T − 1)(K + 2) :1

These instructions are created so that there is a gap for each integer in the set S. Between
each pair of referenced locations there is a gap that corresponds either to an integer from
the set S or that is exactly K + 1 bytes. Thus, if there exists an interval construction for

Submitted to ACM SIGACT News 3

the above set of references that wastes exactly K bytes, there must be a subset of S whose
values sum to K, and vice versa.

As an example, consider the set S = {1, 5, 7, 12} with K = 13. The resulting instructions
are shown in Figure 2(a), and a solution exists by creating an interval for references 1 and 2,
and for 7 and 8. These intervals waste 1 + 12 = 13 bytes. The other references are each
in their own interval, wasting no space. On the other hand, no intervals can be merged in
Figure 2(b) such that the number of wasted bytes is 16.

Number Instruction
1 S: 0 :1

[Gap 1]

2 S: 2 :1
[Gap 13 + 1]

3 S: 17 :1
[Gap 5]

4 S: 23 :1
[Gap 13 + 1]

5 S: 38 :1
[Gap 7]

6 S: 46 :1
[Gap 13 + 1]

7 S: 61 :1
[Gap 12]

8 S: 74 :1

Number Instruction
1 S: 0 :1

[Gap 1]

2 S: 2 :1
[Gap 16 + 1]

3 S: 20 :1
[Gap 5]

4 S: 26 :1
[Gap 16 + 1]

5 S: 44 :1
[Gap 7]

6 S: 52 :1
[Gap 16 + 1]

7 S: 70 :1
[Gap 12]

8 S: 83 :1
(a) (b)

Figure 2: Construction applied to S = {1, 5, 7, 12} with (a) K = 13 and (b) K = 16. For (a),
a solution exists if intervals are created for the first two instructions and last two instructions.
For (b), no solution can be found.

Thus, any instance of subset sum can be translated (in polynomial time) to an instance
of our decision problem. A solution to our decision problem can be verified in polynomial
time. Thus, our decision problem is NP-complete, proving our original problem NP-hard.

3 Two Heuristic Approaches

With the optimization proven NP-hard, we next turn to two heuristics for determining
intervals from address traces. We begin with a set of intervals, one for each instruction in
the original trace. Such a collection of intervals has perfect (unity) density, but we seek a
much smaller set of intervals.

The original set of intervals is made smaller by repeatedly merging pairs of intervals still
in the set. The heuristics we present differ in the way they consider candidates for merging.

Submitted to ACM SIGACT News 4

For each interval I in the set, the “all pairs” heuristic considers the density that would
result from merging I with each other interval in the set. If a merge with J provides the
highest density, and if that density is above our required threshold, then intervals I and
J are replaced by a single interval K that merges them. Once K enters the set, it also is
considered for merging with each other interval in the set.

4 Experiments

Figure 3: Comparing the runtime of our two heuristics. We generally sought density thresh-
olds of 0.1. For this benchmark, the faster heuristic computed its results in seconds, compared
to ∼7 minutes for the all pairs heuristic.

We tested these heuristics on multiple benchmark programs from the parsec benchmark
suite [1]. Given a certain threshold, we prefer a result that has fewer intervals over one that
has more. We found that the all-pairs heuristic and the adjacent-pairs heuristic generate
interval quantities within approximately 1% of each other. While the all-pairs merge heuristic
merges intervals that result in the highest density, based on our data, we conclude that the
best possible merge is also generally found in the adjacent intervals, explaining why the
number of intervals generated by the two heuristics is always so similar.

Although they generate similar quantities of intervals, the adjacent merge heuristic is
significantly more efficient in terms of the amount of time taken to generate the intervals.
This is because the all-pairs merge heuristic considers all intervals when attempting to merge,
taking O(n2) time, and the adjacent merge heuristic only considers its neighbors in the
ordered set, taking O(n logn) time. The runtimes of both heuristics are shown in Figure 3.

Submitted to ACM SIGACT News 5

5 Conclusion

While no approach can hope to solve the problem exactly due to its NP-complete nature,
our adjacent merge approach generates a fairly small number of intervals compared to the
files size while still taking a reasonable amount of time. We believe that this approach is
more practical than the all-pairs approach because there is no evidence that checking all
merge candidates results in fewer intervals and that approach takes significantly more time.
Therefore, we believe that in this scenario, the adjacent merge approach is a better solution
to the subset sum problem than the all-pairs approach.

References

[1] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors.
In Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation,
June 2009.

Submitted to ACM SIGACT News 6

	Inferring Memory Map Instructions
	Recommended Citation

	tmp.1415131658.pdf.8nyC5

